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Preface 

'Why are atoms so small?' asks 'naive physicist' in Erwin Schrodinger's book 
'What is Life? The Physical Aspect of the Living Cell'. 'The question is wrong' 
answers the author, 'the actual problem is why we are built of such an enormous 
number of these particles'. 

The idea that everything is built of atoms is quite an old one. It seems that 
Democritus himself borrowed it from some obscure Phoenician source 1. The 
arguments for the existence of small indivisible units of matter were quite simple. 
According to Lucretius2 observable matter would disappear by 'wear and tear' 
(the world exists for a sufficiently long, if not infinitely long time) unless there are 
some units which cannot be further split into parts. 

However, in the middle of the 191" century any reference to the atomic structure 
of matter was considered among European physicists as a sign of extremely bad 
taste and provinciality. The hypothesis of the ancient Greeks (for Lucretius had 
translated Epicurean philosophy into Latin hexameters) was at that time seen as 
bringing nothing positive to exact science. The properties of gaseous, liquid and 
solid bodies, as well as the behaviour of heat and energy, were successfully 
described by the rapidly developing science of thermodynamics. 

Despite this attitude of physicists, chemists of the same period employed the 
concept of atoms in the description of the transformation of matter by chemical 
reactions. Not only were the dependencies of properties of compounds on their 
atomic composition and arrangements of atoms within a molecule established but 
also all known chemical elements were systematised in Mendeleev's Periodic 
Table. This allowed for the prediction of the existence of yet undiscovered types 
of atoms and of the properties of their compounds. Even the number of atoms in a 
given amount of a substance of known atomic (elemental) composition had at that 
time been correctly estimated. 

However, when describing quantitatively the ability of a compound to take part 
in a chemical reaction, chemists have had to apply the rules of formal 
thermodynamics. For such practical purposes thermodynamics supplied excellent 
tools which effectively substitute the relationships between molecules by the 
relationships between thermodynamic functions (free energy, entropy, etc.), their 

1 Sextus Empiricus, 'Adversus mathematicos' IX, 363 
2 The works of Democritus are mainly known from commentaries of his opponents. The only 

coherent exposition of the ancient atomistic theory available is the poem of Lucretius "De 
rerum natura". 
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partial derivatives, temperature, volume, pressure and the numbers of moles. 
Among these parameters the latter alone has some reference to the molecular 
(atomistic) concepts of chemistry. 

One of these rules, the law of mass action, which defines the relationship 
between the numbers of moles of products and reactants in chemical equilibrium, 
is extremely important for chemists. Historically it was first established from 
experimental observations on the rates of chemical reactions employing the 
dynamic interpretation of chemical equilibrium. Therefore it is very often 
considered as an empirical rule and/or as a consequence of the kinetic law of mass 
action. In fact, the equilibrium law of mass action follows from the fundamental 
laws of thermodynamics and thus is an empirical rule to the same extent as is the 
first law of thermodynamics. 

The law of mass action in its widely known form can be formulated only for 
reactions in ideal gases and ideal crystals although, in practise, real gases at low 
density and crystalline solids at low temperatures approximate to these ideal 
states. For non-ideal systems approximating equilibria in any other real aggregate 
state there are two possible ways of establishing a relationship between the 
amounts of reactants and products. The first is to derive a specific form of the law 
of mass action for a given non-ideal system. Another, more successful approach 
was suggested by Lewis [ l ], in which the universal ideal form of the law of mass 
action is retained but, instead of concentrations, functions of these called activities 
are to be used. The parameters of these functions (activity coefficients) once 
established for one reaction were found to be applicable in the description of a 
series of similar reactions. Hence, by making use of a limited number ofreference 
equilibria it was possible to obtain the empirical data necessary for the calculation 
of activities for a very large number of practically important reactions. 

An inquisitive 'naive chemist' would probably ask why a proper law of mass 
action for a non-ideal system could not be derived? The problem, in fact, is not in 
the derivation but in the practical applicability of the equations so obtained. The 
mathematics of the ideal law of mass action is very simple, activities are (or 
assumed to be) linear or polynomial functions of concentrations. This formalism 
was very attractive to chemists who, at the beginning of this century, were not 
accustomed to logarithmic functions. In fact, by the time activities were generally 
adopted by chemists all the basic theoretical relationships had already been 
developed within the molecular theory of solutions. However, a large amount of 
data on activities was obtained before this theory assumed a form allowing either 
practical calculations or an easy interpretation. 

The molecular theory of solutions has thus been developing without any 
competition with the empirical approach of Lewis in the field of practical 
calculations. Furthermore, the molecular theory of solutions has been largely used 
to explain the physical significance of activity coefficients. In other words, instead 
of producing its own formalism this theory was, regrettably, employed to explain 
the meaning of parameters arising from empirical relationships! 
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The molecular theory of solutions had quite early succeeded in a semi
quantitative description of many phenomena that are outside the scope of an 
empirical approach. Phase transitions, for example, play an important role in 
chemical processes, determining their apparent irreversibility when one of the 
products 'drops out' or escapes into a gaseous or a separate liquid phase. This 
leads sometimes to a misinterpretation of processes involving a phase transition. 
For example, the substitution of fatty acids in the form of their salts by carbonic 
acid (when saturating aqueous solutions of their sodium salts with C02) is often 
interpreted as evidence of the stronger acidic properties of carbonic acid. It is 
completely forgotten that free fatty acids form a separate phase at lower 
temperatures (although they can be miscible with water at higher temperatures). A 
theory taking into account molecular interactions predicts such phenomena and the 
corresponding formalism can be incorporated into the law of mass action. 

In biochemistry it is considered as a great wonder that small variation of the 
energy of hydration (of about 1 kcal mole-1) compared to the absolute magnitude 
of ca. 100 kcal mole-1 can switch biological processes in membranes. However, 
according to the molecular theory of solutions, this should not be surprising 
because phase separation in liquid solutions occurs when the difference in 
energies between hetero- and homo-molecular interactions is above 2RT. 

It is all too often believed that the activity coefficient, like a deus ex machina, 
will always allow for the application of a pseudo-ideal form of the law of mass 
action or of the van't Hoff and Arrhenius equations. A colleague of one of the 
authors complained once about the loss of large amounts of reagent in a pilot 
reactor when the synthesis of ethyleneglycol diacetate from ethylene oxide and 
acetic anhydride proceeded in a jump, bearing all the signs of a branched chain 
reaction. The real origin of this misfortune could well have been a problem of 
scaling (a tub full of hot water cools down more slowly than does a glass full!). 
But it is also possible that the 'jump' is connected with critical phenomena 
originating in molecular interactions (this case will be repeatedly considered in 
this book). 

The molecular theory of solutions is based on a statistical mechanical 
description of collections of large numbers of molecules. Unfortunately the 
principles of statistical mechanics are all too often omitted from textbook 
discussions of reactions in solutions. Although they cover practical methods of 
calculation of equilibrium and rate constants for simple gas-phase reactions 
'employing spectroscopic data' the fundamentals of these methods are usually 
neglected. That statistical mechanical methods can successfully be applied to 
reactions in non-ideal condensed systems is openly disbelieved (not, it must be 
admitted, entirely without ground). Until recently there were no examples of a 
chemical equilibrium in the condensed state better described by the formalism of 
the molecular theory of solution than by the use of empirical activity coefficients. 

It was in 1972 that a spin crossover equilibrium in the solid state was 
successfully described by a law of mass action derived for a strongly non-ideal 
system [2]. This equilibrium presents unique possibilities for the checking of 
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theoretical models of processes in the condensed phase exhibiting, as it does, a 
large number of the effects of molecular interactions yet, at the same time, 
remaining a homogeneous system. In fact, spin crossover apparently plays an 
important role in oxidation processes when it is necessary to convert a 
paramagnetic dioxygen species into the singlet state. In this book various 
descriptions of ideal and non-ideal systems will be illustrated by reference to 
examples of such spin crossover systems. 

The statistical mechanical approach to the description of matter gives an answer 
to the question of the 'naive physicist' mentioned above: the bodies of human 
beings must necessarily consist of very large numbers of particles in order to 
avoid fluctuations. This phenomenon (completely neglected by formal 
thermodynamics) also gives rise to some doubts concerning the applicability of 
the law of mass action to small systems such as bacteria (i.e. a breakdown of the 
law of mass action is to be expected). Indeed, the law of mass action applied to the 
water ionisation equilibrium in vesicles containing 107 molecules of water would 
apparently result (at pH= 7) in the number of ions per vesicle being either one or 
zero. Calculation of the mean concentration of ions over an ensemble of such 
vesicles then results in values considerably different from those predicted by the 
law of mass action. Whether or not this discrepancy has any connection with 
fluctuations becomes clear when we consider the origin of the law of mass action 
from a statistical thermodynamics point of view. 

The aim of the present book is to give the reader a consecutive and coherent 
chain of reasoning leading to the formulation of the law of mass action for ideal 
and non-ideal systems accompanied by the necessary complementary materials. 

The first two Chapters and the Appendix are an aid to those who are not 
sufficiently well acquainted with statistical mechanics. Chapter I begins ab ova 
with the ideas relating entropy to probability and a derivation of the Maxwell -
Boltzmann distribution law. One of the main tasks of statistical mechanics: the 
calculation of mean and most probable values of mechanical parameters is 
explained using several examples. 

Chapter 2 explains the Gibbs approach to statistical thermodynamics and 
outlines the derivation of the relationship between the thermodynamic properties 
and partition functions of canonical distribution. 

Chapter 3 concerns the derivation of the law of mass action for an ideal gas and 
an ideal crystal. Various forms of this law employing molar concentrations, mole 
fractions and the numbers of molecules as basic variables are derived and their 
applicability is discussed. The origin of standard free energy, enthalpy and entropy 
of reaction is explained and referred to the corresponding terms in the statistical 
mechanical expression for equilibrium constants. Specific problems of the liquid 
state are then discussed and a model of an 'ideal liquid' is suggested in order to 
derive two types of the law of mass action applicable to liquid mixtures and to 
clarify the choice of a proper variable (concentration) in the law of mass action. 
The case of the so-called 'breakdown' of the law of mass action is critically 
analysed. 
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Chapter 4 introduces improvements into the description of chemical equilibria 
in liquids. These improvements are based on accounting for a finite volume of 
molecules (i.e. repulsive interactions). The law of mass action is derived for 
mono-molecular (spin crossover) and bimolecular (formation of weak molecular 
complexes) equilibria. The concept of free volume and corresponding theories of 
the liquid state are then discussed. The law of mass action is derived employing 
the concept of free volume and additivity of the energy of attractive interactions. 
Singularities predicted by this law of mass action are discussed. 

Chapter 5 gives a brief survey of the description of molecular interactions using 
a Lennard-Jones binary potential in its various forms. The Lennard-Jones and 
Devonshire model of the liquid state is also outlined. 

Chapter 6 considers the problem of molecular interactions in gases using the 
Virial Theorem as well as a statistical mechanical treatment of a gas with weak 
binary interactions. The equation of state of a gas with weak binary interactions is 
compared with the van der Waals equation and the laws of mass action for 
equilibria in such systems are analysed. The conditions leading to simplification of 
the law of mass action and its reduction to an ideal form are discussed. 

Chapter 7 concerns reactions in the solid state. An original method of 
calculation of free energy in a solid system of interacting molecules (suggested by 
ABK) is described and applied to the description of spin crossover equilibria in 
the solid state. This formalism (reducible under simplifying conditions to that of 
the theory of regular solutions) is then used to modify the Bragg - Williams 
approximation of ordered systems, which provides for a quantitative description of 
the two-step spin crossover. 

Chapter 8 analyses (employing formalisms described in preceding Chapters) 
the physical backgrounds of empirical correlations including Linear Free Energy 
Relationships (or LFER's), IsoEquilibrium Relationships (!ER) and IsoKinetic 
Relationships (!KR). 

Appendices include the elements of classical mechanics in Hamilton's form, 
some explanations of the basics of statistical mechanics and complementary 
materials to other Chapters. 

The writing of this book would not have been possible without the fact that the 
Authors were able to meet regularly in the Institut fUr Anorganische Chemie der 
Technischen Universitat Wien due to appointment of ABK and RFJ as visiting 
professors in the Institute. 

August 2000 A. B. Koudriavtsev 
R. F. Jameson 

W. linert 
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1 Maxwell - Boltzmann Statistics 

1.1 
Thermodynamics and probability. The Boltzmann -
Planck theorem 

The original explanation of the action of a thermal engine was a very mechanistic 
one: heat or phlogistic fluid falls from a higher to a lower temperature. This model 
was developed by the French scientist Sadi Carnot who actually himself found it to 
be not completely correct: it leads to the principle of conservation of heat (which 
in fact does not hold). The correct answer was given later by Clausius: the 
temperature is not the coordinate playing the role of potential (the vertical 
coordinate in the case of falling material bodies) but rather an analogue of a force. 
Notwithstanding its incorrectness, the idea that the passing of heat from high 
temperature bodies to low temperature bodies must be connected with a kind of 
'work' was very fruitful. Thermodynamics as a branch of physics explaining 
specific laws of the 'movement' and transformation of heat is based on this idea. 

In contrast to purely mechanical devices (a water mill, for example) the 
elementary work done by a thermal (steam) engine, 8w, is not, in general, 
represented by a complete differential and this work is thus not a function of state. 
The elementary quantity of heat transformed, 8Q, is also not a complete 
differential. However, their sum (the internal energy, E) is a function of state and 
is therefore a complete differential. The first law of thermodynamics specifies the 
complete differential of internal energy dE as: 

dE=8Q+8w ( 1. 1) 

The symbol of vanat1on (8) signifies that neither elementary heat nor 
elementary work are in general complete differentials. However, for processes not 
involving transformation of heat (8Q = 0) the elementary work does equal the 
differential of internal energy and is therefore also a complete differential. It can 
then be represented as a sum of elementary work arising from generalised forces 1, 

A,, 'performed' along the generalised coordinates, a,, coupled with their 

1 Including, in general, gravitational forces but also surface forces (if there is an interface), 
electric and magnetic forces (in the presence of corresponding fields), etc. 
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corresponding forces. The first law of thermodynamics is often (but not completely 
correctly) written as: 

dE =8Q+ LA,da, (I. I a) 

The internal energy is also known as the total energy. We shall later see that it 
is 'total' in two senses: in thermodynamics it is a sum of free and bound energies 
and in statistical mechanics it corresponds to the average Hamiltonian function, i.e. 
the sum of kinetic and potential energies. Among the types of elementary work, we 
shall be mainly interested in the mechanical work done by a system against 
external pressure - pdV (negative) and in the 'chemical work' + µdN, i.e. the work 
done by (chemical reaction) changing the number of molecules: 

dE =8Q- pdV + µdN (1.2) 

in which µ is 'the driving force' of a chemical transformation called (perhaps not 
very rationally) the chemical potential. As a potential force (and thermodynamics, 
both formal and statistical, considers the potential forces alone, see Chapter 5) it 
must be a partial derivative of thermodynamic potential with respect to a 'chemical 
coordinate', i.e. the number of molecules of a given kind: 

a 
µ=-(Thermodynamic Potential) oN 

( 1.3) 

The thermodynamic potential is a thermodynamic function of state (depending 
on the actual conditions it can be entropy, internal energy, enthalpy, Helmholtz or 
Gibbs functions, see below) characterising the amount of disposable energy. The 
chemical coordinate is dimensionless which makes the dimension of chemical 
potential identical to that of energy, justifying to a certain extent its name. 

When a system does not perform any work (i.e. a system of constant volume 
and constant number of particles) the variation of heat equals the differential of 
internal energy and is therefore itself a complete differential. It may therefore be 
represented as a product of a force times the differential of the coordinate. The 
generalised force corresponding to the transformation of heat proved to be the 
absolute temperature whilst the coordinate connected with the performing of 
'thermal work' was a new function called by Clausius entropy, S, such that: 

TOS =8Q ( 1.4) 

The general condition under which the variations of entropy and heat can be 
considered as differentials is that the processes in which these variations occur are 
reversible. Now thermodynamic reversibility is somewhat different from 
reversibility of a chemical reaction. A thermodynamically reversible process is one 
that admits the return of an isolated system to the initial state without any change 
in the environment. For example, the expansion of gas from a cylinder into an 
evacuated vessel is an irreversible process because we must afterwards perform 
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the work of compression. On the other hand, if we pass the expanding gas through 
a turbine that lifts a given weight to a given height (all these appliances being parts 
of the isolated system) then we are able to compress the gas to its initial state by 
allowing this weight to fall. 

