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Abstract. We combine a density functional theory (DFT) treatment of capillary evaporation
in a cylindrical pore with the morphometric approach in order to study the formation
and breaking of bubbles in a hydrophobically lined part of a cone. The morphometric
approach, in which the grand potential of a system is described in four geometrical terms
with corresponding thermodynamical coefficients, allows extrapolation or scaling from
macroscopic system sizes to nanoscales. Since only a small number of fluid particles are
involved in bubble formation, it is a pseudo phase transition, and the system is subjected to
fluctuations between states with and without a bubble. Fluctuations are not included in a
DFT treatment, which makes it possible to explore both states of the system in great detail, in
contrast to computer simulations, in which averages might be obscured by fluctuations.

1. Introduction

The physics of confined fluids has been studied in great detail both experimentally [1–7] and
theoretically [8–12]. Several phenomena are known to be produced by the confining geometry.
For example, one finds that a fluid that is in the gas phase in bulk, i.e. without confinement,
can condense into a liquid phase at a much higher density if confined by hydrophilic walls,
despite the fact that this liquid would not be stable in the bulk. This phenomenon is called
capillary condensation and can be observed in experiments measuring adsorption isotherms of
gases in porous media. A closely related phenomenon is the transition of a fluid, in its stable
bulk liquid phase, confined by hydrophobic walls, into a gas phase at much smaller number
density, that would not be stable without the confining geometry. This transition is called
capillary evaporation, or “bubble formation” in more colorful language. Both transitions show
hysteresis loops [13] in experiments,which are typical signs for first order phase transitions.

Most of the experimental and theoretical effort was targeted at understanding these
transitions in the case of fluids close to saturation. Theoretical studies often employed a simple
slit geometry of two parallel planar walls. Under these conditions the transition can take place
at a moderate level of confinement so that mesoscopic arguments based on thermodynamics
have proven very helpful.

Recent studies indicate that a phenomenon similar to capillary evaporation might be
important in the physics of ion channels [14–23]. Ion channels are proteins in cell membranes
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that allow the passive transport of ions along their electro-chemical gradient [24]. The main
function of these proteins is to control the transport of ions through the membrane by opening
and closing the channel, a process called gating, and in some cases by allowing only specific
ions to pass through the pore, a phenomenon called selectivity. Our work is inspired by the
wish to improve the understanding of the role of bubble formation and breaking in the gating
mechanism of ion channels.

To this end we start in Sec. 2 by recalling the basics of capillary evaporation in simple
geometries using a thermodynamics point of view. Then we show in Sec. 3 microscopic
density functional theory (DFT) calculations [25] of a square-well fluid inside an infinitely
long hydrophobically lined cylinder. In our DFT calculations we focus on the density
profile ρ(r) and the corresponding grand potential Ω of a fluid as a function of the cylinder
radius Rcyl while capillary evaporation takes place. The insight gained from these DFT
calculations we transfer to and exploit in our morphometric approach [26, 27], presented
in Sec. 4. In morphometry the free energy of a liquid confined in a pore is expressed
by four terms that describe the geometry of the pore and corresponding thermodynamic
coefficients. This separation of geometry and thermodynamics allows us to extrapolate or
scale the behavior of the system from macroscopic sizes down small sizes in the nanometer
regime and below. Furthermore, the morphometric approach makes calculations very efficient
so that the formation of a bubble in the gate due to a change in geometry can be studied
in detail. The bubble formation in the geometry we consider constitutes a pseudo phase
transition, in which a finite number of particles is involved. This makes the system close
to the transition point unstable in the sense that thermal fluctuation can cause the formation
or breaking of the bubble and the system can constantly change state. This varying behavior
makes the bubble formation hard to study reproduceable and hence convincingly in computer
simulations. We conclude with an outlook in Sec. 5.

2. Capillary Evaporation in Simple Geometries

We consider a square-well fluid in the grand canonical ensemble and describe its structure
and thermodynamic properties within the framework of density-functional theory (DFT). The
inter-particle interaction potential is given by

Vsw(r) =





∞ r < 2RHS,

−ε 2RHS ≤ r < Rsw,

0 otherwise,
(1)

where RHS and Rsw is the hard-sphere and the square-well radius, respectively, and ε is the
square-well depth. The functional Ω[ρ(r)] of the grand potential has the form [25]

Ω[ρ(r)] = F [ρ(r)] +

∫
d3r ρ(r) (Vext(r)− µ) . (2)

