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Can the Tafel equation be derived
from first principles?
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Abstract

A century ago, Tafel disapproved the attempts to derive the empirical equation named after
him by thermodynamic methods. He noted that his observations referred to irreversible elec-
trochemical reactions, where thermodynamics is inapplicable. This statement seems to remain
valid until today. Indeed, it is impossible as yet to predict the kinetic parameters for chemical
processes by determining rate constants and reaction orders from ‘‘first principles’’, unless
strictly specialized and, to a great extent, artificial models are developed.

Nevertheless, in this paper an attempt to derive the kinetic law of mass action from ‘‘first
principles’’ is made in macroscopic formulation. It has turned out to be possible owing to the
methods of thermodynamics of irreversible processes that were unknown in Tafel�s time.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

By combining measurements of current with the analysis of overpotentials for
electrochemical reactions of hydrogen evolution (where the rate-determining step
is the chemical combination of hydrogen atoms), Tafel (1905) empirically discovered
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the first formulation of the electrochemical kinetics law—Tafel�s equation showing
an exponential relation between the electrochemical reaction rate i and the over-
potential g [1]:

g ¼ aþ b log i; ð1Þ
where a and b are characteristic constants of the electrode system that were named
Tafel constants.

Although Tafel emphasized the empirical basis of this equation, numerous at-
tempts were made to derive a similar equation from thermodynamic considerations.
It was even asserted that this equation could be derived from the Nernst equation.
However, Tafel noted that his observations were particularly studied in irreversible
electrochemical reactions, where thermodynamics is inapplicable. Thus, Tafel�s stud-
ies were the first to separate electrochemical kinetics from thermodynamics, which
enabled systematic studies of irreversible reactions [2,3].

This statement of Tafel seems to retain its importance until today. In fact, Tafel
meant common thermodynamics related to reversible processes and equilibrium
states, because at that time non-equilibrium thermodynamics had not been created
as yet. Unfortunately, during the following 100 years researchers did not pay atten-
tion to this remark preferring not to reflect on the issue whether the equations of
chemical and electrochemical kinetics have a sufficient theoretical basis.
2. Empiricism of kinetic equations

In fact, until now all handbooks on chemical kinetics and chemical thermodynam-
ics start the description of kinetics with so called kinetic law of mass action given
below by Eq. (2), which is a basic postulate of chemical kinetics. Long ago, Guldberg
and Waage [4] proposed this generic law to describe their observations on the rate of
chemical reactions as a linear function of concentrations ci of substances:

J ¼ kfcf � krcr; ð2Þ
which can also be presented as follows:

J ¼ kf
Yq

j¼1
c�mj

j � kr
Yn

j¼qþ1
cmj

j ; ð3Þ

where kf and kr are rate constants of the forward and reverse reactions, respectively;
cj are concentrations of reactants (j = 1, . . .,q) and products (j = q + 1, . . .,n); mj is a
stoichiometric coefficient of jth component of the reaction (mj < 0 for reactants and
mj > 0 for products).

Eq. (3) represents the most general form of the kinetic law of mass action, which
has had only an empirical basis until now, in contrast to the classical law of mass
action for chemical equilibrium rigorously derived in chemical thermodynamics from
equilibrium condition [5]. Although, apparently, the first published experimental
observation of the linear dependence of the chemical reaction rate (inversion of su-
crose) on the concentrations of reagents was made in 1850 by Wilhelmy [6], at about
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the same time Guldberg and Waage carried out their work on the ‘‘law of mass ac-
tion’’ and derived an equilibrium equation on the basis of assumed empirical kinetic
equations [4]. They studied chemical affinity (‘‘forces’’) and tentatively suggested that
the rates of reactions might be proportional to the forces which are proportional to
concentrations [7]. Thus, for the reaction

aAþ bB$ cC þ dD; ð4Þ
the force in the left-to-right direction should be proportional to [A]a[B]b, and the
force from the right to the left is proportional to [C]c[D]d. It was assumed that if
the forces in a system were equal and oppositely directed, chemical equilibrium
was reached with the equilibrium constant:

K ¼ ½C�
c½D�d

½A�a½B�b
. ð5Þ

However, Eqs. (2) and (3) were only postulated on the basis of experimental obser-
vations, because they could not be obtained by any method of chemical thermody-
namics concerned with equilibrium processes while chemical reactions are essentially
irreversible processes. Therefore, equilibrium thermodynamics can give an answer to
the question whether a spontaneous reaction is possible, but cannot determine the
reaction rate.