The concept of reversibility is, however, closely connected with the concept of 
equilibrium. The state of equilibrium in thennodynamics is such that a system 
remains unchanged in all aspects, without assistance of external processes, for an 
indefinitely long time (classical thennodynamics does not consider fluctuations). 
The stationary state of a house wall keeping a constant difference of temperatures 
inside and outside is not a state of equilibrium because it requires a constant flow 
of heat for its existence. If we change reversibly the state of a system by going 
through an infinite number of infinitely close states of equilibrium (the time 
required is of course infinitely long) the work done by the system (which is, of 
course, negative) is maximal. This gives us a very important indicator of the state 
of equilibrium, namely that it must correspond to an extremum of thermodynamic 
potential. 

For reversible processes entropy is a function of state, i.e.: 

dS = dQ/T ( l .4a) 

A mathematical theorem demonstrating the existence of an integrating 
denominator for elementary heat and showing it to be the absolute temperature is 
known under the name of the Principle of Caratheodori (see, for example, 
Margenau and Murphy [I]). The first law of thermodynamics for reversible 
processes may now be written as: 

dE = TdS + L A;da, (1.5) 

Entropy appears in this expression as a thermodynamic coordinate coupled with 
thermal force (which is absolute temperature). The Principle of Caratheodori also 
shows that entropy is a function of state and an additive quantity, i.e. the entropy 
of a system is the sum of the entropies of its constituent parts. In isolated systems 
this coordinate may play the role of a potential. 

The work, L.A,da, , in (1.5) is distinguished from the term TdS by the fact that 
the fonner can be directed to increase the potential energy of other systems (e.g. 
lifting weights) whilst the heat or 'thermal work', TdS, can only increase the 
internal energy of the considered system. From this point of view heat and work 
are two distinct forms of the transfer of energy [2]. The term TdS can then be 
called the bound energy whilst the amount of all possible work given by the term 
L.A,da, can be called the free energy and generally plays the role of a 
thermodynamic potential. A change in internal energy of a system is thus divided 
between the changes in bound and free energies: 

dE = dE hound + dEjree (1.6) 
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We immediately realise that it could be of enormous practical importance to be 
able to calculate a priori the amount of bound energy for a given system. Formal 
thermodynamics establishes relationships between parameters of a system without 
any implication as to the nature of the system itself. This can be considered as an 
advantage of the thermodynamic approach: we can determine thermodynamic 
parameters of known gases, liquids and solids and calculate (sometimes with 
astonishing accuracy) thermal properties of their mixtures and chemical 
compounds. However, such a result is not entirely satisfactory since it is often 
desirable to know the origin of these effects (for example, in order to estimate 
thermodynamic parameters associated with particular theoretical molecular 
structures). In other words, the drawback of formal thermodynamics is that its 
validity is independent of the molecular structure of material objects. 

When molecules are taken into account the concept of heat must be considered 
from a slightly different point of view, namely as one of the forms of 
transformation of the kinetic and potential energy of molecules resulting in the 
increase of internal energy alone. The problem is that the number of molecules 
contained in the least tangible amount of matter is very large (at least 107). Even if 
the potential energy of interaction is neglected and only the exchange of kinetic 
energy at molecular collisions taken into account, the problem remains very 
complicated. Treating this problem in detail Boltzmann found that a solution can 
be obtained if we take into account the statistical properties of collections of large 
numbers of objects. 

Statistical properties constituted a completely new element in the description of 
mechanical systems. The behaviour of classical mechanical systems is uniquely 
determined by the laws of mechanical motion which are derived from one basic 
principle known as the principle of least action (see Appendix 10.1 ). The 
Hamilton or Canonical Equations (ibid.) constitute one of the most general 
formulations of the laws of mechanical motion in the classical approximation. If 
we employ the concepts of the theory of probability then any mechanical state of a 
system becomes connected with a certain probability. Whether extremely large or 
extremely small a probability is still a probability! It took a long time for the 
crystallisation of the general idea that statistical elements do not change the 
deterministic laws of mechanical motion but are connected with a completely 
undetermined nature of initial conditions (coordinates and momenta at time t = 0). 

The basic idea of statistical thermodynamics is that the thermodynamic function 
reflecting the statistical properties of macroscopic systems is entropy. That entropy 
is an additive function whilst the probability is a multiplicative one gives us a hint 
that such a relationship must be logarithmic. This will be exactly demonstrated by 
the Boltzmann - Planck theorem presented below. A function S (which is 
proportional to the logarithm of probability) will then be used in the derivation of 
the most probable distribution. Analysing this distribution we shall come to the 
important conclusion that the differential of the function S is similar to the 
differential of entropy as the latter appears in the first law of thermodynamics. 
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1.1.1 
The Boltzmann - Planck theorem 

Suppose we have two non-interacting systems A and B (e.g. two widely separated 
stars) with the probability that the system A is in the state 'I' is W1• Similarly, the 
probability that the system B is in the state '2' is W2. The absence of interaction 
between the systems 'A' and 'B' means that the state of 'A' is independent of the 
state of 'B', i.e. W1 and W2 are independent variables. The probability of the joint 
occurrence of the system A being in the state ' I ' and the system B being in the 
state '2' then is: 

(1.7) 

Let us denote some additive property S related to the probability, Was: 

S=f(W); 

(1.8) 

Accordingly: 

(1.9) 

The partial derivative of W with respect to W1 according to (I. 7) is W2, therefore 
differentiating f(W) with respect to W1 yields: 

( 1.10) 

and with respect to W2: 

(1.11) 

Differentiating any of these equations, for example ( 1.10), for a second time 
crosswise we find that: 

However, according to the preceding equation the last partial derivative is 
W1(dj!dW), therefore: 

aif = df +WW dzf = df +W dzf 
aw,aw2 dW 1 2 dw 2 dW dW 2 

(1.13) 
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However, because events '1' and '2' are independent (1.13) must be zero: 

Integrating this equation we obtain initiall/: 

and then: 

df 

dW 

k 

w 

f =klnW +k' 

(1.14) 

(1.15) 

(1.16) 

The second integration constant, k ', depends on the way in which we define the 
probabilities. If we assume k' to be zero then for S = 0 we get W = 1, which at first 
sight is a strange probability for the lowest amount of entropy. However, the 
probability of the state of a system is not necessarily the ratio of the number of 
events favouring its realisation to the number of all possible events. In systems 
containing large numbers of particles it is even practically impossible to estimate 
the number of all possible events. Therefore, instead of the usual probability 
normalised to unity, the so-called thermodynamic probability, W, has been 
introduced which is just equal to the number of events favourable to the realisation 
of a given state. Zero value of S (with k '= 0) corresponds then to a system which 
can be realised in just one way (W = 1), i.e. the lowest possible probability. Under 
these assumptions we have: 

s 
S = f = k In W or W = e k ( 1.17) 

If we identify S with entropy we can then say that the most probable state 
corresponds to the state characterised by a maximum in entropy. Maximal entropy 
of a system possessing a constant amount of internal energy corresponds to a 
minimum of free energy and hence to the state of equilibrium. The observed 
properties of a macroscopic system in such a state (temperature, volume, energy, 
etc.) must in some way be connected with molecular parameters. This relationship 
is obtained by deriving the most probable distribution law. 

2 Equation ( 1.14) can be converted into the first-order differential equation (llx)(dyldx) + y = 0. 
the solution of which has the form y = klx. A clue to this result follows from the fact that the 
derivative d.¥1dx must have dimension [vlx]. 
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1.2 
The Maxwell - Boltzmann distribution law 

One of the most important macroscopic parameters is, of course, energy. The 
energy of a system is defined if all coordinates and momenta of the molecules are 
known. This knowledge is, however, mostly redundant: it is quite sufficient to 
know the law governing the distribution of molecules over the main variables of 
statistical mechanics and these are the coordinates and momenta. 

Suppose we have some number of fixed energy states that may be populated by 
molecules. A distribution law can be defined in the form of a Table: n 1 particles 
have the energy ci, n2 have the energy c2, and so on; finally n1,1 have the energy cM. 

There are N particles in total. We may say that molecules are distributed among M 
cells in a certain way. A given macroscopic state of a system (a macrostate) can 
be achieved by an apparently very large number of arrangements of molecules 
over the cells. Each such arrangement we call a microstate. The thermodynamic 
probability of a given macrostate can then be defined as the number of microstates 
(Boltzmann called them 'complexions') in which this macrostate can be realised. 
According to Boltzmann, the thermodynamic probability of the macrostate with 
given n 1, n2, . . nM (which defines the total energy as E = Ln,Ei), can be computed 
similarly to the calculation of the number of ways in which N passengers can be 
distributed among M boats having n1, n2, n3, ... nM individual seats. The solution of 
this problem is well known: 

N! 
W=----- (I. I 8) 

(One must bear in mind that O! = I, so there is no mathematical problem if some 
energy levels (or boats!) remain unoccupied; see also Appendix 10.6). The 
function S of such a state is then: 

M 

S = k ln W = k ln N ! - ~)n n, ! ( 1.19) 
i=I 

Using the Stirling formula lnN! zMnN- N (which will not be correct for small 
individual n,) we get: 

[ lvf lvf) [ M ) S = k N In N - N - ~ n, Inn, + ~ ni = k N In N - ~ n1 Inn, ( 1.20) 

Let us find now the set of n1> n2, ... n1v1, corresponding to the most probable 
distribution which must correspond to the maximum of S. 

If the statistical function Sis identical with entropy then the most probable state 
is identical with the state of equilibrium. Formal thermodynamics defines the state 
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of equilibrium as corresponding to an extremum of a thermodynamic potential. For 
a system completely isolated from the outer world i.e. when the total energy is 
constant and the number of particles is constant, then the entropy plays the role of 
thermodynamic potential and the extremum of entropy corresponds to the state of 
equilibrium. 

The problem of a conditional extremum of some function is solved by the 
method of the calculus of variations3 called the Lagrange method of undetermined 
multipliers. The conditions of conservation of energy and number of particles we 
write as: 

In,= N =canst (1.21) 

I n,E, = E =canst (1.22) 

The third equation required is the above expression for the function S: 

S=k( NlnN- ~n, Inn,] (1.23) 

The most probable distribution corresponds to zero variation of this function. 
The variations of N and E are also zero and may be multiplied by any finite 
multiplier (-a. and-~, for example): 

-axoN=-ax In, =0 (1.24) 

-13 x 8£ = -13 x In, E, = 0 (1.25) 

To these equations we add the variation of the function S: 

i5S = kO( N In N · ~n, Inn, Jc -k L [On, Inn, + n,i5(1n n, )]= O (1.26) 

The term n,8(lnn;) = 1 and usually ln(n,) >> 1, which means that the condition 
( 1.26) can be written as: 

- Ion, Inn,= 0 

Summing ( 1.24 ), ( 1.25) and ( 1.27) we obtain: 

- I(Inn, +a+l3E, )8n, =0 

3 Some explanations concerning variational problems are given in Appendix I 0.1 

( 1.27) 

(1.28) 
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The vanat1ons on, being non-zero (see Appendix 10.1 ), means that the 
expression in brackets/or each i must be zero: 

Inn, +a+ [3E, = 0 (1.29) 

This equation defines the most probable distribution of molecules over energy 
levels which is known as the Maxwell - Boltzmann distribution. It can be written 
in an exponential form as: 

n = e-(a +{Jc,) 
I 

The parameter a can be found directly from the normalisation procedure: 

l:n, = N = e-aLe-/Jc, 

Accordingly: 

a = - In N + In I e -Po; 

(1.30) 

( 1.31) 

(1.32) 

It is convenient to introduce the constant A into the distribution law (1.30) such 
that: 

A -a N -e -
- - l:e-flE, ( 1.33) 

The sum: (l .33A) 

is called the partition function (Zustandsumme or statistical sum). It is one of the 
most important inventions of statistical mechanics. It will become obvious later 
(p. 19) that it represents the effective number of accessible states. Using partition 
functions the Maxwell - Boltzmann distribution law can be written as: 

N e-po, n, 
M ( 1.34) 
l:e-[3E, 

1=1 

The expression for entropy in terms of partition functions can be obtained in the 
following way: Substituting n, under the logarithm in (1.23) by its value from 
(1.30) we have: 

S ~ k( NlnN - ~n, Inn,)~ k( Nin N +a ~n, +~Ln,o,) (1.35) 

Taking into account that Ln;E, = E we get: 
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S=k(NlnN+aN+IJE) ( 1.36) 

Writing a in terms of partition functions we obtain: 

( 1.3 7) 

M 

i.e. S = kN In L e-~E, + IJE (1.38) 
1~1 

In many books on statistical mechanics one can find 'demonstrations' of the 
identity of the statistical function Sand entropy. These demonstrations are usually 
solutions of the problem: 'what might be the parameter 13 of the Maxwell -
Boltzmann distribution and what relationship exists between partition functions 
and thermodynamic functions if we assume such an identity?' In fact, the identity 
of the statistical function S and entropy should be considered as an empirically 
based postulate similar to the first law of thermodynamics. The empirical 
observations leading to this postulate are of a very general kind: the properties of a 
macroscopic system at equilibrium are constant to a very high degree of precision. 
The basis of this argument is given in Section 2.2 of the next Chapter. 

The parameter 13 and relationships between thermodynamic and partition 
functions are found by comparing partial derivatives of the entropy and the 
statistical function S. In formal thermodynamics entropy is defined in a differential 
form ( l .4a). Therefore it will be sufficient to show that the complete differential of 
the function S is similar to the complete differential of entropy. Taking into 
account the work done against the pressure and 'chemical' work connected with 
the changes in numbers of particles the differential of entropy can be represented 
as (see (1.5)): 

dS = dE + pdV - µdN 
T 

(1.39) 

When differentiating the statistical function S ( l.3 8) we notice that it is 
obviously a function of the energy E and of the number of molecules, N (hence it 
will contribute to chemical potential). It is also an explicit .fimction of volume 
because the upper index of summation, M, (the number of cells) is directly 
proportional to the volume of the system. Accordingly, the complete differential of 
the function Scan be written in a form similar to the differential of entropy4: 

o In z ( ) dS = klJdE + kN--dV + k In z dN av (1.40) 

4The energies E, are not variables but fixed energy levels, the total energy being dependent on the 
distribution of molecules over these levels. 
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in which z is the part1t10n function (l.33A). Comparing (1.39) with (1.40) we 
notice that k~dE is obviously an analogue of the term dEIT. Hence the coefficient 

~is: 

~ = I/kT (1.41) 

The last term in (1.40) corresponds to the term -~tdNIT of the formal 
thermodynamic expression ( 1.39), therefore: 

M 

k In L::e-Jle, = -µ/T (1.42) 
1=l 

M 

i.e. µ = -kTln L e-Jle, = -kT In z ( 1.43) 
1=l 

In order to show complete identity between thermodynamic entropy and the 
statistical function S, the second term in ( 1.40) must be shown to be an analogue of 
the term pdVIT: 

a[1n I e-!3E,) 
kN i=I 

av 
p 

T 
(1.44) 

This allows us to express the pressure as a function of temperature and of the 
volume derivative of the partition function: 

M 

din Le-l3E, 

p=NkT i=I ( 1.45) 
dV 

which is the equation of state of the considered system. 

An analytical form of this equation of state can easily be obtained for a continuous 
distribution (seep. 11 ). However, the differentiation in (1.45) can also be considered in terms of 
finite differences by taking into account that the dependence of the partition function on volume 
is due to the proportionality of the upper index of summation, M, to the volume of a system. The 
differential can be approximated by the difference between the sums with the upper indices M 
and M', the latter being slightly higher: 

M M M' 

dLe-Jle, = L::e-Jle, - L::e-Jle, (1.46) 
l=l l=l 1=! 