The intrinsic Helmholtz free energy functional F [ρ(r)] = Fid[ρ(r)] + Fex[ρ(r)] can be split
into an exactly known ideal gas contribution Fid[ρ(r)] and an approximate excess (over the
ideal gas) free energy functional Fex[ρ(r)] = FHSex [ρ(r)] + F swex [ρ(r)]. Vext(r) denotes the
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external and µ the chemical potential of the fluid. Fex[ρ(r)] can be further split into a hard-
sphere reference part FHS

ex [ρ(r)], for which we employ the White Bear version [29, 30] of
fundamental measure theory [31], and a square-well part

F swex [ρ(r)] =
1

2

∫
d3r′

∫
d3r′′ρ(r′)ρ(r′′)Vattr(|r′ − r′′|), (3)

with a simple mean-field approximation for the inter-particle attraction Vattr(r), which is −ε
for r < Rsw and zero otherwise. Except for the external potential Vext(r), which plays an
important role in the present study of confined fluids, the system is fully specified.

Before considering confined fluids, we recall the bulk phase behavior of the square-
well fluid. Since we are interested in fluid behavior, we assume that the density profile ρ(r)

reduces to the constant bulk density ρ. From the bulk grand potential Ωbulk = Ω[ρ(r) = ρ]

we calculate the bulk pressure p(ρ) = −Ωbulk/V , where V is the volume, and the chemical
potential µ(ρ) = ∂f/∂ρ, with the free energy density f = F/V . Two fluid phases, denoted
by I and II , with corresponding number densities ρI and ρII coexist if they are in mechanical
and chemical equilibrium, i.e. if

p(ρI) = p(ρII), and µ(ρI) = µ(ρII). (4)

For a square-well radius Rsw = 3RHS we obtain the fluid phase diagram shown in Fig. 1.
Below the critical temperature, the fluid phase can separate into a liquid phase with a high bulk
density and a gas phase with a low bulk density. Note that the mean-field perturbation theory,
Eq. (3), predicts a phase diagram that is not sensitive to the detailed choice of parameters ε
andRsw. It rather predicts phase diagrams that can be rescaled onto a ’master phase diagram’.
One finds, using the Carnahan-Starling equation of state for the hard-sphere contribution, that
the critical point is located at ηc ≈ 0.1304 and kBTc/ε ≈ 0.0472(Rsw/RHS)3.

If we bring a square-well liquid in contact with a single purely repulsive planar wall,
the fluid develops, in general, an inhomogeneous density profile ρ(z), where z denotes
the distance from the wall. ρ(z) can be calculated by minimizing the DFT [25] with an
appropriate external wall potential that accounts for the interaction between the liquid and a
hydrophobically lined pore. For a liquid state very close to the coexisting density ρII(T ) one
can observe complete drying [32] and a growth of a macroscopically thick gas film at the wall
as the density ρ approaches the coexisting liquid density ρII at a given temperature T , or as
the deviation δµ = µ− µco(T ) of the chemical potential from its value at coexistence µco(T )

approaches zero.
In the present study, however, we shall stay away from these state points, as indicated

in the phase digram in Fig. 1 by the state with reduced temperature kBT/ε = 0.9174 and
packing fraction η = 4πR3

HS ρ/3 = 0.3842.
In order to quantify the change in the grand potential due to the inhomogeneous structure

ρ(z) close to the wall we define σ, the planar wall surface tension as

σ =
1

A
(Ω[ρ(z)] + pV ) , (5)

by subtracting the bulk term −pV from the total grand potential of the system Ω = Ω[ρ(z)].
A is the surface area of the wall. In the thermodynamical limit, V → ∞, the grand potential
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Figure 1. The fluid-gas binodal of a square-well fluid with Rsw = 3RHS as function of
reduced temperature kBT/ε and the fluid packing fraction η = ρ4πR3

HS/3. In our DFT
calculation we consider the reduced temperature kBT/ε = 0.9174 and a liquid (l) packing
fraction of ηl = 0.3842. We find that a gas (g) with ηg = 0.0378 has the same chemical
potential as the corresponding liquid.

Ω and A also go to infinity. However, σ is an intrinsic quantity and remains finite. Note that
the value of σ depends on the definition of the dividing surface [33] which in turn defines the
volume V . However, the value of Ω = −pV + σA remains the same for all definitions.

