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Abstract

Extending the Swendsen-Wang cluster algorithm to include both bulk (H)

and surface fields (H1) in L×L×D Ising films of thickness D and two free L×L

surfaces, a Monte Carlo study of the capillary condensation critical point of

the model is presented. Applying a finite-size scaling analysis where the lateral

linear dimension L is varied over a wide range, the critical temperature Tc(D)

and the associated critical field Hc(D) are estimated for 4 ≤ D ≤ 32 lattice

spacings, for a choice of the surface field H1 small enough that the dependence

of Hc(D) on H1 is still linear. It is shown that the results are consistent

with the power laws predicted by Fisher and Nakanishi [M.E. Fisher and H.

Nakanishi, J. Chem. Phys. 75, 5857 (1981)], namely Tc(∞)−Tc(D) ∝ D−1/ν ,

Hc(D) ∝ D−(∆−∆1)/ν , where ν is the bulk correlation length exponent of

the three-dimensional Ising model, and ∆, ∆1 are the corresponding “gap

exponents” associated with bulk and surface fields, respectively. As expected,

the order parameter of the thin film near its critical point exhibits critical

behavior compatible with the universality class of the two-dimensional Ising

model.
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I. INTRODUCTION

The application prospects of nanoscale technology have created a fresh interest in the

behavior of both simple fluids and complex fluids confined in pores or in a thin film geometry

in layers confined by parallel walls1–5. However, a prerequisite for the clarification of pattern

formation2,3 and dynamics4,5 is a good understanding of the interplay between bulk and sur-

face effects on thermodynamics and phase behavior in this finite-size geometry6–8: although

theoretical aspects of phase transitions and critical phenomena in confined geometry have

been considered since a long time9–28, this is still a topic of active current research29–33

even for one of the most well-known phenomena, namely “capillary condensation”34,35. By

“capillary condensation” one means the finding, already discovered in the 19th century34,

that in a capillary the condensation of a gas occurs already at a lower pressure p than the

coexistence pressure pcoex necessary to induce condensation in the bulk. Qualitatively, this

shift of the transition can be attributed to the interaction of the fluid molecules with the

attractive walls of the capillary. Although confinement effects on fluids and their phase

transitions have been studied experimentally since a long time as well36–49, a quantitative

characterization of the shift of the capillary condensation critical point remains a challenge.

While for temperatures T below the critical temperature Tc(D) of the thin film of thickness

D the chemical potential at the condensation transition µc(D) is shifted relative to its bulk

value simply as µc(D) − µc(∞) ∝ D−1 (“Kelvin equation”)27, for large enough D, Fisher

and Nakanishi16 predicted a completely different power law for the corresponding shift at

the critical temperature itself, namely

µc(D) − µc(∞) ∝ D−(∆−∆1)/ν , T = Tc(D) (1)

for weak surface forces. In Eq. (1), critical exponents of the three-dimensional Ising model

universality class (that encompasses criticality of gas-fluid critical points or the related un-

mixing transitions in binary mixtures, etc.) enter, namely the correlation length exponent50

ν ≈ 0.63 and the “gap exponent” ∆ = γ + β ≈ 1.56 and the corresponding exponent for a

free surface19,51–53 ∆1 ≈ 0.46 − 0.48. Also for the shift of Tc a similar power law holds,
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Tc(∞) − Tc(D) ∝ D−1/ν , (2)

which is the same relation as is familiar from standard finite-size scaling10,18,54,55 for the shift

of Tc in films with “neutral walls” {i.e., no surface field preferring one of the phases coexisting

for T < Tc(D) at µc(D) ≡ µc(∞) act} or in films with periodic boundary conditions where

surface effects are a priori absent. While for the latter systems Eq. (2) has been studied

by various methods13,15,56–60, Eq. (1) to our knowledge has not yet been tested by Monte

Carlo simulations. In previous work26,28,29, tests of the Kelvin equation and corrections to

it61 have been carried out and a capillary condensation critical point was located for a thin

Ising film28 but for a single value of D only.