The differential of volume can be expressed in terms of the density of states (M/V): 

dV = (V/M)(M' -M) (1.47) 

The equation of state can therefore be written as: 
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( 1.48) 

It is not difficult to see that when the density of states is very high, and the energy levels are 
separated by a vanishingly small distance, then the second ratio is I and we get the equation of 
state of an ideal gas. 

Assuming that the statistical function S is identical to the thermodynamic 
entropy implies that we have thus found explicit meanings of the parameters of the 
most probable (i.e. equilibrium) distribution: 

__ N __ e-E' !kT = Ae-E,lki' n, = M 

""" -E I kl' L.e , 
1=! 

( 1.49) 

The larger the number of realisations of a given system the larger is its entropy. 
This leads to another interpretation of the relationship between internal, free and 
bound energy (1.6): 

dE = dE bound + d£free 

In systems having larger thermodynamic probability, W, a larger number of acts 
of energy exchange occur within the system itself and correspondingly a smaller 
number of acts of energy exchange is left for interaction with the outer world. This 
means that the more random a system is the less work it can produce. 

Free energy, generally playing the role of thermodynamic potential, has 
different forms for non-isolated systems exchanging by heat and/or work with the 
environment. Systems of constant volume may exchange with the environment by 
heat but not by work. The thermodynamic potential for such systems is the 
Helmholtz free energy or Helmholtz function, F, (denoted also by A: from Arbeit, 
German for work - actually the maximal work): 

F=E-TS (1.50) 

According to ( 1.38) this potential can be expressed in terms of partition 
functions as: 

M 

"" /kl F =-kTNln L.e-"' =-kTNlnz ( 1.51) 
i=1 

When a shell separating a given system from the environment is not only 
transparent to heat but also is elastic, then the balance of internal energy includes 
the work of expansion/compression and the thermodynamic potential for such 
systems is the Gibbs free energy: 
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[ 
M l M din Ie-e,lkT 

G = F + pV = -NkT In Ie-E,lkT -V i=I 

i=I dV 
(1.5la)5 

The statistical mechanical interpretation of heat and entropy also elucidates the 
relationship between other forms of transformation of energy and their practical 
values. The highest amount of work will be done by the most non-random systems, 
such as mechanical devices built up from macroscopic parts. Indeed the efficiency 
of such devices approaches 99%. Other examples of systems of approximately the 
same efficiency are electric and electro-mechanical devices. In these cases the 
system performing work is the 'electron gas' and it might appear at first sight that 
such systems should not be efficient at all. However the work done by electrons in 
electric devices is connected with the correlated motion of electrons as a body 
under the action of the electric field (see also Section 1.6.4). The efficiency of a 
system is thus connected with the organisation of the motion of its parts. The 
efficiency of devices employing highly organised types of motion does not 
significantly depend on the magnitude of forces and potentials. Thermal engines 
employ the energy of a random molecular motion in the gaseous phase. The 
efficiency of thermal devices is usually small and depends on the magnitude of the 
driving force of thermal energy, i.e. the difference between initial and final 
temperatures of the system producing work ((T, - T1)/T;). High-temperature energy 
is therefore distinguished from low-temperature energy by being more efficient. In 
chemical reactions certain rules of interactions and redistribution of particles must 
be obeyed (for example the equation of the chemical reaction). Therefore, even at 
low temperatures the efficiency of the transformation of internal energy into work 
can be quite high (e.g. in biochemical reactions). 

The introduction of entropy as a function of state for equilibrium processes is 
often considered as the first part of the second law of thermodynamics. It can be 
shown that for non-equilibrium processes in isolated systems, for example 
involving the work done by non-potential forces (e.g. forces of friction), entropy 
may only increase. This second part of the second law of thermodynamics is 
usually written as the inequality: 

8Sz0 (1.52) 

in which the equality sign refers to the equilibrium processes. The entropy of an 
isolated system is thus (similar to time) a unidirectional coordinate (see also 
Section 2.2). 

' This equation, as well as equations expressing other thermodynamic functions in terms of 
partition functions, will be derived in Chapter 2 from the basic equations of canonical 
distribution. 
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1.2.1 
Continuous Maxwell - Boltzmann distribution 

The cell method of Boltzmann is (as we have seen) a very useful tool for the 
derivation of the fundamental formulae of statistical mechanics. However, from the 
point of view of classical physics a system of cells can only be considered as a 
model system. A transition to an infinitely small distance between energy levels is 
required by classical physics as a necessary step for the description of real objects 
(in fact we must perform a transition to very small but finite energy differences). 

When the transition to a continuous distribution is performed the probabilities 
cannot be calculated using methods based on combinatorics because the 
probability of the event that a molecule has some definite value of energy is zero. 
We must therefore consider the molecules having energy within a small but finite 
range, dc., around c.. 

In such cases the concept of phase space (see Appendix I 0.2) becomes very 
useful. The probability that a certain number of molecules possess energy within a 
narrow range equals the probability of a representative point belonging to a finite 
elementary volume in phase space. The Maxwell - Boltzmann distribution law 
defines the number of molecules having coordinates and momenta within the 
element dy = dp 1 dp2 dp3 dq 1 dq2 dq3 around the point p,q as: 

(1.53) 

In this expression we have separated the total energy of a particle c, (i.e. the 
Hamiltonian function H) into kinetic energy, p 212m (which is independent of the 
coordinates q), and potential energy U (which is independent of the momenta, p). 

The evolution of a system from one microstate to another is reflected in phase 
space by the movement (trajectory) of a representative point. Whilst the motion of 
particles in physical space is governed by the canonical equations the motion of 
representative points in phase space is controlled by rules derived from the well
known Liouville theorem. 

According to the Liouville theorem the volume occupied by a certain number 
of representative points is constant whilst its shape may change. (The exact 
demonstration of this theorem can be found in any of numerous books on statistical 
mechanics, and so will not be discussed here.) However, the truth of such a 
proposition can be shown by simple arguments: For any pair of geometrical and 
dynamic coordinates q,, p, we define the time derivative of the volume of phase 
space (y) as: 

dy d(drp dq ) d d dq. drp 
-= I I =dp -dq +dq -dp =dpd-' +dqd-' (1.54) 
dt dt I df I I df I I dt I dt 

According to the canonical equations: 
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dp, 

dt 

8H 

aq, 

dqj 8H 

dt ap, 
(1.55) 

Substituting the time derivatives in (1.54) and multiplying the first term by 
dq/dq, and the second term by dp/dp, we obtain the difference of identical second 
partial derivatives of the Hamiltonian function: 

dy d aH d aH 
== dp;dq, -----dqidp, ----

dt dq, ap, dp, aq, 
i.e. 

- d d [ a2 H - a2 H J- o - 'P, q, -
ap,aq, aq,ap, 

(1.56) 

The volume of the phase space containing representative points of a system that 
obeys canonical (Hamilton) equations does not change with time. It behaves like 
an incompressible fluid changing its shape but not its volume. This is one of the 
most general formulations of the laws of non-relativistic mechanical motion. 

In Chapter 2 it will be shown that a statistical description can be correctly 
applied to the systems of non-interacting units alone. In Maxwell - Boltzmann 
statistics such a unit is a molecule and its state must be independent of the state of 
all other molecules (similar to the way in which the state of system A was 
independent of the state of system B in the Boltzmann - Planck theorem). 
Statistical independence of molecules implies zero potential energy of interaction 
between them. One of the most often used approximations of gaseous molecular 
systems is the ideal gas in which statistical independence is achieved by assuming 
very large distances between molecules, making the potential energy of 
intermolecular interaction vanishingly small. 

Applying the Maxwell - Boltzmann distribution to such a system (U = 0) and 
integrating (1.53) over all possible values of coordinates within a vessel of volume 
V, i.e. from zero to ( V/ 13 , and momenta, p = ±oo, we obtain the total number of 
molecules N: 

JV JV JV +oo p; +oo P~ +oo p; 
N =A f dx f dy f dz f e-2;;;1<Tdpx f e -2mkrdp_v f e-2mkrdpo (I.57) 

0 0 0 -00 -00 -00 

The integration over coordinates results in the volume of the system, V. The 
integral over momenta is the well known phase integral of the kinetic theory of 
gases: 

+co +co +c0 p;+p~+p; 

f f f e lmk! dpxdpydp0 = (2nmkT) 312 (1.58) 
-C() -co -00 

We see now that the coefficient A in (1.53) and (1.57) is equal to: 
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A= N 1 
V (2nmkT)312 

(1.59) 

The analogue of a partition function for a mono-atomic ideal gas is, according 
to ( 1.59), proportional to volume: 

i.e. ( ) 3/2 
z,1111 = 2nmkT V ( 1.60) 

Unlike the partition function given by ( 1.33) the partition function zMH has the 
dimension [p x q]3. This comes from the integration in (1.57), which is actually a 
summation of Boltzmann factors multiplied by the corresponding elementary 
volumes of phase space. The coefficient A transforms the whole expression (1.53) 
to a dimensionless form - hence the dimension of the partition function. In 
modified Maxwell - Boltzmann statistics (see below) the dimensionless nature of 
the partition function will be restored. This, however, can only be done by 
introducing some elements of quantum mechanics. Using (1.60), the Maxwell -
Boltzmann distribution law can be written as6: 

I 2 

Ne-~L.r, 

dN = ( )3P dp 1 ••• dq, 
2nmkT -v 

( 1.61) 

Using the relationships ( 1.33), (1.43) and (1.51) obtained above we get: 

N 3 
a= - In - + - ln(2nmkT) 

v 2 
(1.62) 

( )3/2 µ = -kT In 2rcmkT V ( 1.63) 

F = -kTN In 2nmkT V ( ) 312 (1.64) 

Differentiating F with respect to volume we obtain the equation of state for an 
ideal gas: 

( (JFJ kTN - - -p--
av r v 

(1.65) 

If the velocity v (instead of momentum) is chosen as the main dynamic 
coordinate the expression for the distribution law will be somewhat different: 

6 An explicit Maxwell - Boltzmann distribution over energies can be obtained by expressing the 
modulus of momentum asp = (2mE) 112 and dp = (m/2E) 112dE; it can be conveniently derived 
employing the idea of an energy layer in the phase space of momenta, see Appendix 10.2.2. 



1.3 Calculation of most probable and mean values 17 

m 2 

_ ' -2kT'i,v, d d dN -A e V; ... q; (1.66) 

in which 

N ( J312 
A'=v 2~T (1.67) 

This type of distribution law will presently be used in order to obtain the most 
probable and mean values of molecular velocity 

1.3 
Calculation of most probable and mean values 

One of the most common applications of distribution laws is the calculation of 
average and most probable values. Maxwell - Boltzmann statistics is applicable to 
molecules and therefore it is possible to obtain mean molecular properties such as 
mean molecular velocity, energy etc. These parameters are of considerable 
importance in the kinetic theory of gases and gaseous reactions. 

The most probable modulus of velocity can easily be obtained if we write the 
distribution law in spherical coordinates in velocity space. Fig. 1.1 demonstrates 
that the element of volume in this space of velocities can be written as: 

dyv =v 2 dvsin8d8dcp ( 1.68) 

e 

Fig. I.I. Computation of the elementary volume of the phase space of velocities using spherical 
coordinates. Note that the vector dv is made to coincide with the diagonal of one face of the cube 
in order to simplify calculations 
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The distribution law with respect to velocities may then be written as: 

N ( m )312 _r:~ 
dN ==- -- e 2k 1 v 2dvsin8d8dcp x dyq 

V 2nkT 
(1.69) 

The density of distribution, i.e. the number of particles per unit volume in the 
space of coordinates (yq) is: 

d ( )
3/2 mv 2 

'N - N m - 2kT 2d . 8"'8,J ---- -- e v vsm w ucp 
dy q V 2nkT 

(1.70) 

Integrating this function over all angles in order to get a result independent of 
direction we get the distribution function over velocities as: 

( )
3/2 mv 2 

J(v)dv==ffdN ==4nN _!!!__ e-mv2dv 
Ocp dy q V 2nkT 

(1.71) 

Fig. 1.2 shows several graphs of j{ u) corresponding to different temperatures. 
These distribution curves have maxima that are shifted to higher velocities at 
higher temperatures. The curves are obviously asymmetric and the most probable 
value of velocity corresponding to a maximum does not coincide with the mean 
value (i.e. the weighted average, see below). 
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Fig. 1.2. Density of the Maxwell - Boltzmann distribution over the modulus of molecular 
velocity 
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The maximum ofthis function can be found from the condition: 

( mu 2
; mu'( ' d 2 -m - -ill m 3 2 ) - 0 - v e -e --v + v -

dv kT , 
( 1.72) 

The most probable molecular velocity is then: 

Ump =~2:T (1.73) 

The mean values (mathematical expectations) are found as weighted averages. 
For example the mean molecular velocity is found to be: 

'l:v,n, 
(v)=-''l:n, 

'l:v,n, 
---='l:v,: 

N I 

(1.74) 

in which n; is the number of molecules possessing velocity V;. The ratio n,!N can 
be considered as the probability W; (normalised to 1) of a particle possessing the 
velocity v,. In general, for a discrete distribution, the mean value of the property U 
can be calculated to be: 

For example, the probability for a molecule to possess energy £, is: 

W = '!_:__ = ~ e -£1 I kT 

I N N 

Taking into account that N = L,n, = AL,e "kT we may write: 

e -£,I kT 

W, = ~ -£ lkT 
~e, 

and 
E e-£, I kT 

(i::;) =I -oJkT e , 

(1.75) 

(1.76) 

( l.77) 

The factor exp(-£,/ k7) can be taken to be the weighting factor of the state with 
energy £,. The partition function in the denominator is then the sum of weighting 
factors of all states in which a molecule may reside. In other words, the partition 
function reflects the effective number of accessible states taking into account their 
probabilities. 

When the distribution law is given analytically (as a continuous distribution) the 
mean value ofa property U is defined as: 
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(1.78) 

The energy of a molecule (E) is usually expressed as a function of the basic 
variables of statistical mechanics, namely coordinates and momenta. Therefore the 
property U must also be expressed as a function of these variables. For example, 
let the property Ube the energy of the translational motion of a molecule along the 
coordinate x. The mean value of this property is then: 

. 2 mX 2 mj/ m± 1 

fTe-mdx fe-mdy fe-2/Jdz 

m~ n~ ~2 
(I. 79) 

f e-2krdx f e-2krdy f e-2krdz 

We need to evaluate just two integrals: 

m:(1 

f e - 2kr dx and 

·2 . 2 mx fmx - 2krd· --e x 
2 

(1.80) 

The first integral is tabulated and equals: 

Je-~;dx= Je-a'y'dy= ~ =~2~T (1.81) 

The second one is integrated in the following way: 

f ~-;,:; dt = kT f mx2 e -;~': dt = g;kT f a2x2e-a'x' dt = (k~ +f y2e-r' dy 
2 2kT _!!I_ ..;m/2 -x 

2kT 

(1.82) 

The last integral in (1.82) is tabulated and equals (n/4) 112 , therefore: 

(l .82a) 

which results in: 

( 1.83) 

The same result can be obtained for any other coordinate that reflects equal 
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distribution of energy among the translational degrees of freedom (kT/2 per 
degree). A similar result can also be obtained for energy per rotational or 
vibrational degree of freedom. These results reflect the principle of equi-partition 
of energy. This principle is only valid in those cases in which energy is a 
homogeneous function of the squares of coordinates and/or momenta (dynamic 
and geometric coordinates) as in the examples considered above. 

1.4 
Indistinguishable molecules. The Gibbs Paradox 

The values of the total energy of a system, mean energy of a molecule, and other 
molecular parameters calculated using expressions derived above are in more -
or - less good agreement with the experimental data applicable to rarefied gases. 
However the values of entropy and heat capacity obtained from the formulae of the 
Maxwell - Boltzmann distribution as given above are wrong. The origin of this 
disagreement lies in an incorrect calculation of probabilities for systems of 
indistinguishable particles. Incorrect entropies of mixtures of gases are also 
obtained when we use the formalism of classical thermodynamics. This 
phenomenon is known as the Gibbs paradox. 