Incidentally, it should be noted that this postulate, side by side with the empirical
Arrhenius law, served the basis for the well-known derivation of the principal kinetic
equation of the transition overpotential by Erdey–Gruz and Volmer. They assumed
that the transition rate and, hence, the current should be proportional to the compo-
nents concentrations at the electrodes surface and to Boltzmann�s exponent involv-
ing the activation energy [8]. It is noteworthy that at high anodic and cathodic
overpotentials it acquires the form of the Tafel�s equation, but, of course, it cannot
serve as its theoretical substantiation, since it is based on empirical dependences.
3. Nernst equation for electrochemical equilibrium

An implicit aspiration for solving this problem has existed for many years, which
is confirmed by an unsuccessful attempt to depart from the equilibrium state by
introducing the notion of the reaction quotient suggested in recent years by several
authors (e.g., [9]) for solving equilibrium problems. So called ‘‘reaction quotient’’
Q is written for non-equilibrium concentrations, but exactly in the same way as
the equilibrium constant K in Eq. (5):

Q ¼ ½C�
c½D�d

½A�a½B�b
. ð6Þ

If Q is less than K, more products will be formed (forward reaction); if, however, Q is
greater than K, more reactants will be formed (reverse reaction), and if Q = K, no
changes occur. Thus, the difference between K and Q can only point out the direction
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of the reaction like the second law of classic thermodynamics, but it cannot say any-
thing about the reaction rate. Although the traditional method of determining the
equilibrium concentration of chemicals in a reaction at a given equilibrium constant
and initial concentration of chemicals involves the determination of the reaction
quotient, it has been demonstrated that this step may be eliminated, thereby simpli-
fying the algorithm of solving such problems [10].

We can show that the reaction quotient Q proves to be unnecessary not only for
equilibrium problems, but also for non-equilibrium reactions, on the example of the
derivation of the Nernst equation. It can be derived from ordinary chemical thermo-
dynamics, because the general Nernst equation correlates the Gibb�s free energy DG
with the electromotive force of an electrochemical system known as a galvanic cell.
For a non-equilibrium redox reaction, the equation represents definite amounts of
reactants forming definite (as well) amounts of products, and Gibb�s free energy
DG is a negative value of the maximum possible electric work in this reaction:

DG ¼ �zF Du; ð7Þ
where the number (z) of electrons in such reaction equation is related to the amount
of charge transferred when the reaction is completed, F is the Faraday constant and
Du is the maximum potential difference (the electromotive force, or cell voltage [9])
determined by the nature of the reactants and electrolytes.

For example, in the non-equilibrium reaction similar to Eq. (4) the Gibbs free
energy is:

DG ¼ DG0 þ RT ln
ðaCÞcðaDÞd

ðaAÞaðaBÞb
¼ DG0 þ RT lnQ; ð8Þ

where DG0 is related to a standard state, R and T are the gas constant and temper-
ature, respectively, aA, aB, aC, and aD are the activities of the acting components A,
B, C and D, and the reaction quotient Q is written with the activities. Apparently,
the latter provides convenient abbreviations in symbols, but does not introduce any-
thing new.

For example, in the reaction with ‘‘z’’ electrons transferred and the oxidized com-
ponents placed in right-hand side of the redox equation, the activity (aZ)

z substitutes
for (aD)

d in Eq. (4). Thus, it follows formally [9] from Eqs. (7) and (8) that:

Du ¼ Du0 �
RT
zF

lnQ ¼ Du0 �
RT
zF

ln
ðaCÞcðaZÞz

ðaAÞaðaBÞb
; ð9Þ

where Du0 is a value of the cell voltage when all activities (aI)
i = 1 or (aC)

c(aZ)
z =

(aA)
a(aB)

b.
However, although the cell voltage obtained by such formalistic speculation de-

pends on acting (non-equilibrium) activities the reaction quotient Q has nothing
to do with the rate of non-equilibrium reactions. Therefore, Eq. (9) and the reaction
quotient Q are unnecessary for electrochemical kinetics.