In the present paper, we fill in this gap by presenting a Monte Carlo study of the critical

behavior of capillary condensation in thin Ising films for a range of thicknesses. Invoking

the universality principle62, one can argue that nearest neighbor Ising lattices with short

range surface fields should yield the same power law, Eq. (1), as more realistic models and

real fluids in slit-like capillaries do. Unlike the situation in real fluids, packing effects at

the surfaces and a dependence of the density in the middle of the film on its thickness are,

however, absent and one focuses on the universal critical behavior. One can argue that the

order parameter correlations in the directions parallel to the wall should all scale with the

critical exponents of the universality class of the two-dimensional Ising model62,

M ∝ t̃β2 , χ ∝ |t̃|−γ2 , ξ|| ∝ |t̃|−ν2, β2 = 1/8, γ2 =
7

4
, ν2 = 1,

t̃ ≡ 1 − T/Tc(D) → 0, all D < ∞. (3)

Of course, one expects that for large D the asymptotic critical region where this

two-dimensional critical behavior holds is very narrow, due to a crossover to the three-

dimensional critical behavior as D → ∞, and a quantitative understanding of this

crossover13,56–58 is a challenging aspect of this problem, too.

In Sec. II, we shall hence briefly define the model that is studied and the quantities

that will be analyzed and comment on the simulation methods. Sec. III briefly reviews the
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scaling predictions, including the finite-size scaling results for the case where both D and

the lateral linear dimension L are finite. Sec. IV then presents our results on Tc(D) and the

critical fields Hc(D), on which our tests of Eqs. (1), (2) are based. Sec. V discusses those

aspects of our results which are pertinent to a test of two-dimensional criticality, Eq. (3),

while Sec. VI summarizes our conclusions.

II. MODEL AND SIMULATION TECHNIQUE

Invoking the well-known isomorphism between the lattice gas model of fluids and the

Ising model of magnetism (see e.g. Ref. 28 for details), we study the Ising model on the

simple cubic lattice in the presence of a bulk field H and a surface field H1,

H = −J
∑

〈i,j〉

SiSj − H
∑

i

Si − H1

∑

i ǫ surfaces

Si, Si = ±1, (4)

where the exchange interaction J is only present between nearest neighbors on the lattice.

Note that phase coexistence in the bulk (phases with positive and negative magnetization

correspond to gas and liquid phases of the fluid, respectively) corresponds to H = 0, see

Fig. 1. In the thin film, one trivially obtains the result that for zero temperature phase coex-

istence occurs for28 Hcoex(D, T = 0) = −2H1/D, but for T > 0 the variation of Hcoex(D, T )

is nontrivial. While previous work28 was mostly interested in the behavior of Hcoex(D, T )

near the temperature Tw(H1) of the wetting transition1,6,7,63, we consider here scaled sur-

face fields H1D
∆1/ν small enough such that we stay in the nonwet regime of the surface

phase diagram of the semi-infinite system64 throughout, although we consider the vicinity

of T∞
c = Tc(D = ∞). Measuring all lengths in units of the lattice spacing, we consider film

thicknesses D = 4, 8, 12, 16, 24, 28 and 32 for an L × L × D geometry, varying L over an as

wide range as is practical, from the point of view of available computer ressources. In the

x, y-directions parallel to the thin film, we apply periodic boundary conditions as usual13,28.

In order to be able to find Tc(D) and Hc(D) ≡ Hcoex(D, T = Tc(D)) reliably, we have

to use aspect ratios L/D ≫ 1. Although the choices of film thickness as quoted above are
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not extremely large, it is clear that use of rather large linear dimensions L is mandatory

for obtaining reliable results. If we would use the Metropolis algorithm65–67, as done in

Refs. 13,28, or the heatbath algorithm67, “critical slowing down”66,67 would be a serious

problem: i.e., the “time” τ over which subsequently generated system configurations are

correlated varies as67

τ ∝ Lz with z ≈ 2.16 (d = 2) or z ≈ 2.03 (d = 3), (5)

the prefactor in this power law being of order unity if Monte Carlo time is measured in units

of attempted Monte Carlo steps (MCS) per spin. Since we wish to use linear dimensions of

the order of L ≈ 102, relaxation times of the order of 104 MCS easily result. Given the fact

that quantities like the specific heat Cv and the susceptibility χ, recorded from fluctuations

of energy and magnetization,

Cv =
(〈

H2
〉
− 〈H〉2

)
/(L2DkBT 2), χ =





〈(
∑

i

Si

)2〉
−

〈
∑

i

Si

〉2


 /(L2DkBT ), (6)

are non-self-averaging66–68, one needs n ≫ 1 statistically independent observations (i.e.,

separated by time intervals ∆t > τ) to obtain Cv and χ with small enough error (the

relative error of these quantities is68
√

2/n, irrespective of L and D). For this reason, it is

clear that the use of cluster algorithms which reduce critical slowing down67,69–75 is highly

desirable. However, for the present problem where both a bulk magnetic field and a surface

magnetic field of competing sign are present {Eq. (4)} application of cluster algorithms is

nontrivial. It turns out that an extension of the “ghost spin algorithm”71–73 to the present

problem is rather straightforwardly possible76,77. The coupling of spins to a magnetic field

is thereby treated as if it were an additional infinite-range exchange coupling to an extra

spin SG = ±1. This coupling has the strength h = |H| for spins in the interior of the film

and h = |H1 + H| for spins in the surface layers. In addition to putting bonds in clusters of

spins (inside a cluster all spins are connected by exchange interactions and have the same

sign) with probability69–77 pB = 1 − exp(−2J/kBT ) one also puts bonds between the spins

in clusters and the ghost spin pG = 1− exp(−2h/kBT ), if the orientation of the spins in the
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cluster is the same as that of the ghost spin {which is SG =sign (H) for interior spins and

