
Research: Science and Education

1146 Journal of Chemical Education  •  Vol. 76  No. 8  August 1999  •  JChemEd.chem.wisc.edu

A Generalized Statement of the Law of Mass Action

James K. Baird
Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL  35899; jkbaird@matsci.uah.edu

The original statement of the law of mass action is asso-
ciated with the names of the two Norwegians, Cato
Maximilian Guldberg (1836–1902) and Peter Waage (1833–
1900). Both were professors at the University of Christiana
(now Oslo), where the former taught mechanics and the latter
taught chemistry. They were not only scientific collaborators,
but also twice brothers-in-law. The first family association
occurred when Guldberg married Bodil Mathea Riddervold
and Waage married her sister, Johanne Christiane Tandberg
Riddervold. After Johanne died in 1869, they became brothers-
in-law a second time when Waage married Guldberg’s sister,
Mathilde Sofie Guldberg (1).

Guldberg and Waage considered a reversible, elementary
chemical reaction involving the chemical species [1]–[4],

ν1[1] + ν2[2]  ν3[3] + ν4[4] (1)

with stoichiometric coefficients ν1–ν4. In their law of mass
action, they asserted that the net rate of reaction, r, is given by

r = kfc1
ν1c2

ν2 – krc3
ν3c4

ν4 (2)

where ci (i = 1, 2, …) are the molar concentrations of the
species and kf and kr are the rate constants (specific rates) for
reaction in the forward and reverse directions, respectively.
The basis for this concept appears to have occurred to Waage
in 1860 while he was a guest in the Heidelberg laboratory of
R. Bunsen (1811–1889). Both Guldberg and Waage seem
to have been unaware, however, of the earlier work of R.
Wilhelmy (1812–1864), who in 1850 used essentially the
same law to analyze his data on the acid-catalyzed rate of
inversion of sucrose (2). On the basis of this experiment,
Wilhelmy is today recognized as the father of chemical kinetics.

Nonetheless, it was the careful experiments by Waage
and their interpretation by Guldberg, who was trained as a
mathematician, which led to the final acceptance of eq 2 (1).
Perhaps in an attempt to get into print while avoiding con-
troversy and rejection, Guldberg and Waage first published
the law of mass action in 1864 in the Norwegian language
using the Proceedings of the Christiana Academy of Science and
Letters. This report was ignored, so in 1867 they tried again,
this time writing in French in an official publication of the
University of Christiana. The second attempt met the same
fate as the first until J. Thomsen (1862–1909) took note of
the Guldberg and Waage law (3), and W. Ostwald (1853–
1932) discussed it in more detail (4). Guldberg and Waage
were encouraged by this, and they published in German in
1879 their landmark paper restating eq 2 and relating it to
reaction kinetics on a molecular scale (5).

All 19th century theoretical scientists were well versed
in Newtonian mechanics, so it was probably Guldberg who

introduced the distinction between the primary forces involved
in the transfer of atoms between molecules and the secondary
forces involved in their interaction with the environment.
More than a century later, we can still recognize these forces
as valence interactions and solvent interactions, respectively.

Solvent effects on chemical reactions have been widely
studied experimentally and most have been analyzed on a
case-by-case basis using transition state theory (6 ). Since the
famous papers by Onsager (7, 8) on non-equilibrium thermo-
dynamics, however, there has also been a parallel effort to
understand solvent effects in terms of the generalized forces
and fluxes, which appear in that theory (9). Within the last
decade, this program appears to have come to fruition (10), and
the results now permit chemical reaction kinetics and solvent
effects to be taught in principle from a single generalized
version of the law of mass action.

Generalized Law of Mass Action

For fluids behaving non-ideally from a thermodynamic
point of view, Haase (10) has suggested that the net rate of
the elementary reaction shown in eq 1 can be written

r = λ[κ′a1
ν1a2

ν2 – κ′′a3
ν3a4

ν4] (3)

where ai (i = 1, 2, …) are the thermodynamic activities of the
reacting species, λ is the reciprocal of the activity coefficient
of the transition state, and κ′ and κ′′ are rate coefficients for
reaction in the forward and reverse directions, respectively.
For gases, κ′ and κ′′ are functions of temperature only, whereas
for liquids both depend upon temperature and pressure. The
quantity λ is a function of temperature, pressure, and composi-
tion. The thermodynamic activity of the ith reacting species is

ai = yi(ci /c̄) (4)

where ci is the molar concentration, c̄  is the standard state
concentration (ordinarily a 1 M ideal solution), and yi is the
activity coefficient on the molar-concentration scale. Both ai
and yi are conveniently treated as dimensionless quantities.

