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Abstract
We combine a density functional theory (DFT) treatment of capillary
evaporation in a cylindrical pore with the morphometric approach in order to
study the formation and breaking of bubbles in a hydrophobically lined part of a
cone. The morphometric approach, in which the grand potential of a system
is described in four geometrical terms with corresponding thermodynamical
coefficients, allows extrapolation or scaling from macroscopic system sizes
to nanoscales. Since only a small number of fluid particles are involved in
bubble formation, it is a pseudo phase transition, and the system is subjected
to fluctuations between states with and without a bubble. Fluctuations are not
included in a DFT treatment, which makes it possible to explore both states of
the system in great detail, in contrast to computer simulations, in which averages
might be obscured by fluctuations.

1. Introduction

The physics of confined fluids has been studied in great detail both experimentally [1–7] and
theoretically [8–12]. Several phenomena are known to be produced by the confining geometry.
For example, one finds that a fluid that is in the gas phase in bulk, i.e. without confinement,
can condense into a liquid phase at a much higher density if confined by hydrophilic walls,
despite the fact that this liquid would not be stable in the bulk. This phenomenon is called
capillary condensation and can be observed in experiments measuring adsorption isotherms of
gases in porous media. A closely related phenomenon is the transition of a fluid, in its stable
bulk liquid phase, confined by hydrophobic walls, into a gas phase at much smaller number
density, which would not be stable without the confining geometry. This transition is called
capillary evaporation, or ‘bubble formation’ in more colourful language. Both transitions show
hysteresis loops [13] in experiments,which are typical signs for first-order phase transitions.

Most of the experimental and theoretical effort was targeted at understanding these
transitions in the case of fluids close to saturation. Theoretical studies often employed a simple
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slit geometry of two parallel planar walls. Under these conditions, the transition can take place
at a moderate level of confinement so that mesoscopic arguments based on thermodynamics
have proven very helpful.

Recent studies indicate that a phenomenon similar to capillary evaporation might be
important in the physics of ion channels [14–23]. Ion channels are proteins in cell membranes
that allow the passive transport of ions along their electro-chemical gradient [24]. The main
function of these proteins is to control the transport of ions through the membrane by opening
and closing the channel, a process called gating, and in some cases by allowing only specific
ions to pass through the pore, a phenomenon called selectivity. Our work is inspired by the
wish to improve the understanding of the role of bubble formation and breaking in the gating
mechanism of ion channels.

To this end, we start in section 2 by recalling the basics of capillary evaporation in simple
geometries using a thermodynamics point of view. Then in section 3 we show microscopic
density functional theory (DFT) calculations [25] of a square-well fluid inside an infinitely long
hydrophobically lined cylinder. In our DFT calculations, we focus on the density profile ρ(r)

and the corresponding grand potential � of a fluid as a function of the cylinder radius Rcyl, while
capillary evaporation takes place. The insight gained from these DFT calculations we transfer
to and exploit in our morphometric approach [26, 27], presented in section 4. In morphometry,
the free energy of a liquid confined in a pore is expressed by four terms that describe the
geometry of the pore and the corresponding thermodynamic coefficients. This separation of
geometry and thermodynamics allows us to extrapolate or scale the behaviour of the system
from macroscopic sizes down to small sizes in the nanometre regime and below. Furthermore,
the morphometric approach makes calculations very efficient, so that the formation of a bubble
in the gate due to a change in geometry can be studied in detail. The bubble formation in
the geometry we consider constitutes a pseudo phase transition, in which a finite number of
particles is involved. This makes the system close to the transition point unstable, in the sense
that thermal fluctuation can cause the formation or breaking of the bubble and the system
can constantly change state. This varying behaviour makes bubble formation hard to study
reproduceably and hence convincingly in computer simulations. We conclude with an outlook
in section 5.

2. Capillary evaporation in simple geometries

We consider a square-well fluid in the grand canonical ensemble and describe its structure and
thermodynamic properties within the framework of DFT. The inter-particle interaction potential
is given by

Vsw(r) =






∞ r < 2RHS,

−ε 2RHS � r < Rsw,

0 otherwise,

(1)

where RHS and Rsw is the hard-sphere and the square-well radius, respectively, and ε is the
square-well depth. The functional �[ρ(r)] of the grand potential has the form [25]

�[ρ(r)] = F[ρ(r)] +
∫

d3r ρ(r)(Vext(r) − µ). (2)