Nevertheless, when a system is in equilibrium, we can write Du = 0 (i.e., DG = 0)
and the equilibrium potential difference is:
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Du0 ¼ u0 � u0 ¼ RT
zF

ln
ðaCÞceðaZÞze
ðaAÞaeðaBÞ

b
e

¼ RT
zF

lnK; ð10Þ

where the subscripts e denote equilibrium activities, u0 is the equilibrium potential
and u0 is the standard potential. It is known as the Nernst equation for equilibrium
potentials which is necessary for the definition of overpotentials serving as driving
forces in electrochemical kinetics.

Note that although Eq. (9) has been obtained for a non-equilibrium reaction using
the methods of equilibrium thermodynamics, nevertheless, it does not allow us to
determine this reaction rate remaining within the frames of equilibrium thermody-
namics. Tafel [1] attracted attention to the electrode reaction as a rate process and
not as appendix to the Nernst electrode potential.
4. Arrhenius and Eyring equations in chemical kinetics

In 1889, Arrhenius analyzed temperature dependence of measured reaction rates
according to the equation which is now called the Arrhenius equation. However, it
would be fair to emphasize that this equation was certainly first suggested by van�t
Hoff in 1884 [11]. Indeed, van�t Hoff analyzed the temperature dependence of the
equilibrium constant (now it is called the van�t Hoff equation) and of the forward
and reverse reaction rates. The effect of temperature on the reactions rates k was
found by Arrhenius empirically as a linear relationship between logk and 1/T. In
fact, the relationship is of the same form as the one in van�t Hoff analysis:

o ln k
oð1=T Þ ¼ �

Ea

R
; ð11Þ

where Ea is an empirical calorimetric parameter called the activation energy, k is the
observed reaction rate. More specifically, Arrhenius did not consider a temperature
dependence of the energy Ea and therefore adopted van�t Hoff�s simpler equation:

k ¼ A exp � Ea

RT

� �
; ð12Þ

where A is a pre-exponential term expressed in the same units as k. An assumption
inherent in most applications of the Arrhenius equation to kinetic analysis is that this
energetic term has some inherent meaning and correlates with the enthalpic activa-
tion barrier for the process under study. It turns out that this is a reasonable assump-
tion, at least for reactions that are characterized by large (> 10 kcal/mol) Ea values.
Similarly, the pre-exponential factor A is often qualitatively correlated with the
entropic component of the activation barrier.

The introduction of a value Ea having the dimension of energy and called activa-
tion energy (strictly speaking, a better name would be experimental activation energy)
gives rise to many speculations. Note, by the way, that the term activation energy
implies overcoming certain energetic barrier, which is obvious in models of the
collision theory and of the transition state theory [12], but is never obvious in the
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Arrhenius law. One of such speculations can be demonstrated as the ‘‘derivation’’ of
the Tafel�s equation from the Arrhenius equation assuming Ea to be a linear function
of overpotential. Obviously, Ea becomes clearly defined only in case of its application
to a specific physical model of a barrier process, which, however, is usually far from
the actual pattern of the reaction. Therefore, experimentally measured Ea values of-
ten contain little information about the process mechanism, except cases of charac-
teristically differing Ea values (for instance, for diffusion or chemical activation).

At the same time, Arrhenius gave an original interpretation of energy barrier: he
suggested that the equilibrium is established between normal and active molecules of
the reactant, which are able to form products without further addition of energy.
Later, this suggestion formed the basis of the modern transition state theory and
Eyring equation, which is a theoretical construct based on transition state model.
In 1917, Trautz and Lewis independently proposed that the rate of reaction is deter-
mined by the frequency of molecular collisions. This is now known as the collision
theory of chemical reaction kinetics [12].

Finally, in 1935 Eyring developed a statistical treatment called the theory of
absolute reaction rates or transition state theory, according to which the reaction
occurs in two steps: (a) equilibrated conversion of the reactant(s) into an activated
complex; (b) decomposition of the complex (which occurs at a definite rate) [12].
However, he was forced to use Eq. (3), i.e. postulate. Both the Arrhenius and Eyr-
ing equations described the temperature dependence of the reaction rate. Strictly
speaking, the Arrhenius equation can be applied only to gas reactions. It is founded
on the empirical observation that conducting a reaction at a higher temperature
increases the reaction rate. The Eyring equation is used in the study of gas,
condensed and mixed phase reactions—all cases where a simple collision model is
not very helpful [12]. The collision model of the reaction rate assumes that the rate
constant is written as Eq. (12) with A = pZ, where Z is the collision rate, p is the
steric factor. If we consider this equation in terms of changing temperature, the
steric factor clearly does not depend on temperature. Z turns out to be only
magnitude weakly dependent on temperature: varying T from 500 to 600 K changes
Z by less than 10%. It is, therefore, a reasonable approximation to assume that the
pZ part of the above equation is constant, and we come to the Arrhenius equation
again.