Equation 3 can be shown to be consistent with transition
state theory. Consider eq 1 for the moment only in the for-
ward direction where reactants [1] and [2] pass through the
transition state [*] on their way to products [3] and [4]:

ν1[1] + ν2[2] → [*] → ν3[3] + ν4[4] (5)

In transition state theory, reactants [1] and [2] are considered
to be in dynamic equilibrium with [*]. Their thermodynamic
activities are related by

   K ′ = a*
a1

ν1a2
ν2

(6)
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where a* is the activity of [*] and K ′ is the equilibrium
constant for the formation of [*] from [1] and [2]. Using
eq 4 to evaluate a*, eq 6 can be rewritten as

   
K ′ =

y* c*/c

a1
ν1a2

ν2
(7)

where y* and c* are the activity coefficient and concentra-
tion of [*], respectively. We can solve eq 7 to obtain

   c* = K ′ c
y*

a1
ν1a2

ν2 (8)

In the forward direction, the reaction in eq 5 proceeds at
the rate

r′ = ν′c* (9)

where ν′ is the specific rate (s{1) at which [*] decays into prod-
ucts. Ordinarily, ν′ is set equal to kBT/h, where kB is
Boltzmann’s constant, T is the absolute temperature, and h
is Planck’s constant. Upon substitution of eq 8 into eq 9,
there results

   r ′ = κ′
y*

a1
ν1a2

ν2 (10)

where κ′ is defined by

κ′ = ν′K ′ c̄ (11)

By the principle of detailed balance (11), the reaction in eq 5
must proceed in the reverse direction via the same transition
state [*] that it traversed in the forward direction. An analysis
that is the analog of eqs 6–11 can be applied to eq 5 in the
reverse direction. The result is

    r ′′ = κ′′
y*

a3
ν3a4

ν4 (12)

where r ′′ is the reverse reaction rate,

κ′′ = ν′′K ′′  c̄ (13)

and

   K ′′ = a*
a3

ν3a4
ν4

(14)

Since the net reaction rate is r = r ′ – r ′′, eqs 10 and 12 can
be combined to obtain eq 3 where the definition of λ is (10)

λ = 1/y * (15)

Note that by virtue of eqs 11 and 13, both κ′ and κ′′ have
the dimension mol L{1 s{1, as does r, since in eq 3, λ and the
activities, ai (i = 1, 2, …), are all dimensionless.

The net rate of reaction, r, is directly measured by the
time rate of change of the “extent of reaction”, ξ. If the
initial concentration of reacting species is ci(0), then the con-
centration, ci, at any time t can be expressed in terms of ξ by

ci = ci(0)± νiξ (16)

where the upper sign applies to products and the lower sign to
reactants. Equation 16 implies that ξ = 0 when the time t = 0.
The rate of reaction is then (12)

    dξ
dt

= {
1
ν1

dc1

dt
= {

1
ν2

dc2

dt
= 1

ν3

dc3

dt
= 1

ν4

dc4

dt
= r (17)

This equation has the advantage that r is defined independently
of whichever of the concentrations, ci , is used to monitor
the rate.

Examples

We now demonstrate that some of the principle results
of chemical kinetics can be derived starting from eq 3.

Example 1: The Kinetic Law for Ideal Gas Reactions
and for Reactions in Dilute Ideal Solution

In both of these cases, λ = 1 = yi and ai = ci /c̄  for all i.
Equation 3 becomes

r = (κ′/c̄ ν1+ν2)c1
ν1c2

ν2 – (κ′′/c̄ ν3+ν4)c3
ν3c4

ν4 (18)

Equation 18 is identical to the Guldberg–Waage statement
of the law of mass action (eq 2), if we identify

kf = κ′/c̄ ν1+ν2 (19)
and

kr = κ′′/c̄ ν3+ν4 (20)

In the forward directions, the overall molecularity is ν1 + ν2,
while in the reverse direction it is ν3 + ν4. Equations 19 and
20 conform to the ordinary convention that the rate coeffi-
cient for a reaction with overall molecularity n should have
the units (L mol{1)n–1 s{1.

