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78 3: MEMBRANE ION CHANNELS 

part of their model for the action potential in the squid giant axon. More detailed 
recent models for channel gating are not discussed at any length. The interested reader 
is referred to Hille (1992), Armstrong (1981), Armstrong and Bezanilla (1973, 1974, 
t 977), Aldrich et al. ( 1983 ), and Finkelstein and Peskin ( 1984) for a selection of models 
of how channels can open and close in response to changes in membrane potential. 
An important question that we do not consider here is how channels can discriminate 
between different ions. Detailed discussions of this and related issues are in Hille ( 1992) 
and the references therein. 

3.2 Independence, Saturation, and the Ussing Flux Ratio 

One of the most fundamental questions to be answered about an ion channel is whether 
the passage of an ion through the channel is independent of other ions. If so, the channel 
is said to obey the independence principle. 

Suppose a membrane separates two solutions containing an ion species S with 
external concentration Ce and internal concentration c;. If the independence principle 
is satisfied, the flow of S is proportional to its local concentration, independent of the 
concentration on the opposite side of the membrane, and thus the flux from outside to 
inside, lin· is 

(3.5) 

for some constant ke. Similarly, the outward flux is given by 

lout= k;c;, (3.6) 

where in general, ke =f:. k;. We let Vs denote the Nernst potential of the ionS, and let V 
denote the potential difference across the membrane. Now we introduce a hypothetical 
concentration c; defined as that external concentration necessary to maintain a Nernst 
potential V. Thus 

Ce (VsF) - =exp -- , 
C; RT 

(3.7) 

and 

c; = exp (VF). 
C; RT 

(3.8) 

When the external concentration is c; and the internal concentration is c;, then the 
voltage is V, and there is no net flux across the membrane; i.e., the outward flux equals 
the inward flux, and so 

(3.9) 
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It follows that the flux ratio is given by 

1;0 keCe 

lout = k;c; 
keCe 

= kec; 

=-c; 
exp(!Jtf) 

= exp (~~) 
_ [(Vs- V)F] 
- exp RT . 
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(3.10) 

This expression for the ratio of the inward to the outward flux is usually called the 
Ussing flux ratio. It was first derived by Ussing (1949), although the derivation given 
here is due to Hodgkin and Huxley ( 1952a). Alternatively, the Ussing flux ratio can be 
written as 

l;n Ce (-VF) - =-exp -- . 
lout C; RT 

(3.11) 

Note that when V = 0, the ratio of the fluxes is equal to the ratio of the concentrations, 
as might be expected intuitively. 

As an illustration of the application of the Ussing flux ratio, suppose the Na +current 
is measured when the cell is immersed in a high Na + solution and then compared to 
the Na+ current measured in a low Na+ solution. The membrane potential and the 
internal Na+ concentration are assumed to be the same in both cases. We let a prime 
denote quantities measured in the high Na+ solution, and then 

INa l~ut - 1;n 
INa =lout -l;n. 

(3.12) 

Since the internal concentrations are the same, it follows from (3.6) that lout = l~w 

and from (3.5) we find 1;
0
/l; 0 = [Na+]~/[Na+Je. Substituting these into (3.12) and using 

the Ussing flux ratio, we find 

/Na ([Na+J;/[Na+Je)exp[!VNkrv>FJ- 1 

INa = exp[!VNkrvJF] - t 
(3.13) 

Alternatively, this can be written as 

INa [Na+l- [Na+]~ exp(=#f) 

INa= [Na+];- [Na+Jeexp(Ji/f 
(3.14) 

By measuring the current ratio as a function of membrane potential, the Na+ channel 
can thus conveniently be tested for independence. 

