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11

Jointly distributed random variables

In experiments, one is often interested not only in individual random variables,
but also in relationships between two or more random variables. For example,
if the experiment is the testing of a new medicine, the researcher might be
interested in cholesterol level, blood pressure, and the glucose level of a test
person. Similarly, a political scientist investigating the behavior of voters might
be interested in the income and level of education of a voter. There are many
more examples in the physical sciences, medical sciences, and social sciences. In
applications, one often wishes to make inferences about one random variable on
the basis of observations of other random variables. The purpose of this chapter
is to familiarize the student with the notations and the techniques relating to
experiments whose outcomes are described by two or more real numbers. The
discussion is restricted to the case of pairs of random variables. Extending the
notations and technigues to collections of more than two random variables is
straightforward.

11.1 Joint probability densities

It is helpful to discuss the joint probability mass function of two discrete random
variables before discussing the concept of the joint density of two continuous
random variables. In fact, Section 9.3 has dealt with the joint distribution of
discrete random variables. If X and Y are two discrete random variables defined
on a same sample space with probability measure P, the mass function p(x, y)
defined by

plx.y)=P(X =x,Y =y)
is called the joint probability mass function of X and Y . As noted before, P(X =
X, Y = y) is the probability assigned by P to the intersection of the two sets

313



314 Jointly distributed random variables

Table 11.1. The joint probability mass function p(x, y).

x\y 2 3 4 5 6 7 8 9 10 II 12 pxw)
1 TP =T E =+t %00 0 0 0 4
2 0 0 + £ £ £ 42 0 0 0 0 =
3 000 0 & 2 £ £ 0 0 0. ¢
4 0 0 0 0 0 0 £ &£ £ 0 0 *
5 0 0 0 0 0 0 0 0 % £ 0 ®
6 0 0 0 0 0 0 0 0 0 0 4 %
Pr) % % % % % % % % % % % wm=|

A=|w: X(w)=x)and B = (w : Y(w) = y], with w representing an element
of the sample space. The joint probability mass function uniquely determines
the probability distributions py(x) = P(X = x) and py(y) = P(Y = y) by

px(x)=ZP(X =x,Y=y) pyiy)= ZP(X =x,Y =y
¥ X

These distributions are called the marginal distributions of X and Y.

Example 11.1 Two fair dice are rolled. Let the random variable X represent
the smallest of the outcomes of the two rolls, and let ¥ represent the sum of
the outcomes of the two rolls. What is the joint probability mass function of X
and ¥Y?

Solution. The random variables X and Y are defined on the same sample
space. The sample space is the set of all 36 pairs (i, j) fori,j=1....,6,
where i and j are the outcomes of the first and second dice. A probabil-
ity of s is assigned to each element of the sample space. In Table 11.1,
we give the joint probability mass function p(x,y)=P(X =x,Y =y).
For example, P(X =2,Y =35) is the probability of the intersection of
the sets A = {(2, 2), (2, 3), (2, 4), (2, 5), (2,6), (3, 2), (4, 2), (5, 2). (6, 2)} and
B = ((1,4),(4, 1), (2, 3), (3, 2)]. The set {(2, 3), (3, 2)} is the intersection of
these two sets and has probability .

Problem 11.1 You roll a pair of dice. What is the joint probability mass function
of the low and high points rolled?

Problem 11.2 Let X denote the number of hearts and Y the number of diamonds
in a bridge hand. What is the joint probability mass function of X and Y?
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The following example provides a good starting point for a discussion of
joint probability densities.

Example 11.2 A point is picked at random inside a circular disc with radius r.
Let the random variable X denote the length of the line segment between the
center of the disc and the randomly picked point, and let the random variable
Y denote the angle between this line segment and the horizontal axis (Y is
measured in radians and so 0 < Y < 2x). What is the joint distribution of X
and Y?