The intrinsic Helmholtz free energy functional F[ρ(r)] = Fid[ρ(r)] + Fex[ρ(r)] can be split
into an exactly known ideal gas contribution Fid[ρ(r)] and an approximate excess (over the
ideal gas) free energy functional Fex[ρ(r)] = FHS

ex [ρ(r)] + F sw
ex [ρ(r)]. Vext(r) denotes the
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Figure 1. The fluid-gas binodal of a square-well fluid with Rsw = 3RHS as a function of reduced
temperature kBT/ε and the fluid packing fraction η = ρ4π R3

HS/3. In our DFT calculation, we
consider the reduced temperature kBT/ε = 0.9174 and a liquid (l) packing fraction of ηl = 0.3842.
We find that a gas (g) with ηg = 0.0378 has the same chemical potential as the corresponding
liquid.

external and µ the chemical potential of the fluid. Fex[ρ(r)] can be further split into a hard-
sphere reference part FHS

ex [ρ(r)], for which we employ the White Bear version [29, 30] of
fundamental measure theory [31], and a square-well part

F sw
ex [ρ(r)] = 1

2

∫

d3r ′
∫

d3r ′′ρ(r′)ρ(r′′)Vattr(|r′ − r′′|), (3)

with a simple mean-field approximation for the inter-particle attraction Vattr(r), which is −ε for
r < Rsw and zero otherwise. Except for the external potential Vext(r), which plays an important
role in the present study of confined fluids, the system is fully specified.

Before considering confined fluids, we recall the bulk phase behaviour of the square-well
fluid. Since we are interested in fluid behaviour, we assume that the density profile ρ(r) reduces
to the constant bulk density ρ. From the bulk grand potential �bulk = �[ρ(r) = ρ], we
calculate the bulk pressure p(ρ) = −�bulk/V , where V is the volume, and the chemical
potential µ(ρ) = ∂ f/∂ρ, with the free energy density f = F/V . Two fluid phases, denoted
by I and II, with corresponding number densities ρI and ρII, coexist if they are in mechanical
and chemical equilibrium, i.e. if

p(ρI) = p(ρII), and µ(ρI) = µ(ρII). (4)

For a square-well radius Rsw = 3RHS we obtain the fluid phase diagram shown in figure 1.
Below the critical temperature, the fluid phase can separate into a liquid phase with a high bulk
density and a gas phase with a low bulk density. Note that the mean-field perturbation theory,
equation (3), predicts a phase diagram that is not sensitive to the detailed choice of parameters
ε and Rsw. It rather predicts phase diagrams that can be rescaled onto a ‘master phase diagram’.
One finds, using the Carnahan–Starling equation of state for the hard-sphere contribution, that
the critical point is located at ηc ≈ 0.1304 and kBTc/ε ≈ 0.0472(Rsw/RHS)

3.
If we bring a square-well liquid into contact with a single purely repulsive planar wall, the

fluid develops, in general, an inhomogeneous density profile ρ(z), where z denotes the distance
from the wall. ρ(z) can be calculated by minimizing the DFT [25] with an appropriate external
wall potential that accounts for the interaction between the liquid and a hydrophobically lined
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pore. For a liquid state very close to the coexisting density ρII(T ), one can observe complete
drying [32] and a growth of a macroscopically thick gas film at the wall as the density ρ

approaches the coexisting liquid density ρII at a given temperature T , or as the deviation
δµ = µ − µco(T ) of the chemical potential from its value at coexistence µco(T ) approaches
zero.

In the present study, however, we shall stay away from these state points, as indicated in the
phase digram in figure 1 by the state with reduced temperature kBT/ε = 0.9174 and packing
fraction η = 4π R3

HS ρ/3 = 0.3842.
In order to quantify the change in the grand potential due to the inhomogeneous structure

ρ(z) close to the wall, we define σ , the planar wall surface tension, as

σ = 1

A
(�[ρ(z)] + pV ), (5)

by subtracting the bulk term −pV from the total grand potential of the system � = �[ρ(z)].
A is the surface area of the wall. In the thermodynamical limit, V → ∞, the grand potential
� and A also go to infinity. However, σ is an intrinsic quantity and remains finite. Note that
the value of σ depends on the definition of the dividing surface [33], which in turn defines the
volume V . However, the value of � = −pV + σ A remains the same for all definitions.