Although many ion channels follow the independence principle approximately over 
a range of ionic concentrations, most show deviations from independence when the 
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ionic concentrations are sufficiently large. This has motivated the development of mod­
els that show saturation at high ionic concentrations. For example, one could assume 
that ion flow through the channel can be described by a barrier-type model, in which 
the ion jumps from one binding site to another as it moves through the channel. If 
there are only a limited number of binding sites available for ion passage through the 
channel, and each binding site can bind only one ion, then as the ionic concentration 
increases there are fewer binding sites available, and so the flux is not proportional to 
the concentration. Equivalently, one could say that each channel has a single binding 
site for ion transfer, but there are only a limited number of channels. However, in many 
of these models the Ussing flux ratio is still obeyed. even though independence is not. 
Hence, although any ion channel obeying the independence principle must also satisfy 
the Ussing flux ratio, the converse is not true. We discuss saturating models later in 
this chapter. 

Another way in which channels show deviations from independence is in flux­
coupling. If ions can interact within a channel so that, for example, a group of ions 
must move through the channel together, then the Ussing flux ratio is not satisfied. The 
most common type of model used to describe such behavior is the so-called multi-ion 
model, in which it is assumed that there are a number of binding sites within a single 
channel and that the channel can bind multiple ions at the same time. The consequent 
interactions between the ions in the channel can result in deviations from the Ussing 
flux ratio. A more detailed consideration of multi-ion models is given later in this 
chapter. However, it is instructive to consider how the Ussing flux ratio is modified by a 
simple multi-ion channel mechanism in which the ions progress through the channel 
in single file (Hodgkin and Keynes, 1955). 

Suppose a membrane separates two solutions, the external one (on the right) con­
taining an ionS at concentration ce. and the internal one (on the left) at concentration 
c;. To keep track of where each S ion has come from, all the S ions on the left are labeled 
A, while those on the right are labeled B. Suppose also that the membrane contains 
n binding sites and that S ions traverse the membrane by binding sequentially to the 
binding sites and moving across in single file. For simplicity we assume that there are 
no vacancies in the chain of binding sites. It follows that the possible configurations of 
the chain of binding sites are [A,., B,_,. ], for r = 0, ... , n, where [A,.. B11 _,.) denotes the 
configuration such that the r leftmost sites are occupied by A ions, while the rightmost 
11 - r sites are occupied by B ions. Notice that the only configuration that can result 
in the transfer of an A ion to the right-hand side is [AnBo). i.e., if the chain of binding 
sites is completely filled with A ions. 

Now we let a denote the total rate at which S ions are transferred from left to right. 
Since a denotes the total rate, irrespective of labeling, it does not take into account 
whether an A ion or a B ion is moved out of the channel from left to right. For this 
reason, a is not the same as the flux of labeled ions. Similarly, let {3 denote the total flux 
of S ions, irrespective of labeling, from right to left. It follows that the rate at which 
[A,.B11 _,.] is converted to [A,.+ 1B,_,._,] isa[A,.B,_,.], and the rate of the reverse conversion 
is {3[A,.+ 1B11 _,._J]. According to Hodgkin and Keynes, it is reasonable to assume that if 
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there is a potential difference V across the membrane, then the total flux ratio obeys 
the Ussing flux ratio, 

a Ce (-VF) 
{3 = c; exp RT · (3.15) 

This assumption is justified by the fact that a flux of one ion involves the movement of 
a single charge through the membrane (as in the independent case treated above) and 
thus should have the same voltage dependence. We emphasize that a/{3 is not the flux 
ratio of labeled ions, but the total flux ratio. 

To obtain the flux ratio of labeled ions, notice that the rate at which A ions are 
transferred to the right-hand side is a[ A, Bo], and the rate at which B ions are transferred 
to the left hand side is {3[A0B,]. Thus, the flux ratio of labeled ions is 

lin a [AnBo] 
lout = P [AoBnJ' 

(3.16) 

At steady state there can be no net change in the distribution of configurations, so that 

(3.17) 

Thus, 

lin = ~ [AnBo] = (~) 2 
(A11-tBt] = ... = (~)n+l' 

lout /3 [AoB,] /3 (AoBnJ /3 
(3.18) 

so that 

lin [Ce (-VF)]'Ht -= -exp --
lout Cj RT 

(3.19) 

