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11 

Jointly distributed random variables 

In experiments, one is often interested not only in individual random variables, 
but also in relationships between two or more random variables. For example, 
if the experiment is the testing of a new medicine, the researcher might be 
interested in cholesterol level, blood pressure, and the glucose level of a test 
person. Similarly, a political scientist investigating the behavior of voters might 
be interested in the income and level of education of a voter. There are many 
more examples in the physical sciences, medical sciences, and social sciences. In 
applications, one often wishes to make inferences about one random variable on 
the basis of observations of other random variables. The purpose of this chapter 
is to familiarize the student with the notations and the techniques relating to 
experiments whose outcomes are described by two or more real numbers. The 
discussion is restricted to the case of pairs of random variables. Extending the 
notations and techniques to collections of more than two random variables is 
straightforward. 

11.1 Joint probability densities 

It is helpful to discuss the joint probability mass function of two discrete random 
variables before discussing the concept of the joint density of two continuous 
random variables. In fact, Section 9.3 has dealt with the joint distribution of 
discrete random variables. If X and Y are two discrete random variables defined 
on a same sample space with probability measure P, the mass function p(x, y) 

defined by 

p(x, y) = P(X = x, Y = y) 

is called the joint probability mass function of X and Y. As noted before, P(X = 
x, Y = y) is the probability assigned by P to the intersection of the two sets 

313 



314 Jt1int(v di:rtributed random variables 

Table 11.1. The jllint pnlbabi/ity rnas1 functio11 p(x. )' ). 

x\.v 2 3 4 s 6 7 8 9 10 II 12 Px(.r) 

I I 2 i 2 2 2 0 0 0 0 () II 
J6 J6 J6 J6 J6 J6 

2 0 0 I 2 2 2 i 0 0 0 0 9 
:ii J6 :ii J6 J6 

3 0 0 0 () I Iii i 2 0 () () . 7 
J6 J6 J6 

4 0 0 0 0 0 0 ~ 2 2 () 0 !I 
J6 J6 J6 

s 0 0 () () () 0 0 0 I l. () .l 
J6 36 J6 

6 0 0 0 0 0 0 0 0 0 0 I ~ :ii 
py(J•) I 2 l 4 !I ft i 4 l 2 I sum= I J6 J6 J6 J6 J6 J6 J6 :ii J6 :ii 

A = ("' : X(ld) =.rt and B = (w: f(ld) = yl, with"' repmlellting an element 
of the sample space. The joint probability 1111155 function uniquely determines 
the probability dildributiOlll Px(x) = l'(X = .r) and py(.l') = I'( Y = y) by 

px(x) = L l'(X = x. Y = .v>. pr(Y) = L P<X = x. Y = .v). 
, x 

These dilllributiOlll are called the marginal distributltms of X and Y. 

Eample II.I Two fair dice are rolled. Let the random variable X represent 
the smallest of the outcome1 of the two rolls. and let Y repraent the sum of 
the outcomes of the two rolls. What is the joint probability mass function of X 
and f? 

Solution. The random variables X and Y are defined on the same sample 
space. The sample space is the set of all 36 pain (I, j) for i. j = I •... , 6, 
where i and j are the outcomes of the first and second dice. A probabil­
ity of ~ is usigned to each element of the sample space. In Table 11. I, 
we give the joint probability 1111155 function p(x. y) = l'(X = x, Y = y). 
For example, l'(X = 2. Y = S) is the probability of the intersection of 
thesetsA=~n~n~~~n~~~n~n~n~~and 
B = {(I, 4), (4, I), (2, 3), (3, 2)). The set ((2, 3), (3, 2)1 is the intersection of 
these two sets and has probability i· 
Problem 11.1 You roll a pair of dice. What is the joint probability mas.• function 
of the low and high points rolled? 

Problem 11.2 Let X denote the number of hearts and Y the number of diamonds 
in a bridge hand. What is the joint probability mass function of X and Y? 
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The following example provides a good starting point for a discussion of 
joint probability densities. 

Example 11.2 A point is picked at random inside a circular disc with radius r. 
Let the random variable X denote the length of the line segment between the 
center of the disc and the randomly picked point, and let the random variable 
Y denote the angle between this line segment and the horizontal axis (f is 
measured in radians and so 0 :S Y < 2n-). What is the joint distribution of X 
and Y? 