For a state point significantly far away from the binodal, as chosen in the present case,
the interaction of the liquid and a single hydrophobic wall is not sufficient to destabilize the
high-density liquid in favour of a low-density gas. The pressure in the liquid phase away from
coexistence is always higher than in a gas phase at the same chemical potential, so that the
surface contribution to the grand potential cannot compete with the volume term. For the gas
phase to be more stable than the liquid phase, its grand potential �g = −pgV + σg A must be
more negative than the grand potential of the liquid phase �l = −plV +σl A, with V = AL and
A, L → ∞ in the thermodynamic limit. This cannot be accomplished, since even the smallest
difference in the pressure would make the difference of the volume terms, (−pl + pg)AL,
arbitrarily larger than the difference in the surface terms, (σl − σg)A.

When we add a second, parallel, wall at distance L, the behaviour of the system changes
qualitatively. We consider the situation of two identical walls for simplicity. Note that the
value of L also depends on the definition of the dividing surface, i.e. it measures the distance
between the parallel dividing surfaces of the opposing walls. If L is large compared to the bulk
correlation length ξ of the liquid, the grand potential of the system in the slit geometry can be
written as [11]

�slit
i ≈ −pi V + 2σi A, i = l, g, (6)

where we have used that the walls are independent and the surface tensions σi are those of a
single wall. Since the volume term is now scaled by a finite length L, it is possible that the
liquid phase is destabilized in a slit geometry for sufficiently small plate separations. For phase
equilibrium between a liquid phase and a gas phase with densities ρl and ρg, respectively, at a
wall separation LCE it is necessary that their grand potentials and their chemical potentials are
equal, which can be expressed, after dividing �slit

i by the area A, as

−plLCE + 2σl = −pgLCE + 2σg, and µ(ρl) = µ(ρg). (7)

This equilibrium condition can be solved to determine the slit width

LCE = 2
σ


p
, (8)

at which the capillary evaporation (CE) transition takes place. Clearly, since 
p ≡ (pg − pl)

is negative, equation (8) has a physical solution only if 
σ ≡ (σg − σl) is also negative,
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which holds true for hydrophobic walls. Equation (7) or (8) describe a competition between
the volume and the surface contributions to the grand potential of the two fluid phases.

For a slit width L > LCE, the volume term in the grand potential dominates and stabilizes
the liquid phase, whereas for L < LCE the surface term in the grand potential becomes more
important and the slit favours the gas phase. Note that a gas that is stabilized in the slit pore has
the same chemical potential as the liquid phase and would be meta-stable in the bulk, i.e. would
lie between the binodal (full line) and spinodal (dotted line) at ηg = 0.0378—see figure 1.

Before we switch to a more complicated geometry, it is very instructive to consider the
phenomena of capillary evaporation in an infinitely long cylindrical pore. The (approximate)
form of the grand potential in the slit pore, equation (6), is well known and tested, at least for
state points close to saturation, against microscopic theories, but the case of a cylindrical pore
seems less understood.

Following the morphometric approach, we propose that the grand potential in contact with
a complex-shaped wall can be written as [26, 27]

�i ≈ −pi V + σi A + κi C + κ̄i X, (9)

where V and A are, as before, the volume and surface area defined by the dividing interface.
The corresponding thermodynamic coefficients are −pi and σi , the negative of the pressure and
the planar wall surface tension in phase i , respectively. Two additional geometrical measures
are required in order to take the effects of curvature of the dividing interface into account,
namely

C ≡
∫

∂V
H dA, and, X ≡

∫

∂V
K dA (10)

the integrated (over the surface area A) mean and Gaussian curvatures H = (1/RI + 1/RII)/2
and K = 1/(RI RII), respectively. RI and RII are the two principal radii of curvature, which are
sufficient to describe any type of local curvature in three dimensions, if the surface is smooth.
The radii of curvature are positive if the curvature is convex and negative in the case of concave
curvature. The corresponding thermodynamic coefficients are the bending rigidities κi and κ̄i .
The bending rigidities account for a change in the grand potential due to the curvature of the
wall–fluid interface and the corresponding inhomogeneous structure in the fluid.

The morphometric form of the grand potential has been suggested to describe the
thermodynamics of a fluid in contact with convex walls. However, away from a critical point
or a wetting or drying transition, the morphometric form of the grand potential should provide
a good description also for a fluid inside a pore, if the size of the pore is sufficiently large
compared to the correlation length ξ . We will comment on this point when we present our DFT
results in the next section.