SG =sign (H1 + H) for spins in the surface planes, respectively}.

While this extension of the cluster algorithm to the case of nonzero bulk and surface

fields is formally exact, discussion of its efficiency is a rather delicate problem: in fact, if

h/kBT is of order unity, also pG is of order unity and the infinite-range character of this

coupling then implies that huge clusters containing a large fraction of the entire simulation

volume would be created most of the time! It is clear that under such circumstances the

algorithm would be very inefficient; as in the case of zero field it is necessary for a good

performance of a cluster algorithm that typically large clusters are created but a single large

cluster must contain only a negligible fraction of the total volume in the thermodynamic

limit. As a consequence, one needs h/kBT ≪ 1, and since kBT is in the range of 3.5 − 4.5

we have thus chosen to work with a single value of the surface field, namely H1 = −0.015J .

Even for this small value – note that the corresponding value of H is typically one or two

orders of magnitude smaller, see below – the performance of the algorithm has significantly

deteriorated, in comparison with the case without any magnetic fields. This fact can be

clearly demonstrated by a binning analysis75,78 of the magnetization m in the system: the

N (dynamically correlated) subsequent observations mν = (1/N)
N∑

i=1
Sν

i are grouped into

n = N/Nb blocks of length Nb, from which block averages m̃µ of the corresponding Nb

observations {mν} belonging to the block with index µ are formed. Then

∆m ≡ [n(n − 1)]−1/2

√√√√
n∑

i=1

(m̃µ − m̄)2 (7)

(where m̄ = n−1
n∑

i=1
m̃i) is studied as a function of block length Nb (Fig. 2): when ∆m

is independent of Nb, the subsequent m̃µ are statistically independent, and ∆m is a good

estimation of the statistical error; otherwise one sees a systematic increase of ∆m with Nb

and the value of Nb needed to reach a saturation value yields an estimate for the correlation

time. For the Metropolis algorithm and the chosen system size (L=128), even for Nb = 4000

one is far from saturation, and hence it is clear that this algorithm would be very impractical

for the present problem. For the cluster algorithm and H1 = 0, on the other hand, ∆m
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vs. Nb is essentially constant, ∆m ≈ 0.0004, the correlation time being of order unity, as

expected67,69,74,75. However, this is not so for the cluster algorithm in the case H1 = −0.015:

∆m saturates at a plateau of about ∆m ≈ 0.007, i.e. the error is almost a factor 20 larger,

and the correlation time is of the order of τm ≈ 280 Monte Carlo steps in the example shown

in Fig. 2(b). Thus, while the gain of the cluster algorithm in the zero field case compared to

the Metropolis algorithm is very significant, in our problem it is only rather modest! This

- somewhat unexpected - dramatic decrease of the efficiency of the cluster algorithm with

increasing strength of the surface (and bulk) fields has prevented us both from studying

systems larger than L = 128 and from studying the dependence on H1 systematically. Runs

of length up to 1.2 million Monte Carlo steps (MCS) were performed.

As is well known67,75,79, cluster algorithms at critical points of Ising systems are rather

sensitive to correlations among the pseudorandom numbers produced by the random number

generator. In the present work, we used thus an improved version of the standard ”R250”

generator80, where two versions {one based on the pair of integers (250, 103) the other with

the pair (521, 168)} are combined with the logical XOR operation.

In order to make best use of our simulation data, we apply standard multihistogram

interpolation techniques67,74,75,81. Note that we needed a three-dimensional histogram

P (E, m, m1), E being the exchange energy, m1 the magnetization in the surface plane,

in order to allow reweightings in the full parameter space of independent control variables

(T, H, H1) and hence the storage requirements for P are nontrivial. However, noting that

all measurements of E, m, m1 can be represented by integers, each integer needing 4 Byte,

we can store the time series of 106 observations with a storage of 12 MByte, irrespective of

the choices of L and D.