Solution. The two continuous random variables X and Y are defined on a 
common sample space. The sample space consists of all points ( v, w) in the 
two-dimensional plane with v2 + w2 .::: r2, where the point (0, 0) represents the 
center of the disc. The probability P(A) assigned to each well-defined subset 
A of the sample space is taken as the area of region A divided by TC r2• The 
probability of the event of X taking on a value less than or equal to a and Y 
taking on a value less than or equal to bis denoted by P(X :Sa, Y,::: b). This 
event occurs only if the randomly picked point falls inside the disc segment 
with radius a and angle b. The area of this disc segment is i:rTCa2• Dividing 
this by TC r 2 gives 

b a2 
P (X :S a, Y :S b) = -

2 2 TC r 
forO :Sa :Sr andO :Sb :S 211". 

We are now in a position to introduce the concept of joint density. Let X 
and Y be two random variables that are defined on the same sample space with 
probability measure P. The joint cumulative probability distribution function of 
X and Yisdefinedby P(X :S x, Y :S y)forallx, y, where P(X :S x, Y.::: y)is 
a shorthand for P({w: X(w) :S x and Y(w) :Sy}) and the symbol w represents 
an element of the sample space. 

Definition 11.1 The continuous random variables X and Y are said to have 
a joint probability density function f (x, y) if the joint cumulative probability 
distribution function P(X :Sa, Y :Sb) allows for the representation 

-oo < a, b < oo, 

where the function f(x, y) satisfies 

f(x, y) ?: 0 forallx,y and 1_:1_: f(x,y)dxdy = 1. 
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JUlt a in the cw.dilftllllioall cw., /(a, b) IDowt far the iuteatxltldon 

/(a,b)411Ab 

._. P(a-!411 <X <a+!411,b-!Ab< Y <b+!Ab) 
~ 2 - - 2 2 -- 2 

far..U pcllidw ¥llw of 41111111 Ab txvvidld dlat /(z, y) ii caadauoa in 
the paint (a, b). la odlll' wmdl, the.........,._ the raadam paint (X, Y) 
f.uainlDa..U ......... wkblklllof ...... 411, AblRlllDd t.bepoint(a, b) 
il.......,..yp..by /(a,b)411Ab. 

1b oblldll the joint problbility...., fwlioa /(z, y) of the raadam ....... 
lblelXllldYinBl ...... 11.2,wetaket.be.-Wcleriftlivelof P(X s.r, rs 
y) wkb NlplCl ID.1' ... y. It .... foDan 6am 

a2 
/(z, y) • iii;P(X S .r, Y Sy) 

forO < .r < r 111110<1<2'r, 

odlerwile. 

la ....... the joint pnmbility denlity ftancdcm ii faaad by det11minlna 
.. the ClllDll .... joint pmbabillty dlllrilladma faacdlllll llld takina Mat the 
,... clldWldWtL Hawvm; --·-It ii ...... lad the joint pnlllability 
demlty ftmcdan by uana* problNlildciatelpnllldcm. 1bil ii iUUltrated wkll 
tbeam•......_ 
Bzn ... 11.3 The paialm of a lpi•• of ..... r ii 1p1111 dne Ii-. The 
line apina .., pmfa11ned lndepmdenely of ed atber. \Vldl ed lpin. the 
painler ... ••.........,..paint• the cin:le. The raadam Ylrilble L1 
CC111 ....... 1Dthe ....... oft.bem: 6am the tapofthedn:letot.bepoint wbens 
the paialll 1tap1C11 theldaapin. The leaadaoft.be m:il IDlliltndclockwile.Let 
X • mia(L1e Li, Ls) and Y • ma(L1e Li, Ls). What ii the joint problbility 
demlty ftmedoa /(z, y) of the two ccninaGlll raadam wrilblel X IDd Y? 

..... WeCID derive the joint pmbabillty deality fulldiaa /(.r, y) by 1llina 
the iDtlrpreaadm dlat the problbility P(z < X S .r +Al', 1 < Y S 1 + Ay) 
ii appnD"imetely equal to /(z, y)Al'Ay far Al' and Ay ..U. Tbe event 
(.r < x s .r +Al',, < r :s 1 + Ay) ocean anly if oae of the L1 am.• 
a VII• betwem .r 11111 .r +Al', one of the L1 a-.. betwem 1 IDd y + Ay, 
IDd the....-... L1 a._ betwem .randy, wbens 0 < .r < y. Tblle _, 
3 x 2 x I • 6 waya ha wbicb L1t £2, Ls CID be ll'faapd IDd the problbility 
that for fixed I the raadam Vllilble £1 tms Cll a._ betwem a 11111 b eqalla 
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(b - a)/(2Jrr) for 0 <a < b < 2lfr (explain!). Thus. by the independence of 
L 1, L 2• and L 3 (see the general Definition 9.2) 

P(x < X :-=: x + ilx. y < Y :-=: y + .!ly) 
(x + ilx - x)(y + ily - y)(y -x) 

=6 . 
2rrr 2lfr 2lfr 

Hence. the joint probability density function of X and Y is given by 

I 6tv-xl 

j(x, y) = ~2nrr1 forO < x < y < 2rrr 

otherwise. 