For an infinitely long cylinder with radius R, the geometrical measures are readily
calculated, and we obtain V = R2π L, A = 2π RL and C = −π L. Note that the integrated
mean curvature C is negative, because we are considering the inside of the cylinder, where the
curvature is concave and the radius of curvature is negative. The fourth measure X vanishes,
because the Gaussian curvature K of a cylinder is zero. Hence the morphometric form of the
grand potential of a fluid inside a cylinder is given by,

�
cyl
i ≈ −pi R2π L + σi 2π RL − κiπ L, (11)

and we take the length of the cylinder L → ∞. Note that, although the coefficient κi has the
dimension of a line tension, its physical meaning is very different. It describes, as mentioned
before, the change in grand potential of the liquid or the gas due to the curved wall. Using
the morphometric form for �

cyl
i /(π L), we can formulate the equilibrium condition between a

liquid phase and a gas phase inside the cylindrical pore:

−pl R
2
CE + 2σl RCE − κl = −pg R2

CE + 2σg RCE − κg, and µ(ρl) = µ(ρg). (12)
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The radius RCE at which capillary evaporation takes place can be expressed explicitly in terms
of the thermodynamic coefficients as

RCE = 
σ −√
(
σ)2 − 
p
κ


p
, (13)

where we have introduced, in addition to 
p and 
σ defined earlier, the difference in the
bending rigidities in the gas phase and the liquid phase, 
κ ≡ (κg − κl). It would be possible
to proceed with a spherical cavity, however the expression for the radius at which capillary
evaporation takes place is rather lengthy and provides no additional insight.

The thermodynamic arguments used in this section remain valid even if long-ranged
interactions, such as dispersion forces, are considered, as long as one stays away from critical
points and from the complete wetting or complete drying regime close to the binodal. In the
complete wetting or complete drying regime, additional fluctuation-induced corrections to the
Kelvin equation are required [28]. Since we consider only state points sufficiently far away
from the binodal, these problems do not occur in our study.

3. DFT treatment of capillary evaporation in cylindrical pores

In order to verify the validity of the morphometric approach for the description of capillary
evaporation inside infinitely long cylindrical pores, we perform DFT calculations. We have to
choose an external potential Vext(r) that defines the cylindrical pore. Since we wish to make a
connection to the gating process in ion channels, we follow the approach from [34] and use a
hard-sphere fluid of a given high density (ηw = 0.4, Rw = 0.825RHS) which is kept outside the
pore region by a hard-wall potential. The square-well fluid inside the pore can hardly penetrate
into the region which is occupied by the wall fluid. The wall fluid thereby exerts an effective
external potential Vext(r) on the fluid inside the pore. We have calculated the external potential
Vext(r) so that it leads to the same density profile ρ(r) of the square-well fluid inside the pore as
the wall fluid does. Vext(r) therefore corresponds to an atomically rough hydrophobic protein
wall, which is averaged over the symmetry angle and the z-axes.

We perform a series of DFT calculation of a square-well fluid inside a cylindrical pore
with radius Rcyl. We fix the reduced temperature kBT/ε = 0.9174 and the chemical potential
so that it corresponds to a bulk packing fraction of the fluid η = 0.3842. The fluid density
corresponds to a bulk concentration of 55.5M, the concentration of water at normal condition,
if we assume that the hard-sphere radius RHS = 1.4 Å. This state point is considerably far
from the binodal, so that one can expect that a capillary evaporation transition will take place
at rather small values of Rcyl/RHS.

In figure 2 we show the equilibrium density profiles ρ(r) for varying values of Rcyl. Note
that, by enforcing cylindrical symmetry in the density profile, which simplifies the calculations
considerably, we restrict the results either to a liquid- or a gas-like density profile. For
Rcyl � 6RHS, we find that the liquid phase is stable in the cylindrical pore. In that case,
we observe a high density of the square-well fluid in the centre of the pore and a continuous,
smooth decrease to zero close to the wall r → Rcyl. For Rcyl � 5RHS, the liquid phase inside
the pore is not stable and we find a gas phase at low density. The gas packing fraction, which
is indicated in the phase diagram in figure 1, is ηg = 0.0378 and follows from the equilibrium
condition that the gas phase with this density has the same chemical potential as the high-
density liquid.

To ensure that the system undergoes a capillary evaporation transition and to locate the
radius RCE at which it takes place, we also determine �[ρ(r)]/L, the grand potential (per
unit length) corresponding to the density profiles. We show the results as symbols in figure 3.
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Figure 2. Density profiles, ρ(r), of a square-well fluid inside a cylindrical pore with hydrophobic
wall–particle interaction as a function of the radius Rcyl. For radii Rcyl � 6RHS we find a liquid in
the pore, while for Rcyl � 5RHS we find a gas. However, note that, due to hysteresis effects, it is
not possible to determine the location of the capillary evaporation transition, which takes place at
Rcyl = RCE ≈ 5.99RHS, from the density profiles alone.