A similar argument, taking into account the fact that occasional vacancies in the chain 
arise wpen ions at the two ends dissociate and that these vacancies propagate through 
the chain, gives 

lin [ce (-VF)]" -= -exp --
lout C; RT 

(3.20) 

Experimental data confirm this theoretical prediction (although historically, the 
theory was motivated by the experimental result, as is often the case). Hodgkin and 
Keynes ( 1955) showed that flux ratios in the K+ channel of the Sepia giant axon could 
be described by the Ussing flux ratio raised to the power 2.5. Their result, as presented 
in modified form by Hille ( 1992), is shown in Fig. 3.2. Unidirectional K+ fluxes were 
measured with radioactive K+, and the ratio of the outward to the inward flux was 
plotted as a function of V- VK. The best-fit line on a semilogarithmic plot has a slope 
of 2.5, which suggests that at least 2 K+ ions traverse the K+ channel simultaneously. 
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o 10 mM Ko 
D 21 mM f<o 
v 52 mM Ko 
A. 104 mM Ko 
0 207 mM Ko 

n' = 2.5 

n' = 1 

V-VK (mV) 

Figure 3.2 K+ flux ratios as measured by Hodgkin and Keynes (1955), Fig. 7. Slightly modified 
into modern conventions by Hille (1992), page 375. K0 is the external K+ concentration, and n' 
is the flux-ratio exponent, denoted by n in (3.20). (Hille, 1992, Fig. 7, p. 375.) 

3.3 Electrodiffusion Models 

Most early work on ion channels was based on the theory of electrodiffusion. We saw 
in Chapter 2 that the movement of ions in response to a concentration gradient and an 
electric field is described by the Nemst-Planck equation, 

1 = -D (de+ zF cdt/1). (J.ll) 
dx RT dx 

where J denotes the flux density, c is the concentration of the ion under consideration, 
and tjJ is the electrical potential. If we make the simplifying assumption that the field 
dtjJidx is constant through the mcmbranc,thcn (3.21 )can be solved to give the Goldman­
Hodgkin-Katz current and voltage equations (2.68) and (2.71). However, in general 
there is no reason to believe that the potential has a constant gradient in the membrane. 
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cell membrane 

Inside l _______ j Outside 

r l 
x=O x=L 

!jl (0) = v !jl (L) = 0 

Figure 3.3 Schematic diagram of the electrodiffusion model for current through an ionic chan­
nel. Each side of the channel is electrically neutral, and both ion types can diffuse through the 
channel. 

Ions moving through the channel affect the local electric field, and this local field in 
tum affects ionic fluxes. Thus, to determine the electric field and consequent ionic 
fluxes, one must solve a coupled problem. 

3.3.1 Multi-ion Flux: The Poisson-Nernst-Pianck Equations 

Suppose we have two types of ions, 5 1 and 5 2 , with concentrations c, and c 2 , passing 
through an ion channel, as shown schematically in Fig. 3.3. For convenience we assume 
that the valence of the first ion is 1 and that of the second is -1. Then the potential in 
the channel cj>{x) must satisfy Poisson's equation, 

d2cj> q 
- = --(c, - cz), (3.22) 
dx2 E 

where q is the unit electric charge and E is the dielectric constant of the channel medium 
(usually assumed to be an aqueous solution). The flux densities 11 and h of 5 1 and S2 

satisfy the Nernst-Planck equation, and at steady state dJ 1/dx and dlz/dx must both 
be zero to prevent any charge buildup within the channel. Hence, the steady-state flux 
through the channel is described by (3.22) coupled with 

(
de, F de/>) J, =-D1 -+-c,-
dx RT dx ' 

(3.23) 

h = -D2 (dcz - _!_c2 de/>) , 
dx RT dx 

(3.24) 

where 11 and h are constants. To complete the specification of the problem, it is neces­
sary to specify boundary conditions for c 1, c2 , and cj>. We assume that the channel has 
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length L, and that x = 0 denotes the left border, or inside, of the membrane. Then, 

ct(O) = c;, 

C2(0) = C;, 

t/>(0) = V, 

c,(L) =cr. 

c2(L) =Ce, 

t/>(L) = 0. 