For a state point significantly far away from the binodal, as chosen in the present case,
the interaction of the liquid and a single hydrophobic wall is not sufficient to destabilize the
high density liquid in favor of a low density gas. The pressure in the liquid phase away from
coexistence is always higher than in a gas phase at the same chemical potential so that the
surface contribution to the grand potential cannot compete with the volume term. For the
gas phase to be more stable than the liquid phase, its grand potential Ωg = −pgV + σgA

must be more negative than the grand potential of the liquid phase Ωl = −plV + σlA, with
V = AL and A,L → ∞ in the thermodynamic limit. This cannot be accomplished since
even the smallest difference in the pressure would make the difference of the volume terms,
(−pl + pg)AL, arbitrarily larger than the difference in the surface terms, (σl − σg)A.

When we add a second, parallel, wall at distance L the behavior of the system changes
qualitatively. We consider the situation of two identical walls for simplicity. Note, that the
value of L also depends on the definition of the dividing surface, i.e. it measures the distance
between the parallel dividing surfaces of the opposing walls. If L is large compared to the
bulk correlation length ξ of the liquid, the grand potential of the system in the slit geometry
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can be written as [11]

Ωslit
i ≈ −piV + 2σiA, i = l, g, (6)

where we have used that the walls are independent and the surface tensions σi are those of
a single wall. Since the volume term is now scaled by a finite length L, it is possible that
the liquid phase is destabilized in a slit geometry for sufficiently small plate separations. For
phase equilibrium between a liquid and a gas phase with densities ρl and ρg, respectively, at
a wall separation LCE it is necessary that their grand potentials and their chemical potentials
are equal, which can be expressed, after dividing Ωslit

i by the area A, as

−plLCE + 2σl = −pgLCE + 2σg, and µ(ρl) = µ(ρg). (7)

This equilibrium condition can be solved to determine the slit width

LCE =
2∆σ

∆p
, (8)

at which the capillary evaporation (CE) transition takes place. Clearly, since ∆p ≡ (pg − pl)
is negative, Eq. (8) has a physical solution only if ∆σ ≡ (σg−σl) is also negative, which holds
true for hydrophobic walls. Equation (7) or (8) describe a competition between the volume
and the surface contributions to the grand potential of the two fluid phases.

For a slit width L > LCE the volume term in the grand potential dominates and stabilizes
the liquid phase, whereas for L < LCE the surface term in the grand potential becomes more
important and the slit favors the gas phase. Note, that a gas that is stabilized in the slit pore
has the same chemical potential as the liquid phase and would be meta-stable in the bulk, i.e.
would lie between the binodal (full line) and spinodal (dotted line) at ηg = 0.0378 – see Fig. 1.

Before we switch to a more complicated geometry, it is very instructive to consider the
phenomena of capillary evaporation in an infinitely long cylindrical pore. The (approximate)
form of the grand potential in the slit pore, Eq. (6), is well known and tested, at least for
state points close to saturation, against microscopic theories, but the case of a cylindrical pore
seems less understood.

Following the morphometric approach, we propose that the grand potential in contact
with a complexly shaped wall can be written as [26, 27]

Ωi ≈ −piV + σiA+ κiC + κ̄iX, (9)

where V and A are, as before, the volume and surface area defined by the dividing interface.
The corresponding thermodynamic coefficients are −pi and σi, the negative of the pressure
and the planar wall surface tension in phase i, respectively. Two additional geometrical
measures are required in order to take the effects of curvature of the dividing interface into
account, namely

C ≡
∫

∂V

HdA, and, X ≡
∫

∂V

KdA (10)

the integrated (over the surface areaA) mean and Gaussian curvaturesH = (1/RI+1/RII)/2

and K = 1/(RIRII), respectively. RI and RII are the two principal radii of curvature, which
are sufficient to describe any type of local curvature in three dimensions, if the surface is
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smooth. The radii of curvature are positive if the curvature is convex and negative in the
case of concave curvature. The corresponding thermodynamic coefficients are the bending
rigidities κi and κ̄i. The bending rigidities account for a change in the grand potential due
to the curvature of the wall-fluid interface and the corresponding inhomogeneous structure in
the fluid.

The morphometric form of the grand potential has been suggested to describe the
thermodynamics of a fluid in contact with convex walls. However, away from a critical point
or a wetting or drying transition the morphometric form of the grand potential should provide
a good description also for a fluid inside of a pore, if the size of the pore is sufficiently large
compared to the correlation length ξ. We will comment on this point, when we present our
DFT results in the next section.