In general, if the random variables X and Y have a joint probability density 
function /(x. y) 

P((X. Y) EC)= fl f(x, y)dxdy 

for any set C of pairs of real numbers. In calculating a double integral over a 
nonnegative integrand. it does not matter whether we integrate over x first or 
over y first. This is a basic fact from calculus. The double integral can be written 
as a repeated one-dimensional integral. The expression for P((X, Y) EC) is 
very useful to determine the probability distribution function of any function 
g( X. Y) of X and Y. To illustrate this. we derive the useful result that the sum 
Z = X + Y has the probability density 

/z(z) = 1_: j(u. z - u)du. 

To prove this convolution formula; note that 

P(Z :-=: z) = J J f(x. y)dxdy = 1~-oo 1:~~ f(x. y)dxdy 
~.tj: . 

x+.v:::z 

= 1:_co1:
00 

f(u. v- u)dudv, 

using the change of variables u = x and v = x + y. Next. differentiation of 
P(Z :-=: z) yields the convolution formula for /z(z). If the random variables X 
and Y are nonnegative. the convolution formula reduces to 

/z(z) = 1z f(u, z - u)du for z > 0. 
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Uniform distribution over a region 

Another useful result is the following. Suppose that a point (X, Y) is picked 
at random inside a bounded region R in the two-dimensional plane. Then, the 
joint probability density function f(x, y) of X and Y is given by the uniform 
density 

I 
f(x, y) = . 

area of region R 
for(x,y)eR. 

The proof is simple. For any subset C s:; R 

area of C 
P((X, Y) e C) = f R, 

areao 

being the mathematical definition of the random selection of a point inside the 
region R. Integral calculus tells us that area of C = f fc dxdy. Thus, for any 
subset C s:; R 

P((X, Y) e C) = f' ( I f dxdy, le areao R 

showing that the random point (X, Y) has the above density f(x, y). 

In the following problems you are asked to apply the basic expression 

P((X, Y) e C) = ffc/(x,y)dxdyyourselvesinordertofindtheprobability 
density of a given function of X and Y. 

Problem 11.3 A point (X, Y) is picked at random inside the triangle consisting 
of the points (x, y) in the plane with x, y ~ 0 and x + y ~ 1. What is the joint 
probability density of the point (X, Y)? Determine the probability density of 
each of the random variables X + Y and max(X, Y). 

Problem 11.4 Let X and Y be two random variables with a joint probability 
density 

f(x, y) = {6~'~ for x, y > c 
otherwise, 

for an appropriate constant c. Verify that c = ~ and calculate the probability 
· P(X > a, Y > b) for a, b > c. 

Problem 11.5 Independently of each other, two points are chosen at random 
in the interval (0, I). What is the joint probability density of the smallest and 
the largest of these two random numbers? What is the probability density of 
the length of the middle interval of the three intervals that result from the two 
random points in (0,1)? What is the probability that the smallest of the three 
resulting intervals is larger than a? 
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· . ..... 
'• 

Problem 11.6 Independently of each other, two numbers X and Y are cho8en 
at random in the interval (0, 1 ). Let Z = X / Y be the ratio of these two random 
numben. 

(a) Use the joint density of X and Y to verify that P(Z :S z) equals ! z for 
0 < z < 1 and equals 1 - 1/(2z) for z ~ 1. 

(b) What is the probability that the tint significant (nonzero) digit of Z equals 
1? What about the digits 2, ... , 9? 

(c) What is the answer to Question (b) for the random variable V = XY? 
(d) What is the density function of the random variable (X/Y)U when U is a 

random number from (0, 1) that is independent of X and Y? 

11.2 Marginal probability densities 

If the two random variables X and Y have a joint probability density function 
f (x, y ), then each of the random variables X and Y has a probability density 
itself. Using the fact that lim,....,.co P(An) = P(lim,....,.co An) for any nondecreas­
ing sequence of events An, it follows that 

P(X :Sa)= lim P (X :Sa, Y :Sb)= f 0 [lco f(x, y)dy] dx. 
hco -co -co 

This representation shows that X has probability density function 

/x(x) = 1_: /(x, y)dy, -oo < x < oo. 

In the same way, the random variable Y has probability density function 

fr(y) = 1_: /(x, y)dx, -oo < y < oo. 

The probability density functions /x(x) and fr(y) are called the marginal 
probability density functions of X and Y. The following interpretation can be 
given to the marginal density f x(x) at the point x = a when a is a continuity 
point of fx(x). For A.a small, /x(a)A.a gives approximately the probability 
that (X, Y) falls in a vertical strip in the two-dimensional plane with width A.a 

and around the vertical line x =a. A similar interpretation applies to fr(b) for 
any continuity point b of fy(y). 