The multihistogram reweighting with respect to the bulk field H is crucial in order to

be able to find the field Hcoex(T ), along which for T < Tc(D) two-phase coexistence occurs,

applying the “equal weight rule”66,67,75,82: In the space of variables (E, m, m1), the two

phases show up as separate peaks of P (E, m, m1) {or P (m, m1), respectively, see Fig. 3(a),

when one studies an isotherm one can integrate out E, of course}, which have precisely
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the same weight at H = Hcoex(T ) while for H 6= Hcoex(T ) (but not too far away from it)

the two peaks can still be identified but have different weight. With the multihistogram

reweighting, a small number of simulation points suffices to generate the curve Hcoex(T )

{and its extrapolation into the regime T > Tc(D)} with reasonable precision, see Fig. 3(b).

Since near Tc(D) the free energy differences between the two phases are very small also off

coexistence, the statistical error in the estimation of Hcoex(T ) is not negligible, and also

systematic errors, since L/D is not large enough, need to be considered. The latter problem

also affects the estimation of Tc(D), as will be discussed in Sec. IV.

III. SCALING PREDICTIONS

For completeness, we first summarize the pertinent predictions of the scaling theory

for thin Ising films near the critical point16–19,84, assuming the lateral linear dimension L

infinite, and consider the extension58 to finite L in the following. The singular part of the

free energy per spin is assumed to scale as follows

fsing (D, T, H, H1) ≈ |t|2−αf̃±
(
D|t|ν , H|t|−△, H1|t|

−△1

)
, (8)

where α is the exponent of the specific heat of the three-dimensional Ising model, t =

(T − Tc (∞)) /Tc (∞) , f̃± is a “scaling function” (with two different branches, referring to

the sign of t), and the other exponents have already been defined in Sec. I.

Now it is convenient to introduce the scaling variables

x ≡ D|t|ν , w ≡ H1D
∆1/ν , (9)

and then Eq. (8) can also be written as, eliminating |t| from the arguments of f̃±,

fsing (D, T, H, H1) ≈ |t|2−αf̃±

(
x,

HD∆/ν

x∆/ν
,

w

x∆1/ν

)
. (10)

Since the critical point of the thin film is shifted relative to the bulk critical point Tc (∞),

it must correspond to a singular behavior of the scaling function f̃±. At fixed H1 and fixed D
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this means the scaling function f̃±
(
x, y, y1 = w/x∆1/ν

)
has a singularity at a point xc (w) ,

yc (w). Therefore the shifts ∆Tc (D) , ∆Hc (D) follow as16

∆Tc = Tc (D, H1) − Tc (∞) = −BT D−1/νXc

(
CH1D

∆1/ν
)

, (11)

∆Hc ≡ Hc(D, H1) = −BHD−∆/νYc(CH1D
∆1/ν). (12)

The scaling functions Xc, Yc are universal, while BT , BH and C are non-universal critical am-

plitudes, which are normalized such that Xc(Cw) = 1+(Cw)2+. . . , Yc(Cw) ≈ Cw+o(Cw)3.

Note that both functions are analytic for w → 0, and ∆Tc should be an even function of

H1 and hence w, while ∆Hc must be an odd function of H1. From these considerations, for

small H1 Eqs. (1), (2) result, remembering28 that µc(D) − µc(∞) = −2Hc.

An alternative argument for Eq. (1), which also elucidates how this equation fits together

with the Kelvin equation (Hc ∝ −H1/D) in the critical region for large enough D, derives

from a consideration of phase coexistence for temperatures slightly below Tc(D). If H1 =

H = 0, we would have two coexisting phases with magnetization profiles m+(z) and m−(z) =

−m+(z) across the film, and both states have the same free energy F+(0, 0) = F−(0, 0). Since

these profiles are smooth functions of H and H1, an expansion of the free energies around

F+(0, 0) {or F−(0, 0), respectively} yields

− ∆F+ ≡ F+(0, 0) − F+(H, H1) = m+HDL2 + 2m+
1 H1L

2, (13)

− ∆F− ≡ F−(0, 0) − F−(H, H1) = m−HDL2 + 2m−
1 H1L

2, (14)

where m+, m− refer to the average over the magnetization profile in the respective states,

and m+
1 , m−

1 the layer magnetizations in the surface layer. To leading order for small H1 and

small H in Eqs. (13,14), m+, m− and m+
1 , m−

1 are to be taken at zero fields, and thus satisfy

the symmetry m− = −m+ and m−
1 = −m+

1 . Phase coexistence occurs for ∆F+ = ∆F−,

and hence the Kelvin equation results,

Hcoex(D, T, H1) ≈ −
2H1

D

m+
1 (D, T )

m+(D, T )
. (15)
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Assuming then that D ≫ ξ, the correlation length in the bulk, m+(z) will approach the bulk

spontaneous magnetization mb = B̂b(−t)β almost everywhere, and hence m+ ≈ B̂b(−t)β,