For an infinitely long cylinder with radius R, the geometrical measures are readily
calculated and we obtain V = R2πL, A = 2πRL and C = −πL. Note that the integrated
mean curvature C is negative because we are considering the inside of the cylinder, where
the curvature is concave and the radius of curvature negative. The fourth measure X vanishes
because the Gaussian curvature K of a cylinder is zero. Hence the morphometric form of the
grand potential of a fluid inside a cylinder is given by,

Ωcyl
i ≈ −piR2πL+ σi2πRL− κiπL, (11)

and we take the length of the cylinder L → ∞. Note that although the coefficient κi
has the dimension of a line tension, its physical meaning is very different. It describes, as
aforementioned, the change in grand potential of the liquid or the gas due to the curved wall.
Using the morphometric form for Ωcyl

i /(πL), we can formulate the equilibrium condition
between a liquid and a gas phase inside of the cylindrical pore

−plR2
CE + 2σlRCE − κl = −pgR2

CE + 2σgRCE − κg, and µ(ρl) = µ(ρg). (12)

The radiusRCE at which capillary evaporation takes place can be expressed explicitly in terms
of the thermodynamic coefficients as

RCE =
∆σ −

√
(∆σ)2 −∆p∆κ

∆p
, (13)

where we have introduced, in addition to ∆p and ∆σ defined earlier, the difference of the
bending rigidity in the gas and the liquid phase ∆κ ≡ (κg − κl). It would be possible to
proceed with a spherical cavity, however, the expression for the radius at which capillary
evaporation takes place is rather lengthy and provides no additional insight.

The thermodynamic arguments used in this section remain valid even if long-ranged
interactions, such as dispersion forces, are considered as long as one stays away from critical
points, and from the complete wetting or complete drying regime close to the binodal. In the
complete wetting or complete drying regime additional fluctuation-induced corrections to the
Kelvin equation are required [28]. Since we consider only state points sufficiently far away
from the binodal these problems do not occur in our study.
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3. DFT Treatment of Capillary Evaporation in Cylindrical Pores

In order to verify the validity of the morphometric approach for the description of capillary
evaporation inside infinitely long cylindrical pores, we perform DFT calculations. We have to
choose an external potential Vext(r) that defines the cylindrical pore. Since we wish to make
a connection to the gating process in ion channels, we follow the approach from Ref. [34] and
use a hard-sphere fluid of a given high density (ηw = 0.4, Rw = 0.825RHS) which is kept
outside of the pore region by a hard-wall potential. The square-well fluid inside the pore can
hardly penetrate into the region which is occupied by the wall fluid. The wall fluid thereby
exerts an effective external potential Vext(r) on the fluid inside the pore. We have calculated
the external potential Vext(r) so that it leads to the same density profile ρ(r) of the square-
well fluid inside the pore as the wall fluid does. Vext(r) therefore corresponds to an atomically
rough hydrophobic protein wall, which is averaged over the symmetry angle and the z-axes.

We perform a series of DFT calculation of a square-well fluid inside a cylindrical pore
with radius Rcyl. We fix the reduced temperature kBT/ε = 0.9174 and the chemical potential
so that it corresponds to a bulk packing fraction of the fluid η = 0.3842. The fluid density
corresponds to a bulk concentration of 55.5M, the concentration of water at normal condition,
if we assume that the hard-sphere radius RHS = 1.4Å . This state point is considerably far
from the binodal, that one can expect that a capillary evaporation transition will take place at
rather small values of Rcyl/RHS .

In Fig. 2 we show the equilibrium density profiles ρ(r) for varying values of Rcyl.
Note that by enforcing a cylindrical symmetry in the density profile, which simplifies the
calculations considerably, we restrict the results either to a liquid- or a gas-like density profile.
For Rcyl ≥ 6RHS we find that the liquid phase is stable in the cylindrical pore. In that case
we observe a high density of the square-well fluid in the center of the pore and a continuous,
smooth, decrease to zero close to the wall r → Rcyl. ForRcyl ≤ 5RHS , the liquid phase inside
the pore is not stable and we find a gas phase at a low density. The gas packing fraction, which
is indicated in the phase diagram in Fig. 1, is ηg = 0.0378 and follows from the equilibrium
condition that the gas phase with this density has the same chemical potential as the high
density liquid.

To ensure that the system undergoes a capillary evaporation transition and to locate the
radius RCE at which it takes place, we also determine Ω[ρ(r)]/L the grand potential (per unit
length) corresponding to the density profiles. We show the results as symbols in Fig. 3. There
are several interesting features to appreciate. Obviously, there are two separate branches of
the grand potential: one corresponding to the liquid phase for large values of Rcyl and the
other corresponding to the gas phase for small values of Rcyl. This, together with the density
profiles shown in Fig. 2 demonstrates that a capillary evaporation transition happens – it is not
sufficient to look solely at the profiles. It is a strength of DFT that we are able to study both
the profiles and the grand potentials at the same time and thereby elucidating the behavior of
the system.