Example 2: The Relation between Rate Constants and
the Equilibrium Constant

At equilibrium, r = 0, and each thermodynamic activity,
ai, assumes its equilibrium value, ai

e. Equation 3 implies

   κ′
κ′′ =

a3
e ν3 a4

e ν4

a1
e ν1 a2

e ν2
≡ K (21)

where K is the equilibrium constant for the reaction. By
contrast, had we set r = 0 in eq 2, we would have found K to
be determined by the equilibrium concentrations, ci

e. Although
such a result is adequate in the case of ideal gases and dilute
ideal solutions, it is inapplicable in general. Equation 21 further
illustrates the meaning of κ′ and κ′′ and confirms that both
must have the same dimensions, since K is dimensionless.

Example 3: Solvent Effects on Reaction Rates
Let us assume that eq 1 is irreversible, so that we can set

κ′′ = 0 in eq 3; then by use of eqs 4 and 15, eq 3 becomes

    
r =

y1
ν1 y2

ν2

y*
κ′ c { ν

1+ν
2 c1

ν1c2
ν2 (22)

Since the observed forward rate is kobsc1
ν1c2

ν2, eq 22 implies that

    
kobs = κ′ c { ν

1+ν
2

y1
ν1 y2

ν2

y *
(23)

which is a standard formula for estimating solvent effects.
In particular, consider the case of a reaction between

ionic species in the presence of an inert, strong electrolyte.
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The ionic strength, I, of the solution is defined by

   I = 1
2

cj Zj
2Σ

j
(24)

where Zj is the valence of the jth ionic species, and the sum
is computed over all values of j . According to Debye and
Hückel, in the case of a dilute solution,

   ln yj = {BZj
2 I (25)

where

   
B = 2π Ne6

1000 εkBT
3

1/2

(26)

and T is the absolute temperature, N is Avogadro’s number, e is
the electron charge, and ε is the solvent dielectric constant.
The quantities in eq 26 are in the cgs units preferred for theo-
retical work, where e has the units esu (erg cm)1/2, kB has the
units erg K{1, N has the units mol{1, 1000 has the implied
units of cm3 L{1, and ε is dimensionless. The resulting units
of B are then L1/2 mol{1/2 (13).

Most reactions to which eq 23 can be applied are bimo-
lecular, such as the electron transfer reaction

Fe2+ + Hg2+ → Fe3+ + Hg+ (27)

Since in a bimolecular reaction ν1 = ν2 = 1, the reacting ions,
[1]Z1 and [2]Z2, form a transition-state species [*]Z1+Z2, having
valence Z1 + Z2. According to eq 25, the activity coefficient
of [*]Z1+Z2 is given by

   ln y * = {B Z1 + Z2
2

I (28)

while the activity coefficients of the reacting ions are

   ln y1 = {BZ1
2 I (29)

and

   ln y2 = {BZ2
2 I (30)

respectively. Setting ν1 = ν2 = 1 and using eqs 28–30, the
logarithm of eq 23 becomes

  ln kobs = ln kf + 2 Z1Z2 B I (31)

where kf = κ′/( c̄ )2 is the specific rate when I = 0. Equation
31 is the Brönsted–Bjerrum result for the “primary kinetic
salt effect”, which is discussed in many elementary physical
chemistry textbooks (14–20).

In the primary salt effect, ions from the inert electrolyte
form a charged atmosphere (Debye–Hückel space charge)
around each of the reacting ions [1]Z1 and [2]Z2 and their tran-
sition state [*]Z1+Z2. The net charge of the atmosphere is equal
and opposite to that of the charge of the central ion. The
electrostatic energy stored in the atmosphere makes the ions
behave as non-ideal solutes and causes the activity coefficients
to depend upon I, as shown in eq 25. The atmosphere is stable
because the net current of inert ions moving toward a central
ion owing to their Coulomb interactions is balanced by the net
current of inert ions moving away from a central ion by Brown-
ian motion. The range of the mutual electrostatic interaction