Solution. The two continuous random variables X and Y are defined on a
common sample space. The sample space consists of all points (v, w) in the
two-dimensional plane with v2 + w? < r2, where the point (0, 0) represents the
center of the disc. The probability P(A) assigned to each well-defined subset
A of the sample space is taken as the area of region A divided by 7r2. The
probability of the event of X taking on a value less than or equal toa and Y
taking on a value less than or equal to b is denoted by P(X < a, Y < b). This
event occurs only if the randomly picked point falls inside the disc segment
with radius a and angle b. The area of this disc segment is %naz. Dividing
this by 7r? gives
b a?
P(Xsa,Ysb):i-;—— forO<a<rand0<b <2r.

r2

We are now in a position to introduce the concept of joint density. Let X

and Y be two random variables that are defined on the same sample space with

probability measure P. The joint cumulative probability distribution function of

X and Y isdefinedby P(X < x,Y < y)forallx, y,where P(X < x,Y < y)is

a shorthand for P({w : X(w) < x and Y(w) < y}) and the symbol w represents
an element of the sample space.

Definition 11.1 The continuous random variables X and Y are said to have
a joint probability density function f(x, y) if the joint cumulative probability
distribution function P(X < a, Y < b) allows for the representation

a b
P(X_<_a,Y5b)=f f f(x,y)dxdy, -0 <a,b<oo,
y

Xe==—-00 - OO

where the function f(x, y) satisfies

o0 o0
fx,y)=20  forallx,y and / / f(x, yYdxdy = 1.
~00 J ~00
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Just as in the one-dimensional case, f(a, b) allows for the interpretation
Sf(a,b)Aa Ab

s P(a-—%Aa 5X5¢+%A¢.b—%Ab_<_ Y5b+-;-Ab)

for small positive values of Aa and Ab provided that f(x, y) is continuous in
the point (a, b). In other words, the probability that the random point (X, ¥)
falls into a small rectangle with sides of lengths Aa, Ab around the point (a, b)
is approximately given by f(a, b) Aa Ab.

To obtain the joint probability density function f(x, y) of the random vari-
ables X and Y in Example 11.2, we take the partial derivativesof P(X < x,Y <
y) with respect to x and y. It then follows from

az
f(x.y)--&-a-;l'(xsx.r-sy)

otherwise.

In general, the joint probability density function is found by determining
first the cumulative joint probability distribution function and taking next the
partial derivatives. However, sometimes it is easier to find the joint probability
density function by using its probabilistic interpretation. This is illustrated with
the next example.

Example 11.3 The pointer of a spinner of radius 7 is spun three times. The
three spins are pesformed independently of each other. With each spin, the
pointer stops at an unpredictable point on the circle. The random varisble L,
corresponds to the length of the arc from the top of the circle to the point where
the pointer stops on the ith spin. The length of the arc is measured clockwise. Let
X = min(Ly, L3, L3) and Y = max(L;, L3, L3). What is the joint probability
density function f(x, y) of the two continuous random variables X and Y?

Solution. We can derive the joint probability density function f(x, y) by using
the interpretation that the probebility P(x <« X <x+ Ax,y <Y <y <+ Ay)
is approximately equal to f(x, y)AxAy for Ax and Ay small. The event
{x <X <x+Ax,y <Y < y+ Ay} occurs only if one of the L, takes on
a value between x and x + Ax, one of the L; a value between y and y + Ay,
and the remaining L; a value between x and y, where 0 < x < y. There are
3 x 2 x 1 = 6 ways in which L, L3, L3 can be arranged and the probability
that for fixed { the random variable L, takes on a value between g and b equals

£ y) {*5 for0 <x <rand0 <y < 2w,
' y) = 0 ' )
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(b —a)/2nr)for 0 < a < b < 2mrr (explain!). Thus, by the independence of
Ly, L, and Ly (see the general Definition 9.2)

Px<X<x+Ax,y<Y <y+Ay)
x+Ax—=x)(y+ Ay —y)(y —x)
=6 .
2rr 2nr 2xr

Hence, the joint probability density function of X and Y is given by
flx,y)= ?(2:::;‘) forO <x <y <2nmr
0 otherwise,

In general, if the random variables X and Y have a joint probability density
function f(x, y)

P(X.Y) € C) = f [ Fx, yydxdy
C

for any set C of pairs of real numbers. In calculating a double integral over a
nonnegative integrand, it does not matter whether we integrate over x first or
over y first. This is a basic fact from calculus. The double integral can be written
as a repeated one-dimensional integral. The expression for P((X, Y) € C) is
very useful to determine the probability distribution function of any function
g(X,Y)of X and Y. To illustrate this, we derive the useful result that the sum
Z = X + Y has the probability density

fz(z)=f f(u,z —u)du.