We can employ our DFT results, shown as symbols in Fig. 3, to verify the validity of
the morphometric approach for the present problem. According to morphometry, the grand
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Figure 2. Density profiles ρ(r) of a square-well fluid inside of a cylindrical pore with
hydrophobic wall-particle interaction as a function of the radiusRcyl. For radii Rcyl ≥ 6RHS
we find a liquid in the pore, while for Rcyl ≤ 5RHS we find a gas. Note, however, that due
to hysteresis effects it is not possible to determine the location of the capillary evaporation
transition, which takes place at Rcyl = RCE ≈ 5.99RHS, from the density profiles alone.

potential, Eq. (11), is quadratic in the radius of the cylinder. Using the thermodynamic
coefficients pi, σi and κi as fitting parameters, we fit Eq. (11) to our DFT data. The full
and dashed line in Fig. 3 are the results of the fits to the grand potentials of the liquid and gas
branch, respectively. The lines are in excellent agreement with the numerical data (symbols).
The high quality of the fits demonstrate that the morphometric form of Ω can be used, despite
the fact that the pore is rather narrow, i.e. the pore size is sufficiently large compared to the
correlation length ξ. This finding allows the conclusion that for the problem considered here,
one can separate the thermodynamic coefficients from the geometry of the pore. Furthermore,
we have verified that within small numerical error bars, we find the same thermodynamical
coefficients also in a spherical geometry, as we should, if the morphometric form is valid.

The thermodynamic coefficients as obtained by the fits are summarized in Tab. 1. The
pressures pi, i = l, g, are bulk properties and therefore can also be determined from the bulk
equation of state. Both results for pi are in good agreement. Using these coefficients and
Eq. (13) we obtain RCE = 5.99RHS as the cylinder radius at which the transition takes place.
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Figure 3. The grand potential per unit length of a square-well fluid inside an infinitely
long cylindrical pore as function of the radius Rcyl. For large values of Rcyl we find the
liquid branch and for small values of Rcyl the gas branch of the grand potential. Symbols
correspond to DFT results and the full and dashed lines denote least-square fits according
to the morphometric form, Eq. (11), of a fluid inside of a cylindrical pore. The agreement
between the morphometric form and the numerical data is excellent, confirming the validity of
morphometry in this situation.

Table 1. Thermodynamic coefficients pi, σi and κi, i = l, g obtained for a liquid and a gas
inside a cylindrical pore from a fit to DFT results, assuming a morphometric form for the grand
potential, Eq. (11).

liquid gas

ηi 0.3842 0.0378
βpiR

3
HS 6.077× 10−2 5.507× 10−3

βσiR
2
HS 2.166× 10−1 7.128× 10−3

βκiRHS 5.360× 10−1 1.122× 10−2

4. Capillary Evaporation in a Complex Geometry

For simple geometries, such as a slit pore, or an infinitely long cylindrical pore it is
straightforward to perform DFT calculations in order to study the capillary evaporation
phenomenon. It is also most instructive to study the thermodynamics and the density profiles
at the same time. For more complex geometries a ’brute-force’ [35] approach, in which
density profiles are obtained by minimizing the DFT for the full geometry, is much more
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open gate closed gate

Figure 4. The model geometry of the gate of a potassium ion channel. The radius R1 and the
height H are fixed and the radius R2 is allowed to vary from a large value, for the open state
of the gate, to a smaller one, for the closed state. In the open state, the whole gate is filled with
liquid, while in the closed state, a gas bubble of height h closes the gate and thereby stops the
permeation of ions through the channel. Rb is the radius of the bubble at the bottom. Note that
in the closed state there are two liquid-gas interfaces at the top and bottom of the bubble.

