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Abstract.

1. Introduction

2. Capillary Evaporation in Simple Geometries

We consider a square-well fluid in the grand canonical ensemble and describe its structure
and thermodynamic properties within the framework of density-functional theory (DFT). The
inter-particle interaction potential is given by

Vsw(r) =





∞ , r < 2RHS,

−ε , 2RHS ≤ r < 2Rsw,

0 , otherwise,
(1)

where RHS and Rsw is the hard-sphere and the square-well radius, respectively, and ε is the
well depth. The functional Ω[ρ(r)] takes the form

Ω[ρ(r)] = Fid[ρ(r)] + Fex[ρ(r)] +

∫
d3r ρ(r) (Vext(r)− µ) , (2)

with an exactly know ideal gas contribution to the intrinsic Helmholtz free energy functional
Fid and an approximate excess (over the ideal gas) free energy functionalFex. Vext(r) denotes
the external and µ the chemical potential of the fluid. Fex can be split into a hard-sphere
reference part, for which we employ the White Bear version [3] of fundamental measure
theory [1], and a square-well part

F swex [ρ(r)] =
1

2

∫
d3r′

∫
d3r′′ρ(r′)ρ(r′′)Vattr(|r′ − r′′|), (3)

with a simple mean-field approximation for the inter-particle attraction Vattr(r), which is −ε
for r < 2Rsw and zero otherwise.

First we recall the fluid bulk phase behavior of the square-well fluid. To this end we
assume that the density profile ρ(r) reduces to the constant bulk density ρ. From the bulk
grand potential we calculate the pressure p(ρ) = −Ωbulk/V , where V is the volume, and the
chemical potential µ(ρ) = ∂f/∂ρ with the free energy density f . Two fluid phases, denoted
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Figure 1. The fluid-gas binodal of a square-well fluid with σsw = 3σHS as function of
reduced temperature kBT/ε and the fluid packing fraction η = πσ3

HS ρ/6. In the confined
geometry we consider the reduced temperature kBT/ε = 0.9174 and a fluid packing fraction
of ηliq = 0.3842. We find that a gas with ηgas = 0.0378 has the same chemical potential as
the corresponding liquid.

by I and II , with corresponding densities ρI and ρII coexist when they are in mechanical and
chemical equilibrium, i.e. if

p(ρI) = p(ρII), and µ(ρI) = µ(ρII). (4)

For a square-well depth Rsw = 3RHS we obtain the fluid phase diagram shown in Fig. 1.
Below the critical temperature, the fluid phase separates into a liquid at high density and a gas
phase at low densities. Note that the mean-field perturbation theory, Eq. (3), predicts a phase
diagram that is not sensitive to the detailed choice of parameters ε and Rsw. It rather predicts
phase diagrams that can be rescaled onto a ’master phase diagram’. One finds, using the
White Bear version of FMT for the hard-sphere contribution, that the critical point is located
at ηc ≈ 0.1304 and kBTc/ε ≈ 0.3773(Rsw/RHS)3. (check the value)

If we bring a square-well liquid in contact with a single purely repulsive planar wall, the
fluid develops an inhomogeneous density profile ρ(z), which can be calculated by minimizing
the DFT with an appropriate external wall potential. For a liquid state very close to the
coexisting density ρII(T ) one can observe complete drying and a growth of a macroscopically
thick gas film at the wall as ρ→ ρII(T ) or the deviation δµ = µ− µco(T ) from the chemical
potential at coexistence µco(T ) approaches zero.

In the present study, however, we shall stay away from these state points, as indicated
in the phase digram in Fig. 1 by the state with reduced temperature kBT/ε = 0.9174 and
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packing fraction η = πσ3
HS ρ/6 = 0.3842.

In order to quantify the change in the grand potential due to the inhomogeneous structure
close to the wall we define σ the planar wall surface tension

σ =
1

A
(Ω[ρ(r)] + pV ) , (5)

by subtracting the bulk term −pV from the total grand potential of the system Ω = Ω[ρ(r)].
Note that the value of σ depends on the definition of the dividing surface which in turn defines
the volume V . However, the value of Ω remains well defined as long as it is calculated
consistently to the dividing surface and volume.

For a state point significantly far away from the binodal, as chosen in the present case, the
interaction of the liquid and a single hydrophobic wall is not sufficient to destabilize the high
density liquid compared to a low density gas, because the pressure in the liquid phase away
from coexistence is always higher than in a gas phase at the same chemical potential, so that
the surface contribution to the grand potential can not compete with the volume term. For the
gas phase to be more stable than the liquid phase, its grand potential Ωg = −pgV + σgA must
be smaller than the grand potential of the liquid phase Ωl = −plV + σlA, with V = AL and
L → ∞ in the thermodynamic limit. This can not be accomplished since even the smallest
difference in the pressure would make the difference of the volume terms, (−pl + pg)L,
arbitrarily larger than the difference in the surface terms, σg − σl.