To prove this convolution formula, note that

P(Z_<_z)=fjf(x,y)dxdy==/ f . f(x,vydxdy

(x.¥):
x+yv<z

z o0
.-=/ / Su, v—u)dudv,
Ym0 o Uz -0

using the change of variables 4 = x and v = x + y. Next, differentiation of
P(Z < z) yields the convolution formula for f7(z). If the random variables X
and Y are nonnegative, the convolution formula reduces to

f2(2) = /h fu,z —u)du forz > 0.
1]
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Uniform distribution over a region

Another useful result is the following. Suppose that a point (X, Y) is picked
at random inside a bounded region R in the two-dimensional plane. Then, the
joint probability density function f(x, y) of X and Y is given by the uniform
density

1
)= . for (x, R.
fG area of region R or(x.y) €

The proof is simple. For any subset C € R

area of C

areaof R’

being the mathematical definition of the random selection of a point inside the
region R. Integral calculus tells us that area of C = [ fc dxdy. Thus, for any
subset C € R

P(X,Y)e ()=

P(X,Y)eC)=
(( Yel)= / / wreaof R R dy,
showing that the random point (X, ¥') has the above density f(x, y).

In the following problems you are asked to apply the basic expression
P(X,Y)e(C)= ffC f(x, y)dx dy yourselves in order to find the probability
density of a given function of X and Y.

Problem 11.3 A point (X, Y) is picked at random inside the triangle consisting
of the points (x, y) in the plane with x, y > O and x + y < 1. What is the joint
probability density of the point (X, ¥)? Determine the probability density of
each of the random variables X + Y and max(X, Y).

Problem 11.4 Let X and Y be two random variables with a joint probability
density

1
Fx,y) = Fresy forx,y>c
’ 0 otherwise,

for an appropriate constant c. Verify that ¢ = % and calculate the probability
"P(X »>a,Y >b)fora,b > c.

Problem 11.5 Independently of each other, two points are chosen at random
in the interval (0, 1). What is the joint probability density of the smallest and
the largest of these two random numbers? What is the probability density of
the length of the middle interval of the three intervals that result from the two
random points in (0,1)? What is the probability that the smallest of the three
resulting intervals is larger than a?
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Problem 11.6 Independently of each other, two numbers X and Y are chosen
at random in the interval (0, 1). Let Z = X/Y be the ratio of these two random

numbers.

(a) Use the joint density of X and Y to verify that P(Z < 7) equals %z for
O<z<landequalsl—1/(2z)forz > 1.

(b) What is the probability that the first significant (nonzero) digit of Z equals
1? What about the digits 2, ..., 9?

(c) What is the answer to Question (b) for the random variable V = XY?

(d) What is the density function of the random variable (X/Y)U when U is a
random number from (0, 1) that is independent of X and Y?

11.2 Marginal probability densities

If the two random variables X and Y have a joint probability density function
f(x, y), then each of the random variables X and Y has a probability density
itself. Using the fact that lim,_, o P(A,) = P(lim,_, A,) for any nondecreas-
ing sequence of events A,, it follows that

P(XSa)zbl_i’m P(Xsa,Ys_b):[a [[wf(x,y)dy]dx.
e ~00 L/~c0

This representation shows that X has probability density function

fx(x) =[ f(x,y)dy, —00 < X < 00.

In the same way, the random variable ¥ has probability density function

fr(») =-'f f(x, y)dx, -00 < y < 00.

The probability density functions fx(x) and fy(y) are called the marginal
probability density functions of X and Y. The following interpretation can be
given to the marginal density fx(x) at the point x = a when a is a continuity
point of fx(x). For Aa small, fx(a)Aa gives approximately the probability
that (X, Y) falls in a vertical strip in the two-dimensional plane with width Aa
and around the vertical line x = a. A similar interpretation applies to fy(b) for
any continuity point b of fy(y).