B̂b being the respective critical amplitude. Likewise m+
1 (D, T ) approaches the surface layer

magnetization of a semi-infinite system19,51,84 m1 = B̂1(−t)β1 , with B̂1 the corresponding

amplitude. Therefore Eq. (15) becomes in this limit

Hcoex(D, T, H1) ≈ −
2H1

D

B̂1

B̂b

(−t)β1−β, x = D|t|ν → ∞. (16)

Since50 β ≈ 0.325 and19,51–53 β1 ≈ 0.78− 0.80, we see that the coefficient of the term H1/D

in Eq. (16) gets smaller and smaller as |t| gets smaller. Due to this vanishing coefficient in

the limit |t| → 0 a smooth crossover between the Kelvin equation, Eqs. (15, 16), and Eq. (1)

becomes possible. Remembering that for D finite there is a shift of Tc as given by Eq. (2),

we can further conclude that the critical field should be of the order

Hc(D1, H1) ≡ Hcoex(D, Tc(D), H1) ∝ −
2H1

D
D−(β1−β)/ν = −2H1D

−(∆−∆1)/ν , (17)

where in the last step the standard scaling relations β = 2 − α − ∆, β1 = 2 − α − ν − ∆1

were used. Eq. (17) obviously is nicely compatible with Eq. (1).

Eq. (16) allows an interesting conclusion to be drawn on the slope of the coexistence

curve at the critical point of the film (cf. Fig. 1). We find first for the angle θ(t) describing

this slope for T < Tc(D)

tan(θ) ≡ (∂H/∂T )H1
=

2H1

Tc(∞)

β1 − β

D

B̂1

B̂b

(−t)β1−β−1, x = D|t|ν → ∞ . (18)

Since β1 < 1 + β, the exponent of (−t) is negative, and thus for the considered limit the

slope diverges (i.e., varying t at very large but fixed D). However, this limit does not include

the limiting slope at T → Tc(D) itself, since then Eqs. (2), (11) yield t ∝ D−1/ν , and hence

tan(θ) ∝ H1D
−(β1−β−1)/ν−1 = H1D

−(∆−∆1−1)/ν . (19)

In Landau theory, ∆ = 3/2, ∆1 = 1/2 and hence the power of D vanishes, i.e., the slope is

nonzero and finite at Tc(D) in the limit D → ∞. For the three-dimensional Ising model, the

10



best available exponent estimates50,19,51–53 imply (∆ − ∆1 − 1)/ν ≈ 0.12 − 0.16, i.e. θ → 0

for D → ∞! This result also implies that for capillary condensation field mixing effects85

are asymptotically not very important.

We now briefly consider the extension of the scaling theory to include finite-size effects

due to the finite lateral linear dimension L {in Eqs. (13, 14) we have assumed the limit

L → ∞ throughout}. This can simply be done by including the aspect ratio L/D as an

additional scaling variable in Eqs. (8, 9), which we then rewrite as follows

fsing(D, T, H, H1, L) ≈ D−3f̃(D1/νt, L/D, HD∆/ν, H1D
∆1/ν). (20)

Since for finite L the free energy and its derivatives are smooth functions of t, it is more

convenient to use D1/νt rather than x = D|t|ν as a scaling variable. From Eq. (20), we

immediately obtain the following scaling results for the specific heat, the magnetization and

the susceptibility of the thin film

Cv = Dα/νC̃(D1/νt, L/D, HD∆/ν, H1D
∆1/ν), (21)

m = D−β/νm̃(D1/νt, L/D, HD∆/ν, H1D
∆1/ν), (22)

χ = Dγ/νχ̃(D1/νt, L/D, HD∆/ν, H1D
∆1/ν), (23)

where C̃, m̃ and χ̃ are appropriate scaling functions. Since we choose H1 fixed, D fixed,

H1D
∆1/ν

≪ 1, and H is chosen according to Eqs. (16, 17) {in practice this is done by

applying the reweighting technique and the equal area rule, cf. Fig. 3} the last two arguments

HD∆/ν , H1D
∆1/ν in Eqs. (21)–(23) can be ignored in the following discussion.