Now we add a second, parallel, wall at distance L which we consider to have the same
properties as the fist one. Note, that the value of L again depends on the definition of the
dividing surface, i.e. it measures the distance between the parallel dividing surfaces of the
opposing walls. If L is large compared to the correlation length ξ in the bulk liquid the grand
potential of the system in the slit geometry can be written as

Ωi ≈ −piV + 2σiA, i = l, g, (6)

where we have assumed that the walls are independent and the surface tensions σi are those
obtained at a single wall. Since now the volume term, corresponding to a volume V = AL

with a finite value of L, is not scaled by an infinite length L, it is possible that the liquid phase
is destabilized in a slit geometry for sufficiently small plate separations. For phase equilibrium
between a liquid and a gas phase with densities ρl and ρg, respectively, it is necessary that their
grand potentials and their chemical potentials equal, which can be expressed, after dividing
the grand potentials by the area A, by

−plLCE + 2σl = −pgLCE + 2σg, and µ(ρl) = µ(ρg). (7)

This equilibrium condition can be solved for the slit width

LCE =
2(σg − σl)
pg − pl

, (8)

at which the capillary evaporation (CE) transition takes place. Clearly, since (pg − pl) is
negative, Eq. (8) has a physical solution only if (σg− σl) as well is negative, which holds true
for hydrophobic walls.

For a slit width L > LCE the volume term in the grand potential dominates and stabilizes
the liquid phase, whereas for L < LCE the surface term in the grand potential becomes more



Capillary Evaporation in pores 4

important and favors the gas phase. Note, that a gas phase that is stabilized in the slit pore,
which has the same chemical potential as the liquid phase, would be meta-stable in the bulk,
i.e. would lie in between the binodal (full line) and spinodal (dotted line) at ηgas = 0.0378.

Before we switch to a more complicated geometry it is very instructive to consider
the phenomena of capillary evaporation in an infinitely long cylindrical pore. While the
(approximate) form of the grand potential in the slit pore, Eq. (6), is well known and
tested against microscopical theories, the case of a cylindrical pore seems less understood.
Following the morphometric approach, we propose that the grand potential in contact with a
complexly shaped wall can be written as

Ωi ≈ −piV + σiA+ κiC + κ̄iX, (9)

where V and A are, as before, the volume and surface area defined by the dividing interface.
The corresponding thermodynamical coefficients are −pi and σi, the negative of the pressure
and the planar wall surface tension in phase i. Two additional geometrical measures are
required in order to take the effects of curvature into account, namely C and X the integrated
(over the surface area) mean and Gaussian curvatures. The corresponding thermodynamic
coefficients are the bending regities κi and κ̄i. This form of the grand potential was suggested
to describe the thermodynamics of a fluid in contact with convex walls, however away from a
critical point or a wetting or drying transition the morphometric form of the grand potential,
Eq. (9), should provide a good description also for a fluid inside of a pore, if the size of the
pore is sufficiently large compared to the correlation length ξ.

For an infinitely long cylinder with radius R, the geometrical measures are readily
calculated and we obtain V = R2πL, A = 2πRL and C = −πL. The fourth measure
X vanishes because the Gaussian curvature of a cylinder is always zero. L → ∞ is the
length of the cylinder. Using these geometrical measures we can formulate the formulate the
equilibrium condition inside of an infinite cylindrical pore

−plR2
CE + 2σlRCE − κl = −pgR2

CE + 2σgRCE − κg, and µ(ρl) = µ(ρg), (10)

where we have divided the grand potentials by πL. The radius RCE at which capillary
evaporation takes place can be expressed explicitly in terms of the thermodynamic coefficients
as

RCE =
(σg − σl)−

√
((pg − pl) (κl − κg)) + (σg − σl)2

pg − pl
. (11)

In order to verify the validity of the morphometric approach for the description of
capillary evaporation inside of infinitely cylindrical pores, we perform DFT calculations. To
this end we have to choose an external potential Vext(r) that defines the cylindrical pore.
Since we wish to connect to the gating process in ion channels, we employ the approach from
Ref. [7] and use a hard-sphere fluid of a given high density (ηw = 0.4, Rw = 0.825RHS)
which is kept outside of the pore region by a hard-wall potential. The square-wall fluid inside
the pore can hardly penetrate into the region which is occupied by the ’wall fluid’. The ’wall
fluid’ thereby exerts effectively an external potential Vext(r) on the fluid inside the pore. We
have calculated the external potential Vext(r) so that it leads to the same density profile of the
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square-well fluid inside the pore as the wall fluid does. Vext(r) therefore corresponds to an
atomically rough hydrophobic protein wall.