Example 11.4 A point (X, Y) is chosen at random inside the unit circle. What
is the marginal density of X?

Solution. Denote by C = {(x, y) | x2 4 y? < 1} the unit circle. The joint prob-
ability density function f(x, y)of X and Y is givenby f(x, y) = 1/(area of C)
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for (x, y) € C. Hence
= for(x,y)eC
fx.) {5 otherwise.

Using the fact that f(x. y) is equal to zero for those y satisfying y2 > 1 — x2,
if follows that

Jx(x) = / Sf(x,y)dy = f --dy.

and 30

3 /T—x2 -
fx(x)=5 l—-x for -l<x <1

Can you explain why.the marginal density of X is not the uniform density on
(=1, 1)? Hinr: interpret P(x < X < x + Ax) as the area of a vertical strip in
the unit circle.
Problem 11.7 A point (X, Y) is chosen at random in the equilateral triangle
having (0, 0), (1, 0), and (4, }+/3) as comer points. Determine the marginal
densitiesof X and Y. Befaedetmniuingdufunﬂionfx(x).unyouuplﬁn
why fx(x) must be largest at x = {?

A general condition for the independence of the jointly distributed random
variables X and Y is stated in Definition 9.2. In terms of the marginal densities,
the continuous analog of Rule 9.6 for the discrete case is:

Rule 11.1 The jointly distributed random variables X and Y are independemt
ifand only if

J(x,y) = fx(x)fy(y) forallx,y.

wunllumthiswithmenadunwﬁabludeYﬁomEnmphu.z.
'men,weobmnfmfx(x)aj;, iy dy that

otherwise.
In the same way, we obtain from fy(y) = J; iy dx that

for0 < 2n,
f'(y)alg'; odierwisi.<
The calculations lead to the intuitively obvious resuit that the angle Y has a
uniform distribution on (0, 27). A somewhat more surprising result is that the

for0 .
fx(x)”{s} or0<x<r
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listance X and the angle Y are independent random variables, though there is
lependence between the components of the randomly picked point. The inde-
yendence of X and Y follows from the observation that f(x, v) = fx(x)fy(v)
orall x, v.

To conclude this subsection, we give a very important result for the expo-
1ential distribution.

Example 11.5 Suppose that X and Y are independent random variables, where
X is exponentially distributed with expected value | /o and Y is exponentially
listributed with expected value 1/8. What is the probability distribution of
nin( X, ¥)? What is the probability that X is less than Y?

solution. The answer to the first question is that min(X, Y) is exponentially
fistributed with expected value 1 /(a + B). It holds that

(¢4

Pmin(X.Y)<z)=1l—e " forz>0 and P(X <V)= )
ua+f

The proof is simple. Noting that P(min(X. Y) <) =1-P(X >z Y > 2),
ve have

o (2 ®)
PmnX,Y)<) =1 -f / Fx() fr(vidxdy.
Rt o
Also,

~ ™~
P(X <Y) =/ Jx(x) friv)dedy.

v=0 o y=y

Jsing the fact that fy(x) = ae ™ and fy(y) = Be P, it is next a matter of
simple algebra to derive the results. The details are left to the reader.

?roblem 1L.8 The continuous random variables X and Y are nonnegative and
ndependent. Verify that the density function of Z = X + Y is given by the
:onvolution formula

S22 = [ fxz=¥fr(vdy  forz=>0.
0
>roblem 11.9 The nonnegative random variables X and Y are independent and
miformly distributed on (¢. d). What is the probability densityot Z = X + Y?
Mhat is the probability density functionof V = X + ¥2? Use the latter density
o calculate the expected value of the distance of a point chosen at random inside
he unit square to the center of the unit square.
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11.2.1 Substitution rule

The expected value of a given function of jointly distributed random variables
X and Y cun be calculated by the two-dimensional substitution rule. In the
continuous case, we have:

Rule 11.2 If the random variables X and Y have a joint probability density
Junction f(x,y). then

