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Morphological thermodynamics of composite media
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Abstract

The homogeneous spatial domains of phases on a mesoscopic scale are a characteristic feature of many
composite media such as complex fluids or porous materials. The thermodynamics and bulk properties of such
composite media depend often on the morphology of its constituents, i.e., on the spatial structure of the
homogeneous domains. Therefore, a statistical theory should include morphological descriptors to characterize
the size, shape and connectivity of the aggregating mesophases. We propose a new model for studying
composite media using morphological measures to describe the homogeneous spatial domains of the con-
stituents. Under rather natural assumptions a general expression for the Hamiltonian can be given by extending

w Ž . xthe model of Widom and Rowlinson B. Widom, J.S. Rowlinson, J. Chem. Phys. 52 1970 1670–1684 for
penetrable spheres. The Hamiltonian includes energy contributions related to the volume, surface area, mean
curvature, and Euler characteristic of the configuration generated by overlapping sets of arbitrary shapes. A
general expression for the free energy of composite media is derived and we find that the Euler characteristic
stabilizes a highly connected bicontinuous structure resembling the middle-phase in oil–water microemulsions
for instance. q 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

As a rule, the bulk properties of a composite material depend on the chemistry and on the
supramolecular morphology of its constituents. Therefore, the statistical theory should include
geometrical as well as topological descriptors to characterize the size, shape and connectivity of the

w xaggregating mesophases in such media 1,2 . In this paper we focus on the morphological aspects of
w xtwo component media by employing the Minkowski functionals, known from integral geometry 3,4 ,

as suitable descriptors of spatial patterns. In a d-dimensional ambient space, these functionals
constitute a distinguished family of dq1 morphological measures which share the common features
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of being additive, motion-invariant and continuous. In ds3 they are related with familiar measures:
covered volume, surface area, integral mean curvature and Euler characteristic.

For completeness we collect in Section 2 some requisites from integral geometry required to
Ž .formulate our model. Our approach is an extension of the widely studied Widom–Rowlinson WR

w xmodel of continuum fluids 5 and may be outlined as follows.
Ž . Ž .i Each configuration of component I is assumed to be the union of mutually penetrable convex

Ž . Ž .bodies ‘grains’ embedded in the host component II . The form of the grains is otherwise arbitrary;
they may be balls, flat discs, thin sticks, etc. A typical configuration of randomly distributed discs is
shown in Fig. 1.

Ž .ii The Boltzmann weights are specified by a potential energy which is a linear combination of
Minkowski functionals on the configuration space of the grains.

Ž .iii The partition function is defined as an integral over the Euclidean motions of the penetrable
Ž .grains, weighted by the Boltzmann factor ii .

The WR-model only accounts for the volume covered by spherical grains. In a mean-field
approximation it shows a liquid–vapor transition whose existence for dG2 has also been established
rigorously. In Section 3 the WR-type mean-field approximation is applied to study the modifications
caused by the surface area and curvature terms on the phase transition in the present model. We
concentrate primarily on the effects due to the Euler characteristic X, which is both a geometrical and
a topological invariant. Since X is related with the integral Gaussian curvature of the interface
between the mesophases, it measures the bending energy arising from saddle-splay type interfacial

Fig. 1. Composite media such as porous materials and complex fluids can be modelled by overlapping balls distributed
uniformly in space.
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deformations. Moreover, the Euler characteristic has the attributes of a topological order parameter;
configurations with X)0 consist typically of isolated grain clusters interdispersed in the host
component, whereas multiply connected aggregates of grains yield X-0.

2. The morphological model

d Ž .We consider a two-component medium filling a cube V with volume VsL . Component I is a
Ž .collection of penetrable grains represented by compact i.e., closed and bounded convex sets

d Ž .K ;E , is1, . . . , N see, for instance, the union of randomly distributed discs shown in Fig. 1 . Fori

simplicity, the grains are assumed to be congruent bodies. Let GG denote the group of motions
Ž . dtranslations and rotations in the Euclidean space E . The location and orientation of the grains are
specified by the action of g gGG on a tripod fixed at the centroid of each grain K , K sg K. Thus, ai i i

configuration is given by

N
NK s g K . 1Ž .D i

is1

N Ž .The complement V_K constitutes component II . To avoid finite-size effects we assume periodic
boundary conditions on EV . In order to introduce morphological measures, it is convenient to proceed
within a more general framework and to consider the class RR of subsets of E d which can be
represented as a finite union of convex compact sets, with the empty set BgRR.