challenging. Therefore, in the following we will use only the morphometric approach to
study the analog of capillary evaporation in a complex geometry. The geometrical model we
wish to study is inspired by the structure of the voltage-gated potassium ion channels [36,37],
shown in simplified model geometry in Fig. 4, which we approximate by a part of a cone.
The parameters that prescribe the geometry are the radii R1 and R2 and the height H . In our
model R1 and H are kept fixed and R2 varies from a value large enough to stabilize the liquid
in the gate, to a value small enough to allow for a closed gate with a gas bubble of height h
– see Fig. 4. We consider at both ends of the cone (or gate) to be big reservoirs of liquid,
which will prevent the bubble from growing to macroscopic sizes. The bottom part of the
gate connects to a spherical cavity of the potassium channel, while the top part of the gate
connects to the inside of the cell. Due to the geometrical constraints, the bubble, if it forms,
will always have a finite size and a finite number of liquid particles will be involved in the
evaporation process. Hence, the formation of a bubble represents a pseudo phase transition.
This implies that the state of the system can fluctuate between an open and a closed state and
the probability of a transition is determined by the Boltzmann factor of the difference in grand
potential between the states. In contrast to the capillary evaporation process in the infinitely
long cylinder, which was either completely filled by the liquid or by the gas, we will observe
two liquid-gas interfaces at the top and bottom ends of the bubble.

In the following we consider the gate with a fixed configuration, i.e. with a given radius
R2, in a state in which it is entirely filled with the liquid and in a state with a bubble of height
h. By comparing these two states we examine the possibility of a bubble formation in the gate
and study the behavior of the bubble, once it has formed. We employ the morphometric form
of the grand potential for both a filled gate, which we denote as the open (op) state, and a gate
with a gas bubble, which we denote as the closed (cl) state.

The grand potential of the open state is given by

Ωop
gate(R2) = −pl V (H,R1, R2) + σl M(H,R1, R2) + κl C(H,R1, R2), (14)

with the thermodynamical coefficients pl, σl and κl as specified in Tab. 1. The geometrical
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measures for a part of a cone with height h̃ and radii r1 and r2 at the bottom and the top,
respectively, are specified by the volume

V (h̃, r1, r2) =
πh̃

3

(
r2

1 + r2
2 + r1r2

)
, (15)

the surface area of the cone shell

M(h̃, r1, r2) = π(r1 + r2)

√
h̃2 + (r1 − r2)2, (16)

and the integrated (over the cone shell area inside of the cone) mean curvature

C(h̃, r1, r2) = −πh̃. (17)

Like in the case of an infinitely long cylinder, the integrated (over the cone shell area) Gaussian
curvature vanishes in the cone geometry, so that the grand potential of the liquid filled gate in
the morphometric form, Eq. (14) is fully specified by three terms.

The morphometric form of a closed state of the gate, with a bubble of height h is more
complicated and contains terms for the part of the gate filled by the liquid, terms for the part
filled by the gas, and terms due to presence of the liquid-gas interfaces. Assuming the simple
geometry shown in Fig. 4 we can write as ansatz

Ωcl
gate(h,R2) = −pl V (H − h,R1, Rb) + σl M(H − h,R1, Rb) + κl C(H − h,R1, Rb)

−pg V (h,Rb, R2) + σg M(h,Rb, R2) + κg C(h,Rb, R2)

+σlg (A(Rb) + A(R2)) . (18)

Note that by employing this ansatz we reduce the complexity of the problem of finding the
state with lowest grand potential from a full DFT calculation in a complex geometry to a
parametric minimization problem with a single free parameter, namely the bubble height
h. The detailed shape of the bubble corresponding to the lowest grand potential will differ
slightly from the shape assumed by this ansatz, however, we expect that all the essential
physics is included in our approach. Furthermore, the simplicity of our approach allows us
to gain deep insight into the driving factors of bubble formation and breaking in a gate-like
geometry.

The radius Rb in Eq. (18) depends on the geometrical parameters of the cone R1, R2, H
and the bubble height h via Rb = R2 + h(R1 −R2)/H . Clearly R2 < R1 is required to make
this relation meaningful in the present context. Note that additional line-tension terms of the
form τL3p arise where the liquid-gas interface meets the wall and a three phase (3p) contact
line of length L3p is created. However, these contributions are expected to be small and should
change the results, discussed below, only slightly. Furthermore, the calculation of τ is tedious
and would require a brute-force DFT calculation. Therefore we neglect the line-tension terms
in the following. Again we want to emphasize that this line-tension term is not to be confused
with the curvature term which is proportional to κi, i = l, g.