Figure 3. The grand potential per unit length of a square-well fluid inside an infinitely long
cylindrical pore as function of the radius Rcyl. For large values of Rcyl we find the liquid branch,
and for small values of Rcyl we find the gas branch of the grand potential. Symbols correspond to
DFT results and the full and dashed lines denote least-square fits according to the morphometric
form, equation (11), of a fluid inside a cylindrical pore. The agreement between the morphometric
form and the numerical data is excellent, confirming the validity of morphometry in this situation.

There are several interesting features to appreciate. Obviously, there are two separate branches
of the grand potential: one corresponding to the liquid phase for large values of Rcyl and the
other corresponding to the gas phase for small values of Rcyl. This, together with the density
profiles shown in figure 2, demonstrates that a capillary evaporation transition happens—it is
not sufficient to look solely at the profiles. It is a strength of DFT that we are able to study both
the profiles and the grand potentials at the same time, thereby elucidating the behaviour of the
system.
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Table 1. Thermodynamic coefficients pi , σi and κi , i = l, g, obtained for a liquid and a gas inside
a cylindrical pore from a fit to DFT results, assuming a morphometric form for the grand potential,
equation (11).

Liquid Gas

ηi 0.3842 0.0378
βpi R3

HS 6.077 × 10−2 5.507 × 10−3

βσi R2
HS 2.166 × 10−1 7.128 × 10−3

βκi RHS 5.360 × 10−1 1.122 × 10−2

We can employ our DFT results, shown as symbols in figure 3, to verify the validity of
the morphometric approach for the present problem. According to morphometry, the grand
potential, equation (11), is quadratic in the radius of the cylinder. Using the thermodynamic
coefficients pi , σi and κi as fitting parameters, we fit equation (11) to our DFT data. The full
and dashed lines in figure 3 are the results of the fits to the grand potentials of the liquid and gas
branches, respectively. The lines are in excellent agreement with the numerical data (symbols).
The high quality of the fits demonstrates that the morphometric form of � can be used, despite
the fact that the pore is rather narrow, i.e. the pore size is sufficiently large compared to the
correlation length ξ . This finding allows the conclusion that, for the problem considered here,
one can separate the thermodynamic coefficients from the geometry of the pore. Furthermore,
we have verified that, within small numerical error bars, we find the same thermodynamical
coefficients also in a spherical geometry, as we should, if the morphometric form is valid.

The thermodynamic coefficients as obtained by the fits summarized in table 1. The
pressures pi , i = l, g, are bulk properties and therefore can also be determined from the
bulk equation of state. Both results for pi are in good agreement. Using these coefficients and
equation (13), we obtain RCE = 5.99RHS as the cylinder radius at which the transition takes
place.

4. Capillary evaporation in a complex geometry

For simple geometries, such as a slit pore or an infinitely long cylindrical pore, it is
straightforward to perform DFT calculations in order to study the capillary evaporation
phenomenon. It is also most instructive to study the thermodynamics and the density profiles at
the same time. For more complex geometries, a ‘brute-force’ [35] approach, in which density
profiles are obtained by minimizing the DFT for the full geometry, is much more challenging.
Therefore, in the following we will use only the morphometric approach to study the analogue
of capillary evaporation in a complex geometry. The geometrical model that we wish to study
is inspired by the structure of the voltage-gated potassium ion channels [36, 37], shown in a
simplified model geometry in figure 4, which we approximate by part of a cone. The parameters
that prescribe the geometry are the radii R1 and R2 and the height H . In our model, R1 and H
are kept fixed and R2 varies from a value large enough to stabilize the liquid in the gate to a
value small enough to allow for a closed gate with a gas bubble of height h—see figure 4. We
consider both ends of the cone (or gate) to be big reservoirs of liquid, which will prevent the
bubble from growing to macroscopic sizes. The bottom part of the gate connects to a spherical
cavity of the potassium channel, while the top part of the gate connects to the inside of the
cell. Due to the geometrical constraints, the bubble, if it forms, will always have a finite size,
and a finite number of liquid particles will be involved in the evaporation process. Hence, the
formation of a bubble represents a pseudo phase transition. This implies that the state of the



Capillary evaporation in pores 6525

R

H

R2

1

h

Rb

open gate closed gate

Figure 4. The model geometry of the gate of a potassium ion channel. The radius R1 and the height
H are fixed and the radius R2 is allowed to vary from a large value, for the open state of the gate,
to a smaller value, for the closed state. In the open state the whole gate is filled with liquid, while
in the closed state a gas bubble of height h closes the gate and thereby stops the permeation of ions
through the channel. Rb is the radius of the bubble at the bottom. Note that, in the closed state,
there are two liquid–gas interfaces at the top and bottom of the bubble.