[ ¥] o~
E|g(X. V)| = / / gle. Vf(x. vdx dy
—ow J -

Jor any function g(x. y) provided that the integral is well defined.
An easy consequence of Rule 11.2 is that
E@@X + bY)=aE(X)+ bE(Y)

for any constants a. b provided that E(X) and E(Y) exist. To see this, note that

N (2 ¥
j (ax + by) f(x, ¥y)dxdy

- 12 ¥ (s ¥} ~ o
= [ / axf(x,y)dxdy +f f byf(x.y)dxdy
-y o -k} - o -0
o o ~n L%

= f axdx / fx.v)dv + bydy / Jlx.Mdx
Xty rm—y Ym—ry -y

~ o
=a/ xfx(x)dx+b/ yir(y)dy.

-0 -

which proves the desired result. It is left to the reader to verify from Rules 11.1
and 11.2 that

E(XY)= E(X)E(Y) forindependent X and Y.

An illustration of the substitution rule is provided by Problem 2.21: what
is the expected value of the distance between two points that are chosen at
random in the interval (0, 1)? To answer this question, let X and Y be two
independent random variables that are uniformly distributed on (0, 1). The joint
density function of X and Y is given by f(x,y) =1 forall0 < x,y < |. The
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substitution rule gives

i i
E(X -Y) =/ f |x — yldxdy
0 JoO

i x I
-_.-f dx[ (x-.v)dy+f (,v~x)d3']
] 0 X

'ri [ N 1
=/(; [§x2+§~5x‘-—x(l-—x)]dx:S.

Hence, the answer to the question is %

As another illustration of Rule 11.2, consider Example 11.2 again. In this
example, a point is picked at random inside a circular disk with radius r and the
point (0, 0) as center. What is the expected value of the rectangular distance from
the randomly picked point to the center of the disk? This rectangular distance is
given by | X cos(Y)| + | X sin(Y)| (the rectangular distance from point (a, b) to
(0, 0) is defined by |a| + |b}). For the function g(x, y) = |x cos(y)| + |x sin(y)|,
we find

EteX. 1= [ [ telcostyl + xlsininll 23 dxdy
0o Jo nr

1 2n r , 1 2 r
= _ff j cos(y)l d_vf x° dx+—-—2-/ Isin(y)ldy/ x2dx
wre Jo 0 nre Jo 0

r’ 2 o 8r
= 3mr2 [1; | cos(y)idy +L Ism(y)ldy] = 57;-

The same ideas hold in the discrete case with the probability mass function
assuming the role of the density function

E[gX. V)] =) ) atx.y)p(x.y)

when the random variables X and Y have the joint probability mass function
plx,v)=P(X=x,Y=y) .

11.3 Transformation of random variables

In statistical applications, one sometimes needs the joint density of two random
variables V and W that are defined as functions of two other random variables
X and Y having a joint density f(x, y). Suppose that the random variables V
and W are defined by V = g(X.Y) and W = (X, Y) for given functions g
and h. What is the joint probability density function of V and W? An answer to
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this question will be given under the assumption that the transformation is one-
to-one. That is, it is assumed that the equations v = g(x, v) and w = h(x, y)
can be solved uniquely to yield functions x = a(v, w) and y = b(v, w). Also
assume that the partial derivatives of the functions a(v. w) and b(v, w) with
respect to v and w are continuous in (v, w). Then the following transformation
rule holds:

Rule 11.3 The joint probability density function of V and W is given by
S(a(v, w), b(v, w)|J (v, w),

where the Jacobian J(v, w) is given by the determinant
da(v,w) da(v,w)

v dw _ da(v, w) v, w)  da(v, w) db(v, w)
ab(v,w) db(v, ur) D dw dw v
dv dw .

The proof of this rule is omitted. This transformation rule looks intimidating,
but is easy to use in many applications. In the next section it will be shown
how Rule 11.3 can be used to devise a method for simulating from the normal
distribution. However, we first give a simple illustration of Rulc 11.3. Suppose
that X and Y are independent N(0, 1) random variables. Then, the random vari-
ables V=X + Y and W = X — Y are normally distributed and independent.
To verify this, note that the inverse functions a(v, w) and (v, w) are given by
x = 4 and y = 3%, Thus, the Jacobian J(v, w) is equal to

3t

Since X and Y are independent N(0, 1) random variables, it follows from
Rule 11.1 that their joint density function is given by

3 |

|
3

S p D

I jo 1 i
X, V)= —¢ R —Y R LN
fxy(x,y) W wri
Applying Rule 11.3, we obtain that the joint density function of V and W is
given by

-00 < X, ) < 00.

