
Abstract

Pores of ion channels that follow the basic architecture of KcsA

possess a hydrophobic region which changes its conformation be-

tween a wide pore, when open, to a narrower pore, when closed.

Recent studies indicate that a hydrophobic pore can ”gate” by

capillary evaporation. With this mechanism water is expelled

from the permeation pathway and ion flow is thereby stopped

although the pore remains wider than the water or ion diame-

ters. We study the connection between geometrical change of a

hydrophobic pore and capillary evaporation to estimate the en-

ergetics of this gating mechanism in a realistic pore geometry,

e.g. the energy it takes to remove the water from the pore and

the force exerted by the water on the wall of the pore.

To this end we perform, in a first step, microscopic density

functional theory (DFT) calculations, in which we focus on the

density profile of water as capillary evaporation takes place. The



insight gained from these DFT calculations we transfer and ex-

ploit, in a second step, in our mesoscopic morphometric ap-

proach. In morphometry the free energy of a liquid confined in

a pore is expressed by four terms that describe the geometry of

the pore and corresponding thermodynamic coefficients. This

separation of geometry and thermodynamics makes calculations

very efficient so that effects due to change in geometry can be

studied in depth. Both DFT and morphometry have been ap-

plied with great success in studies of the physics of confined

fluids.



DFT: the White Bear Version of FMT

Ω[{ρi}] = Fex[{ρi}] + Fid({ρi}) +
∑

i

∫
d3rρi(r) (Vi(r)− µi)

with the excess free energy (over ideal gas)

βFex[{ρi}] =

∫
d3r′Φ({nα(r

′)}) +
1

2

∫
d3r′

∫
d3r′′ρ(r′)ρ(r′′)Vsw(|r′ − r′′|)

and the excess free energy density

βΦ = −n0 ln(1− n3) +
n1n2 − ~n1 · ~n2

1− n3
+ (n3

2 − 3n2~n2 · ~n2)
n3 + (1− n3)2 ln(1− n3)

36πn2
3(1− n3)2

with weighted densities defined by

nα(r) =
ν∑

i=1

∫
d3r′ρi(r− r′)ωi

α(r
′)

R. Roth, R. Evans, A. Lang, and G. Kahl, J. Phys.: Condens. Matter 14, 12063 (2002).



Phase Diagram



Density Profiles



Density Profiles



Capillary Evaporation



Thermodynamic Coefficients

• grand potential

Ωi(Rcyl) = −piVcyl(Rcyl) + σiAcyl(Rcyl) + κiCcyl(Rcyl)

Vcyl = πR2
cylLcyl , Acyl = 2πRcylLcyl , Ccyl = πLcyl

– liquid side (i = l)

∗ ηl = ρl
4π
3 R3

water = 0.3841

∗ βplR
3
water = 6.077× 10−2

∗ βσlR
2
water = 2.066× 10−1

∗ βκlRwater = −4.93×10−1

– gas side (i = g)

∗ ηg = ρg
4π
3 R3

water = 0.0378

∗ βpgR3
water = 5.507× 10−3

∗ βσgR2
water = 5.816× 10−3

∗ βκgRwater = −7.71× 10−3

• liquid-gas surface tension: βσlgR
2
water = 8.549× 10−2



Geometry of a Channel

D.A. Doyle et al., Science
280, 69 (1998).

• volume V

• surface area A

• local radii of curvature R1 and R2

– integrated (over surface area) mean cur-

vature

C =
1

4π

∫
∂V

HdS, H =
1

2

(
1

R1
+

1

R2

)
– integrated (over surface area) Gaussian

curvature

X =
1

4π

∫
∂V

KdS, K =
1

R1

1

R2

• morphometric ansatz for grand potential

Ω = −pV + σA + κC + κ̄X

P.-M. König, R. Roth and K.R. Mecke, Phys. Rev. Lett. 93, 160601 (2004).



Model Geometry of the Gate

R

H

R2

1

Rb

h • H = 18Å (fixed)

• R1 = 9Å (fixed)

• R2 can vary

• h must be calculated

• open gate

Ωop
gate = −plV (H, R1, R2) + σlM(H, R1, R2) + κlC(H, R1, R2)

• closed gate

Ωcl
gate = −plV (H − h, R1, Rb) + σlM(H − h, R1, Rb) + κlC(H − h, R1, Rb)

−pgV (h, Rb, R2) + σgM(h, Rb, R2) + κgC(h, Rb, R2)

+σgl (A(Rb) + A(R2))



Geometrical Measures

• volume

V (h, R1, R2) =
πh

3

(
R2

1 + R2
2 + R1R2

)

• surface (cone shell)

M(h, R1, R2) = π(R1 + R2)
√

h2 + (R1 − R2)
2

• integrate mean curvature

C(h, R1, R2) = πh

• area of liquid-gas interface

A(R) = π(R − Rwater)
2



Thermodynamics

• for R2 < Rmax
2

Ωcl
gate(h, R2)−Ωop

gate(R2) < 0

• bubble height h0 from

∂

∂h

(
Ωcl

gate(h, R2)−Ωop
gate(R2)

)∣∣∣∣
h=h0

= 0

• required energy: R2 changes from R
op
2 > Rmax

2 to Rcl
2 < Rmax

2

∆Ω = Ωcl
gate(h(Rcl

2 ), Rcl
2 )−Ωop

gate(R
op
2 )

• force on protein

F (R2) = −
∂

∂R2
Ωgate(R2)



Stability of the Bubble



Bubble Height h0(R2)



How much Water evaporates?

∆N(R2) = (ρl − ρg)V (h, R2, Rb)



Force on Protein



Required Energy

• when gate is open: liquid should be stable

• when gate is closed: bubble should be stable

• if Ωcl
gate(h, R2)−Ωop

gate(R2) ∼ 0: big fluctuations

• if changes in R2 are too large then energy costs are too big

• Rcl
2 ≈ Rmax

2 − 2 Å , R
op
2 ≈ Rmax

2 + 1.5 Å

∆Ω = Ωcl
gate(h(Rcl

2 ), Rcl
2 )−Ωop

gate(R
op
2 ) ≈ 5kBT