(This figure is in colour only in the electronic version)

system can fluctuate between an open state and a closed state, and the probability of a transition
is determined by the Boltzmann factor of the difference in grand potentials between the states.
In contrast to the capillary evaporation process in the infinitely long cylinder, which was either
completely filled by the liquid or by the gas, we will observe two liquid–gas interfaces at the
top and bottom ends of the bubble.

In the following, we consider the gate with a fixed configuration, i.e. with a given radius
R2, in a state in which it is entirely filled with the liquid and in a state with a bubble of height
h. By comparing these two states, we examine the possibility of bubble formation in the gate
and study the behaviour of the bubble, once it has formed. We employ the morphometric form
of the grand potential for both a filled gate, which we denote as the open (op) state, and a gate
with a gas bubble, which we denote as the closed (cl) state.

The grand potential of the open state is given by

�
op
gate(R2) = −pl V (H, R1, R2) + σl M(H, R1, R2) + κl C(H, R1, R2), (14)

with the thermodynamical coefficients pl, σl and κl as specified in table 1. The geometrical
measures for part of a cone with height h̃ and radii r1 and r2 at the bottom and the top,
respectively, are specified by the volume

V (h̃, r1, r2) = π h̃

3

(
r 2

1 + r 2
2 + r1r2

)
, (15)

the surface area of the cone shell

M(h̃, r1, r2) = π(r1 + r2)

√

h̃2 + (r1 − r2)2, (16)

and the integrated mean curvature (over the cone shell area inside the cone)

C(h̃, r1, r2) = −π h̃. (17)

As in the case of an infinitely long cylinder, the integrated Gaussian curvature (over the cone
shell area) vanishes in the cone geometry, so that the grand potential of the liquid-filled gate in
the morphometric form, equation (14), is fully specified by three terms.

The morphometric form of a closed state of the gate, with a bubble of height h, is more
complicated and contains terms for the part of the gate filled by the liquid, terms for the part
filled by the gas, and terms due to the presence of the liquid–gas interfaces. Assuming the
simple geometry shown in figure 4, we can write as an ansatz
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�cl
gate(h, R2) = −pl V (H − h, R1, Rb) + σl M(H − h, R1, Rb) + κl C(H − h, R1, Rb)

− pg V (h, Rb, R2) + σg M(h, Rb, R2) + κg C(h, Rb, R2)

+ σlg (A(Rb) + A(R2)) . (18)

Note that, by employing this ansatz, we reduce the complexity of the problem of finding the
state with the lowest grand potential from a full DFT calculation in a complex geometry to a
parametric minimization problem with a single free parameter, namely the bubble height h.
The detailed shape of the bubble corresponding to the lowest grand potential will differ slightly
from the shape assumed by this ansatz, however we expect that all the essential physics is
included in our approach. Furthermore, the simplicity of our approach allows us to gain deep
insight into the driving factors of bubble formation and breaking in a gate-like geometry.

The radius Rb in equation (18) depends on the geometrical parameters of the cone R1, R2,
H and the bubble height h via Rb = R2+h(R1 − R2)/H . Clearly, R2 < R1 is required to make
this relation meaningful in the present context. Note that additional line-tension terms of the
form τ L3p arise where the liquid–gas interface meets the wall, and a three phase (3p) contact
line of length L3p is created. However, these contributions are expected to be small and should
change the results, discussed below, only slightly. Furthermore, the calculation of τ is tedious
and would require a brute-force DFT calculation. Therefore we neglect the line-tension terms
in the following. Again, we want to emphasize that this line-tension term is not to be confused
with the curvature term which is proportional to κi , i = l, g.

In order to fully specify the grand potential, equation (18), we require an additional
thermodynamic coefficient, namely σlg, the liquid–gas interface tension. Unfortunately, this
quantity is rather difficult to calculate, since we have to consider the interface between a
liquid at high density and a gas phase, which is stabilized only in the confined geometry. This
calculation could only be performed in a brute-force application of DFT, which is prohibitive.
Therefore we approximate the value of σlg by the liquid–gas surface tension of the free interface
between unconfined coexisting liquid and gas phases at the same temperature. This quantity
can be calculated easily, and we obtain βσlg R2

HS = 8.549 × 10−2. Note, however, that the
thermodynamic coefficients listed in table 1 correspond to the stable liquid at ηl = 0.3842 and
the meta-stable (in the bulk) gas at ηg = 0.0378, as indicated in the table.