Sfr.w(v,w) = —J!__z-;-e”f(‘i‘): \/;_;e_i(:i,:)! x %

i -{vi/2 i -{w?2
= 3 X s 5 - 00 ' 00.
J.Z.Jz_.x.e JiJz_Jr_e <y <
This implies that fy w(v, w) = fv(v) fw(w) for all v, w with the marginal
density functions fy(v) = 75:'7,-_;?*"1/2 and fw(w) = -\E'72-;e“f“"/2. Using
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Rule 11.1 again, it now followsthat V. = X + Y and W = X — Y are N(0, 2)
distributed and independent.

11.3.1 Simulating from a normal distribution

A natural transformation of two independent standard normal random variables
leads to a practically useful method for simulating random observations from
the standard normal distribution. Suppose that X and Y are independent random
variables each having the standard normal distribution. Using Rule 11.1, the
joint probability density function of X and Y is given by

| PRI
= e 1Y)
S, y) 2”e

The random vector (X, Y) can be considered as a point in the two-dimensional
plane. Let the random variable V be the distance from the point (0, 0) to the point
(X, Y) and let W be the angle that the line through the points (0, 0) and (X, Y)
makes with the horizontal axis. The random variables V and W are functions
of X and Y (the function g(x, y) = \/x2 + y? and h(x, y) = arctan(y/x)). The
inverse functions a(v, w) and b(v, w) are very simple. By basic geometry,
x = vcos(w) and y = v sin(w). We thus obtain the Jacobian

cos(w) —vsin(w)

- 2 2 -
sin(w) v cos(w) vcos“(w) + vsin“(w) = v,

using the celebrated identity cos?(w) + sin*(w) = 1. Hence, the joint probabil-
ity density function of V and W is given by
fow, w) = -21-8'_%(”2 cos’(wi+v¥ sin(u) _ ___l_)__e—évz
forO0 < v < coand 0 < w < 2. The marginal densities of V and W are given
by
@) = I ve 1V dw = ue‘%"z. O<v<oo
0
and
|

| ® 4
fw(w)=§;r—/0 ve %"dv.-.—.zr-. 0<w< 2.

Since fy.w(v, w) = fy(v) fw(w), we have the remarkable finding that V and W
are independent random variables. The random variable V has the probability
density function ve~1” forv>0and W is uniformly distributed on (0, 27).
This result is extremely useful for simulation purposes. Using the inverse-
transformation method from Section 10.3, it is a simple matter to simulate
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random observations from the probability distributions of V and W. If we let
U, and U, denote two independent random numbers from the interval (0,1), it
follows from results in Section 10.3 that random observations of V and W are
given by

V=y{=2In(l-U;) and W =2nU,.

Next, one obtains two random observations X and Y from the standard normal
distribution by taking

X=Vcos(tW) and Y = Vsin(W).

Theoretically, X and Y are independent of each other. However, if a pscudo-
random generator is used to generate U, and Us, one uses only one of two vari-
ates X and Y. It surprisingly appears that the points (X, Y) lie on a spiral in the
plane when a multiplicative generator is used for the pseudo-random numbers.
The explanation of this subtle dependency liex in the fact that pseudo-random
numbers are not truly random. The method described above for generating
normal variates is known as the Box-Muller method.

Problem 11.10 A point (V, W) is chosen inside the unit circle as follows. First,
a number R is chosen at random between 0 and 1. Next, a point is chosen at
random on the circumference of the circle with radius R. Use the transformation
formula to find the joint density function of this point (V, W). What is the
marginal density function of each of the components of the point (V. W)? Can
you intuitively explain why the point (V, W) is not uniformly distributed over
the unit circle?