Suppose we have two moles of ideal gas in a vessel with a partition dividing the 
total volume, 2 V, into two equal parts. The entropy of any of these parts according 
to classical thermodynamics is: 

3 
S1 2 = R In V + - R In T + S0 , 2 

The total entropy of two moles of gas with a partition is therefore: 

S'=S1 +S2 =2RlnV +~RlnT+2S0 
2 

( 1.84) 

(1.85) 

After removing the partition we have two moles of ideal gas in double the 
volume. The state of the gas has not changed, but the entropy has changed: 

S" = 2Rln 2V + ~RlnT + 2S0 
2 

(1.86) 

The change in entropy of two volumes of a gas after removing the partition is: 

~s = 2Rln2 (1.87) 

No rational explanation can be given to this paradox by appealing to 
thermodynamics. Formally, this paradox disappears if we assume that the volume 
V in the above expressions is not the volume of a system but is the volume per 
mole. 
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The same paradox is observed when we use the statistical expression for 
entropy (1.38): 

leading to: 

2E 
S'=2kNlnN +2kNa+

T 
2E 

S" =2kNln2N + 2kNa +
T 

!J.S = 2kN In 2 

(1.88) 

(1.89) 

( 1.90) 

In this case the paradox disappears (as has been shown by Gibbs) when the 
probability W (1.18) is divided by N!, and this is equivalent to allowing molecules 
to be indistinguishable. 

It must at once be admitted, however, that molecules of different chemical 
nature are distinguishable! We shall return to this problem several times in this 
book. 

In a system of N indistinguishable molecules distributed over m energy levels 
the thermodynamic probability is thus given by: 

W= :::::--- (1.91) 
n1!n2!···nm! 

The statistical entropy then becomes proportional to the number of molecules: 

S =k lnW =kI(n, -n; lnn,)=kN -kI(n, lnnJ ( 1.92) 

The processes of derivation of the most probable distribution law for systems of 
distinguishable and indistinguishable molecules is practically identical because the 
two expressions for entropy differ by a constant term (klnN!), the variation of 
which is in any case zero (see Table I. I). The entropy alone ought to be calculated 
according to different equations: 

S=kNlnie-E,/kT +E/T (distinguishable) (l.93) 

S = kN In Ie-E,/kr + E/T-k In N! (indistinguishable) (l.94) 

Conventionally, however, entropy is calculated using the same equation (1.93) 
for both types of systems and then defining the partition function for a system of N 
indistinguishable particles so as to contain the factor (l/N!): 
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N N 

z = ZMH = (2nmkT)3N12 ~ 
N! N! 

(1.95) 

Such a partition function can also be represented (using the Stirling formula) as 
the N-th power of a modified molecular partition function: 

Z=z:, =[(2nmkT)312 e:r (1.96) 

Thus the indistinguishable nature of molecules results in the addition of the 
factor e to the molecular partition function. This modification removes the Gibbs 
paradox but another modification is still required in order to get the partition 
function dimensionless (as it is when derived by the cell method of Boltzmann). 

Table. I.I. Derivation of the distribution law and expressions for entropy in terms of 
partition functions in the cases of distinguishable and indistinguishable molecules 

Entropy of a system of Derivation of the Entropy of a system of 
distinguishable particles distribution law indistinguishable particles 

S = kN lnN-kL:n, Inn, S = kN- kL:n, Inn, 

8S= -k L:(lnn, + 1)8n1 = 0 

8N (-a)= -aL8n, = 0 

8E (-(3) = -(3 L:i;,8n1 = 0 

L: (In n, + I + a + (3i;,)8n, = 
0 

In n, + 1 + a + (3i;, = 0 

for n, >> I 

n1= exp(-a - (3i;,) 

Substituting n,from the Substituting n,from the 
distribution law distribution law 

S= kNlnN+ kNa +BE S = kN + kNa + BE 

Defining a and (3 

L&, n, = E 

L:n, = N = e a Z:e ElkT 

a= - lnN + lnL:e ~· 

S = k!v1nZ:e •lkT + EIT (3 = IlkT (from as1aE) S= kN(l-lnN+ lnL:e •1k1)+ EIT 
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1.5 
Phase volume and the number of quantum states 

The partition function of a continuous Maxwell~ Boltzmann distribution is given 
by (1.60), and in modified form by (1.96) and has the dimension (p x q)3N which is 
the result of integration over phase space (1.57). This dimension is the dimension 
of action to the power 3N which suggests that the quantum of action, i.e. the 
Planck constant, should be used as a conversion denominator. A dimensionless 
partition function can be obtained if we divide the element of phase space dy in 
(1.53) by h3 . In doing this we convert the volume of phase space into the number 
of quantum states. Let us illustrate this proposition by the example of the harmonic 
oscillator. The phase space of a one-dimensional harmonic oscillator (see 
Appendix 10.2.1) is two-dimensional and can be represented graphically on a 
plane (see Fig. 1.3). 

p 

q 

Fig. 1.3. Phase space of one-dimensional harmonic oscillator 

The ellipses correspond to equi-energetic surfaces and the area between them 
corresponds to the volume of phase space having dimension [p x q]. For a classic 
harmonic oscillator these two ellipses can be separated by an arbitrarily small 
space, but for a quantum harmonic oscillator this separation cannot be smaller than 
h. Such a space can be considered as corresponding to a single quantum state of 
the one-dimensional harmonic oscillator or to a cell in its phase space. For a three 
dimensional oscillator the corresponding elementary volume is h3• By dividing the 
volume of phase space !iy by h3 we get the number of quantum states of a particle 
oscillating in three dimensions: 

(1.97) 

Identical results can be obtained for a quantum particle (whose energy is a 
multiple of h) moving in three-dimensional space. The corresponding translational 
partition function for a system of N indistinguishable particles then becomes: 
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N N [ 3/2 JN Z=~=(2nmkT)JN12_V_= (2nmkT) eV =zN(I.9&) 
h3N N! h3N N! h2 N 

The number of quantum states, i1Q, of such a system of indistinguishable 
molecules is related to the volume of phase space i1r as7: 

(1.99) 

What particles can we take as distinguishable and what as indistinguishable? As 
mentioned above particles of different chemical nature are distinguishable8. In 
general particles are indistinguishable if they cannot be 'labelled'. Chemically 
identical particles are indistinguishable if they move freely within the whole 
volume of a system. In such a case we cannot say whether two particles exchanged 
sites or not because it does not bring about any change in the physical state of a 
system. 

Even a system of chemically identical molecules becomes a system of 
distinguishable particles if such an exchange is not allowed. For example, when 
molecules are fixed in the cells of a crystal lattice they become distinguishable 
because each molecule can be labelled by the coordinates of its cell. The only 
necessary requirement is that they should not migrate from cell to cell. Such 
systems are called systems of localised states. A useful model system called the 
ideal crystal (see Chapter 3) and approximating the state of crystal solids at low 
temperatures is a system of localised states. Even at temperatures close to the 
melting point the state of a crystal solid can be considered as a system of localised 
states: the only requirement is that molecules do not migrate between the cells 
whatever kind of motion they perform within a cell. The partition function of a 
system of N molecules confined to their cells (within the volume VIN each) is 
distinguished by the absence of the factor e: 

( 1.100) 

We shall see later (Chapter 4) that in theories of the liquid state an interpolating 
factor is introduced into the partition function in order to take into account the 
indistinguishable nature of molecules in liquids. 

7 When each molecule possesses f internal degrees of freedom the correct formulae for the 
number of quantum states are: w = !<.ylh(3 'i! and t<.n = SflN!hN(3 'i! 

8 Even molecules differing by nuclear mass number should be considered as distinguishable if 
the reaction or process in question selects such molecules. 
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1.6 
Quantum statistics 

It is important to distinguish between the quasi-quantum corrections to 
Maxwell - Boltzmann statistics described above and quantum statistics connected 
with the names of Bose, Einstein, Fermi and Dirac as well as statistics based on the 
quantum mechanical Schrodinger equation instead of the canonical equations of 
classical mechanics. 

Statistics employing the Schrodinger equation differs from Maxwell -
Boltzmann statistics in the same way as quantum mechanics differs from classical 

mechanics. It allows for a more general description by taking electronic systems of 
molecules into consideration. However, it does not bring anything fundamentally 
new to the statistical description of molecular systems. 

Bose - Einstein and Fermi - Dirac quantum statistics take into account special 
effects connected with an additional variable which makes some quantum states 
distinguishable, namely the spin, S, of a particle. An energy level can then be 
divided into cells corresponding to different projections of spin on some spatial 
axis, S0 • 

Regarding the spin, there are two different types of particles. One class is made 
up of particles possessing integral spin (S = 0, I, 2, etc.) and the second class 
comprises those particles with ha(f-integral spin (S = 1/2, 3/2, ... etc.). 

According to the Pauli exclusion principle a cell corresponding to a given 
quantum state cannot contain more than one particle of the second kind, whilst any 
number of particles of the first type may be in the same quantum state. Two 
different modes of the filling of cells in an energy level are thus defined 
corresponding to two types of quantum statistics, namely the Bose - Einstein 
statistics of the particles with integral spin (bosons) and Fermi - Dirac statistics of 
the particles with half-integral spin (fermions). 

The majority of elementary particles are fermions: electrons, protons, neutrons, 
positrons (s = I /2), etc., as well as compound particles containing an odd number 
of fermions (the molecule HD, the deuterium atom: the electron + deutron pair). 
The elementary particles possessing integral spin are photons (s = 1 ), n- and K
mesons (s = 0). The compound particles containing an even number of fermions 
are also bosons, for example the hydrogen atom (the electron + proton pair), the 
molecule H2, the atom of the isotope 4 He (two protons, two neutrons and two 
electrons). However, the atoms of the isotope 3He are fermions. 

The distinguishable nature of states characterised by different projection of spin 
requires a specific mode of calculation of probability. New distribution laws can 
thus be derived which explain a number of phenomena having no explanation 
within the modified Maxwell - Boltzmann statistics. 
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1.6.1 
Bose - Einstein statistics 

According to the basic assumption of Bose - Einstein statistics any number of 
particles may be in a given quantum state, i.e. all particles having the energy E, 

may be placed in one cell leaving all other cells (belonging to this level) empty. 
Let us start with the system of N particles, having total energy E. The energies 

of the particles are E 1 ... En" i.e. particles are distributed over m energy levels. What 
is the number ways of distributing n, molecules among these z, cells? Equivalent 
problems are: in how many ways can n, articles be distributed among z, 
compartments, or in how many ways can the integral number n, be represented as a 
sum of z, integral terms? The answer is: 

W = (n, +z, -1)! 
' n,!(z, -1)! 

(1.101) 

The overall probability of a system is the product of the probabilities of the 
distributions within the levels: 

w =TI w =TI (n; + z, -1)! 
I=I I I=I n,!(z, -1)! 

(1.102) 

The entropy then is: 

S = k In W =I In (n, + z, - l )! 
i=l n,!(z, -1)! 

(1.103) 

Using the Lagrange method, the following distribution law can be derived for 
the Bose - Einstein model: 

z -1 
n =--'---

' ea+JlE, -1 
( 1.104) 

The meaning of the multipliers a and B are again found from the partial 
derivatives of entropy as: 

µ=-ka; 1/T=k~ (1.105) 

in whichµ is chemical potentia\9 . The entropy is then given by: 

S=-~+--k2:(z, -l)ln 1-e kT 
N E m [ l'~£,) 
kT T ,=1 

(1.106) 

9 Remember that in Maxwell - Boltzmann statistics the coefficient a, and hence the chemical 
potential, (in ( 1.32), ( 1.43), ( 1.62) and ( 1.63)). have been derived from differently computed 
probabilities. 
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The analogue of the partition function in Bose - Einstein statistics is: 

(1.107) 

The factor (z, - I) can be considered as a statistical weight or degeneracy of the 
energy level. The number of cells, zh in Bose - Einstein statistics is calculated 
similarly to the number of quantum states in an energy layer. 

The volume of the energy layer of the phase space for an ideal gas 
corresponding to i:: = E - E + dE (Equation (10.77), Appendix I0.2.2) is: 

(1.108) 

The number of quantum states according to (1.99) is dD. = df'(E)IN!h3N. For a 
gas of particles with S = I each quantum state resolves into 3 states corresponding 
to S2 = -1, 0 and + 1. Therefore: 

(l.109) 

Usually this value is much higher than 1, therefore the distribution law ( l. l 04) 
may be written as: 

n, ~ 
z, 

(1.110) 

e kr -1 

It must be mentioned that the case of photons is a specific one. The laws of 
black body radiation (see Section 1.6.5) imply that the degeneracy of these 
particles is 2 and not 3 as should be expected from the value of their spin S = I. 
Usually the double degeneracy of photons is explained by referring to the left and 
right polarisation of light. However this degeneracy must be connected with the 
spin-degeneracy of photons otherwise the total number of indistinguishable states 
would be 2 x 3 = 6. A possible explanation of this phenomenon is that these 
particles do not have a rest mass and are always moving in a straight line. They 
define therefore a natural direction in space reducing thus the number of states to 
two, with the spin in the direction of motion and in the opposite direction 
corresponding to the left and right circular polarisation. The case of zero 
projection of spin on this axis corresponds to a linear polarisation that can always 
be represented as a superposition of left and right circular polarisation. 
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1.6.2 
Fermi - Dirac statistics 

If we have z; cells and n; particles in the i-th energy level and cells should not 
contain more than one particle, then the number of ways of filling such a level is: 

W = __ z_:,_! __ 
' n;!(z; - n;)! 

(1.111) 

The number of ways of filling a system of such levels m an ideal gas of 
fermions is given by: 

11 11 z,! 
W= W = 

I I ( )' , , n;. z, -n, . 
(1.112) 

Applying the Stirling formula we get the entropy as: 

S = k L [z; In z, - n, Inn, -(z, - n;) ln(z, - n,)] (1.113) 

After a variational procedure we obtain the Fermi - Dirac distribution: 

(1.114) 

The meaning of the multipliers a and ~ is the same as in Bose - Einstein 
statistics, namely: 

-µIT=ka; l!T=k~ (1.115) 

The Fermi - Dirac distribution (1.114) may then be written as: 

z, 
n =-----

' e -(µ-£, )! kT + l (1.116) 

Let us now find the limits of applicability of these three types of statistics. 

1.6.3 
Comparison of the three types of statistics 

The distribution laws of Maxwell - Boltzmann, Bose - Einstein and Fermi - Dirac 
statistics can be written in one general form: 

g 
n, = e-(µ-£;)tkT + 8 ( 1.117) 

and the parameters g and 8 applicable to each type of statistics are given in 
Table 1.2. 
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Table 1.2. Parameters of Maxwell - Boltzmann, Fermi - Dirac and Bose - Einstein distributions 

Distribution 

Maxwell - Boltzmann 
Bose - Einstein 
Fermi - Dirac 
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Fig. 1.4. Maxwell - Boltzmann, Fermi - Dirac and Bose - Einstein distributions computed for 
small negative chemical potential (A, µ = -0.6k7) and large positive chemical potential (B, 
µ = +6k7). As follows from (I.I I 0), Bose - Einstein distribution does not allow positive µ 

It therefore follows from this equation that both quantum statistics approach the 
Maxwell - Boltzmann distribution law when exp(-(µ-E)/k7) >> I. The Bose -
Einstein distribution exhibits the steepest decrease in the number of particles with 
increasing energy (Fig. I .4A). When lµ/kll ~ I, the Fermi - Dirac distribution 
curve shows a gradual decrease with a slope smaller than that of either the 
Maxwell - Boltzmann or the Bose - Einstein curves (Fig. l .4A). When the 
chemical potential is positive and much higher than kT the Fermi - Dirac 
distribution exhibits a step at around the value of the chemical potential (the so
called Fermi energy) which occurs within 2kT (Fig. l .4B). 