Example 11.4 A point (X, Y) is chosen at random inside the unit circle. What 
is the marginal density of X? 

Solution. Denote by C = { (x, y) I x2 + y 2 :S I} the unit circle. The joint prob­
ability density function /(x, y) of X and Y is given by f(x, y) = l/(area of C) 
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(or(.r, y) EC. Hence 

/(.r.y) • {t for(.r,y) EC 
odlerwiae. 

Using the fact that /(.r. y) i1 equal to J.el'O for thole y milfying r > I - .r2, 

if follows that 

l oo l.tr=i' I /x(.r) • /(.r, y)dy • - dy. 
-OU -.tr=i' 'Ir 

and so 

/x(.r)• {tJ1-.r2 ~.r <I 

Can you explain why.• .......... density or x ii not the uniform density on 
(-1, I)? Hlnr. ma.pr. P(.r < X :S .r + Ar) • the.._ of a verdcal strip in 
the unit dn:le. 

Pntrl1• 11.7 A point (X. Y) ii ct... at nndam in the equi ................ 
havin1 (0, 0), (I, 0). and ( l. lJl> • comer pointL Determim the .....­
densidea of X and r. 8efanl ......_.,the f'unr:dan /x<.r>. cm you expl• 
why /x(.r)lllUl&be ..... at.r • i? 

A general condition for the indepllldence of the jointly distributed madam 
vmiables X and Y ia ltllted in Deftnitian 9.2. In renm of the llllllinal dlmitia, 
the c:ontinuoua ...... of Rule 9.6 for the dilcrete case is: 

Rale 11.1 Tlw jointly dl6trlbllt«l 1"""°"' wulabl,. x and y ate ...,,.,.,,, 

I/ and on1y I/ 

/(.r. y) • /x(.r)/r(y) faral/ x, y. 

Let UI illlllll'lle this with the rwlom vmiables X and Y from Bxlmple 11.2. 
1ben. we obtain fn>m /x(.r) • fo'bt f,t dy that 

/x~>· {!' forO < .r < r, 
otherwise. 

In the ame way. we obtain from /r(y) • /(, f,t d.r that 

/r(y) • { ~ ::.:: dr, 

1be calculltiom lad to the iDtaidvely obvious result that the ansle Y bu a 
uniform distribution on (0, 2'1r). A IOllleWblt men surprising result ii tblt tht: 
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listance X and the angle Y are independent random variables. though there is 

Jependence between the components of the randomly picked point. The inde­
Jendence of X and Y follows from the observation that .f(:c. y) = .fx(:c)fr(v) 
'or all :c. y. 

To conclude this subsection, we give a very important result for the expo-

1ential distribution. 

~:xample 11.5 Suppose that X and Y are independent random variables, where 
X' is exponentially distributed with expected value I /a and Y is exponentially 
listributed with expected value I //3. What is the probability distribution of 
nin(X. Y)'! What is the probability that X is less than Y'! 

iolution. The answer to the first question is that min( X. Y) is exponentially 
listributed with expected value I /(a + jl). It holds that 

P(min(X, Y) .:::: .::) = I - e-111 +/H: for.::::;: 0 and 
a 

P<X < Y)= --. 
ex+ P 

fhe proof is simple. Noting that P(min(X. Y).:::: .::) = I - P<X > .::. Y > .::). 

Ne have 

!"" f"' P(min(X. Y) .:::: .::) = I - t=: y=: fx(:c)fy(y)t/x dy. 

\lso, 

Jsing the foct that fl((x) =cu -iu and .fy(y) = pe-fl·''. it is next a matter of 
;imple algebra to derive the results. The details are left to the reader. 

t>roblem ILi The continuous random vuriables X and Y are nonnegative and 
ndependent. Verify thut the density function of Z = X + Y is given by the 
:onvolution formula 

fz(.::) = t fd.:: - y)fr(v)dy Jo for.::::;: 0. 

>roblem 11.9 The nonnegative random vuriables X and Y are independent and 
miformly distributed on (c. ti). What is the probability density of Z = X + Y'! 

N'hat is the probability density function of V = X2 + Y2? Use the latter density 
o calculate the expected value of the distance of a point chosen at random inside 
he unit square to the center of the unit square. 
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11.2.1 Substitution rule 

The expected value of a given fun«.1ion of jointly distributed random variables 
X and Y can be calculated by the two-dimensional substitution rule. In the 
continul>UK ca.'Ce. we have: 

Rule 11.2U1/w mndtHll t'UriublC'., X a1td Y l1at~ a j11i111 prrlhubilit.v drnsity 
fun<'li1n1 f (x. y ). 1/1r11 

E IR<X. Y)f = lnu lnu R(:c • .\')/(x. y)d:ccl,\' 
~nu _.,., 

ft1r u11.v fun('ti1m R(X • .v) pmvidrd 1ht111h' intrRml ;,, Wt!ll drji11r1/. 