between the reacting ions [1]Z1 and [2]Z2 (surrounded by their
atmospheres) depends upon I {1/2, which decreases with increas-
ing concentration of the inert electrolyte. Specifically, when
Z1 and Z2 have the same sign, the ion atmospheres reduce
the repulsive electrostatic force acting between [1]Z1 and [2]Z2,

which accelerates the rate of their mutual reaction; hence, as
predicted by eq 31, ln kobs increases with increasing ionic
strength. By contrast, when Z1 and Z2 have opposite signs,
the atmospheres reduce the attractive electrostatic force between
[1]Z1 and [2]Z2, which according to eq 31 decelerates their
mutual rate of reaction, so that ln kobs decreases with increasing
ionic strength.

There is, incidentally, a related secondary salt effect, which
occurs in the case of a reaction catalyzed by a weak acid or a
weak base. In this case, an increase in the concentration of an
inert electrolyte enhances the ionization of the acid (or base)
and increases the concentration of the active catalyst species,
H+ (or OH{). This secondary salt effect is not kinetic in nature
but depends instead upon the effect of the ion atmosphere on
an ionic equilibrium (21).

Example 4: Reaction Kinetics and Non-Equilibrium
Thermodynamics

According to non-equilibrium thermodynamics, a “flux”
is the net rate of some process and a “driving force” is the
disturbance that produces it. Examples of fluxes and their
respective forces are electric current density and electric field
(Ohm’s law); diffusive mass flux and gradient of chemical
potential (Fick’s law); volume flux of a liquid and pressure
gradient (Poiseuille equation) (22). Close to equilibrium, a
flux, J, is found to be linearly dependent upon its conjugate
force, X; hence, one writes J = LX, where L is termed the
“Onsager coefficient” (22). Indeed, when X is zero, J is also
zero, and the process is at equilibrium.

Slightly away from equilibrium, however, molecules in
forward motion still are nearly balanced by molecules in
reverse motion (11), and this is the basis for extending
thermodynamics to non-equilibrium phenomena. In the case
of chemical reactions, the flux may be chosen as the net re-
action rate, r. We can use eq 3 to show that the driving force
is the reaction “affinity”, A. Introduced by DeDonder, the
affinity is just the negative of the instantaneous Gibbs free
energy, ∆G, of reaction.

To demonstrate the dependence of r upon A, we first
factor κ′a1

ν1a2
ν2 from eq 3 and write

   
r = λκ′a1

ν1a2
ν2 1 – κ′′

κ′ ⋅
a3

ν3a4
ν4

a1
ν1a2

ν2
(32)

The molar chemical potential, µi, of the i th species is

µi = µi° + RT ln ai (33)

where R is the gas law constant, and µi° is the chemical poten-
tial of that species in its standard state. We define as usual

∆G = ν3µ3 + ν4µ4 – ν1µ1 – ν2µ2 (34)
and

∆G° = ν3µ3° + ν4µ4° – ν1µ1° – ν2µ2° (35)

Combining eqs 33–35, we obtain the familiar result
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   ∆G = ∆G° + RT ln
a3

ν3a4
ν4

a1
ν1a2

ν2
(36)

In eq 36, the argument of the log is the reaction function

   Q =
a3

ν3a4
ν4

a1
ν1a2

ν2
(37)

Substituting eqs 21 and 37 into eq 32, we obtain

   r = λκ′a1
ν1a2

ν2 1 –
Q
K

(38)

which is a result obtained by Castellan (23).
At equilibrium, where each ai = ai

e and ∆G = 0, we
obtain from eqs 21 and 36 another familiar result,

∆G° = {RT ln K (39)

Using eqs 37 and 39, eq 36 can be rewritten

∆G = RT ln(Q/K ) (40)

Upon substitution of eq 40 into eq 38, we obtain the rate law

r = λκ′a1
ν1a2

ν2
 [1 – exp ({A/RT )] (41)

where we have set A = {∆G. Equation 41 demonstrates that
the driving force for a reaction is the affinity; indeed, when
A = 0, the net reaction rate, r = 0. When the reaction is so
close to equilibrium that A/RT << 1, we can then approxi-
mate the exponential by e{x = 1 – x and replace λ, a1 , and a2
by their equilibrium values λe, a1

e, and a2
e, respectively, so

that eq 41 takes the form

   
r =

λeκ′ a1
e ν2 a2

e ν2

RT
A (42)

Equation 42 confirms the premise of non-equilibrium
thermodynamics that near equilibrium, the flux, r, should
depend linearly upon its conjugate force, A. We can identify
in eq 42 the Onsager coefficient

   
L =

λeκ′ a1
e ν2 a2

e ν2

RT
(43)

where λeκ′(a1
e)ν1(a2

e)ν2 is the rate of the forward reaction at
equilibrium.