We perform a series of DFT calculation of a square-well fluid inside of an cylindrical
pore with radius Rcyl. We fix the packing fraction of the fluid η = 0.3842 and the reduced
temperature kBT/ε = 0.9174. The fluid density corresponds to a concentration of 55.5M,
the concentration of water at normal condition, if we assume that the hard-sphere radius
RHS = 1.4Å . This state point is considerably far from the binodal, that one can expect that
a capillary evaporation transition, if it happens at all, will take place at rather small values of
Rcyl/RHS .

In Fig. 2 we show the equilibrium density profiles ρ(r) for varying values of Rcyl. For
Rcyl ≥ 6RHS we find that the liquid phase is stable in the cylindrical pore. In that case we
observe a high density of the square-well fluid in the center of the pore and a continuous
decrease to zero of the density close to the wall r → Rcyl. For Rcyl ≤ 5RHS , the liquid
phase inside the pore is not stable and we find a gas phase at a low density. The gas packing
fraction, which is indicated in the phase diagram in Fig. 1, is ηgas = 0.0378 and follows from
the equilibrium condition that the gas phase with this density has the same chemical potential
as the high density liquid.

In order to ensure that capillary condensation takes place and to locate the radius RCE

at which it takes place, we also determine Ω[ρ(r)]/L the grand potential (per unit length)
corresponding to the density profiles. We show the result is in Fig. 3. There are several
interesting features to appreciate. Obviously, there are two separate branches of the grand
potential: one corresponding to the liquid phase for large values ofRcyl and one corresponding
to the gas phase for small values of Rcyl. This, together with density profiles shown in Fig. 2
demonstrates that a capillary evaporation transition happens – it is not sufficient to look solely
at the profiles. The full and dashed line in Fig. 3 are fits to the grand potentials of the liquid
and gas branch, respectively, according to the morphometric form Eq. (9) with the geometrical
measures of the cylindrical pore. These fits are in excellent agreement with the numerical
values of the grand potential obtained from DFT calculations for several values of Rcyl. The
high quality of the fit demonstrate that the morphometric form of Ω can be employed, despite
the fact that the pore is rather narrow. This finding allows the conclusion that for the problem
considered here, one can separate the thermodynamic coefficients from the geometry of the
pore, i.e. it is possible to extract the thermodynamic coefficients pi, σi and κi, i = l, g, from
the coefficients of the fits to the grand potentials on the liquid and gas branches. The pressures
pi, i = l, g, are bulk properties and therefore can also be determined from the bulk equation
of state.

The thermodynamic coefficients obtained for our system are summarized in Tab. 1. Using
these coefficients and the prediction for the radius RCE, Eq. (11), at which the capillary
evaporation takes place we obtain RCE = 5....RHS , which is in good agreement with the
actual transition point.
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Figure 2. Density profiles ρ(r) of a square well fluid inside of a cylindrical pore with
hydrophobic wall-particle interaction as a function of the radiusRcyl. For radii Rcyl ≥ 6RHS
we find a liquid in the pore, while for Rcyl ≤ 5RHS we find a gas. Note, however, that due
to hysteresis effects it is not possible to determine the location of the capillary evaporation
transition from the density profiles alone.

Table 1. Thermodynamic coefficients pi, σi and κi, i = l, g obtained for a liquid and a gas
inside a cylindrical pore from a fit to DFT results, assuming a morphometric form for the grand
potential.

liquid gas

ηi 0.3842 0.0378
βpiR

3
HS 6.077× 10−2 5.507× 10−3

βσiR
2
HS 2.066× 10−1 5.816× 10−3

βκiRHS 4.929× 10−1 7.708× 10−3

3. Capillary Evaporation in Complex Geometries

For simple geometries, like a slit pore, or an infinitely long cylindrical pore it is
straightforward to perform DFT calculations in order to study the capillary evaporation
phenomenon. It is also most instructive to study the thermodynamics and the density profiles
at the same time. For more complex geometries a ’brute-force’ approach, in which density
profiles are obtained by minimizing the DFT for the full geometry, is much more challenging.
We therefore will use in the following only the morphometric approach to study the analog
of capillary evaporation in a complex geometry. The geometrical model, we wish to study
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Figure 3. The grand potential per unit length of a square-well fluid inside of an infinitely long
cylindrical pore as function of the radius Rcyl. For large values of Rcyl we find the liquid
branch of the grand potential. Symbols correspond to DFT results and the full and dashed
lines denote fits according to the morphometric form of a fluid inside of a cylindrical pore.
The agreement between the morphometric form and the numerical data is excellent, indicating
the validity of morphometry in this situation.