In order to fully specify the grand potential, Eq. (18), we require an additional
thermodynamic coefficients namely σlg, the liquid-gas interface tension. Unfortunately, this
quantity is rather difficult to calculate since we have to consider the interface between a liquid
at high density and a gas phase, which is stabilized only in the confined geometry. This
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calculation could only be done in a brute-force application of DFT, which is prohibitive.
Therefore we approximate the value of σlg by the liquid-gas surface tension of the free
interface between unconfined coexisting liquid and gas phases at the same temperature. This
quantity can be calculated easily and we obtain βσlgR2

HS = 8.549×10−2. Note, however, that
the thermodynamic coefficients listed in Tab. 1 correspond to the stable liquid at ηl = 0.3842

and the meta-stable (in the bulk) gas at ηg = 0.0378, as indicated in the table.
The surface area of the liquid-gas interface also calls for attention, since the radii R1, R2

and Rb are measured at the dividing interface. The meaning of these radii becomes apparent
when the density profiles in Fig. 2 are inspected carefully. For a radius of the cylindrical pore
of e.g. Rcyl = 10RHS, the liquid density profile drops to a vanishing density at r & 9RHS .
Therefore we use

A(r) = π(r − RHS)2 (19)

as the surface area of the liquid gas interface.
The first question to be addressed concerns the most probable bubble height h0. This

can be rephrased by asking which value of h maximizes the difference in the grand potential
between a closed and a open state of the gate, i.e.

∂

∂h

(
Ωcl
gate(h,R2)− Ωop

gate(R2)
)∣∣∣∣
h=h0

= 0. (20)

This equation can be solved explicitly. The result for h0(R2), however, is quite lengthy and
we therefore only show numerical results. With this result we can answer the question for
which range of R2 the stable state of the gate is the closed one. We denote the maximal value
of R2 for which a closed gate is stable with Rmax

2 , which is defined through

∆Ω(R2 = Rmax
2 ) ≡ Ωcl

gate(h0, R
max
2 )− Ωop

gate(R
max
2 ) = 0, (21)

which can be calculated numerically.
In order to quantify our results, we have to specify the geometry of the considered gate.

We choose R1 = 7.14RHS and H = 14.29RHS, which corresponds to R1 ≈ 10Å and
H ≈ 20Å if we assign RHS a value of 1.4Å as would be appropriate for water. For this
choice of parameters, we plot in Fig. 5 the most probable bubble height h0 as a function of the
parameter R2. For large values of R2, we find that a bubble of height h0(R2) would be meta-
stable, which we indicate by the dotted line. In this regime, the most stable state of the gate is
the open state. As R2 reaches the value of Rmax

2 , the bubble height jumps to a non-vanishing
value and if R2 is further decreased the bubble height increases slightly, as shown by the full
line in Fig. 5. For the present model we find that the pseudo transition, at which a bubble
forms in the gate, takes place for Rmax

2 ≈ 3.46RHS ≈ 4.84Å , as follows from the difference
in grand potential of a closed and open state of the gate as function of R2 – see Fig. 6.

The value of h0(Rmax
2 ) at the transition point can be readily understood. When we

compare the grand potentials for the closed to that of the open state, by calculating ∆Ω we
find

∆Ω(R2) = −∆pV (h,Rb, R2) + ∆σM(h,Rb, R2) + ∆κC(h,Rb, R2)

+σlg (A(Rb) + A(R2)) , (22)
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Figure 5. The most probable height h0(R2) of the gas bubble as function of R2. Due to the
competition between the various contributions of the grand potential, the bubble height at the
transition point atR2 = Rmax2 is non-vanishing. ForR2 < Rmax2 a bubble with height h0(R2)

is the stable state, indicated by the full line, and the gate is closed. ForR2 > Rmax2 , the closed
gate is meta-stable, which is denoted by the dotted line – see Fig. 6.

with ∆p, ∆σ, and ∆κ defined above. In order to have the gate closed we require ∆Ω < 0,
which we can analyze by comparing the different contributions to ∆Ω. For the situation
we consider here, we find that three terms in Eq. (22) are positive: −∆pV (h,Rb, R2) > 0,
describing the fact that the volume term prefers the stable bulk phase in the gate, which is the
liquid, ∆κC(h,Rb, R2) > 0, and σlg(A(Rb) + A(R2)) > 0, which simple states the fact that
the formation of two liquid-gas interfaces costs energy. These three contributions to ∆Ω have
to be balanced by the only negative term ∆σM(h,Rb, R2) < 0. However, this balance can
only be established if the surface area of the cone shell M is sufficiently large, which requires
a height h0(Rmax

2 ) > 0.
Within this model of the gate, it is easy to estimate the energy required to control

the state of the gate. If the gate is in the open state, then ion permeation should not be
interrupted too often due to thermal fluctuations. This means that the value of R2 in the
open state has to be large enough that ∆Ω stabilizes the open gate. However, if R2 is too
large in the open state, which would cause the gate to be open constantly, the energy cost to
close the gate would be too high. Similar arguments can be employed for the closed state.
The closed state should also be stabilized against fluctuations, with sufficiently low energy
costs. For our parameters, we can realize this situation if we assume that for the open state
Rop