Problem 11.11 Let (X, Y) be a point chosen at random inside the unit circle.
Define V and W by V = X/=2In(0)/Q and W = ¥./=2In(Q)/ 0. where
Q = X? + Y2, Verify that the random variables V and W are independent and
N(0, 1) distributed. This method for generating normal variates is known as
Marsaglia’s polar method.

Problem 11.12 The independent random variables Z and Y have a standard
normal distribution and a chi-square distribution with v degrees of freedom.
Use the transformation V = Y and W = Z/./Y/Vv to prove that the random
variable W = Z/./¥/v has a Student-¢ density with v degrees of freedom.
Hint: in evaluating fw(w) from f§° fv,w(v, w)dv, use the fact that the gamma
density A%x?~!e~2* / () integrates to 1 over (0, co).
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11.4 Covariance and correlation coefficient

Let the random variables X and Y be defined on the same sample space with
probability measure P. A basic rule in probability is that the expected value
of the sum X + Y equals the sum of the expected values of X and Y. Does a
similar rule hold for the variance of the sum X + Y ? To answer this question,
we apply the definition of variance. The variance of X + Y equals

E[{X +Y - EX + D)}

= E[(X — EX)? +2(X = E(X)(Y — E(Y)) + (Y — E(Y))*]

= var(X) + 2E[(X — E(X)XY — E(Y))] + var(Y).
This leads to the following general definition.
Definition 11.2 The covariance cov(X, Y) of two random variables X and Y
is defined by

cov(X,Y)= E[(X — E(X))Y — E(Y))]
whenever the expectations exist.
The formula for cov(X, Y) can be written in the equivalent form
cov(X,Y) = E(XY) — E(X)E(Y)

by expanding (X — E(X)(Y — E(Y)) into XY — XE(Y)—-YE(X)+
E(X)E(Y) and noting that the expectation is a linear operator. Using the fact
that E(XY) = E(X)E(Y) for independent random variables, the alternative
formula for cov(X, Y) has as direct consequence:

Rule 11.4 If X and Y are independent random variables, then
cov(X,Y)=0.

However, the converse of this result is not always true. A simple example of
two dependent random variables X and Y having covariance zero is given in
Section 9.4. Another counterexample is provided by the random variables X =
Z and Y = Z2, where Z has the standard normal distribution. Nevertheless,
cov(X, Y) is often used as a measure of the dependence of X and Y. The
covariance appears over and over in practical applications (see the discussion
in Section 5.2).

Using the definition of covariance and the above expression for var(X + Y),
we find the general rule:

Rule 11.5 For any two random variables X and Y
var(X + Y) = var(X) + 2cov(X, Y) + var(Y).
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If the random variables X and Y are independens, then
var(X + Y) = var(X) + var(Y).

The units of cov(X, Y) are not the same as the units of E(X) and E(Y).
Therefore, it is often more convenient to use the correlation coefficient of X
and Y which is defined by

o= Ry
provided that var(X) > Oand var(Y) > 0. The correlation coefficient is adimen-
sionless quantity with the property that

-l<p(X,¥)< L.

The reader is asked to prove this propesty in Problem 11.14. The random vari-
ables X and Y are said to be uncorrelated if p(X, Y) = 0. Independent ran-
dom variables are always uncorrelated, but the converse is not always true. If
p(X, Y) =1, then Y is fully determined by X. In this case it can be shown
that Y = aX + b for constants g and b witha # 0.

The problem section of Chapter 5 contains several exercises on the covari-
ance and correlation coefficient. Here are some more exercises.

Problem 11.13 The continuous random variables X and Y have the joint density
f(x,y)=4y*for0 < x <y < | and f(x, y) = O otherwise. What is the cor-
relation coefficient of X and ¥ ? Can you intuitively explain why this correlation
coefficient is positive?
Problem 11.14 Verify that

var(aX +b) = a*var(X) and cov(aX, bY) = abcov(X, Y)

for any constants a, b. Next, evaluate the variance of the random variable Z =
Y//var(P) - p(X, Y)X//var(X) to prove that ~1 < p(X, ¥) < 1. Also, for
any constantsa, b, c,and d, verify thatcov(aX + bY, cV + dW)can be worked
out as accov(X, V) 4 adcov(X, W) 4 becov(Y, V) + bdcov(Y, W).