Now in the limit L → ∞ we expect that Cv exhibits a logarithmic singularity for T →

Tc(D), while the critical part of the magnetization mcrit ≡ m − m(Tc(D), H, H1) should

behave as62

mcrit ∝ [1 − T/Tc(D)]β2, β2 = 1/8, (24)

and the susceptibility
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χ ∝ |1 − T/Tc(D)|−γ2, γ2 = 7/4. (25)

For finite L, however, these singularities are all rounded off and we rather expect that

both Cv and χ exhibit maxima of finite height at temperatures T c
max (D), T χ

max (D). From

Eqs. (21), (23), we readily predict (in the limit |H1|D
∆1/ν ≪ 1)

T c
max (D) − Tc(D)

Tc(∞)
D1/ν = ∆T̃ c

max (L/D) , (26)

T χ
max (D) − Tc(D)

Tc(∞)
D1/ν = ∆T̃ χ

max (L/D) , (27)

with ∆T̃ c
max (L/D), ∆T̃ χ

max (L/D) being suitable scaling functions that describe the shift of

these maxima positions as functions of the aspect ratio L/D. From this analysis one also

can predict58 how the height of the maxima should depend on D and L, for L >> D

Cmax
v ∝ Dα/ν ln(L/D), (28)

χmax ∝ Dγ/ν−7/4 L7/4, (29)

and how the absolute value of the order paramter should decrease at Tc(D),

〈|mcrit|〉T=Tc(D) ∝ D1/8−β/γ L−1/8 . (30)

Finally, in the limit L → ∞ the D-dependence of the critical amplitudes associated with

the two-dimensional critical behavior (see Ref. 58 for a more detailed discussion), defining

now t̃ = [T − Tc (D)] /Tc (∞), can be read off from the following equations,

Cv ∝ Dα/ν ln |t̃| , (31)

mcrit ∝ D(1/8−β)/ν
(
−t̃
)1/8

, (32)

χ ∝ D(γ−7/4)/ν |t̃|−7/4 . (33)

Due to the crossover scaling between two- and three-dimensional critical behavior, that

Eqs. (20), (21), (22), and (23) describe, a singular dependence of the various critical ampli-

tudes on film thickness results at the capillary condensation critical point.
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IV. NUMERICAL RESULTS ON TC (D) AND HC (D) .

For locating critical points in the bulk, a convenient method is to study the fourth order

cumulant of the order parameter

UL (T ) = 1 −
〈
m4

crit

〉
/
[
3
〈
m2

crit

〉2
]

(34)

for a range of linear dimensions L as a function of temperature, and to look for a common

intersection point86 {which for the universality class of the two-dimensional Ising model,

should have the value87 U∗ = UL (T = Tc) = 0.610690 (1)}. In our case, we have to follow

a path along H = Hcoex (T ) {as shown in Fig. 3(b)} when we record these cumulants, and

since this path is not exactly known but only within some numerical error, it is clear that

this method is more difficult to apply than for ordinary bulk Ising models. In addition, even

for small D the data are plagued by crossover scaling effects (Fig. 4): the curves for the

values of L that are practically available do not intersect in a common point, but rather

the intersection points are scattered and fall below the theoretical value U∗. This failure of

verifying the common intersection points is not unexpected, since Fig. 4 includes data for

which the aspect ratio L/D is as small as 4 (a) or even 2 (b), rather than only data for which

L/D ≫ 1. In fact, from the treatment of the previous section we can readily conclude that

UL (T = Tc (D)) = Ũ (L/D) (35)

and only in the limit L/D → ∞ shall we have U (∞) = U∗.

An alternative and widely used recipe to find the critical temperature is to try an extrap-

olation of the maxima of the specific heat and susceptibility versus L−1/νor of the cumulant

intersection points. Considering the intersection of UL (T ) and UbL (t) with a scale factor

b > 1, it can be argued86 that corrections to finite-size scaling lead to a shift of the inter-

section point that varies with b proportional to
[
b1/ν − 1

]−1
for large b. Fig. 5 shows some

attempts to carry out such extrapolations, again for D = 8 and D = 28 (data for all other

choices of D can be found in76 and look similar). These figures show that T c
max approaches
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Tc (D) in a non-monotonic fashion, and also the curve T χ
max vs. L−1/ν is distinctly non-linear.

Fitting asymptotic straight lines to both data sets one obtains results for Tc (D) that are

roughly compatible with each other, and with the (linear) extrapolation of the cumulant

intersections. Although the accuracy of Tc (D) obtained in this way is several orders of

magnitude less than in the case of the bulk three-dimensional Ising model88, the data are

accurate enough to allow a useful test of Eqs. (1), (2).