2 ≈ Rmax
2 + 0.88RHS ≈ Rmax

2 + 1.23Å and Rcl
2 ≈ Rmax

2 − 0.62RHS ≈ Rmax
2 − 0.87Å. In
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Figure 6. The difference in grand potential between a closed and an open state of the gate as
function of R2. If this difference is positive the open state is stable, otherwise, the closed state
is stable. For R2 = Rmax2 the difference in grand potential vanishes and thereby marks the
transition point between the states of the gate.

that case the energy required to control the gate is roughly 5kBT , which is comparable to the
electrostatic energy gain of the voltage sensor of the potassium channel.

Finally we can estimate ∆N the number of liquid particles that leave the gate during a
change in state in order to form the gas bubble. It is approximately related to the difference
between the liquid density ρl and the gas density ρg and the volume of the bubble

∆N(R2) ≈ (ρl − ρg)V (h0, R2 − RHS, Rb − RHS), (23)

where the volume V (h0, R2−RHS , Rb−RHS) is the volume accessible to the centers of fluid
particles. For our system we plot the result in Fig. 7. The quantity ∆N specifies the most
likely number of particles that leave the gate. From this estimate we conclude that roughly 17
to 24 fluid particles are involved in the transition between states. Since the bubble volume is
rather small and the gas density low, one is unlikely to find an appreciable amount of particles
inside the bubble. Note that a more accurate estimate can be obtained from the thermodynamic
relation

∆Ñ(R2) = −
(
∂Ωop

gate(R2)− Ωcl
gate(h0, R2)

∂µ

)∣∣∣∣∣
T,V

. (24)

The approximate expression, Eq. (23), takes only the volume term of the grand potentials
into account and neglects the surface and curvature terms. In the present case the estimate,
Eq. (23), is sufficient to describe the properties of the bubble.
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Figure 7. The number of fluid particles ∆N that leave the gate when a bubble forms to close
the gate. If the gate is in the closed state, we plot ∆N as full line, when the gate is open we
plot is as dotted line.

5. Conclusion and Outlook

We have presented a model for the opening and closing of voltage-gated ion channel that
follow the basic architecture of the KcsA channel. The hydrophobically lined gate region
changes from a wide pore, when open, to a narrower pore when closed. We have shown with
our morphometric approach to capillary evaporation in a hydrophobic pore with cone-shaped
geometry that the formation of a bubble in the gate can close the permeation pathway of the
channel and thereby stop the ion flux. When vapor forms in a channel, electric current cannot
flow through the channel and the channel is closed. Ions cannot move into or through the
vapor phase, and so the resistance to current flow is extremely large and the channel behaves
like an open ,i.e. disconnected, switch. The channel is closed to current flow in the biological
sense of the word closed.

For the morphometric approach we require a set of thermodynamic coefficients that we
have determined in a simpler geometry within a set of DFT calculations for a square-well fluid.
While the values of these coefficients differ significantly from the corresponding values for
water, the fluid of biggest interest in the biological context of this model, a similar scenario
should also be found in the case of water. It is the balance between different terms in the
grand potential, i.e. the relative strength, rather than the absolute values of the thermodynamic
coefficients that matter. Our model rationalizes recently seen bubble formation in computer
simulations that employ more sophisticated models for water [14–23]. We thereby provide
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a basis of understanding the role of bubble formation and breaking in the gating process
of voltage-gated ion channels on a deeper level. Since this model identifies the important
physical driving forces of the bubble formation, we hopefully provide a model that allows
us to address, in addition to the basic (unperturbed) gating, other important properties of ion
channels, such as the effect of various chemicals, that can change the environment in the gate,
on the gating process.

In our study we have focused on the situation of changing geometry as a trigger for
the bubble formation. However, it is easy to see within our description of a hydrophobic
pore that a second mechanism for bubble formation can be identified from the balance
between the surface term ∆σM and all the other terms in Eq. (22): if the geometry is
kept constant, ∆Ω still can change sign and thereby favor the formation of a bubble if the
degree of hydrophobicity and hence ∆σ is changed. This might be achieved if the gating
process involves a change in fixed charges in the gate as a way of controlling the protein-fluid
interaction.

A combination of the geometrically controlled bubble formation, discussed in detail in
this paper, and bubble formation due to a change in protein-fluid interaction, mentioned above,
is of course also possible and might be in use in mechanosensitive ion channels such as the
tension activated MscS channel [22].
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