Problem 11.15 The amounts of rainfall in Amsterdam during each of the
months January, February, ..., December are independent random variables
with expected values of 62.1, 434, 58.9, 41.0, 48.3, 67.5, 65.8, 61.4, 82.1,
85.1, 89.0, and 74.9 mm and with standard deviations of 33.9, 27.8, 31.1, 24.1,
29.3, 33.8, 36.8, 32.1, 46.6, 42.4, 40.0, and 36.2 mm. What are the expected
value and the standard deviation of the annual rainfall in Amsterdam? Calculate
an approximate value for the probability that the total rainfall in Amsterdam
next year will be larger than 1,000 mm.
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Problem 11.16 Let the random variables X, ..., X, be defined on a common
probability space. Prove that

n n n
var(Xy + -+ X) = ) _var(X)+2) Y cov(X;, X;).
i=1 i=1 j=i+l
Next, evaluate var(}_;_, £;X;) in order to verify that Y ;_, Z'}=| litjo;; > 0
for all real numbers ¢y, ..., t,, where o;; = cov(X;, X;). In other words, the
covariance matrix C = (o;;) is positive semi-definite.

Problem 11.17 The hypergeometric distribution describes the probability mass
function of the number of red balls drawn when n balls are randomly chosen
from an urn containing R red and W white balls Show that the variance of
the number of red balls drawn is given by n 25 (1 — 225)22W=2 Hins: the
number of red balls drawn can be written as X 1 + .+ Xg, where X; equals
1 if the ith red ball is selected and 0 otherwise.

Problem 11.18 What is the variance of the number of distinct birthdays within
a randomly formed group of 100 persons? Hint: define the random variable X;
as 1 if the ith day is among the 100 birthdays, and as O otherwise.

Problem 11.19 You roll a pair of dice. What is the correlation coefficient of the
high and low points rolled?

Problem 11.20 What is the correlation coefficient of the Cartesian coordinates
of a point picked at random in the unit circle?

11.4.1 Linear predictor

Suppose that X and Y are two dependent random variables. In statistical appli-
cations, it is often the case that we can observe the random variable X but we
want to know the dependent random variable Y. A basic question in statistics
is: what is the best linear predictor of Y with respect to X? That is, for which
linear function y = a + Bx is

E[(Y —a - BX)]
minimal? The answer to this question is

oy
y = My + pxy —(x — ux),
ox

where puy = E(X), uy = E(Y), ox = /var(X), oy = /var(Y), and pyy =
p(X,Y). The derivation is simple. Rewritingy = a + Bxasy = uy + f(x —
px) — (y — a — Bux), it follows after some algebra that E[(Y — a — BX)?]
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can be evaluated as

EWY —py = B(X = ux)+py — a = Bux )|
= E|{Y — py — B(X — ux)P| + (y — @ = Bux)’
+2uy —a — Bux)ElY — py — (X — ux)|
= o} + B*a} — 2Bpxyoxay + (uy —a — Pux)’.

In order to minimize this quadratic function in  and g, we put the partial
derivatives of the function with respect to @ and 8 equal to zero. This leads
after some simple algebra to

PxyOy PxyOy
2= e— and - —
B o a=puy o

For these values of a and f, we have the minimal value
E[(¥ —a - X = o}(1 - £}y).

This minimum is sometimes called the residual variance of Y.

The phenomenon of regression to the mean can be explained with the help
of the best linear predictor. Think of X as the height of a 25-year-old father and
think of Y as the height his newbomn son will have at the age of 25 years. It
is reasonable to assume that uy = uy = u, ox = oy =0, and p = p(X.Y)
is positive. The best linear predictor f of ¥ then satisfies ¥ — . = p(X — u)
with 0 < p < |. If the height of the father scores above the mean, the best
linear prediction is that the height of the son will score closer to the mean.
Very tall fathers tend to have somewhat shorter sons and very short fathers
somewhat taller ones! Regression to the mean shows up in a wide variety of
places: it helps explain why great movies have often disappointing sequels, and
disastrous presidents have often better successors.

Hx.
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