The Eyring equation is derived in the theory of absolute reaction rates using linear
rate-concentration dependences of Eq. (3) type as a postulate ([12], pp. 12–13) and
introducing a specific rate (rate constant) in the form:

kc ¼
kBT

h
exp �DF þ

RT

� �
; ð13Þ

where kB and h are Boltzmann and Planck constants, respectively, and DF+ is the
free energy of activation. Further replacement of the exponent with its equivalent
in terms of the partition functions of the species using the methods of statistical
mechanics expands and complicates the analysis, but does not change the fact that
the mentioned postulate underlies it.



3092 E.M. Gutman / Corrosion Science 47 (2005) 3086–3096
5. It is possible to proceed without postulates and activation energy

Meanwhile, classic thermodynamics using the Gibbs formulation of the condition
for chemical equilibrium can give the classic law of mass action strictly enough only
for the equilibrium constant, but not for the reaction rate.

Since the basic equation of chemical kinetics given by Eq. (3) is until today only
postulated, but not derived theoretically, a basic question arises: what is it—empir-
icism or self-consistent theory in chemical kinetics? The answer is evident: unless the
kinetic law of mass action would be derived strictly on the basis of fundamental laws,
the chemical kinetics will not be based on self-consistent theory. Hence, the problem
is to find a way for deriving the kinetic law of mass action without any postulates. To
solve this problem, we must apply thermodynamics of irreversible processes because
we are dealing with irreversible chemical reactions.

However, the conviction that the use of basic Eq. (3) as a postulate confirmed
only empirically is inevitable is so deep-rooted with the researchers that even when
describing chemical reactions in non-equilibrium thermodynamics, authors usually
refer to Eqs. (2) and (3) as a postulate [5]. Thus, even in non-equilibrium thermody-
namics they proceed from the idea that it is accepted from the experiment in chem-
ical kinetics that the kinetic law of acting masses, i.e. Eq. (3), is valid for reactions in
ideal gases or in dilute solutions. Then this equation is used as a postulate for deriv-
ing the kinetic equation in the form of the reaction rate dependence on chemical
affinity [5]. Thus, the problem of substantiation of the kinetic equation calls for a
solution.

Therefore, we are forced to revise this approach and suggest a different way. Mak-
ing attempts to derive the kinetic law of mass action from the first principles, we have
to resort to a different approach and use a fundamental transport law which is well
proven in non-equilibrium thermodynamics by statistical methods. In non-equilib-
rium thermodynamics, generalized forces (in chemistry they imply the reaction affin-
ity eA as its driving thermodynamic force) are connected with generalized fluxes (in
chemistry they imply the reaction rate J) and their action produces entropy with
the rate oS=ot ¼ J eA=T . The function is J ¼ f ðeA=RT Þ, in general, an unknown law

of chemical kinetics.
For the sake of simplicity and clarity, let us analyze a simple chemical reaction,

where the substance 1 turns into 2 under the conditions of a stationary regime. These
conditions are satisfied if the height of the barrier to be overcome greatly exceeds the
difference of chemical potentials corresponding to these states and almost all the
molecules are distributed between the initial and the final state of the present reac-
tion. Intermediate products on the top of the barrier are unstable and decompose
into the initial and final product. Thus, there is no product accumulation along
the reaction path x, and therefore the flux is constant everywhere.

To find the reaction rate J, we subdivide the reaction path along its x-coordinate
into a finite number of segments Dxi with chemical potential differences Dli corre-
sponding to these segments ð

P
iDli ¼ DlÞ [13]. Then the total reaction may be rep-

resented as a chain of consecutive substance transformations proceeding in
consecutive i partial reactions with respective chemical affinity eAi ¼ �Dli, the value
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eAi ¼ eA representing the affinity of the total reaction. On sufficiently small seg-

ments (eAi 	 RT is achievable, since the number of segments is arbitrary) the
unknown function J i ¼ f ðeAi=RT Þ can be linearized for small arguments (according
to the physical sense Ji = 0, if eAi ¼ 0):