Example 5: Relaxation Time
Any small disturbance of a reaction from chemical equilib-

rium decays by a first-order rate law. Let ξe be the equilibrium
value of the reaction variable and expand A in a Taylor series
about ξ = ξe. To first order, the result is

   A ξ = A ξe + ∂A
∂ξ e

ξ – ξe (44)

After noting that A(ξe) = 0, if we substitute eq 44 into the right-
hand side of eq 42 and r = dξ/dt into the left, we obtain

   dξ
dt

=
λeκ′a1

ea2
e

RT
∂A
∂ξ e

ξ – ξe (45)

If we compare eq 45 with the first-order equation

    dξ
dt

= {
ξ – ξe

τ (46)

defining the relaxation time, τ, we obtain

   1
τ =

λeκ′ a1
e ν1 a2

e ν2

RT
∂∆G
∂ξ e

(47)

where we have replaced A by {∆G.
We can illustrate the usefulness of eq 47 by considering

the case of a dilute ideal solution and a reaction with ν1 = ν2 =
ν3 = ν4 = 1. In this case, ai = (ci(0) ± νiξ)/c̄ , so that eq 36 can
be expanded to read

∆G = ∆G° + RT [ln(c3(0) + ξ) + ln(c4(0) + ξ ) –
                                 ln(c1(0) – ξ) – ln(c2(0) – ξ)]

(48)

Term-by-term differentiation of eq 48 leads to

   ∂∆G
∂ξ e

= RT 1
c3

e + 1
c4

e + 1
c1

e + 1
c2

e (49)

where we have let ci
e = ci(0) ± νiξe. For a dilute ideal solution

at reaction equilibrium, ai
e = ci

e/c̄  and r = 0. Equation 3 then
implies for the stoichiometry under consideration,

κ′c1
ec2

e = κ′′c3
ec4

e (50)

We can substitute eqs 49 and 50 into eq 47, with λe = 1 (dilute
ideal solution), to obtain

   1
τ = k f c1

e + c2
e + k r c3

e + c4
e (51)

where we have used eqs 19 and 20 to identify kf and kr, respec-
tively. Equation 51 is the standard formula for the relaxation
time in the case of an elementary reaction that is bimolecular
in both directions (24).

Discussion

Although suggested by Haase (10) as a postulate, eq 3
would seem to hold wherever transition state theory is valid
(25, 26 ). Of course, since there exists no completely satis-
factory kinetic theory of the liquid state, the applicability of
eq 3 to solutions must ultimately rest upon experiment.

Although we have not shown it, eq 3 can be applied to
each step of a reaction involving a mechanism. In elementary
steps that are fast, one invokes the steady-state approximation,
r = 0. The algebraic equations so obtained are used to eliminate
the activities of intermediates from the expression for r describ-
ing the rate-controlling step. So stated in terms of activities
of stable species, the result becomes the expression for the
overall rate and contains within it all possible solvent effects.

The ultimate solvent effect occurs when the solvent
approaches its critical point. Since activities and activity
coefficients are expected to be continuous through the critical
point (27), the effect of the critical point on the relaxation
time is presumably determined by (∂∆G/∂ξ)e (28). Under
certain conditions near the critical point, this derivative
vanishes (29), which implies that the rate of reaction must
go to zero. This is called “critical slowing down”.

In the examples treated above, we have used eq 3 to derive
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several familiar results associated with the chemical kinetics
of both ideal and non-ideal solutions. Perhaps most satisfying
from a pedagogical point of view was the fact that when r
was set to zero, the correct thermodynamic result for K in
terms of equilibrium activities was obtained.

Going further, we suggest that a chemical kinetics course
might begin with eq 3. This approach would serve to reduce
the ad hoc nature of the concepts currently appearing in the
standard method of teaching this branch of physical chemistry.
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