The same curves can be interpreted from the point of view of the probability of 
finding high or low energy particles in corresponding ensembles. The particles of 
low energies are most frequently met with in a Bose - Einstein ensemble. Fermi -
Dirac ensembles are most rich in particles of higher energies, whilst Maxwell -
Boltzmann ensembles occupy a middle position between the two quantum 

statistics. As a consequence, the pressure of a gas of bosons must be lower than the 
pressure of a gas of Maxwell - Boltzmann particles which, in its turn, is lower than 
the pressure of a gas of fermions. It can, however, be shown that the product p Vin 
all three statistics is equal to (2/3)<E>. According to the above, both quantum 
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statistics approach classical (Maxwell - Boltzmann) statistics when the 
exponential e-(µ- E)lkT is much higher than 1. This condition must hold for any 
energies including E = 0: 

exp(-µ/ kT)>> I (1.118) 

Taking into account the factor g in (1.117) and us mg ( 1.98) the chemical 
potential per molecule of ideal gas can be written as: 

- :T = lnH 2n:,kT J" e:] = In[ g( 2n:,kT re~] (1.119) 

Hence Maxwell - Boltzmann statistics can be employed if: 

µ ( J3/2 - kt 2nmkT kT 1 e = g 2 e- >> 
h p 

(1.119a) 

Introducing numerical values of constants into (1.119) at atmospheric pressure 
( 1.013 x 106 dyne cm-2) we get: 

0.0259gM312 T 512 >> 1 (1.120) 

in which M is the molar mass. For 4He atoms (S = 0, g = 1) at T = 4.2 K, the 
product (1.120) equals approximately 7.5 which is considerably higher than 1. 
Therefore the gas of He atoms at such temperature and pressure cannot be 
described by Maxwell - Boltzmann statistics and Bose - Einstein (for 4He) or 
Fermi - Dirac (for 3He) distribution laws must be used. All other molecular and 
mono-atomic gases are described by Maxwell - Boltzmann statistics. On the other 
hand, electrons (MHe/ Me ~ 7300) in metals form a kind of a gas, the state of which, 
even at high temperatures, is described by Fermi - Dirac statistics. 

1.6.4 
Degenerate ideal gas 

The state of a gas in which it cannot be described by classical statistics is called 
degenerate: a completely different concept than the degeneracy of energy levels 
although denoted by the same word. The degree of degeneracy of a gas is then 
defined as the ratio of 1 to exp(-µ/k7), i.e. it is characterised by the factor 
exp(µ/k7). The chemical potential of bosons cannot be positive: in order to comply 
with positive n, for low energy particles with E ~ 0 it must be negative or zero. In 
the latter case the population of the lowest energy level (E = 0) is infinitely high. 
Fig. 1.5 shows that when µ approaches zero (i.e. very small negative values) the 
relative population of the level E = 0 approaches unity leaving all other levels 
empty. 
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Fig. 1.5. Variation of the shape of Bose - Einstein distributions with decreasing chemical 
potential 

Bearing in mind that for an ideal gas the chemical potential is proportional to 
f 12 (see (1.119), above) it can be guessed that with decreasing temperature the 
chemical potential might approach zero and a major fraction of particles will then 
occupy the zero level. They will all be in one quantum state (occupy one cell) and 
this state can be realised in one way. The entropy of such a state must therefore be 
zero. This phenomenon is called Bose condensation. It can be shown that a finite 
temperature exists below which Bose condensation becomes possible. Bose 
condensation explains the singular behaviour of some properties (heat capacity, 
heat conductivity) of 4He (bosons) at 2.19 K which is not observed for 3He 
(fermions). 

A completely degenerate gas of fermions corresponds to a different state, 
namely to a consecutive filling of cells (not a statistical distribution I) starting from 
the cell E = 0 (p = 0) up to the cell with maximal energy or momentum (pm). The 
latter can be found from the normalisation condition of the number of quantum 
states filled by particles. The integral of the element of phase space f...f dq ... dp 
being multiplied by the degeneracy g = 2S + 1 and divided by h3 yields the number 
of available quantum states. If the upper limit of integration is Pm then the number 
of quantum states equals the number of particles in a completely degenerate gas of 
fermions. In spherical coordinates an element of phase space of ideal gas can be 
written as (compare with (1.68)): 

(1.121) 

The number of cells filled by particles is then: 

The maximal momentum for a gas made up of particles with S = 112 and g = 2 is 
then: 
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-h 3N ( )

1/3 

Pm - 8n V (1.123) 

The energy of such a gas is: 

and substituting Pm from (1.123) yields: 

( )
5 ( '2/3 

E = 4n V h5 3N = 3Nh 2 3N J 
5mh3 8n V 1 Om 8n V 

(1.125) 

Note that the expressions (1.124) and ( 1.125) do not depend on temperature. 
The partial derivative 3E/3T (the heat capacity) therefore does not exist. The 
consecutive filling of cells in a completely degenerate gas of fermions corresponds 
to the condition n; = z;. In such a case the thermodynamic probability is 1 and the 
entropy is zero: 

f1 z,! 
W= =l· 

'( )' ' , n,. z, -n, . 
S =klnW=O 

We see that at temperatures approaching zero the entropy of a gas consisting of 
either fermions or bosons approaches zero. The Nemst theorem can thus be 
derived from the basic ideas of quantum statistics. Quantum statistics gives an 
explanation of this phenomenon: it is a consequence of complete degeneracy of 
any system of simple particles having no internal degrees of freedom. In such a 
state thermodynamic properties cease to exist, which is to be expected for a 
system having only one possible way of realisation (W = 1). Such a system does 
possess, however, mechanical properties. For example its pressure can be 
calculated from: 

p='!:_ E =!!_(l_)213(N)s13 
3 V Sm 8n V 

(1.126) 

Such completely degenerate systems may also possess electric and magnetic 
properties but not thermodynamic properties. Anything undetermined and 
indefinite vanishes at T = 0. Strictly speaking the state of complete degeneracy is 
achieved for an ensemble of any particles at T ~ 0. However, as has been 
mentioned above, electrons in metals, due to their low mass and high density 
(NIV), form a practically completely degenerate gas at room temperature 
(exp(µ/k7) ~ 104 at T = 300 K). This explains the high efficiency of electric and 
electro-mechanic devices: the working body - the gas of electrons - does not have 
any thermodynamic properties and its motion is highly organised. 



34 Maxwell - Boltzmann Statistics 

1.6.5 
Applications of Bose - Einstein statistics: black- body radiation 

The case of zero chemical potential can be considered as the case of a non
constant number of particles. Indeed, zero value of the multiplier a, (1.24), means 
that the condition of conservation of the number of particles: 

In,=N ( 1.127) 

is not imposed on the system. The distribution law of Bose - Einstein statistics for 
such a case becomes: 

z, -1 
n, = E1 ikT 1 e -

(1.128) 

This distribution law can be applied to the description of radiation as an 
ensemble of photons - particles with integer spin. The radiation of light and heat 
by a material body can be considered as a gas of photons with a non-constant 
number of particles not interacting between themselves. The energy of a photon is 
hv, and its effective mass mis hv/c2 . The momentum of a photon therefore is: 

p=mc=hv/c (1.129) 

The number of the cells corresponding to a given energy (i.e. frequency) is: 

z, =zv =dxdydzp 2dpsin8d8dcp/h 3 (1.130) 

Accordingly (considering z1 >> 1 ): 

= dV p 2 dp sin 8 d8dcp 
nv h3 (eE' I kl' - 1) (1.131) 

The number of photons with the frequency v radiated by a macroscopic body 
having volume Vis then: 

dN = 2 ff fdVp 2dpsin 8d8dcp = 2 4nV 2 dp 
V 3 ( E I kl' ) h} p E,i k1' 1 

veep he' -1 e -
(1.132) 

The factor 2 in ( 1.132) reflects the fact that photons of the same energy can be 
left or right polarised. Substituting & = hv, p = hvlc and dp = (h/c)dv we reduce 
our expressions to one variable, v. The energy corresponding to the frequency vis: 

8nhVv 3dv 
E =£ dN =----~ 

v v v c3(ehvlkr_ 1) 

This is Planck's law for black body radiation. 

(1.133) 
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The variable used by Planck, the energy density per frequency unit according to 
(1.133), is: 

Ev 8n:hv3 

Vdv c3(ehv!kT -1) ( 1.134) 

The latter equation is usually called Planck's formula. Performing the 
integration of E)V over all frequencies we get the total energy density of radiation: 

( 1.135) 

which is the well known Stefan - Boltzmann law. The experimental value of 
Stefan's constant, a, is in excellent agreement with that calculated via fundamental 
constants using (1.135), their ratio being 1.002. We see that in order to get this 
correspondence the spin degeneracy of photons was assumed to be 2 and not 3 as 
follows from the photon's spin of S = 1. Some excuse for this assumption has been 
produced on page 28; however, this assumption remains suspicious because it is 
indicative of some undiscovered fundamental properties of ensembles of photons. 

1.6.6 
Applications of Bose - Einstein statistics: heat capacity of solids 

The thermal properties of simple crystal solids have been more or less successfully 
described by Einstein using a very simple model: all atoms were supposed to 
oscillate with identical frequency v. They can however be in different quantum 
states and the partition function for such 30 oscillators is given (see Section 2.7.4) 
by: 

z= e h lkT = 2sinh~ [ 
-hv/2kt ]

3 [ h ]-3 
1- e- v 2kT 

(1.136) 

The total energy E of a system of N independent oscillators can be calculated in 
terms of partition functions (see Section 2.6) as: 

E =Nkr 2 (81nzJ 
ar v,N 

3Nhv 3 
hvlkl' +-Nhv 

e -1 2 
(1.137) 

Vibrational frequencies are often represented via characteristic temperatures, 
8 = hv I k. The last term in ( 1.13 7), representing as it does the energy of zero 
oscillations, can be temporarily neglected and the energy and heat capacity of such 
a solid are given by: 
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3Nkei, 
E = 9 IT e I -1 

- 3E - 3kN(8H y ee,.11 
Cv - aT- T) (ee,11 _1)2 

( 1.138) 

(1.139) 

in which eE is known as the Einstein temperature. Equation (1.139) provides for a 
generally correct description of the temperature dependence of cv. However, at 
lower temperatures a statistically significant deviation of experimental data from 
the theoretical curve is observed (see Fig. I .6A). Molecular (atomic) vibrations in 
the solid state cannot be considered as, strictly speaking, independent because, in 
systems of strongly bound particles, the deflection of one of them from the point of 
mechanical equilibrium would necessarily cause (with some delay) a similar 
motion of its neighbours and its neighbour's neighbours and so forth. In other 
words, the vibrational motion of particles is associated with the propagation of 
acoustic waves. 

Based on the formalism of the theory of propagation of acoustic waves in elastic 
media, Debye (1913) developed a model which takes into account the fact that the 
frequencies of vibrations form a spectrum. The formalism of Debye can be 
deduced in a number of ways, for example, by considering elastic waves as a 
collection of phonons or quasi-particles analogous to photons. Similarly to 
photons, phonons possess spin S = 1 and obey therefore Bose - Einstein statistics. 

The number of allowed vibrations in a solid body containing N atoms is 3N. 
Similarly, in the case of radiation, the chemical potential of these phonons is zero, 
the energy is E = hv, and the momentum is p = hvlc. 
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Fig. 1.6. Temperature dependence of the specific heat of silver [3, 4]. Solid curves represent the 
values calculated according to (A) the Einstein formula (1.139) with eE = 158 Kand according 
to the Debye approximation (B) with 60 = 200 K. The latter curve was obtained by numerical 
integration of ( 1.149) and subsequent numerical differentiation with respect to temperature 



1.6 Quantum statistics 37 

Sound waves are of two varieties, longitudinal and transversal, propagating with 
different velocities. The transversal waves are two-fold degenerate (right and left 
polarised). According to the Bose - Einstein distribution law (analogous to 
( 1.132)) the number of vibrations in the range between v and v + dv is: 

d _ 4nV 2 dp 
nv - 3 p hvlkT 

h e -1 
Taking into account that: 

h2v2 2h2v2 
2 . p2 . Pt =--2-, Ir =--2-, 

C1 Cir 

we get: 

( 2 lJ v 2dv 
dnv = 4nV -3- + -3 hvlkT 

c1r c1 e - l 

h 
dp 1r =-dv; 

c,, 

(I .140) 

(1.141) 

Integrating Evdnv over all possible frequencies we obtain the total energy of a 
solid body. The upper limit of integration must not be infinite because the number 
of possible vibrations is finite (3N) and the number of overtones (eigenvibrations) 
of a body of finite dimensions is also finite. 

This is a result of the assumption that an elastic body is built of atoms 
(molecules). We are able to characterise the vibrational spectrum of such a body 
by a unique Ymax because the vibrating particles are identical and regularly 
(periodically) distributed in the structure of the crystalline solid. 

The integration of Evdnv must, therefore, be performed between zero and some 
frequency Vmax (the significance of this parameter will be defined below): 

(1.142) 

Wave velocities can be assumed (for wavelengths much longer than the lattice 
constant, i.e. in the approximation of low temperatures) to be independent of 
frequency and they can be expressed as functions of the highest frequency Vmax· 

This can be done using the classical theory of vibrations of an elastic body. 
According to this theory, the number of overtones (number of elementary volumes 
CA.12)3 contained in a body) for each frequency is proportional to the cube of 
frequency: 

Z 4n V 4nV 3 
=--=--V 

3 ;.,,,3 3c 3 
(1.143) 

The integral of these numbers over all frequencies between zero and Ymax must 
equal 3N. The number of vibrations corresponding to the frequencies within 
v ~ v + dv is: 
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(1.144) 

For both the longitudinal and transversal waves (the latter being doubly 
degenerate) we get: 

dZ = 4nv(+ + ~]v 2dv 
ctr Cr 

( 1.145) 

The normalisation of the total number of vibrations to 3Nyields: 

vm"' [ 2 1 l 2 4n V [ 2 1 ) 3 3N = f 4n V - 3- + - 3 V dv = -- --3 + - 3 V max 

0 cir c, 3 ctr c, 
(1.146) 

and this allows us to define Vmax via wave velocities and vice versa: 

( 2 1 l 9N 4nV -+- =--
3 3 3 

cir c, v max 

(1.147) 

It is at least convenient to substitute two parameters by one and so exclude 
sound velocities. The distribution law for the eigenvibrations is then given by: 

(1.l47a) 

The energy of a solid then becomes: 

\' 3 
E = 9 N m"' hv dv 

v3 f hvlkr_ 1 
max 0 e 

(1.148) 

It is convenient to write this equation in terms of the dimensionless variable 
x = hv!kT. The upper limit of integration thus becomes Xmax = ef) IT, where 
ef) = hvma/k, and therefore: 

(1.149) 

The parameter eD is called the Debye temperature. In general this equation can 
only be integrated numerically. Heat capacities may be obtained from (1.149) by 
differentiation (either analytical or numerical). 