Let us now define three general properties a functional WW : RR™R should possess in order to be a
morphological measure.

Ž .i Additivity: The functional of the union AjB of two domains A, BgRR is the sum of the
functional of the single domains subtracted by the intersection

WW AjB sWW A qWW B yWW AlB . 2Ž . Ž . Ž . Ž . Ž .
This relation generalizes the common rule for the addition of the volume of two domains to the case
of a morphological measure. The volume, i.e., the measure of the double-counted intersection has to
be subtracted.

Ž . dii Motion invariance: Let GG be the group of motions, namely translations and rotations in R .
The transitive action of ggGG on a domain AgRR is denoted by gA. Then

WW gA sWW A , 3Ž . Ž . Ž .
i.e., the morphological measure of a domain is independent of its location and orientation in space.

Ž .iii Continuity: If a sequence of convex sets K ™K for n™`, converges towards the convex setn
Ž .K with convergence defined in terms of the Hausdorff metric for sets , then

WW K ™WW K . 4Ž . Ž . Ž .n

Intuitively, this continuity property expresses the fact that an approximation of a convex domain by
Ž . Ž .convex polyhedra K , for example, also yields an approximation of WW K by WW K . Wen n

emphasize that we require this condition only for the morphological measure of convex sets K and
not for unions AgRR.



( )K.R. MeckerFluid Phase Equilibria 150–151 1998 591–598594

In three-dimensional space we can easily give examples of morphological measures which obey the
Ž . Ž .three conditions i – iii : for instance, the volume V and the surface area S of a domain in three

dimensions are continuous, motion-invariant and additive. In two dimensions we mention the area F
and the boundary length U of a domain as morphological measures in the sense described above.

Ž . Ž .Naturally the question arises if there are other measures which obey the conditions i – iii and if
there is a systematic way to find such measures.

w xA remarkable theorem in integral geometry is the completeness of the Minkowski functionals 3 .
Ž .The theorem asserts that any additive, motion-invariant and conditional continuous functional WW A

on subsets A;R d, AgRR, i.e., each morphological measure is a linear combination of the dq1
Minkowski functionals,

d

WW A s c W A , 5Ž . Ž . Ž .Ý n n

ns0

with real coefficients c independent of A. The Minkowski functionals are familiar geometricn

quantities. In ds3 we have, for instance,

W sVV , 3W sAA, 3W sCC , 3W s4p X , 6Ž .0 1 2 3

with the area AA and integral mean curvature CC of the surface exposed by a coverage with volume VV
Ž . Ž .and Euler characteristic X. Thus, every morphological measure WW defined by the properties i – iii

can be written in terms of Minkowski functionals W , i.e., the dq1 Minkowski functionals are then

complete set of morphological measures. The subsequent construction of our model rests on this
theorem.

In order to set up a phenomenological model for the statistical morphology of a Gibbs ensemble of
N Ž . Ž . Ž .configurations such as K in 1 , it is natural to adopt the properties i – iii as criteria for the choice

Ž N . Ž Ž ..of a potential energy UU K . Then, the theorem Eq. 5 forces UU to take the form
d N

NUU K s e UU g K , 7Ž . Ž .Ý Da a iž /
as0 is1

Ž .where we introduce the dimensionless functionals UU sW rw , with w sW K for a single graina a a a a

Ž Ž ..K. We emphasize that the Hamiltonian Eq. 7 constitutes the most general model for composite
media assuming additivity of the energy of the homogeneous, mesoscopic components.

The configurational partition function is taken to be
N N1

ZZ T ,V , N s exp yb UU g K dg . 8Ž . Ž .D ŁH i jNd ½ 5ž /N !L js1is1

The integral denotes averages over the motions of the grains with dg being the invariant Haar
measure on the group GG. The translational parts of the integrals are restricted to the cube V . The
length L is a scale of resolution for the translational degrees of freedom of the grains.