The consistency of our analysis can be checked further by testing for the scaling behavior

predicted in Eqs. (26), (27), see Fig. 6. Here all data points are included for all values of

D and L that have been studied and Tc(D) is chosen such that the best data collapse is

achieved. It is seen that the non-monotonic variation of the temperature at which the specific

heat has its maximum is an intrinsic property of this scaling function describing the system

shape effects in terms of the aspect ratio D/L of the simulation box. The interpolating

curves are simple parabolic fits which translate back into the solid lines in the left part of

Fig. 5.

The values of Tc (D) that we have determined as shown in Figs. 5, 6 are collected in

Table I, which includes also our estimates for Hc (D). Log-log plots of these data versus D

almost look like straight lines, however, there is a slight but systematic curvature, and if this

curvature were disregarded and straight lines were fitted to all the data nevertheless, the

resulting effective exponents would systematically deviate from the theoretial predictions in

Eqs. (1), (2).

Better results are obtained if one fits effective exponents from successive thicknesses

only (D = 4, 8, 12; D = 8, 12, 16; . . . ; D = 24, 28, 32), which can be extrapolated vs. 1/D

reasonably well, and converge nicely towards the theoretical predictions (Fig. 7), namely

−1/ν ≈ −1.587 and − (∆ − ∆1) /ν ≈ −1.75. Conversely, if Fig. 7(b) was taken as an inde-

pendent estimation of the exponent ∆1, we would obtain ∆1 = 0.459(13), which indeed is

compatible with the existing recent estimates51–53.
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V. A TEST OF TWO-DIMENSIONAL CRITICAL BEHAVIOR

In this section, we are concerned with the question to what extent the data provide some

evidence for the prediction (Eq. 3) that the capillary condensation critical point displays

critical exponents of the two-dimensional Ising universality class. Since the accessible values

of the lateral linear dimension L are not very large, however, we cannot expect that a

regime can be reached where the parallel correlation length ξ|| satisfies the criterion D ≪

ξ|| ≪ L - only in such a regime a direct observation of these power laws would be possible.

Hence we attempt to study the critical behavior again via a finite-size scaling analysis,

using10–14,18,54,55,66,67,

〈|mcrit|〉Lv = M̃
(
Lut̃

)
, (36)

χL−w = χ̃
(
Lut̃

)
, (37)

where the exponents u, v, w should take the values

u = 1/ν2 = 1, v = β/ν2 = 1/8, w = γ2/ν2 = 7/4. (38)

Eqs. (36), (37), and (38) are appropriate if D ≪ ξ|| still holds but ξ|| and L are of the same

order. In practice, however, also the condition D ≪ ξ|| is hard to satisfy since we wish to

include some data for which L/D is not very large. It then helps to relax the theoretical

condition, Eq. (38), and rather treat u, v, w as effective exponents58: in this way, one can take

into account to some extent the corrections to finite-size scaling arising from the crossover

between two- and three-dimensional Ising critical behavior.

Fig. 8 shows that this procedure works reasonably well, and Table II gives a listing of

the fit exponents u, v, w, and corresponding effective exponents νeff = 1/u, βeff = v/u and

γeff = w/u. It is seen from Table II that both u, v and w gradually change from the two-

dimensional values towards the three-dimensional ones, although even for D = 32 one is still

far away from the theoretical values for the latter. While βeff has increased significantly, γeff

within the accuracy of this estimation has hardly changed at all. If we consider an effective

15



dimensionality from the hyperscaling relation62, defined as deff = (γeff + 2βeff)/γeff = w + 2v,

we find deff = 2.0±0.15, and there is no systematic trend with D. While the latter observation

is in accord with a previous study using “neutral walls”58, where Hc(D) ≡ 0, we have

obtained in the present work a much better evidence that for small D the behavior is

compatible with two-dimensional Ising criticality than was possible in the latter model58.

Note also that in the present study there is a rather broad range of D where νeff > 1, which

was not the case in58. Due to the systematic problems of fitting several effective exponents

from somewhat noisy data and the restricted range over which this fit is applicable we do

not think that these discrepancies are a proof of non-universal crossover behavior, however.

We feel that this problem needs a more careful study.

VI. CONCLUSIONS

In this paper Monte Carlo simulations have been presented attempting to test theoret-

ical predictions about the capillary condensation critical point. Using an extension of the

Swendsen-Wang cluster algorithm including competing surface and bulk magnetic fields, for

Ising films with thicknesses D = 4, 8, 12, 16, 24, 28 and 32 the critical temperature Tc(D)

and corresponding critical field Hc(D) for a surface magnetic field H1 have been estimated.

The data are compatible with the power laws presented about 20 years ago by Fisher and

Nakanishi. Also the expected two-dimensional critical behavior is compatible with our data,

though the accuracy of the resulting effective exponents is rather low (Table II) and hence

a more convincing proof would be desirable, but is not feasible with the present computer

ressources.