An euy consequence of Rule 11.2 is that 

E(aX +hY) = aE(X) +bE(Y) 

for any COOKtantKa. b provided that ECX> and E(Y) exist. Tu see this. note that 

1:1:(ax + b,v)/(x, y)dxd,\• 

= 1~ lnu U.tf(X.,\')dXd,\' +/"" lnu b,\'f(X •. \•)d.td.\• 
-au -nu _.,., -nu 

=1,,.. tl.fd.tlni.i /(.t,y)d,\•+11'11.1 b.\•d,\·1"' /(.f •. \•)d:c 
.(•-nu .ra-nu ."•-nu .(•-""1 

=a 1,,.., xfx(x)dx +bl°" .v/r(.v)d.v. 
-a... -oi. 

which proves the desired result It is left to the reader to verify f mm Rules 11.1 
and 11.2 that 

ECXY) = E(X)E(Y) for independent X and Y. 

An illustration of the substitution nale is provided by Problem 221: what 
is the expected value of the distance between two points that are chosen at 
random in the interval (0, 1 )? To answer this question, let X and Y be two 

independent random variableathat m uniformly distributed on (0, I). The joint 
density function of X and Y is given by f (x, y) = I for all 0 < x, .v < I. The 



11.3 Transformation of random variables 323 

substitution rule gives 

E(IX - YI)= fn
1 

fn
1

1x -yldxdy 

= 1' dx [1x(x - y)dy + f 1(y -x)dy] 
() 0 x 

f'(l 2 1 1,, ] 1 
=Jo ix + i - ix- - x( 1 - x) dx = 3. 

Hence, the answer to the question is i. 
As another illustration of Rule 11.2, consider Example 11.2 again. In this 

example, a point is picked at random inside a circular disk with radius r and the 
point (0, 0) as center. What is the expected value of the rectangular distance from 
the randomly picked point to the center of the disk? This rectangular distance is 
given by IX cos(Y)I +IX sin(Y)I (the rectangular distance from point (ti, b) to 
(0, 0) is defined by lt1 I + lb!). Forthe function g(x, y) = Ix cos(y )I + Ix sin(y )!, 
we find 

1rL~ t E[g(X, Y)J = {x!cos(y)I +xlsin(y)IJ~dxdy 
o o rrr 

I L211' Lr 1 L211' Lr = - 2 lcos(y)ldy x 2 dx+-
2 

lsin(y)ldy x 2 dx 
rrr 0 0 rrr 0 0 

r3 [L211' J,211' ] 8r = -
3 2 

I cos(y)I dy + I sin(y)I dy = -
3 

. 
rrr 0 0 rr 

The same ideas hold in the discrete case with the probability mass function 
assuming the role of the density function 

E[g(X, Y)J = L Lg(x, y)p(x, y) 
x .\' 

when the random variables X and Y have the joint probability mass function 
p(x, y) = P(X = x. Y = y) .• 

11.3 Transformation or random variables 

In statistical applications, one sometimes needs the joint density of two random 
variables V and W that are defined as functions of two other random variables 
X and Y having a joint density f (x, y ). Suppose that the random variables V 
and W are defined by V = g(X. Y) and W = h(X. Y) for given functions g 
and h. What is the joint probability density function of V and W? An answer to 
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this question will be given under the assumption that the transfonnation is one­
lo-one. That is, it is assumed that the equations v = g(.r. y) and u1 = /1(x. y) 

can be solved uniquely to yield functions x = a(v. u1) and .v = b(v. u1). Also 
assume that the partial deriYalives of the functions a(v. u1) and b(a•. u•) wilh 
respect to v and u1 are continuous in (v. w). Then the following transfonnali<m 
rule holds: 

Rule J J.3 The joint pmhabilit.v density function ti V a11d W i.r R;,,..,, h.\' 

/Cu(v, u1), b(v, w))IJ(v, w)I. 