The surface area of the liquid–gas interface also calls for attention, since the radii R1, R2

and Rb are measured at the dividing interface. The meaning of these radii becomes apparent
when the density profiles in figure 2 are inspected carefully. For a cylindrical pore radius of,
for example, Rcyl = 10RHS, the liquid density profile drops to a vanishing density at r � 9RHS.
Therefore we use

A(r) = π(r − RHS)
2 (19)

as the surface area of the liquid gas interface.
The first question to be addressed concerns the most probable bubble height h0. This can be

rephrased by asking which value of h maximizes the difference in the grand potential between
a closed and a open state of the gate, i.e.

∂

∂h

(
�cl

gate(h, R2) − �
op
gate(R2)

)∣∣
∣
∣
h=h0

= 0. (20)

This equation can be solved explicitly. The result for h0(R2), however, is quite lengthy and we
therefore only show numerical results. With this result, we can answer the question for which
range of R2 the stable state of the gate is the closed one. We denote the maximal value of R2

for which a closed gate is stable with Rmax
2 , which is defined through
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Figure 5. The most probable height h0(R2) of the gas bubble as a function of R2. Due to the
competition between the various contributions of the grand potential, the bubble height at the
transition point at R2 = Rmax

2 is non-vanishing. For R2 < Rmax
2 , a bubble with height h0(R2)

is the stable state, indicated by the full line, and the gate is closed. For R2 > Rmax
2 , the closed gate

is meta-stable, which is denoted by the dotted line—see figure 6.


�(R2 = Rmax
2 ) ≡ �cl

gate(h0, Rmax
2 ) − �

op
gate(Rmax

2 ) = 0, (21)

which can be calculated numerically.
In order to quantify our results, we have to specify the geometry of the gate considered.

We choose R1 = 7.14RHS and H = 14.29RHS, which corresponds to R1 ≈ 10 Å and
H ≈ 20 Å if we assign RHS a value of 1.4 Å, as would be appropriate for water. For this
choice of parameters, we plot in figure 5 the most probable bubble height h0 as a function of
the parameter R2. For large values of R2, we find that a bubble of height h0(R2) would be meta-
stable, which we indicate by the dotted line. In this regime, the most stable state of the gate is
the open state. As R2 reaches the value of Rmax

2 , the bubble height jumps to a non-vanishing
value, and if R2 is further decreased the bubble height increases slightly, as shown by the full
line in figure 5. For the present model, we find that the pseudo transition, at which a bubble
forms in the gate, takes place for Rmax

2 ≈ 3.46RHS ≈ 4.84 Å, as follows from the difference in
grand potentials of a closed state and an open state of the gate as a function of R2—see figure 6.

The value of h0(Rmax
2 ) at the transition point can be readily understood. When we compare

the grand potential for the closed state to that of the open state, by calculating 
� we find


�(R2) = −
pV (h, Rb, R2) + 
σ M(h, Rb, R2) + 
κC(h, Rb, R2)

+ σlg (A(Rb) + A(R2)) , (22)

with 
p, 
σ , and 
κ defined above. In order to have the gate closed, we require 
� < 0,
which we can analyse by comparing the different contributions to 
�. For the situation that we
consider here, we find that three terms in equation (22) are positive: −
pV (h, Rb, R2) > 0,
describing the fact that the volume term prefers the stable bulk phase in the gate, which is the
liquid, 
κC(h, Rb, R2) > 0, and σlg(A(Rb) + A(R2)) > 0, which simply states the fact that
the formation of two liquid–gas interfaces costs energy. These three contributions to 
� have
to be balanced by the only negative term, 
σ M(h, Rb, R2) < 0. However, this balance can
only be established if the surface area of the cone shell M is sufficiently large, which requires
a height h0(Rmax

2 ) > 0.
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Figure 6. The difference in grand potentials between a closed state and an open state of the gate as
a function of R2. If this difference is positive, the open state is stable, otherwise the closed state is
stable. For R2 = Rmax

2 , the difference in grand potentials vanishes and thereby marks the transition
point between the states of the gate.