J i ¼ eAi
oJ i

oeAi

� �
Dxi!0

¼ � kiDxi

RT

� �
Dxi!0

oliðxÞ
ox

¼ �Li gradl; ð14Þ

where we have used ½Dli=Dxi�Dxi!0 ¼ oliðxÞ=ox, and ki and Li are certain constants.
The linear form of this equation is invariant for all transport phenomena (diffusion,
electric current, heat conduction, filtration, migration, etc.). Summing–integrating
the entropy production along the total reaction path in stationary conditions
J = Ji, we obtain for the reaction on the whole:

T
oS
ot
¼ T

X
i

oSi

ot
¼ �

X
i

J i
oliðxÞ

ox
jDxijDxi!0 ¼ �J

Z 2

1

olðxÞ
ox

dx ¼ �JDl ¼ J eA;
ð15Þ

where integration is carried out over the entire reaction path from the initial (1) to
the final (2) state.

Thus, the general form of the entropy production in the course of a chemical reac-
tion is valid for chemical reactions described by any non-linear kinetic law. A linear
phenomenological equation in the invariant form of the transport equation (result-
ing from the entropy production calculation) approximates the reaction rate near the
equilibrium state or at sufficiently small Dxi segment of the reaction path. Of course,
this does not necessarily mean the existence of a linear dependence of the reaction
rate on the total affinity of the entire reaction consisting of several slow sequential
partial reactions for which the linearization is possible.

To find unknown kinetic law, J ¼ f ðeA=RT Þ let us write a standard expression of
chemical potential through the activity a(x):

lðxÞ ¼ RT ln aðxÞ þ l0ðxÞ; ð16Þ
where l0(x) is a standard value for every point x (i.e., a profile of the standard chem-
ical potential along x-coordinate). Substituting into the general transport equation,
one obtains:

JðxÞ ¼ �LðxÞ olðxÞ
ox
¼ �RTLðxÞ

aðxÞ exp � l0ðxÞ
RT

� 	
o

ox
exp

lðxÞ
RT

. ð17Þ

Subdividing this equation as follows:

JðxÞ
aðxÞ exp l0ðxÞ

RT

LðxÞ ¼ �RT
o

ox
exp

lðxÞ
RT

ð18Þ

and integrating along x from the initial state (1) to the final (2) state with the account
for the conditions of a stationary regime J(x) = J over the entire path from 1 to 2,
one obtains:
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J ¼
RT exp l2

RTR 2
1

aðxÞ
LðxÞ exp

l0ðxÞ
RT dx

exp
l1 � l2

RT
� 1

� �
; ð19Þ

where subscripts 1 and 2 are related to chemical potentials and activity in the states 1
and 2, respectively. Denoting the constant quantity by

L ¼
exp l2

RTR 2
1

aðxÞ
LðxÞ exp

l0ðxÞ
RT dx

; ð20Þ

we obtain the general kinetic law:

J ¼ RTL exp
l1 � l2

RT
� 1

� �
¼ RTL exp

eA
RT
� 1

!
¼ k exp

eA
RT
� 1

!
; ð21Þ

that in linear approximation for eA 	 RT (near equilibrium state) transforms into the
linear form of transport equations:

J ¼ LeA ¼ �Lgradl. ð22Þ
Now we can rigorously derive the kinetic law of mass action in the form which

was earlier only postulated from experimental observations. Let us denote:

kr ¼
RT exp l2

RTR 2
1

aðxÞ
LðxÞ exp l l0ðxÞ

RT dx
and kf ¼ kr exp � l0

2 � l0
1

RT

� �
. ð23Þ

Substituting Eqs. (23) into the general kinetic law (21), we rigorously obtain the
kinetic law of mass action in the form of Eq. (2):

J ¼ kfa1 � kra2 ¼ k0fc1 � k0rc2 ð24Þ
and the classic law of mass action:

K  kf
kr
¼ exp � l0

2 � l0
1

RT

� �
¼ aeq2

aeq1
; ð25Þ

where kf and kr are the rate constants of the forward and reverse reactions, respec-
tively; superscript eq denotes the activity in the equilibrium state with the equilib-
rium constant K. Unfortunately, usually an opposite situation takes place, namely,
a kinetic equation in the form of Eq. (21) (see, e.g., [5], etc.) is obtained from the
empirically obtained and then postulated Eq. (2). We, however, derive the kinetic
Eq. (21) without resorting to empirical Eq. (2) and, in the long run, obtain Eq. (2)
rigorously from the first principles.