Although both the Debye and Einstein models may be used to describe the 
temperature dependence of heat capacity in the region of high temperatures (as 
shown in Fig. 1.6 (A, B) above) the Debye approximation provides for a 
significantly better agreement with experiment at low temperatures (Fig. 1. 7). 
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Fig. 1.7. Temperature dependencies of heat capacity of silver in the region of low temperatures 
(crosses - experimental data; thick line - Debye approximation (80 = 200 K); and thin line -
Einstein approximation (81,= 158 K)) 

Analytical integration of ( 1.149) is possible for the cases of either very low or 
very high temperatures. At low temperatures the limit of integration 80 /T 
approaches infinity and the integral in (1.149) is rc4/15: 

E = 3NkTrt 4 (_!___) 3 

5 8 /) 

The corresponding heat capacity therefore becomes: 

Cv =(aEJ 
dT v 

12Nkrt 4 T 3 

3 
58 /) 

( 1.150) 

(1.151) 

This is the Debye law relating heat capacities to the cube of temperature. The 
equation ( 1.149) is not exactly correct because when temperature is approaching 
zero the energy is not approaching zero as predicted by (1.150). Taking into 
account that the energy is actually: 

c: = (n + ,Yi)hv ( 1.152) 

the expression for energy can be obtained in a way similar to that outlined above. 
With this correction: 

1 8/T 

E=9Nkr(r)· J x 3dx +2-Nhv 
8 ex - 1 8 max 

0 

(1.153) 

In the region of high temperatures (x << 1) the exponential in ( 1.149) and 
( 1.153) can be substituted by (1 + x) and the integration does not present any 
difficulties and results in the Dulong and Petit rule: 
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9 
E == 3NkT + S Nhvmax (1.154) 

An important improvement has been introduced into the Debye theory by 
Tarasov [ 5]. He has shown that the De bye law of cubes of temperature is actually a 
special case of a three dimensional lattice with approximately equal elastic 
constants for all dimensions. When the interaction between molecules in 
neighbouring two-dimensional layers is much weaker than the interaction of 
nearest neighbours within a layer the distribution law for eigenvibrations ( 1.14 7) 
becomes: 

6N 
dZ ==-7 -vdv (1.155) 

v~ax 

Similarly when a compound forms chain-like regular structures ('one
dimensional crystals') the distribution law is: 

dZ == 6N dv ( l.l 55a) 
V max 

This leads to a general formula for the heat capacity of an m-dimensional crystal: 

C,,,==3m(m+l)Nk[_!_)"' e,,,rx:'dx_3mNk~(e 8;'.' -1:-i (1.156) 
em 0 e -1 T 

When the interactions between chains and/or sheets in a crystal cannot be 
neglected it is possible to calculate [6, 7] the total heat capacity as a sum of 
contributions from 'one & three' and 'two & three' dimensional structures: 

cl(3) =C1(81,T)- ~ 3 [c1(83,T)-C3(83,T)] 
I 

(1.157) 

(1.158) 

in which the C,(8m/7) are to be calculated according to (1.156). This formalism 
provides, therefore, for the determination of the type of supra-molecular structure 
in crystals employing heat capacity data. Experimental data and theoretical heat 
capacities ofa crystal of HF calculated using 8 1 = 280 Kand 83 = 141 Kare shown 
in Fig. 1.8. 
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Fig. 1.8. Heat capacities of crystalline HF (experimental (crosses) and calculated (line) 
according to Tarasov's model) 

The value of the characteristic temperature for a one-dimensional structure 
(8 1 = 280 K, i.e. Vmax = 200 cm-1) corresponds to a proton vibration in the 
hydrogen bond. It is interesting, therefore, that the heat capacity data above 
indicate the existence of chains of hydrogen-bonded molecules of HF in crystalline 
hydrofluoric acid at low temperatures. 

The Tarasov theory is based on a model having clear physical significance and 
employs a small number of parameters for the description of temperature 
dependencies of heat capacities deviating from a simple Debye law. It must, 
however, be mentioned that both the Debye and Tarasov formalisms are derived 
assuming an independence of sound velocities on frequencies. They are therefore 
valid in the region of long-wave vibrations (compared to interatomic distances), 
i.e. at low temperatures. 
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2 Ensembles, Partition Functions, and 
Thermodynamic Functions 

2.1 
Gibbs' approach, or how to avoid molecular interactions 

Maxwell - Boltzmann statistics, with corrections for the quantum character of 
energy changes and the indistinguishable nature of molecules, works perfectly well 
when we consider systems of non-interacting molecules. If particles are interacting 
with each other, then the description of such systems by Maxwell - Boltzmann 
statistics becomes extremely difficult if not impossible. For example, consider a 
system of positive and negative ions interacting in pairs. The potential energy of 
such a system is: 

(2. I) 

The potential energy of the positive ion labelled as 'l' in a pair depends on the 
coordinates of the negative ion which is generally outside the elementary volume 
dfq1 = dx 1dy 1dz 1• In order to write a distribution law for just a single ion in a pair 
we must introduce a second element of the coordinate space dfq2 = dx2dy2dz2. We 
cannot then consider interacting particles separately and the distribution law for a 
single pair must be written as: 

i ( 2 2 2 2 2 2 ·) e1e2 
--- P1x+P1v+P1,+P2x+P2y+P2z +--

d'N d'N _ A 2mkT · kTr12 d d 
i 2 - e Yi Y2 (2.2) 

in which r 12 = [(x 1 -x2) 2 + (y1 -y2) 2 + (z1 -z2) 2] 112 . With an increasing number of 
interactions the number of potential energy terms will increase to N(N - l )/2. The 
dimension of the phase space of coordinates increases correspondingly: 

\ N( 2 2 2 } i NN-le 1e 1 
---L P1x+P,r+p,, +--LL -

d'N =A 2mkT,01 2NkT,ol;ol r,! d dy dy 
e Yi 2 ••• N (2.3) 

If we take interactions between pairs into account, the situation becomes much 
more complicated, and indeed makes the practical application of such a 
distribution law impossible. 
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Note, however, that by using Maxwell - Boltzmann stat1st1cs it is in fact 
possible to describe the interaction of a single molecule with another one, while 
neglecting the interactions with all other molecules. The first molecule is then 
placed at the origin of the coordinate system and considered as fixed. The 
distribution law will then be: 

A second consideration is connected with the fact that the Boltzmann - Planck 
relationship between entropy and probability (hence all the derived expressions for 
thermodynamic properties) was obtained by assuming that the state of an 
individual constituent of a system is independent of the actual states of the other 
constituents. In Maxwell - Boltzmann statistics such a constituent is a molecule (a 
particle). Therefore it is in principle wrong to introduce molecular interactions 
into Maxwell - Boltzmann statistics. 

The reasons shown above are true, not only for a Maxwell - Boltzmann 
distribution, but for any statistical description. Therefore, statistical mechanical 
methods should only be applied to systems of non-interacting units. It is possible 
to circumvent this problem by selecting, in a system of interacting molecules, the 
units, which are at least approximately, statistically independent. Such a unit can 
be part of a system sufficiently large so as to make the energy of molecular 
interactions at boundaries negligibly small when compared to the energy of 
interactions within the unit itself. 

In order to illustrate this, Fig. 2.1 shows a collection of 64 atoms of sodium 
forming a distorted simple cubic lattice. In such a lattice the number of spheres 
contained in the cube with n atoms along its side is n3 and the number of atoms on 
the surface is 6n2 - 12n + 8. The fraction of atoms on the surface therefore is 6/n -
3/4n2 + 4/n3. For the cluster shown in Fig. 2.lA (n = 4) it is 0.875 but for a cube 
of 100 molecular diameters it is 0.05 (see the curve in Fig. 2.1 B). In fact, a 99% 
statistically independent unit must have ca. 500 atoms along the side of the cube. It 
will contain l.25xl08 atoms (or molecules). 

According to Gibbs, the statistical mechanics of real systems must therefore 
employ such units as its elements. Another concept in statistical mechanics is that 
the development of a system over time can be substituted by a static picture of an 
ensemble of systems. A statistical ensemble is a collection of a large number of 
macroscopic systems, identical in nature, existing under identical external 
conditions. These systems are imaginary replicas of one another having identical 
laws of interaction between particles. They differ by the actual values of the 
momenta and the coordinates of each particular molecule and thus represent all 
possible microstates of a system. 
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Fig. 2.1. A unit containing 64 atoms of sodium. Only a small number of atoms is confined within 
the unit and therefore such a collection of atoms strongly interacts with its neighbours. The right
hand graph shows the ratio of the number of surface atoms to the total as a function of the 
number of atoms along the side of the cube. 

During the process of a measurement of any macroscopic property, a system is 
developing from one microstate to another in succession. The parameters of real 
macroscopic systems measured experimentally are therefore the time-averaged 
mean values. This process can be investigated theoretically employing a model 
system of some number of particles and perfonning 'molecular dynamics' 
calculations. In this case the mean values of parameters 1 over time are computed. 
We can also find the mean over the ensemble values of the same parameters, 
provided the distribution law for the ensemble is known The main hypothesis of 
statistical physics, called the ergodic hypothesis2

, is that the mean over time is 
equal to the mean over the ensemble. 

Several forms of the distribution law can be obtained depending on the assumed 
type of interaction of a system with the 'outer world'. A system can be imagined as 

1 One can try the HyperChem~ program on a small collection of atoms (e.g. over the range I 0 -
20 atoms). 

2 Note that Boltzmann' s definition of the ergodic hypothesis was as follows . A representative 
point of a system necessarily goes through all possible states corresponding to a given energy 
before returning to the initial point. It is equivalent to the suggestion that the phase trajectory 
of an isolated system goes through every point of the hypersurface corresponding to constant 
energy. Today it is known that the phase trajectory cannot cover all points of a surface without 
crossing itself and it has also been shown that the means over time are the means over the 
phase trajectory. In order. to show the truth of the ergodic substitution it is then necessary to 
know how these trajectories are arranged in an energy layer. This is the subject of the 
ergodic theory developed by Birkhoff, Neumann and Kolmogorov. It has been demonstrated 
that the ergodic theorem holds if the considered system is me1rically transitive, i.e. the 
corresponding phase space can not be divided into finite regions containing whole 
trajectories. The criterion of ergodicity was thus substituted by the criterion of transitivity. 
Unfortunately all efforts to find a definite criterion of ergodicity are not yet crowned with 
success, in fact, the results seem to be negative, i.e. there are several demonstrations that the 
suggested criteria do not work. Therefore up to now the ergodic hypothesis remains a 
hypothesis or postulate. 
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being completely isolated from the surroundings without any exchange either by 
energy or by matter. The amount of energy is the same for all systems in such an 
ensemble; they differ, however, by the actual values of coordinates and momenta 
of the molecules. Gibbs called this statistical ensemble a microcanonical 
ensemble. It cannot in reality be physically modelled, however, as collections of 
identical numbers of molecules encapsulated in absolutely insulating shells. 

It is also possible to allow a system to exchange with its surroundings by energy 
but not by matter. Such a system can be imagined by separating a small part of a 
large system with an elastic shell impenetrable for molecules but transparent to 
energy. This ensemble can be physically modelled using liquid membranes, or 
vesicles (Fig. 2.2) which are formed when an appropriate surfactant is added to a 
mixture of an oil and water (or aqueous solution) in certain proportions. The 
vesicles are dispersed in the aqueous continuous phase which plays the role of a 
heat reservoir or 'outer world' 3 The canonical ensemble corresponds to the case 
when the volume, or rather the heat capacity, of the heat reservoir is much higher 
than the heat capacity of the systems contained within shells. The energy exchange 
between systems and the heat reservoir does not then change the temperature of the 
latter. 

If shells become penetrable to the molecules confined within vesicles (in the 
model discussed here it can be easily achieved by adding some transport mediator 
to the oil) then we get an ensemble of open systems which are able to exchange 
particles with the surroundings (the continuous phase). The grand canonical 
ensemble corresponds to such a system if the number of exchanging particles in 
the continuous phase is much larger than that in vesicles (exchange does not then 
alter the composition of the surroundings). 

The details of the mathematical formalism of statistical thermodynamics can be 
found in numerous textbooks. Hence only the main concepts and an outline of the 
arguments leading to the relationships between thermodynamic parameters and 
partition functions in systems of interacting molecules will be given below. 

Statistical mechanics in the form suggested by Gibbs does not employ 
'thermodynamic probabilities', it uses the probabilities normalised to unity and 
expressed in terms of the probability density p(p,q,t): 

dW(p, q,t) = p(p,q,t)dp ... dq (2.5) 

in which dW is the probability of a mechanical state of a system to be characterised 
by the values p,q within the range dp ... dq at time t. The probability W is 
normalised to unity: 

f. .. f p(p,q,t)dp ... dq=I (2.6) 

3 Real vesicles contain different numbers of molecules and so a statistical ensemble cannot be 
accurately modelled in this way. They do, however, represent many of the features of such an 
ensemble. 
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Fig. 2.2. Physical models of microcanonical ( 1), canonical (2) and grand canonical (3) 
ensembles. In the cases of microcanonical and canonical ensembles, each shell contains the 
same number of particles. The shell of a system of the canonical ensemble is energy-
1ra11sparen1. The shell of a system belonging to a grand canonical ensemble is penetrable by 
both energy and particles. The varying shades of canonical and grand canonical ensembles 
represent the fluctuations of the mean energy. The systems of grand canonical ensembles also 
experience fluctuations in the number o f particles. 

The probabi li ty density, p, then has the dimension [p x qr3
N. Being multiplied 

by N!h3
N it becomes a dimensionless multiplicative quantity called the normalised 

probability density: 

p = N!h3Np (2.7) 

The probability dW is equal to the fraction of representative points to be found 
within the given element of phase space, dJ = dp ... dq, in the vicinity of the point 
p,q: 

dW = oe(p, q,t)/ e (2.8) 

in which I.' is the number of systems in an ensemble ( ! being a very large number), 
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8!' is the number of systems the state of which is detennined at the given time t by 
the values of momenta and coordinates belonging to the element dp ... dq in the 
vicinity of p,q. The density of representative points P(p,q,t) is then defined as: 

8€(p,q,t) = P(p, q,t)dp ... dq (2.9) 

The relationship between p, P and /is thus given by: 

( t)- 'M(p,q,t) _ P(p,q,t) 
p p,q, - n d d - n 

{, p ... q {, 
(2.10) 

A state characterised by a given amount of energy (£) corresponds to a number 
(which might be very large) of all possible combinations of p and q, i.e. to some 
number of phase points fonning a surface (or, rather, a layer of thickness 
dp = (2mdE) 112) in phase space. A function characterising the distribution of 
molecules over different energy layers is called the energy distribution function 
j(_E). It is defined via the probability of a phase point belonging to an energy layer: 

dW(E) = f (E)dE = pdf'(E) (2.11) 

in which dI'(E) is the volume of the energy layer in phase space. This type of 
distribution can also be characterised by the corresponding density, namely the 
energy density of states g(E) defined by: 

(E) = df(E) 
g dE 

f(E) = p df(E) = pg(E) 
dE 

(2.12) 

(2.13) 

The actual fonn of the energy density of states can be found for a given model 
system. Using the derivation for the ideal gas shown in Appendix 10.2.2 results in: 

3N 3N 

g(E) = 3; V NE 2--I ( 4;;e) 2 (2.14) 

The energy density of states is a sharply rising function of volume and energy as 
well as of the number of molecules. 

When a distribution law is known it is possible to calculate the mean over the 
ensemble value of any property U(p,q) at a given time t: 

(U(t)) = f fu(p,q)p(p,q,t)dp ... dq (2.15) 

pq 

The experimental value of the same property is the mean over the observation 
period T. From the point of view of a statistical ensemble it can be written as: 
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l l+T 

U, = ~ f U(p,q)it(p,q) (2.16) 

I 

According to the ergodic hypothesis, these two types of mean value are 
identical: 

(2.17) 

In general, experimental values might be functions of both the actual time t and 
the measurement time r. (The use of proper techniques, however, enables the latter 
dependence to be ignored.) But it must be noted that a system, even under 
perfectly constant external conditions, might be developing over time, i.e. the 
observed properties might be changing. 

2.2. 
The process of equilibration and increasing entropy 

A generally accepted rule (based on experimental observations) is that after a 
sufficiently long time a macroscopic isolated system will come to a state 
characterised by stationary and uniform parameters in which it can remain for an 
indefinitely long time (without any 'external assistance'). This state is called the 
state of equilibrium. The probability density pin a state of equilibrium is therefore 
independent of time (the measured value of any property ( U) is then also 
independent of time). Mathematically, this means that the partial derivative of p 
with respect to time is zero: 

(ap) -o 
ar pq 

(2.18) 

p = p(p,q) * f(t) (2.19) 

The time required for a system to come to the state of equilibrium is called the 
relaxation time. An important property of the relaxation time is that it is longer for 
systems containing larger number of particles. 

Considering a large isolated system developing from a state of non-equilibrium 
we notice that at some intermediate time separate parts of the whole system must 
achieve equilibrium because they contain smaller number of particles. We can then 
describe the whole system (still in a non-equilibrium state) as divided by partitions 
into a number of subsystems each being in the state of local equilibrium. The 
number of microstates in which the whole system can realise itself is certainly 
smaller than that of a system with uniform parameters because we are not able to 
arrange partitions in any other way. 