Within this model of the gate, it is easy to estimate the energy required to control the state
of the gate. If the gate is in the open state, then ion permeation should not be interrupted
too often due to thermal fluctuations. This means that the value of R2 in the open state
has to be large enough so that 
� stabilizes the open gate. However, if R2 is too large
in the open state, which would cause the gate to be open constantly, the energy cost to
close the gate would be too high. Similar arguments can be employed for the closed state.
The closed state should also be stabilized against fluctuations, with sufficiently low energy
costs. For our parameters, we can realize this situation if we assume that, for the open state,
Rop

2 ≈ Rmax
2 + 0.88RHS ≈ Rmax

2 + 1.23 Å and Rcl
2 ≈ Rmax

2 − 0.62RHS ≈ Rmax
2 − 0.87 Å. In

that case, the energy required to control the gate is roughly 5kBT , which is comparable to the
electrostatic energy gain of the voltage sensor of the potassium channel.

Finally, we can estimate 
N , the number of liquid particles that leave the gate during a
change in state in order to form the gas bubble. This is approximately related to the difference
between the liquid density ρl and the gas density ρg and the volume of the bubble


N(R2) ≈ (ρl − ρg)V (h0, R2 − RHS, Rb − RHS), (23)

where the volume V (h0, R2 − RHS, Rb − RHS) is the volume that is accessible to the centres
of fluid particles. For our system, we plot the result in figure 7. The quantity 
N specifies
the most likely number of particles that leave the gate. From this estimate, we conclude that
roughly 17–24 fluid particles are involved in the transition between states. Since the bubble
volume is rather small and the gas density is low, one is unlikely to find an appreciable amount
of particles inside the bubble. Note that a more accurate estimate can be obtained from the
thermodynamic relation


Ñ (R2) = −
(

∂�
op
gate(R2) − �cl

gate(h0, R2)

∂µ

)∣
∣
∣
∣
∣
T,V

. (24)

The approximate expression, equation (23), takes only the volume term of the grand potentials
into account and neglects the surface and curvature terms. In the present case, the estimate,
equation (23), is sufficient to describe the properties of the bubble.
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Figure 7. The number of fluid particles 
N that leave the gate when a bubble forms to close the
gate. If the gate is in the closed state, we plot 
N as a full line; when the gate is open, we plot it as
a dotted line.

5. Conclusion and outlook

We have presented a model for the opening and closing of a voltage-gated ion channel that
follows the basic architecture of the potassium channel from Streptomyces lividans (KcsA)
channel. The hydrophobically lined gate region changes from a wide pore, when open, to a
narrower pore when closed. With our morphometric approach to capillary evaporation in a
hydrophobic pore with cone-shaped geometry, we have shown that the formation of a bubble in
the gate can close the permeation pathway of the channel and thereby stop the ion flux. When
vapour forms in a channel, electric current cannot flow through the channel and the channel
is closed. Ions cannot move into or through the vapour phase, and so the resistance to current
flow is extremely large and the channel behaves like an open, i.e. disconnected, switch. The
channel is closed to current flow in the biological sense of the word closed.

For the morphometric approach, we require a set of thermodynamic coefficients that
we have determined in a simpler geometry within a set of DFT calculations for a square-
well fluid. While the values of these coefficients differ significantly from the corresponding
values for water, which is the fluid of biggest interest in the biological context of this model,
a similar scenario should also be found in the case of water. It is the balance between
different terms in the grand potential, i.e. the relative strength, rather than the absolute values
of the thermodynamic coefficients that matters. Our model rationalizes recently seen bubble
formation in computer simulations that employ more sophisticated models for water [14–23].
We thereby provide a basis for understanding the role of bubble formation and breaking in
the gating process of voltage-gated ion channels on a deeper level. Since this model identifies
the important physical driving forces of bubble formation, we hopefully provide a model that
allows us to address, in addition to basic (unperturbed) gating, other important properties of ion
channels, such as the effect of various chemicals that can change the environment in the gate,
on the gating process.

In our study we have focused on the situation of changing geometry as a trigger for bubble
formation. However, it is easy to see, within our description of a hydrophobic pore, that a
second mechanism for bubble formation can be identified from the balance between the surface
term 
σ M and all the other terms in equation (22): if the geometry is kept constant, 
� can
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still change sign and thereby favour the formation of a bubble if the degree of hydrophobicity
and hence 
σ is changed. This might be achieved if the gating process involves a change in
fixed charges in the gate as a way of controlling the protein–fluid interaction.

A combination of geometrically controlled bubble formation, discussed in detail in this
paper, and bubble formation due to a change in protein–fluid interaction, mentioned above, is
of course also possible and might be of use in mechanosensitive ion channels such as the small
mechanosensitive channel of Escherichia coli (MscS) channel [22].
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