wherr the Jut'Obia11 J(v. u•) /.ir gi1ren by tht! dt'tt'nni11a11t 

8a(v.u1) au(v.u•) 
av au1 au(v. u1) ab(v. u•) au(v. UI) ab(11. UI) -------

8b(v,w) ab(v.u1) av au1 av 
av aw 

The proof of this rule ia omitted. This tranafonnation rule ICK>ka intimidating. 
but is easy to use in many applications. In the next section it will be HIK>Wn 
how Rule 11.3 can be used to devise a method for aimulating from lhe normal 
distribution. However. we fint give a 1imple illulllralion of Rule 11.3. Suppose 
that X and Y are independent N(O, I) random variablea. Then. the random vari­
ablea V = X + Y and W = X - Y are normally distributed and independent. 
To verify thia, note that the invene function• a(v. u1) and b(a•. u1) are given by 
x = '1 .. and y = ri•. Thua. the Jacobian J(v. u•) is equal lo 

It !ii=-~. 
Since X and Y are independent N(O. I) random variablea. it follows from 
Rule 11.1 that their joint deDRity function is given by 

I _1..-2 l _1yJ 
fx.r(x • . v) = $'" 1 x $e l· • -oo < x • .\' < oo. 

Applying Rule 11.3. we obtain that the joint density function of V and W is 
given by 

r.v w(v w) = _!_,..-!'1¥,i _!_,..-!,.i;c,i x ~ 
J!. • J2R J2R 2 

= I e-!11212 x I e-lr12. 
./i.$ ./i.$ 

-00 < V, UI < 00 • 

This implies that fv.w(v, w) = fv(v)/w(w) for all v. w with the marginal 
density functions /v(v) = ~e-111112 and /w(w) = JlJ5:.e-i 11il/l, Using 

Bob Eisenberg
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Rule 11.1 again. it now follows that V = X + Y and W = X - Y are N(O, 2) 

distributed and independent. 

11.3.1 Simulating from a normal distribution 

A natural transformation of two independent standard normal random variables 
leads to a practically useful method for simulating random observations from 

the standard normal distribution. Suppose that X and Y are independent random 
variables each having the standard normal distribution. Using Rule 11. l, the 
joint probability density function of X and Y is given by 

l I 2 ? j(x, y) = -e-i<.t +.v >. 
2ir 

The random vector (X, Y) can be considered as a point in the two-dimensional 
plane. Let the random variable V be the distance from the point (0, 0) to the point 
(X, Y) and let W be the angle that the line through the points (0, 0) and (X, Y) 
makes with the horizontal axis. The random variables V and W are functions 
of X and Y (the function g(x, y) = J x 2 + y 2 and h(x, y) = arctan(y / x )). The 
inverse functions t1(v, w) and b(v, w) are very simple. By basic geometry, 
x = v cos( w) and y = v sin( w ). We thus obtain the Jacobian 

l cos(w) -v sin(w) I- 2( ) .• 2( ) _ 
. ( ) ( ) - v cos w + v sm w - v, sm w vcos w 

using the celebrated identity cos2( w) + sin2
( w) = 1. Hence, the joint probabil­

ity density function of V and W is given by 

fv.w(V, w) = 2: e-H112cos2<w1+1hin2<w1) = 2: e-!112 

for 0 < v < oo and 0 < w < 2ir. The marginal densities of V and W are given 
by 

O<V<OO 

and 

I 100 
I t I fw(w) = - ve-2 11

• dv = -, 
2ir 0 2ir 

0 < w < 2ir. 

Since fv.w(v, w) = fv(v)fw(w), we have the remarkable finding that V and W 
are independent random variables. The random variable V has the probability 

I t 

density function ve-i 11
• for v > 0 and W is uniformly distributed on (0, 2ir). 

This result is extremely useful for simulation purposes. Using the inverse­
transformation method from Section 10.3, it is a simple matter to simulate 

Bob Eisenberg
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random observations from the probability distributions of V and W. If we let 
U1 and U2 denote two independent random numben from the interval (0.1). it 
follt>WR from results in Section 10.3 that random observation.~ of V and Ware 
given by 

V = J-21n(I - U1) and W = 2'rU2. 

Next. one obtains two random observations X and Y from the standard nonnal 
distribution by taking 

X = V c:os(W) and Y = V sin(W). 

Theoretically. X and Y are independent of each other. However. if a p;cudo­
random generator is uRCd to generate U1 and U2. one uses only one of two vari­
ates X and Y. It surprisingly appears that the points (X. Y) lie on a 5J>iral in the 
plane when a multiplicative generator is uRCd for the pseudo-random numben. 
The explanation of this subtle dependency lies in the fac..-t that pseudo-random 
numben are not truly random. The method described above for generating 
normal variates ia known 811 the Box-Muller method. 

Pnblelll 11.10 A point ( V, W) ia choKen inside the unit circle 811 foll<>Ws. First. 
a number R is choKen at random between 0 and I. Next. a point i11 chollen at 
random on the circumference of the circle with radius R. Use the tranRformation 
formula to find the joint density function of this point CV. W). What is the 
marginal density function of each of the components of the point ( V. W)? Can 
you intuitively explain why the point (V, W) is not uniformly distributed over 
the unit circle? 