We emphasize, that apart from their convexity, the size and shape of the grains is not restricted and
Ž .‘improper’ bodies are not excluded; a d-dimensional convex set A with dFd has W A s0 fora

aFdydy1.
Since the Minkowski functionals are well-defined also for polyhedral bodies, there is a natural

w xlattice version of our model which preserves its morphological features 6 . Consider, for example, a
Ž .simple cubic lattice where the elementary cells are randomly occupied by the component I and with



( )K.R. MeckerFluid Phase Equilibria 150–151 1998 591–598 595

the configurational integral over GG replaced by a sum over occupation numbers. The occupied
Ž .closed cubes may intersect at common faces, edges or vertices, which are the supports of surface
area, mean and Gaussian curvature, respectively. After setting, e se s0, one arrives, of course, at2 3

a conventional lattice gas model with nearest-neighbor interactions only.

3. Phase diagrams

Because of the proliferation of multi-body potentials, an exact evaluation of the partition function
for dG2 appears to be unmanageable. Therefore, we look for an approximation which should keep

w xthe geometrical and topological aspects of the model intact. For this purpose we follow Ref. 5 by
keeping only the first two terms in a high-temperature expansion of the free energy. This procedure
amounts to replacing the configurational integral in the partition function ZZ by

² : N� 4exp yb UU [exp yb UU K dg , 9Ž . Ž .ŁH i½ 5
i

² : ² : ² :which yields a lower bound ZFZZ. Here, UU sÝ e UU is obtained from the averages UU ofa a a a

the Minkowski functionals over an ensemble of randomly and independently distributed grains within
Ž . ² :the cube V . In the large volume limit. N, V™`, NrVsn, the averages u r [ UU rN area a

w x Ž .known exactly 2,7 and are given for ds3 considered exclusively from now on by
yru r sÕrÕs 1ye rr ,Ž . Ž .0

yru r sarase ,Ž .1

2 2p a
yru r scrcs 1y r e , 10Ž . Ž .2 ž /32 cÕ

31 ac p a
2 yru r sxs 1y rq r e ,Ž .3 2ž /4p Õ 384 y

² : ² : ² : ² :with the notations VV sÕN, AA saN, CC scN and X sx N; furthermore, Õ, a and c
denote volume, area and mean curvature of a single grain; finally, rsnÕ. The approximate free
energy per grain,

1 1
lim bF T ,V , N sy lim log Z\ f r ,T , 11Ž . Ž . Ž .

N ,V™` N ,V™`N N
may be written as

r f r ,T sb 1yeyr q f ry f r 2 q f r 3 eyr qr log rl3 12Ž . Ž . Ž .Ž .Ž .0 1 2 3

3 3 Ž .where b se rk T , l sL r eÕ anda a B

f sb qb qb ,1 1 2 3

23p
f s F b q3F b ,2 1 2 2 3 13Ž .32

23p
f s F b .3 3 332
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The shape of the grains appears in the free energy in terms of the coefficients

a2 ac a3

F s , F s , F s . 14Ž .1 2 3 23Õc 12p Õ 36p Õ

For three-dimensional convex bodies these coefficients are bounded from below by the Minkowski
inequalities F G1, js1, 2, 3, with the equality holding in the case of spheres. The expression, Eq.j
Ž .11 , for the free energy of a composite media in terms of morphological measures of the constituents
is our main result. A general discussion of phase behavior in such media is now possible.

Ž .Furthermore, it may be interesting to compare Eq. 11 with experimental data for systems where the
Ž . Ž .conditions 2 – 4 are fulfilled.

We now look for phase transitions signalized by the occurrence of critical points. Within the
present approximation, the values of r and T are found by solvingc c

2 3E p E p E p
s0s , )0, 15Ž .2 3Er Er Er

r ,Tc c

with the pressure

E f
2pÕsr . 16Ž .