In other words the phase volume corresponding to these states is certainly only 
a part of the phase volume corresponding to the system in its (final) equilibrium 
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state (when we may arrange partitions in an arbitrary manner and all subsystems 
will still be in a state of local equilibrium). The probability of a system being in 
equilibrium is thus always higher than the probability of the same system being in 
any one of the possible non-equilibrium states. This means that the most probable 
ensemble corresponds to the state of equilibrium in the isolated system. According 
to formal thermodynamics, equilibrium in an isolated system is characterised by a 
maximum value of the entropy. The maximum of probability corresponds then to a 
maximum in the thermodynamic entropy. 

We have in this way demonstrated the identity of statistical and thermodynamic 
entropies. The starting point was the empirical postulate of the constancy of 
properties of macroscopic systems in equilibrium and the assumption (which can 
be justified logically) that the relaxation time is longer for systems containing 
larger number of molecules. 

The Liouville theorem demonstrates that in any case the complete derivative of 
the probability density is zero: 

dp -( ap) " [ ap. . ap. . . J- 0 -- - +L,; -q +-p -dt a1 pq , aq, ' ap, ' (2.20) 

This means that the density of phase points remains constant during their 
motions along phase trajectories. Employing the Hamilton equations (see 
Appendix 10. 1 ), (2.20) can be transformed into: 

dp =(ap) +I[~ aH -~ aH]=o 
dt at P'' , aq, ap, op, aqi 

(2.21) 

Under the conditions of statistical equilibrium, when the partial derivative 
(oplot)pq is also zero, the Liouville theorem yields the following condition: 

I[~aH -~aHJ-o 
i aq, ap, op, aq, (2.22) 

From this condition it follows that the probability density at equilibrium can 
only be a function of the integrals of motion (see Appendix 10. 1 ). For a closed 
system at equilibrium the probability density is assumed to be a continuous 
function of only one of the integrals of motion viz. the Hamiltonian function, i.e.: 

p = p(H(p, q )) (2.23) 

The reason for the latter assumption lies in the fact that energy alone 
characterises a system as a whole, as well as its constituent parts. This is important 
because lnp is then an additive function. The momenta are connected with the 
motion of a system as a whole, but do not describe (notwithstanding the fact that 
they are also additive values) the statistical state of the parts of a system. For 
example, a system confined within a hard immovable shell does not need the 
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values of its momenta for its description because in such a case they are not 
integrals of motion. The energy (Hamiltonian function) remains for such a system 
the sole integral of motion. This means that the probability density within a given 
energy layer is constant. It may also be said that the phase points of an ensemble of 
isolated systems in equilibrium are evenly distributed over the corresponding 
energy layer. 

2.3. 
Microcanonical distribution 

A microcanonical ensemble is an ensemble of systems possessing identical 
amounts of energy. It is a model reflecting the properties of isolated systems. Each 
system is characterised by exactly the same values of total energy H, the number of 
particles N, and the volume V. The probability density must be zero at all points 
beyond that corresponding to the actual H = E. However, the integral over pdT 
must be normalised to 1 which makes p infinitely high at this point. This 
inconvenience can be avoided employing 8-functions or by supposing there to be a 
very small but finite thickness of the energy layer H = E - (E + /\£). The 
probability density p is then defined as being constant within this small range and 
zero beyond it. The normalisation to unity of the probability of finding the system 
in the energy layer E - (E + AE) leads to: 

f pdf =Po Jdf = PoL'lr(E) = l (2.24) 
1"5.H 5.l:'+dlo 

Accordingly the probability densities are: 

Po = 1 I llr(E) (2.25) 

Similarly the energy distribution function for systems of a microcanonical 
ensemble is equal to some finite constant within H = E - (E + AE) and zero 
beyond it, i.e. flE) is given by: 

f (E) = p 0 g(E) =canst 

j(E) = 0 

at E<H <E+M 

at E>H>E+M 
(2.26) 

This distribution therefore defines, very sharply, possible values of the energy and 
other macroscopic properties, which might be convenient for exactly acting 
mechanisms or organisms. Unfortunately, this type of ensemble is inconsistent 
with the idea of life. 
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2.4 
Canonical distribution 

A canonical ensemble is a model reflecting the properties of a system in a 
thermostat. The shell of a canonical ensemble is impenetrable by particles but 
transparent to energy. The combined system including the canonical ensemble and 
its surroundings (heat reservoir) is treated as an isolated system, i.e. belonging to a 
microcanonical ensemble. Under these conditions the distribution law can be 
derived (see Appendix 10.3) in the following form: 

dW(p,q) = A ePH(p,q)dp,dq 
N!h3N 

(2.27) 

where dW(p,q) is the probability of the microstate characterised by a set of 
coordinates and momenta q and p; A is an integration constant and ~ is some 
parameter characterising both the system in question and the heat reservoir. The 
probability, W, can then be normalised to unity: 

A J· .. JePH(p,q)dp,dq = 1 
N!h3N 

(2.28) 

Simple arguments show that ~ must be negative: for large pos1t1ve H the 
normalisation (2.28) is only possible when ~ < 0. The coefficient ~ is then defined 
as: 

p =-1/8 (2.29) 

in which ()is the modulus of canonical distribution. The probability density then 
becomes: 

A _ H(p,q) 

p(p,q) = N!h3N e e 

The integration constant A can be defined as: 

F 

A =e 0 

(2.30) 

(2.31) 

in which Fis some unidentified function. The probability density then becomes: 

1 
p(p,q) = N!h3N e 

F-H(p,q) 
e (2.32) 

Separating the term e1' and applying the normalisation condition (2.28) leads to: 
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and hence: 

F 
0 H(p,q) 

J--. Jp(p,q)dp,dq = N~h3N f .. Je --e-dp,dq = 1 

F 

e e 
H(p,q) 

_N_!_h_JN-J--· fe--e-dp,dq 

(2.33) 

(2.34) 

The expression on the right hand side of (2.34) is an analogue of the partition 
function of the modified Maxwell - Boltzmann statistics: 

i.e. 

_F l _H(p,q) 

z =e e = f· .. fe e dp,dq 
N!h3N • 

(2.35) 

The function F can then be expressed as: 

F = -8lnZ (2.36) 

This is readily seen to be a statistical analogue of the Helmholtz function ( 1.51 ). 
The energy distribution function for a system of a canonical ensemble thus 
becomes: 

F-1:' 

e e 
f(E) = pg(E) = N!h3N g(E) (2.37) 

The energy density of states g(E) is an increasing function of energy (see (2.14) 
above) whilst the other part of the distribution function, /F FJB, is a decreasing 
function of energy. Therefore f(E) has a maximum at the most probable energy of 
a system, E*. Using (2.14) for the energy density of states g(E), and assuming (a 
little ahead of the explanation given later) that 8 = kT and R = Nk, the expression 
for the energy distribution functionj(E) can be written as: 

(2.38) 

We have already calculated the last term in square brackets for a gas at 
atmospheric pressure (Chapter 1, page 31) as 0.0259 lvi312r12 . It is therefore not 
difficult to simulate the distribution function!(£) for given T, V, Mand N (see Fig. 
2.3). 
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Fig. 2.3. Energy distribution functions of canonical ensembles containing l 0 and I 00 particles 
(note the difference in scales) characterised by F = 0 and M = 32 at T = 300 K. The energy 
distribution function for a microcanonical ensemble is given for comparison, using an arbitrary 
scale 

The dependence ofj(E) on energy is given by the tenn: 

_tvl' 3N -I 
e RTE 2 (2.39) 

This function has a maximum at E*IRT = (3N - 2)/2N, i.e. approaching the 
(expected) value of E* = (3/2)RT at N >> I. When the number of molecules, N, is 
small, the curve j(E) is asymmetric. With increasing N the 'linewidth' of this 
distribution decreases and this means that for systems containing about one mole 
of a substance the canonical distribution will be as sharp as for a microcanonical 
distribution. Then the most probable energy E* would equal the mean energy <E> 
to very high precision. 

2.5 
The probability of a macrostate 

A macroscopic state may be considered as defined if we have a knowledge of a 
certain number of parameters fanning the vector X(Xi,X2,X3, .. Xj,). A very large 
number of combinations of coordinates and momenta of molecules correspond to 
one and the same vector X. In phase space, therefore, a macrostate is depicted by 
an element of volume ti.l(X) containing a large number of representative points. 
The larger this volume the higher is the probability of the corresponding 
macro state: 
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X+~ 

W(X) = Jpdr(x) (2.40) 

x 

In the case of a microcanonical distribution the probability density is constant 
and can therefore be moved outside the integral in (2.40), which results in: 

X+6X 

W(X)= JPo dr(X)=p 0 11r(x) (2.41) 

x 

Next, the statistical weight of a macrostate corresponding to the energy E can 
be defined as the fraction of the phase volume that it occupies in the energy layer. 
For a microcanonical distribution (p = canst) we then get a simple relationship: 

w(x) = 11r(x) 
11r(E) 

(2.42) 

At equilibrium, measurable parameters of macroscopic homogeneous bodies are 
constant and uniform to a very high degree of precision. This empirical 
observation indicates that the macrostate characterised by a set of equilibrium 
parameters has the highest probability (approaching 1). Otherwise significant 
deviations of measurable parameters from their equilibrium values would be 
regularly observed. We can thus say that the most probable macrostate 
corresponds to the state of equilibrium and representative points belonging to this 
macrostate occupy nearly the whole energy layer: 

w(x *)= 11r(x *) ~ 1 
11r(E) 

11r(X*) ~ 11r(E) 

(2.43) 

(2.44) 

The deviations of parameters from their equilibrium values (normally very 
small for macroscopic systems) are called fluctuations. The larger the number of 
particles the smaller are the fluctuations. It will be shown later (Section 2.8) that 
the relative fluctuations of energy in an ideal gas are about N-112 . 

2.6 
Thermodynamic functions derived from a canonical 
distribution 

Let us consider a macrostate characterised by a single parameter, namely the mean 
energy<£>. According to the principles discussed above, the 'statistical entropy' 
of any macroscopic system must be proportional to the logarithm of the normalised 
volume of the phase space containing representative points, i.e. to the number of 
quantum states of the system: 
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(2.45) 

Representative points of the macrostate characterised by <E> occupy the 
volume of phase space '1r( <£> ). Two features of this macrostate in equilibrium 
are important: (i) the fluctuations of energy are very small, therefore the mean and 
most probable energies coincide (<£> = E*), and (ii) the probability of such a 
macrostate approaches unity: 

p(E *)Llr(E *)= 1 (2.46) 

The volume of phase space '1f(E*) is then just the inverse of the probability 
density: 

Llr(E *)= l/p(E *) (2.47) 

The statistical entropy for such a state can then be written as: 

s::: k ln(Llr/ N!h 3N )== -k 1n[N!h 3N p(E *)] (2.48) 

Using the expression for the probability density for canonical distribution (2.32) 
we get: 

S == -k(F - E *)/e (2.49) 

in which E* = <E> is the canonical mean of the internal energy, which, according 
to the ergodic hypothesis, is equal to the observed (mean with respect to time) 
internal energy E. The entropy S (we have demonstrated the identity of statistical 
and thermodynamic entropies above) is then obtained as: 

S == -k(F - E)/e (2.50) 

The partial derivative of entropy with respect to internal energy is thus the 
inverse modulus of the canonical distribution. In formal thermodynamics this 
derivative is l/T: 

oS/oE::: k/8 =II T (2.51) 

The modulus of canonical distribution is thus [) = kT The function, F, of the 
canonical distribution then becomes identical with the Helmholtz free energy: 

F == E-TS (2.52) 

The Helmholtz free energy can thus be expressed, via the partition function of 
canonical distribution, (2.33) and (2.36), as: 

F == -klnZ (2.53) 

in which: 



F 

Z =e e 
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H(p,q) 

= N!h3N f .. Je--e-dp,dq (2.54) 

Equation (2.54) is the main relationship between the partition function of a 
canonical distribution and the thermodynamic functions. All other relationships are 
obtained via F and its derivatives using the corresponding formulae of 
thermodynamics: 

Entropy s = -(aF1anv.N = k[InZ + T(a1nz1anv,Nl (2.55) 

Pressure p = -(aF/aVh.N = kT(alnZ!aVh.N (2.56) 

Internal energy E=F+ TS = k'I'-(alnZ/a7)v,N (2.57) 

Enthalpy H=E+pV = kT[T(a1nz1anv.N + V(alnZ/aVh.Nl (2.58) 

Gibbs free energy G=F+pV = -kT[lnZ - V(alnZ/aVh,N] (2.59) 

Chemical potential µi = (aF/an,h.v,nj = -kT(alnZ/an)T,v,nj,.i (2.60) 

Specific heat Cv= (aE1anv = k['I'-(a2lnZ/a'I'-)v + 2T(alnZ/a7)vl (2.61) 

2.7 
Some molecular partition functions 

The fundamental significance of the relationships obtained in the preceding 
Section is that they show the possibility of a statistical mechanical description of 
systems of interacting molecules. For practical purposes this formalism gives very 
little directly: the partition function of a canonical distribution defined by (2.54) 
does not refer to molecular parameters but suggests that the Hamiltonian function 
of a system is known (as a function of the coordinates and momenta of the 
molecules). As it will be shown in Chapters 4 - 7, the derivation of formulae for 
the calculation of thermodynamic functions for even the simplest model of non
ideal systems is extremely complicated. Fortunately, the systems of interacting 
particles can be considered (at least over a narrow range of variation of conditions 
and parameters) as perturbed ideal systems of independent molecules. The total 
partition function Z (to be used in calculations of thermodynamic functions) is then 
the product of the partition functions of molecules: 

N 

z=nz, (2.62) 
i=l 

In such cases the building block of a statistical description is the molecular 
partition function, z. Several important partition functions will be derived below. 
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2.7.1 
Degeneracy 

If the energy levels of a molecule are so close together that the difference 
OE = E, - <E> is always negligibly small then the sum over E, within this range can 
be substituted by the term gexp(-<E>lk7) where the degeneracy factor g plays the 
role of the statistical weight of an energy level. What energy differences can be 
considered as negligible? The lowest limit is obviously set by the fluctuations, and 
at the end of this Chapter we shall consider this limit in some detail. In practice 
however the precision of the calculation of the partition function plays the crucial 
role. If the variation of energy within a level oE is such that gexp(loEj/k7) is 
smaller than the required relative precision of the calculation of the partition 
function, then such a level can be considered as degenerate. 

The energy levels of molecules having rotational degrees of freedom are 
(2.J + I) times degenerate (J is the rotational quantum number), each state 
corresponding to different orientation of the angular momentum of such a 
molecule. Similarly the orientation of the nuclear spin of each atom in a molecule 
results in a separate state. However, this type of degeneracy is usually not taken 
into account because nuclear spin is not changed in chemical reactions (an 
exception is the ortho - para hydrogen equilibrium in which the interactions 
between nuclear spins are significant). 

Degeneracy of a molecule (atom) is often connected with electronic 
degeneracy. In highly symmetrical systems, electronic energy levels are usually 
degenerate, but external fields and distortions of symmetry may remove this 
degeneracy. For example, the state of a free ion of a transition metal containing 
one electron in the d-level is I 0 times degenerate. In other words, an electron can 
be placed in any of the 5 d-orbitals of such an ion with the projection of electronic 
spin S= = ±Yz and the energy will be the same. 

In octahedral complexes the energy level of the d-electrons is split in the field 
created by the ligands into a doubly degenerate eg sub-level and a triply degenerate 
t2g sub-level. The unpaired electron in a Ti(III) octahedral complex may therefore 
occupy any of the t2g orbitals (d,>' dxz or dvz), all these states having identical 
energy that is lower than the energy of the eg orbitals. In the absence of an external 
magnetic field the states corresponding to S: = ±Yz are also degenerate and hence 
the total degeneracy of the ground state of an octahedral Ti(III) complex is 6. 

Quite common distortions of octahedral symmetry destroy the orbital 
degeneracy and the remaining spin-degeneracy (g = 2 corresponding to Sz = ±Yz) 
may be removed by an external magnetic field including the magnetic field of the 
Earth. In Section 2.8 we will discuss these possibilities. 