(3.25) 

Note that we have specified that the solutions on both sides of the membrane are 
electrically neutral. Vis the potential difference across the membrane, defined, as usual, 
as the internal potential minus the external potential. While at first glance it might 
appear that there are too many boundary conditions for the differential equations, this 
is in fact not so, as the constants 11 and h are additional unknowns to be determined. 

In general, it is not possible to obtain an exact solution to the Poisson-Nemst­
Pianck (PNP) equations (3.22H3.25). However, some simplified .cases can be solved 
approximately. A great deal of work on the PNP equations has been done by Eisenberg 
and his colleagues (Chen, Barcilon, and Eisenberg, 1992; Barcilon, 1992; Barcilon, 
Chen, and Eisenberg, 1992; Chen and Eisenberg, 1993). Here we present simplified 
versions of their models, ignoring, for example, the charge induced on the channel­
wall by the presence of ions in the channel, and considering only the movement of 
two ion types, rather than three, through the channel. Similar models have also been 
discussed by Peskin (1991). 

It is convenient first to nondimensionalize the PNP equations. We let x• = x/L, 
tf>* = t/>FIRT, v = VFIRT, cj = c,lc, and similarly for c2,c;, and Cr, where c = Ce + c;. 
Substituting into (3.22H3.24) and dropping the stars, we find 

- dc 1 dtt> 
-J, = dx +ct dx, (3.26) 

- dc2 dtt> 
-!2 = dx - c2 dx, (3.27) 

d2t/> 
dx2 = -A 2(c, - c2), (3.28) 

where A2 = L2qFcl(fRT), ] 1 = J1U(cD1 ), and similarly for ]2• The boundary conditions 
are 

Ct(O) = C;, 

C2(0) = C;, 

t/>(0) = v, 

c,(l)= Ce, 

c2(1)= Ce, 

t/>( I) = 0. 

The short-channel or low concentration limit 
If the channel is short or the ionic concentrations on either side of the membrane are 
small, so that A « l, we can find an approximate solution to the PNP equations by 
setting A = 0. This gives 

(3.29) 
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and thus 

drp 
- = -1'. 
dx 

(3.30) 

Hence, A. ~ 0 implies that the electric potential has a constant gradient in the mem­
brane, which is exactly the constant field assumption that was made in the derivation 
of the GHK equations (Chapter 2). The equation fm· c 1 is then 

and thus 

dc 1 -
- -I'CJ = -J,, 
dx 

,, 1'.1" c, =- +K,e . 
I' 

(3.31) 

(3.32) 

From the boundary conditions c 1(0) = c;,c 1 (1) = c,. it follows that 

- c, - c,.e-" 
Jl =V·----

1 -e-" 
(3.33) 

In dimensional form, this is 

·2 ( -IF ) D 1 f c; - Ce exp( '"RT) 
I, - FJ, - - -- · V · 

- - L RT 1 - • ( __tt) ' cxp RT 
(3.34) 

which is, as expected, the GHK CUJTent equation. Graphs of the concentration and 
voltage profiles through the membrane are shown in Fig. 3.4. II is reassuring I hat the 
widely used GHK equation fm·thc ionic llux can be dcriwd as a limiting case of a more 
general model. 
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Figure 3.4 Graphs of the concen­
tration and potential profiles for the 
short-channel limit of the Poisson­
Nernst-Pianck equations. Dimension­
less parameters were set arbitrarily at 
C; = 50/550 = 0.091, Ce = 500/550 = 
0.909, v = 1. In this limit the electric 
field is constant through the channel 
(the potential has a constant slope), 
the concentration profile is nonlinear, 
and the GHK 1-V curve is obtained. 
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The long-channel limit 
Another interesting limit is obtained by letting the length of the channel go to infinity. 
If we let '1 = 1/A denote a small parameter, the model equations are 

- de1 dl/l 
-J1 = dx + e1 dx, (3.35) 

- de2 dl/l 
-h = dx - e2 dx, (3.36) 

d24J 
-112 dxl = (et - e2). (3.37) 

Since there is a small parameter multiplying the highest derivative, this is a singular 
perturbation problem. The solution obtained by setting '1 = 0 does not, in general, 
satisfy all the boundary conditions, as the degree of the differential equation has been 
reduced, resulting in an overdetermined system. In the present case, howeve1·, this 
reduction of order is not a problem. 