Pnblelll ll.11 Let (X, Y) be a point choKen at random inside the unit circle. 
Define V and W by V = XJ-21n(Q>/Q and W = Y J-21n(Q)/Q. where 
Q = X2 + Y2• Verify that the random variables V and W are independent and 
N (0, I) distributed. This method for generating normal variates is known a.~ 
Managlia 's polar method. 

Problem 11.12 The independent random variables Zand Y have a standard 
normal distribution and a chi-square distribution with " degrees of freedom. 
Use the transformation V = Y and W = Z/ ~ to prove that the random 
variable W = Z / ~ has a Student-I density with " degrees of freedom. 
Hint: in evaluating /w(w) from J:' fv.w(v, w)dv, use the fact that the gamma 
density>.." x•-•e-u I rca> integrates to 1 over co. oo). 



I I .4 Covariance and correlation coefficient 327 

11.4 Covariance and correlation coefficient 

Let the random variables X and Y be defined on the same sample space with 
probability measure P. A basic rule in probability is that the expected value 
of the sum X + Y equals the sum of the expected values of X and Y. Does a 
similar rule hold for the variance of the sum X + Y? To answer this question, 
we apply the definition of variance. The variance of X + Y equals 

E[{X + Y - E(X + Y)}2
] 

= E[(X - E(X))2 + 2(X - E(X))(Y - E(Y)) + (Y - E(Y))2) 

= var(X) + 2E[(X - E(X))(Y - E(Y))] + var(Y). 

This leads to the following general definition. 

Definition 11.2 The covariance cov(X, Y) of two random variables X and Y 
is defined by 

cov(X, Y) = E[(X - E(X))(Y - E(Y))J 

whenever the expectations exist. 

The formula for cov(X, Y) can be written in the equivalent form 

cov(X, Y) = E(XY) - E(X)E(Y) 

by expanding (X - E(X))(Y - E(Y)) into XY - X E(Y) - Y E(X) + 
E(X)E(Y) and noting that the expectation is a linear operator. Using the fact 
that E(XY) = E(X)E(Y) for independent random variables, the alternative 
formula for cov( X, Y) has as direct consequence: 

Rule 11.4 /f X and Y are independent random variables, then 

cov(X, Y) = 0. 

However, the converse of this result is not always true. A simple example of 
two dependent random variables X and Y having covariance zero is g~ven in 
Section 9.4. Another counterexample is provided by the random variables X = 
Z and Y = Z2, where Z has the standard normal distribution. Nevertheless, 
cov(X, Y) is often used as a measure of the dependence of X and Y. The 
covariance appears over and over in practical applications (see the discussion 
in Section 5.2). 

Using the definition of covariance and the above expression for var(X + Y), 
we find the general rule: 

Rule 11.S For any two random variables X and Y 

var(X + Y) = var(X) + 2cov(X, Y) + var(Y). 
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l/IM trmdom varlabla X and Y are indepnt:knt, then 

var(X + Y) = var(X) + Yll'(Y). 

1be units of cov(X, Y) are not the same u the units of E(X) and E(Y). 
TIMnfore, it is often more convenient to use the correlation CMj/icknt of X 
and Y which is defined by 

(X Y)- cov(X, Y) . 
P , - JVii(x)JYiiiiJ')' 

providedthatvar(X) > Oandvar(Y) > O. Thecorrelationcoeftk:ientisadimen­
sionleu quantity with the property that 

-I :S p(X, Y) :S I. 

The reader is uked to prove this property in Problem I I. 14. 1be random vari­
ables X and Y are said to be uncorrelated if p(X, Y) = O. Independent ran­
dom variables are always uncorreJated. but the convene is not always uue. If 
p(X, Y) = ::1:1, then Y is fully determined by X. In Ibis cue it can be shown 
that y - ax + b for coast.ants a and b with a ,,, o. 

The problem section of Oapter 5 conwna several exercises on the covari­
ance and coneladon coefticient. Here are 101De more exercises. 

Problem 11.13 The continuous random variables X and Y have the jointdenaily 
/(.r, y) = 4r forO < x < y < 1 and f<x. y) = Ootherwise. What is the cor­
relation coefficient of X and Y? Can you intuitively explain why this correlation 
coeflicient is positive? 

Problem 11.14 Verify that 

Yll'(aX + b) = a2Yll'(X) and cov(aX, bY) = abcov(X, Y) 

for any constants a, b. Next, evaluate the variance of the random variable Z = 
Y /~ - p(X, Y)X/../Vl'd.X) to prove that -I :S p(X, Y) :SI. Also, for 
anyconatantsa, b, c,andd, verifythatcov(aX + bY, cV + dW)can be worked 
out u accov(X, V) + odcov(X, W) + bccov(Y, V) + bdcov(Y, W). 