Passing to electrochemical kinetics, it is necessary to replace the chemical poten-
tial in Eq. (16) with the electrochemical potential:

~l ¼ RT ln aþ l0 þ zF u ð26Þ
and the activity a—with electrochemical activity [13]:

~a ¼ a exp
zF u
RT

. ð27Þ
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Analyzing, for simplicity, the redox reaction red = ox+ze + ze (e.g., metal dissolution
Me = Me+ze + ze) and dividing the electrochemical affinity into two parts for anodic
(forward) and cathodic (reverse) reactions using common anodic and cathodic trans-
fer coefficients a and b, respectively (taking into the account for the negative sign of
cathodic potential), Eq. (27) can be rewritten for these partial reactions:

~aa ¼ ared exp
azF u
RT

and ~ac ¼ aox exp � bzF u
RT

� �
; ð28Þ

where ared and aox are ordinary activities of the species in reduced and oxidized
forms, respectively. Substituting electrochemical activities (28) into Eq. (24), we ob-
tain the net reaction rate without resorting to the notion of activation energy in con-
trast to the approach [14] generally accepted in electrochemical kinetics:

J ¼ zFi ¼ kf~aa � kr~ac ¼ kfared exp
azF u
RT
� kraox exp � bzF u

RT

� �
ð29Þ

and in the case of equilibrium (i = 0), equilibrium potential will be established:

u0 ¼
RT
zF

ln
kraok
kfared

¼ u0 þ RT
zF

ln
aok
ared

; ð30Þ

where the standard potential is:

u0 ¼ RT
zF

ln
kr
kf
. ð31Þ

Note that the right-hand side of Eq. (30) coincides with the Nernst Eq. (10) ob-
tained by a purely thermodynamic method from the condition of the equilibrium
of chemical potentials. Therefore, the left-hand side of Eq. (30) obtained from a ki-
netic analysis makes it possible to reveal the physical meaning of the standard poten-
tial in Eq. (10) as a ratio of chemical rate constants of forward and reverse reactions.
Introducing, as usual, the overpotential g = u�u0 and the exchange current density
i0 from the equilibrium condition i = 0, one obtains from Eq. (29) the Butler–Volmer
equation:

i ¼ i0 exp
azF g
RT
� exp � bzF g

RT

� �� 	
; ð32Þ

where the exchange current density is:

zFi0 ¼ kraox exp � bzF u0

RT

� �
¼ kfar exp

azF u0

RT
¼ ka

rk
b
f aa

okab
red. ð33Þ

Assuming, in a particular case, that a = 1 and b = 0 (asymmetrical distribution of
applied potential) and combining Eqs. (29) and (30), we obtain the equation in the
form analogous to that of Eq. (21) used in non-equilibrium thermodynamics of
chemical reactions:

i ¼ i0 exp exp
zF g
RT
� 1

� �
¼ i0 exp exp

eA
RT
� 1

 !
; ð34Þ
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where the electrochemical affinity eA ¼ zF g shows the role of overpotential g as a
measure of thermodynamic motive force for a non-equilibrium electrochemical reac-
tion. If it is far enough from the equilibrium (zFg� RT), the general kinetic law (21)
transforms through Eq. (34) into the Tafel Eq. (1) and reveals the meaning of Tafel�s
constants a and b from the first principles.
6. Conclusions

The kinetic law of mass actions is derived rigorously from non-equilibrium ther-
modynamics using invariant properties of the transport law applied to the elemen-
tary steps along the reaction path. Therefore, all non-linear equations of chemical
kinetics become rigorously grounded, and theoretical derivation of the Tafel equa-
tion becomes possible without an empirical basis or models using postulates and
activation energy.
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I regret the misprints in the Eqs. (14), (23) and (33).
The corrected Eq. (14) is as following:

J i ¼ eAi
oJ i

oeAi

� �
Dxi!0

¼ � kiDxi

RT

� �
Dxi!0

oliðxÞ
ox

¼ �LigradliðxÞ ð14Þ

The corrected first equation of Eqs. (23) and (33) are, respectively:

kr ¼
RT exp

l0
2

RTR 2

1
aðxÞ
LðxÞ exp l0ðxÞ

RT dx
ð23Þ

i0 ¼ kraox exp � bzF u0

RT

� �
¼ kfar exp

azF u0

RT
¼ ka

r kb
f aa

okab
red ð33Þ
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