Setting '1 = 0 in (3.37) gives e 1 = c2 , which happens to satisfy both the left and right 
boundary conditions. Thus, et and c2 are identically equal throughout the channel. 
From (3.35) and (3.36) it follows that 

d - -
dx kt +e2) = -Jt -h. (3.38) 

Since bothlt andJ2 are constants, it follows thatdctldx is a constant, and hence, from 
the boundary conditions, 

e1 =c2 =e; +(ce -e;)x. 

We are now able to solve for l/J. Subtracting (3.37) from (3.36) gives 

dlfl -
2ct dx = 21, 

] 
4J = --ln[c; +(c .. - e;)x] + K, 

ee -e; 

(3.39) 

(3.40) 

(3.41) 

for some other constant K. Applying the boundary conditions ¢(0) = v, lfl(l) = 0 we 
determine] and K, with the result that 

<P = --In .-!.. + I - .-!.. x , v [e· ( c·) ] 
VJ ee Ce 

(3.42) 

where v 1 = ln(c.,lc;) is the dimensionless Nemst potential of ion St. The flux density 
of one of the ions, say S1, is obtained by substituting the expressions for e1 and l/J into 
(3.35) to get 

- Ce- C; 
Jt = --(V-VJ), 

VJ 
(3.43) 
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Figure 3.5 Graphs of the concen­
tration and potential profiles for the 
long-channel limit of the Poisson­
Nernst-Pianck equations. Dimension­
less parameters were set arbitrarily at 
C; = 50/550 = 0.091, C8 = 500/550 = 
0.909, v = 1. In this limit the concen­
tration profile has a constant slope, the 
potential profile is nonlinear, and the 
linear 1-V curve is obtained. 

which is the linear 1-V curve that we met previously. Graphs of the corresponding 
concentration and voltage profiles through the channel are shown in Fig. 3.5. 

In summary, by taking two different limits of the PNP equations we obtain either 
the GHK 1-V curve or a linear 1-V curve. In the short-channel limit, <fJ has a constant 
gradient through the membrane, but the concentration does not. In the long-channel 
limit the reverse is true, with a constant gradient for the concentration through the 
channel, but not for the potential. It is left as an exercise to prove that although the 
GHK equation obeys the independence principle and the Ussing tlux ratio, the linear 
1-V curve obeys neither. Given the above derivation of the linear curve, this is not 
surprising. A linear 1-V curve is obtained when either the channel is very long or the 
ionic concentrations on either side of the channel are very high. In either case, one 
does not expect the movement of each ion through the channel to be independent of 
other ions, and so one expects the independence principle to fail. Conversely, the GHK 
equation is obtained in the limit of low ionic concentrations or sh011 channels, in which 
case the independent movement of ions is not unexpected. 

3.4 Barrier Models 

The second type of model that has been widely used to describe ion channels is based 
on the assumption that the movement of an ion through the channel can be modeled 
<\s the jumping of an ion over a discrete number of free-energy barriers (Eyring et al., 
1949; Woodbury, 1971; Uiuger, 197 3 ). It is assumed that the potential energy of an ion 
passing through a channel is described by a potential energy profile of the general form 
shown in Fig. 3.6. The peaks of the potential energy profile correspond to barriers that 
impede the ion tlow, while the local minima correspond to binding sites within the 
d1annel. 

To traverse the channel the ion must hop from one binding site to another. Accm·d­
ing to the theory of chemical reaction rates, the rate at which an ion jumps from one 

t' 