is inspired by the gating mechanism of the voltage-gated potassium ion channels, which are
known to change its conformation between an open state with a wide pore in the gate region
and a closed state with a somewhat narrower gate region. We show the simplified model
geometry of the gate in Fig. 4, which we approximate by a part of a cone. The parameters that
prescribe the geometry are the radii R1 and R2 and the height H . In our model R1 and H are
kept fixed and R2 varies from a value large enough to prevent a gas bubble to block the gate,
to a value small enough to allow for a closed gate with a gas bubble of height h – see Fig. 4.
We consider at both end of the cone (or gate) to be big reservoirs of liquid, which will prevent
the bubble to grow to macroscopic sizes. The bottom part of the gate connects to a spherical
cavity of the potassium channel, while the top part of the gate connects to the outside (check)
of the cell. Due to the geometrical constraints, the bubble, if it forms, will always have a finite
size and a finite number of liquid particles will be involved in the evaporation process. Hence,
the formation of a bubble represents a pseudo phase transition. In contrast to the capillary
evaporation process in the infinitely long cylinder, which was either completely filled by the
liquid or by the gas, we will observe two liquid-gas interfaces at the top and bottom ends of
the bubble.

In the following we consider the gate with a given configuration, i.e. with a given radius
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h

open gate closed gate

Figure 4. The model geometry of the gate of a potassium ion channel. The radius R1 and the
height H are fixed and the radius R2 is allowed to vary from a large value, when the gate is
open, to a smaller one, when the gate is closed. In the open state, the whole gate is filled with
liquid, while in the closed state, a gas bubble of height h closes the gate and thereby stops the
permeation of ions through the channel. Rb is the radius of the bubble at the bottom side of the
bubble. Note that in the closed state there are two liquid-gas interfaces at the top and bottom
of the bubble.

R2, in a state in which it is entirely filled with the liquid and in a state with a bubble. By
comparing these two states we examine the possibility of a bubble formation in the gate and
study the behavior of the bubble, once it has formed. We employ the morphometric form of
the grand potential for both a filled gate, which we denote as open state, and a gate with a gas
bubble, which we denote as a closed state. The grand potential of the open state is given by

Ωop
gate(R2) = −pl V (H,R1, R2) + σl M(H,R1, R2) + κl C(H,R1, R2), (12)

with the thermodynamical coefficients pl, σl and κl as specified in Tab. 1. The geometrical
measures for a part of a cone with height h̃ and radii r1 and r2 are given by the volume

V (h̃, r1, r2) =
πh̃

3

(
r2

1 + r2
2 + r1r2

)
, (13)

the surface area of the cone shell(check if there is a better term)

M(h̃, r1, r2) = π(r1 + r2)

√
h̃2 + (r1 − r2)2, (14)

and the integrate (over the cone shell area) mean curvatures

C(h̃, r1, r2) = −πh̃. (15)

Like in the case of an infinitely long cylinder, the integrated (over the cone shell area) Gaussian
curvature vanishes in the cone geometry, so that the grand potential of the liquid filled gate in
the morphometric form, Eq. (12) is fully specified by three terms. The morphometric form of
a closed state of the gate, with a bubble of height h is more complicated and contains terms
for the part of the gate filled by the liquid, terms for the part filled by the gas and terms for the
liquid-gas interface contributions. It can be written as

Ωcl
gate(h,R2) = −pl V (H − h,R1, Rb) + σl M(H − h,R1, Rb) + κl C(H − h,R1, Rb)

−pg V (h,Rb, R2) + σg M(h,Rb, R2) + κg C(h,Rb, R2)