A challenging problem that we have not solved is the development of an efficient ver-

sion of the cluster algorithm that allows to work with surface and bulk fields that are

not extremely small. The algorithm that we have used was much less efficient even for

H1 = −0.015J than for H1 = 0, and a study of capillary condensation critical points over

the range where (H1/J)D∆1/ν is not small, and hence the nonlinear part of the scaling func-
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tion Yc(CH1D
∆1/ν) would be probed, turned out not to be feasible either. Thus, in spite of

a longstanding effort to deal with theory and simulation of capillary condensation there re-

main still some missing links. A particularly intriguing problem is to elucidate the crossover

between three-dimensional and two-dimensional critical behavior in these thin films. Fi-

nally, it is hoped that the present study provides an incentive to address this problem also

by suitable experiments.
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TABLE I: Critical temperatures and fields

D Tc(D) Hc(D)/J

4 3.8705(3) 0.006644(32)

8 4.2409(3) 0.002528(14)

12 4.3561(3) 0.001367(10)

16 4.4084(3) 0.000867(6)

24 4.4549(5) 0.000448(3)

28 4.4665(4) 0.000348(3)

32 4.4749(5) 0.000279(3)

∞ 4.51152(2) 0

TABLE II: Effective exponents for order parameter and susceptibility

D u v w βeff γeff νeff

2-dim 1 1/8 7/4 1/8 7/4 1

4 0.956 0.126 1.67 0.132 1.75 1.064

8 1.018 0.136 1.72 0.133 1.69 0.982

12 0.944 0.138 1.67 0.146 1.77 1.059

16 0.938 0.139 1.61 0.148 1.72 1.066

24 0.898 0.145 1.53 0.161 1.70 1.114

28 0.853 0.141 1.48 0.165 1.74 1.172

32 0.884 0.155 1.54 0.175 1.74 1.131

3-dim 1.587 0.518 1.96 0.327 1.24 0.630
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FIGURES

FIG. 1. Schematic phase boundary for an Ising film of thickness D, where on both surfaces a

field H1 acts, in the plane of variables temperature T and bulk field H.

FIG. 2. Error ∆m as calculated from Eq. (7) plotted vs. block length Nb for the case D = 32,

L = 128, and two choices of H1,H1 = 0 (a) and H1 = −0.015J (b). In both cases the chosen

temperature (and bulk field H in the case of (b)) are adjusted such that the system is precisely

at the critical point. Upper curve in each panel represents the Metropolis algorithm, lower curve

represents the cluster algorithm.

FIG. 3. (a) Unnormalized histogram P (m,m1) of the system with D = 32, L = 96,

H1/J = −0.015,H/J = 0.00028 at kBT/J = 4.471, which is a state close to the two-phase

coexistence line. (b) Two-phase coexistence line in the plane of variables H/J and kBT/J for

D = 28, estimated separately for four different choices of L from the “equal weight”-rule, showing

also the statistical errors as estimated from Jackknife procedures83. The two vertical lines show

the error interval of the critical temperature.

FIG. 4. Cumulants UL(T ) plotted vs. T for D = 8 (a) and D = 28 (b), for various choices of L

as indicated in the figures. Dotted horizontal straight lines indicate the theoretical value U∗ taken

from87.

FIG. 5. Temperatures of specific heat and susceptibility maxima (left part) plotted vs. L−1/ν ,

and temperatures of cumulant intersections plotted vs. (b1/ν − 1)−1 (right part), for D = 8 (a)

and D = 28 (b). In the left part the dashed curves show straight line fits and the solid curves

correspond to the master curves in Fig. 6.

FIG. 6. Master curves for temperature of the susceptibility maxima (upper part) and specific

heat maxima (lower part) plotted vs. the inverse aspect ratio.

FIG. 7. Plot of −1/νeff (a) and − [(∆ − ∆1)/ν]eff (b) vs. 1/D (effective exponents were fitted

from three successive values of D, cf. text).
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FIG. 8. (a) Finite-size scaling plot for the critical part of the magnetization, 〈|mcrit|〉, for

D = 4 and four choices of L as indicated, using Tc(D) as quoted in Table I, and effective exponents

u = 0.956, v = 0.126. The straight line has a slope indicating the exponent β2 = 1/8. (b) Same

as (a) but for D = 32, using now u = 0.884, v = 0.155. (c) Same as (b) but for the susceptibility,

using u = 0.884, w = 1.55. The straight line indicates the exponent γ2 = 7/4.
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