Problem 11.15 The llDOUDtS of rainfall in Amsterdam durin1 each of the 
months January, February, ••• , December are independent random variables 
with expected values of 62.1, 43.4, .58.9, 41.0, 48.3, 61.S, 65.8, 61.4, 82.J, 
8.5.1, 89.0, and 74.9 mm and with standard deviations of 33.9, 27.8, 31.l, 24.1, 
29.3, 33.8, 36.8, 32.1, 46.6. 42.4, 40.0, and 36.2 mm. What are the expected 
value and the standanl deviadon of the ammal rainfall in Amstenlam? Calculate 
an approximate value for the probability that the total rainfall in Amsten:lam 
next year will be larger than 1,000 mm. 
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Problem 11.16 Let the random variables X 1, ••• , Xn be defined on a common 
probability space. Prove that 

n 11 n 

var(X 1 + .. · + X,,) = L var(X;) + 2 L L cov(X;, Xj). 
i=I i=I j=i+I 

Next. evaluate var<2:7=1 t;X;) in order to verify that 2:7=1 2:j=1 t;tiuii 2: 0 
for all real numbers ti, ... , tn, where U;j = cov(X;, Xj). In other words. the 
covariance matrix C = (uij) is positive semi-definite. 

Problem 11.17 The hypergeometric distribution describes the probability mass 
function of the number of red balls drawn when n balls are randomly chosen 
from an um containing R red and W white balls. Show that the variance of 

the number of red balls drawn is given by n R!wO - R!w>~t::~. Hint: the 
number of red balls drawn can be written as X1 + ... + XR, where X; equals 
I if the i th red ball is selected and 0 otherwise. 

Problem 11.18 What is the variance of the number of distinct birthdays within 
a randomly formed group of 100 persons? Hint: define the random variable X; 
as l if the ith day is among the 100 birthdays. and as 0 otherwise. 

Problem 11.19 You roll a pair of dice. What is the correlation coefficient of the 
high and low points rolled? 

Problem 11.20 What is the correlation coefficient of the Cartesian coordinates 
of a point picked at random in the unit circle? 

11.4.1 Linear predictor 

Suppose that X and Y are two dependent random variables. In statistical appli­
cations, it is often the case that we can observe the random variable X but we 
want to know the dependent random variable Y. A basic question in statistics 
is: what is the best linear predictor of Y with respect to X? That is, for which 
linear function y = a + f3x is 

E[(Y - a - {3X)2] 

minimal? The answer to this question is 

Uy 
Y = µy + Pxr-(x - µx). 

ax 

where µx = E(X), µy = E(f), ux = Jvar(X), uy = y'var(Y), and PxY = 
p(X, Y). The derivation is simple. Rewriting y = a + f3x as y = µ r + f3(x -
µx) - (µy - a - f3µx ), it follows after some algebra that E[(Y - a - ,8X)2] 
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can be evaluated a." 

El(Y-µy -/J(X-µx)+µr -a-/fµxl 21 
= El(Y - µ.y - {J(X - µx >121 +(#tr - a - flµ.x )2 

+2(µr -a-/fµx>EIY-µy -f:J(X -1tx)I 

= ai + {J2cri - 2/IPxrtrxtrr + (It r - a - fJµ x )2• 

In order to minimize this quadratic function in a and /f, we put the partial 
derivatives of the function with respect to a and /J equal to zero. This leads 
after some simple algebra to 

R Pxrtrr and Pxrtrr ,,=- a=µy--µx. 
ax "" 

For these values of a and fl, we have the minimal value 

E (<Y - a - /JX>2
) = ai(I - Pir ). 

This minimum is sometimes called the residual variance of Y. 
1be phenomenon of rqrruion to IM nwan can be explained with the help 

of the best linear predictor. Think of X 81 the height of a 25-year-old father and 
think of Y 81 the height his newborn ROD will have at the age of 2S ycarx. It 
is reuonable to usumc that µx = µy =µ..ox= oy = o, and p = p(X. Y) 
is positive. 1be best linear predictor f' of Y then salisfics f' - µ. = p(X - µ.) 

with 0 < p < I. If the height of the father scores above the mean, the best 
linear prediction is that the height of the ROD will score closer to the mean. 
Very tall fathers tend to have somewhat shorter sons and very short fathers 
somewhat taller ones! Regression to the mean shows up in a wide variety of 
placc5: it helps explain why great movies have often disappointing sequels. and 
disas~ presidents have often better succcsson. 
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