+σlg (A(Rb) + A(R2)) . (16)
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Note that additional line-tension terms arise where the liquid-gas interface meets the wall.
However, these contributions are expected to be small and should change the results, discussed
below, only slightly. Therefore we neglect the line tension terms in the following. In
order to fully specify the grand potential, Eq. (16), we require an additional thermodynamic
coefficients namely σlg, the liquid-gas interface tension. Unfortunately, this quantity is rather
difficult to calculate since we have to consider the interface between a liquid at high density
and a gas phase, which is stabilized only in the confined geometry. This could only be done in
a brute-force application of DFT in which the density profile is minimizes in the full geometry,
which we wish to avoid. Therefore we approximate the value of σlg by the liquid-gas surface
tension of the free interface between unconfined coexisting liquid and gas phases at the same
temperature. This quantity can be calculated easily and we obtain βσlgR2

sw = 8.549× 10−2.
The surface area of the liquid-gas interface also calls for attention, since the radii R1, R2

and Rb are measured at the dividing interface. The meaning of these radii become apparent,
when the density profiles in Fig. 2 are studied carefully. For a radius of the cylindrical pore
Rcyl = 10RHS , the liquid density profile drops to a vanishing density at r . 9RHS . Therefore
we use

A(r) = π(r − RHS)2 (17)

as the surface area of the liquid gas interface.
The first question to be addressed is the most probable bubble height h. This can be

phrased as a minimization problem by asking for which value of h is the difference in the
grand potential between a closed and a open state of the gate maximal, i.e.

∂

∂h

(
Ωcl
gate(h,R2)− Ωop

gate(R2)
)∣∣∣∣
h=h0

= 0. (18)

This equation can be solved explicitly. The result for h0, however, is quite lengthy and we
therefore only show numerical results for it. With this result we can answer the question for
which value of R2 the stable state of the gate is the closed one. We denote the maximal value
of R2 for which a closed gate is stable with Rmax

2 , which is defined through

∆Ω ≡ Ωcl
gate(h,R

max
2 )− Ωop

gate(R
max
2 ) = 0, (19)

which can be calculated numerically.
In order to evaluate the results, we have to specify the geometry of the considered gate.

We choose R1 = 6.43RHS and H = 12.86RHS, which corresponds to R1 ≈ 9Å and
H ≈ 18Å if we assign RHS a value of 1.4Å as would be appropriate for water. For this
choice of parameters, we plot in Fig. 5 the most probable height h0(R2) as a function of the
parameterR2. For large values ofR2 we find that h0(R2) corresponds to a meta-stable bubble,
which we indicate by the dotted line. In this regime, the most stable state of the gate is the
open state. As R2 reaches the value of Rmax

2 , the bubble height jumps to a finite value and if
R2 is further decreased the bubble height increases slightly, as shown by the full line in Fig. 5.
For the present model we find that the pseudo transition, at which a bubble forms in the gate,
takes place for Rmax

2 ≈ 3.24RHS ≈ 4.53Å , as follows from the difference in grand potential
of a closed and open state of the gate with as function of R2 – see Fig. 6.
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The finite height h0(Rmax
2 ) can be readily understood. When we compare the grand

potentials for the closed gate to that of the open gate, by calculating ∆Ω we find

∆Ω = −∆pV (h,Rb, R2) + ∆σM(h,Rb, R2) + ∆κC(h,Rb, R2)

+σlg (A(Rb) + A(R2)) , (20)

where we have introduced ∆p = pl − gg, ∆σ = σl − σg and ∆κ = κl − κg. In order
to have the gate closed we require ∆Ω < 0, which we can analyze be comparing the
different contributions to ∆Ω. For the situation we consider here, we find that three terms
in Eq. (20) are positive, namely ∆pV (h,Rb, R2) > 0, describing the fact that the volume
term prefers the stable bulk phase, i.e. the liquid, in the gate, ∆κC(h,Rb, R2) > 0 and
σlg(A(Rb) + A(R2)) > 0, which simple states the fact that the formation of two liquid-gas
interfaces costs energy. These three contributions to ∆Ω have to be balanced by the only
negative term ∆σM < 0. However, this balance can only be established if the surface area of
the cone shell M is sufficiently large, which requires a finite height h0(Rmax

2 ).
Within this model of the gate, it is easy to estimate the energy required to control the

state of the gate. If the gate is in the open state then ion permeation should not be interrupted
too often due to fluctuations. This means that the value of R2 in the open state has to be large
enough that ∆Ω stabilizes the open gate. However, if R2 is too large in the open state, which
would cause the gate to be constantly open, the energy cost to close the gate would be too high.
Similar arguments can be employed for the closed state. The closed state should be stabilized
against fluctuations, without too high energy costs. For our parameters, we can realize this
situation if we assume that for the open state Rop

2 ≈ Rmax
2 + 1.07RHS ≈ Rmax

2 + 1.5Å and
Rcl

2 ≈ Rmax
2 − 1.42RHS ≈ Rmax

2 − 2Å. In that case the energy required to control the gate is
roughly 5kBT , which is comparable to the electrostatic energy gain of the voltage sensor of
the potassium channel.

4. Conclusion
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Figure 6.