Er

For a generic set of parameters in the free energy, E2prEr 2 s0 yields a fourth-order polynomial
equation for the possible values of the critical density r . Consequently, we expect to find in generalc

two critical points. However, let us first consider some special choices for these parameters.
The choice e s0, aG1, leads back to the original Widom–Rowlinson model witha

f r ,T sb 1yeyr rrq log rl3 . 17Ž . Ž . Ž .Ž .0

having a single critical point at r sÕn s1, k T sere. We note that these values are independentc c B c

of the grain shape which enters only in the expected mean curvature u scrc and Euler characteristic2
2Ž . Ž . Ž . Žu sx ; in the example of spheres one has u r s 1y3p r32 ref0.03 and x r sy 2y3 2 c c

2 .3p r32 refy0.39. The dashed line shown in Fig. 2 indicates the location of the coexisting
densities.

In the case e se se s0, the configurational energy is determined by the exposed area which0 2 3

may be viewed as a continuum analog of Peierls contours of an Ising lattice model. The free energy
simplifies to

f r ,T sb eyr q log rl3 . 18Ž . Ž .Ž .1
qq q q q yr qc' Ž . Ž .There is a single critical point r s2q 2 , k T se r r y2 e for e)0, with x r fc B c 1 c c c

yy y y y yr yc' < < Ž . Ž .0.05, and another one, r s2y 2 , k T s e r 2yr e for e-0, with x r fy0.24.c B c 1 c c c

For two-dimensional grains with Õs0 the free energy reduces to

f n ,T sb q f qf nqf n2 q log nL3re 19Ž . Ž .Ž .0 1 2 3

Ž . 2where f s f Õs1 , js2, 3, and psn E frEn. A critical point occurs at n sf r6f , k T sj j c 2 3 B c

6f n2. Consider, for instance, two-dimensional discs with radius r. The area and the mean curvature3 c
2Ž . 2 Ž .are obtained from those of a cylinder, as2p r 1qhrr , csp r 1qhrp r , when h™0. In
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Fig. 2. A typical phase diagrams for penetrable spheres in three dimensions: the dashed line indicates the two-phase
coexistence region of the Widom–Rowlinson model with e s1, e se se s0. The solid lines show the influence of the0 1 2 3

Euler characteristic, i.e., the two-phase region for e s1, e s0, e s0.4, and e s0.83. Two critical points occur at0 1 2 3

r Ž1.s0.27, k T Ž1.s1.04 and r Ž2.s3.72, k T Ž2.s0.79, and a triple line at k T s0.066 where three phases are inc B c c B c B tr
² :thermodynamic equilibrium. The middle phase at W r V f0.75 is stabilized by the Euler characteristic x in the0

Ž Ž ..Hamiltonian Eq. 7 , i.e., highly connected configurations result in a large Boltzmann factor.

Ž .2 Ž 2 3.addition, we set e s0 to focus on the Euler characteristic; then n s16cr p a s4r p r ,2 c
2 3Ž . Ž .k T s2e and x n s1y10c r 3p a sy2r3.B c 3 c

Ž . Ž . Ž .The three particular examples, Eqs. 17 – 19 , of the general expression, Eq. 11 , for the free
energy exhibit only one critical point, i.e., one two-phase coexistence. Our main result is the existence
of a second critical point and a three-phase coexistence, i.e., a triple point for a nonvanishing term
e /0. A typical phase diagram for penetrable spheres is shown in Fig. 2. The topology of the phase3

diagram changes qualitatively if the Hamiltonian contains a term proportional to the Euler characteris-
tic X of the configuration. The stabilized middle phase is characterized by a negative mean Euler
characteristic x-0 indicating a highly connected bicontinuous structure between the densities of the
critical points. This resembles, for instance, the experimentally observed phase behavior and spatial
structure of a middle phase microemulsion. The temperature of the triple line can tend to zero yielding
two separated two-phase regions with a phase at medium densities even at Ts0.

4. Conclusion

In this paper we derived a general expression for the free energy of composite media in terms of
morphological measures of the constituents. We introduced penetrable grains to describe the homoge-
neous spatial domains of the constituents and we applied integral geometry in order to propose a
potential energy of the configurations. The thermodynamics of such composite materials are then
given in terms of additive, morphological measures of its constituents. Depending on the relative
strength of the energies related to the volume, surface area, mean curvature, and Euler characteristic
of the domains we find qualitative different phase diagrams and spatial structures. Monte-Carlo
simulations of the model and also applications to colloidal systems are work in progress.
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