In the majority of cases the degeneracy factor is all that is left of the electronic 
partition function. The distances between ground state and first (and further) 
excited states of molecules are so large that the ground state alone is populated to 
any extent and: 
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(2.63) 

The energy of an electronic system in this state can be taken as the zero point of 
the energy scale (£0 = 0) that is: 

(2.64) 

However, in a system containing molecules of different kinds the ground state 
of only one type of molecule can be taken as corresponding to zero potential 
energy. Therefore the representation of the electronic partition function by the 
degeneracy factor alone might be misleading. Also in those cases where the first 
excited state is not much above the ground state the electronic partition function 
(assuming Eo = 0) is: 

(2.65) 

This relationship is sometimes interpreted as a temperature dependence of the 
degeneracy factor. 

2.7.2 
Translational motion 

The energy of one-dimensional motion is generally given by: 

E = mv 2 /2 = p 2 /2m (2.66 

We have, however, to deal with systems of finite dimensions, i.e. confined to a 
vessel with some characteristic length I. For a particle in a uni-dimensional 
potential well of length I the energy may also be written using the de Broglie 
wavelength /,.,: 

E = (h(A)2 /2m; /.. = 21/n; n = 1,2,3, ... (2.67) 

Therefore: 

(2.68) 

The partition function: 

z = :Lexp - ~ 00 [ h2 2 J 
n=I 8ml kT 

(2.69) 

may be approximated (except in the case of particles of low mass at low 
temperatures) by the integral: 

00 

z = e dn f -an' 
(2.70) 

0 

in which a = h2/8mt2kT. 
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This integral equals (n/4a) 112 , and therefore: 

z = ( 2n~kTr2 1 (2. 71) 

When a molecule is allowed to move in two dimensions, the corresponding 
partition function is the product of the partition functions for one-dimensional 
motion along each coordinate (the movement along each coordinate is considered 
independent): 

z = ( 2nmkT) 112
1 ( 2nmkT) 112 l = 2nmkT Q 

h2 1 h2 2 h2 
(2.72) 

The same is true for three-dimensional motion in a cubic cell with side of length 
I or volume u. If we have N particles in the volume V = Nu and each particle is 
confined to such a cell, then: 

( 2 nmkT J 312 

Z cell = h 2 V = q cell V (2.73) 

In a collection of N particles moving in the volume V, the average volume per 
molecule can be equal to the volume of a cell, v = VIN. However, the molecular 
partition function in such a case will have an additional factor arising from the 
indistinguishable nature of molecules. Suppose that we have a crystal at the 
temperature of melting, but still a crystal (Fig. 2.4 ). The molecules are confined to 
their cells, each of volume v = VIN. This is a system of localised states and the 
partition function for seven non-interacting molecules in adjacent cells of the first 
row is (qce 11 u)7. When we apply a little heat, the molecules in the surface layer 
begin to move freely in this layer. This results in (i) the molecules of this layer 
becoming indistinguishable and (ii) the volume accessible for any one molecule 
becoming correspondingly larger. 

We must therefore divide the partition function by the number of 
indistinguishable combinations and take into account the increased volume. For 
the seven molecules shown in Fig. 2.4 the partition function will be ( qceu 7u)717 ! . 
When all N molecules move freely within the volume Nu the partition function 
becomes (q,e 11Nut!N! Using the Stirling approximation we get the partition 
function of a system of N molecules in the volume uN and in the state of an ideal 
gas: 

(2.74) 

This means additional entropy of such a system compared to that calculated 
employing the partition function (2.73). 
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Fig. 2.4. The result of free migration of molecules 

In general, the allowed values of the energy of a rotating particle having a non
zero moment of inertia I are: 

E - J(J+l)h2 
.I - 8rt2 I J = 1,2,3 .. . (2.75) 

The rotational energy levels are degenerate: each energy level characterised by 
the quantum number J can be realised in 2J + I ways corresponding to different 
orientations of the angular momentum vector of a molecule. The partition function 
contains, therefore, a corresponding statistical weight (degeneracy factor): 

(2.76) 

The energies of rotation are in general comparable with kT. We may not 
therefore expand exponents into series, although it is possible to substitute 
summation by integration because rotational levels lie close together (separated by 
energies of the order of hundreds of GHz). On substituting J + Yi = x , and 
h

2
/8n

2 lkT = b the rotational partition function may be written as: 

00 

z = f e-hx' 2xdx = If b = 8rt2 IkT/ h 2 

0 

(2.77) 

When a molecule is symmetric with respect to the rotational axis, some states 
are indistinguishable and the partition function must therefore be divided by the 
symmetry number cr: 

(2.78) 
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For a molecule with three unequal moments of inertia IA,B,c the rotational 
partition function becomes: 

(2.79) 

2.7.4 
Vibrational motion: linear harmonic oscillator 

The vibrational motion in an ideal gas belongs exclusively to the internal degrees 
of freedom. On the other hand in an ideal crystal it is the only type of motion 
allowed for particles constituting such a crystal. The simplest vibrating unit is a 
diatomic molecule which (being in lower excitation states) may be described as a 
harmonic oscillator. The allowed energy levels of a harmonic oscillator are: 

E=(J+l/2)hv; j=0,1,2 ... (2.80) 

The partition function may therefore be written as: 

Z = f e-(1+112)hv!kT = e-hv/2kT[l + e-hvlkT + e-2hv!kT + ... ] (2.81 ) 

J=O 

The expression in brackets is the expansion of (1 - e hvk7)-1, hence: 

e-hvl2kT 1 [ . hv ]-I 
Z = 1-e-hvlkT = ehvl2kT -e-hvl2kT = 2smh 2kT (2.82) 

There is another way of representing vibrational partition functions, namely by 
employing energies measured from the zero vibrational level, hv/2kT (see [2] for 
example): 

(2.83) 

This method has an advantage in that the part1t10n function for large 
frequencies (low temperatures) is just 1, reflecting the fact that the molecule can 
only be in its lowest vibrational state. In a system containing several oscillators 
each such partition function enters with a weighting factor exp(-hv/2k7). 

Although in some cases the form (2.83) can advantageously be used, the 
expression (2.82) is of general validity and will be used throughout this book. 

For low energies and high temperatures E << kT and both expressions are 
reduced to the classical statistical integral for a harmonic oscillator: 

z ==. kT/hv (2.84) 

The total number of vibrations in a molecule can be calculated from a balance 
of the available degrees of freedom. In a molecule containing M atoms there are 
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3M degrees of freedom, of which 3 are connected with the translational motion of 
the molecule as a whole and another 3 correspond to the rotation of the molecule 
as a whole. These 6 degrees of freedom per molecule are sometimes referred to as 
external degrees of freedom. The total number of internal degrees of freedom is, 
therefore, 3M - 6. Among them there may be some number (n) of internal 
rotational degrees of freedom. The remainder, (3M - 6 - n), are vibrational 
degrees of freedom. 

Translational degrees of freedom are generally considered as statistically 
independent of internal and rotational degrees of freedom. If an excitation of an 
internal degree of freedom does not significantly change moments of inertia the 
external rotational degrees of freedom are also statistically independent. If an 
excitation of an internal degree of freedom does not change moments of inertia and 
the vibrational frequency of other degrees of freedom, then all internal degrees of 
freedom can be considered as statistically independent. At not very high 
temperatures these conditions are generally obeyed and the total partition function 
of a molecule can be calculated as the product: 

(2.85) 

2.7.5 
Total partition function of an ideal system 

For a collection of N statistically independent particles the total partition function 
is, of course: 

(2.86) 

Some problems arise, however, when taking into account spin degeneracies of 
paramagnetic molecules. For example, the formulae for the free energy of an ideal 
crystal given in the book by Moelwyn-Hughes ([1], page 558) suggest that the 
partition function of a molecule (atom) occupying a centre of a crystal lattice is: 

z = (g /2 sinh(hv I 2kT)] 3 (2.87) 

This expression implicitly assumes that each vibration along a normal 
coordinate is g-times degenerate. Indeed, when we consider a molecular crystal of 
a neutral paramagnetic complex, for example [Eu(acac)3], the vibrations of the 
paramagnetic molecule as a whole (lattice vibrations) might be considered as g
times degenerate because the unpaired electron belongs to the central atom and is 
effectively shielded ({-element) from outer orbitals participating in the formation 
of chemical bonds. The total partition function in such an interpretation is given 
by: 
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Z = [g/2 sinh(hv I 2kT)] 3N (2.88) 

There are however some weighty arguments against this interpretation, namely 
that one and the same particle cannot possess simultaneously three different 
orientations of a spin. On the other hand, there are some experimental facts in 
favour. The lowest experimental value of the entropy of spin crossover (see 
Sections 3.5 and 7. I 0) in solids is exactly three times higher than the value 
expected for z proportional to the first power of g. If we employ (2.88), then the 
lowest entropy of spin crossover corresponds to the change in electronic 
degeneracy alone. 

In ionic crystals the concept of a molecule cannot be applied and vibrations 
correspond to the motion of atomic nuclei independent of the electronic system. In 
such a case the total partition function: 

Z = gN /[2sh(hv I 2kT)]3N (2.89) 

corresponds to the molecular partition function proportional to the first power of 
the degeneracy factor: 

2.8 
Fluctuations 

The empirically based postulate that the parameters of a macroscopic system in 
equilibrium are constant to a very high precision is not the whole truth about 
equilibria. In fact, this is only true for homogeneous single-phase systems. In the 
case of two phases in equilibrium, very large variations of parameters can be 
observed under (seemingly) identical conditions. Let us for example consider a 
mixture of ice and water in a thermostat at exactly zero Celsius and under 
atmospheric pressure. Under such conditions, the amounts of the two phases are 
completely indeterminate, being dependent not on temperature but on the amount 
of heat conveyed to the system! Such a system exhibits a peculiar property 
indicating large fluctuations, namely an infinitely high specific heat. The heat 
absorbed by a system results not in an increased temperature but in a change of the 
amounts of coexisting phases. This is an analogue of an indifferent mechanical 
equilibrium of a ball resting on a horizontal plane whose coordinates are 
completely indeterminate. Another example of a system exhibiting large 
fluctuation is a gas/liquid system at the critical point. An infinitely small change of 
temperature or pressure results in the formation of observable quantities of liquid 
and/or gas phases. This resembles the completely unstable equilibrium of one ball 
balanced on top of another! 

Maxwell - Boltzmann distribution predicts that individual molecules may 
possess energies quite different from the most probable or mean values. According 
to the concept of canonical distribution, macroscopic quantities of substances may 
have properties differing from mean values, but only over a very narrow range. 
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Consider a large isolated system: the energy of such a system is exactly defined 
(a system belonging to a microcanonical ensemble) and we cannot expect any 
fluctuation of energy as long as the system remains isolated. However within such 
a system we can detect small but macroscopic parts (identical in mass, number of 
molecules etc.) whose energy differs from the mean value. These parts constitute 
either a canonical ensemble if they only differ by energy or a grand canonical 
ensemble if they also differ in the numbers of molecules. The observed variations 
of energy and other macroscopic parameters are the corresponding means of 
deflections and can be predicted on the basis of the actual distribution law. With 
respect to the system as a whole they are local fluctuations and only such 
fluctuations are allowed for a system of a microcanonical ensemble. 

A system belonging to a canonical ensemble may have fluctuations of energy, 
which we will consider now in some detail. 

In general, the mean deflection of a property of a system of canonical ensemble 
is zero: 

(2.90) 

The information about fluctuations is provided by the variance of energy or the 
mean of the square of deflection: 

This results in: 

f. .. JE2 e-H/kTdQ 

f. .. J e-H/kTdQ 

( ) f J H/kT 2 E ... Ee- dQ. 2 

f. .. f e-H/kTdQ. + (0) 

(2.9 I) 

( f1E 2 ) = ( E 2 ) - ( E) 2 = V ( E) (2.9la) 

A connection between fluctuations and thermodynamic functions can be 
obtained by employing the statistical expression for Helmholtz free energy (2.54). 
The fluctuations should not alter the values of thermodynamic potentials and other 
functions that determine the equilibrium state of a system; note that formal 
thermodynamics does not consider fluctuations at all. They might, however, affect 
the derivatives of these functions. The derivative of the Helmholtz free energy with 
respect to temperature is entropy: 

i.e. oF =-S 
oT (2.92) 

This is a function of state and can play the role of a potential. It should also be 
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independent of fluctuations. The second derivative of F, on the other hand, is a 
quantity proportional to the specific heat at constant volume: 

dS 8Q/T Cv 
---

dT dT T 
(2.93) 

This parameter is not a thermodynamic potential and might be connected with 
fluctuations of energy. This can be demonstrated directly: 

Free energy defined via a canonical distribution is: 

H 

F=-kTln f. .. fe-krdn 

The first differentiation yields: 

H 

oF f f -ff 1 f. .. f He - kr dn 
- = -k In . . . e dO. - - H 

oT T f f --. .. e kl dO. 

(2.94) 

(2.95) 

The second term in (2.95) is proportional to the canonical mean of internal energy 
(<E> = <H>). Performing a second differentiation we get: 

H H 

I J J -kid - I J J -!:1d - 2 . • • He Q + - 2 • • • He Q 
T T + 

H 

J. .. Je -kr dQ 

H H H H 

J f 2 - kl d f f -kl' d f f -j(jd f f -kl' d 1 .. . H e Q . . . e Q - . . . He Q . . . He Q 

+ kT 3 
( H :2 J. .. J e -kTdQ 

(2.96) 

The first term on the right hand side of (2.96) is obviously zero; what is left 
gives us a quantity proportional to the variance of the Hamiltonian function: 

(2.97) 

Comparing the statistical and thermodynamic second derivatives of F with 
respect to temperature, (2.93) and (2.97), we get the variance of the total energy 
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V(H) = V(E) as: 

(2.98) 

Note that this equation is of general applicability, both in ideal and in non-ideal 
systems. For an ideal gas containing N molecules Cv = (3/2)Nk and the variance of 
energy becomes: 

V(E) = l Nk2T 2 

2 
(2.99) 

The relative mean square deviations of the total energy of such a system (taking 
into account the fact that E = (3!2)NkT) are equal to the inverse square root of the 
number of particles: 

JV{E5 = kT ~(3/2)N = /2:::: _I_ 
E (3/2)kTN ~W - fji 

(2.100) 

They are very small for systems containing macroscopic numbers of molecules, 
and therefore we are able to measure parameters of such systems with very high 
precision. 

Fluctuations, being connected with the second derivatives of thermodynamic 
potentials, determine the nature of the change of these quantities when some 
parameter (temperature, as in the example above) is varied. This shows that the 
stability of thermodynamic potentials and their derivatives (hence of equilibrium 
itself) is connected with the magnitude of fluctuations. The larger the fluctuations 
the less stable is the equilibrium, which means that it is easier for a parameter to 
deviate from its equilibrium values. 

When fluctuations become comparable with the equilibrium values of the 
parameters then the system is unstable or is in a state similar to that of mechanical 
indifferent equilibrium as in examples considered at the beginning of this Section. 
Again, under these conditions the heat capacity approaches infinity, which is 
observed at the critical point and in phase transitions. 

Another asymptotic case is the state of matter at absolute zero: fluctuations are 
infinitely small Cv ---+ 0 and the energy of a system does not fluctuate from its 
"average". Any collection of (identical) molecules at absolute zero loses its 
statistical character. 

We have mentioned in the preceding Chapter that devices employing highly 
organised types of motion are extremely efficient. From this point of view a device 
working at absolute zero must have maximal efficiency. Indeed electric devices are 
very close to this ideal situation because the state of an electron gas at room 
temperature is but slightly different from that at absolute zero. 

A living organism cannot be imagined in such a state and therefore its efficiency 
and determinate behaviour must originate from some other source. We have seen 
that determined values of parameters of molecular systems can only be expected 
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for systems containing large numbers of molecules (providing for low fluctuations 
of parameters). The problem worrying 'naive physicist', and properly formulated 
by Schrodinger (above), is in fact solved by taking fluctuations into account. A 
living creature is a self-acting unit showing astonishing reliability and 
deterministic behaviour incompatible with large fluctuations in the parameters of 
any part of such an organism or also of a mechanism. Therefore the smallest 
organisms and/or self-sustaining parts of larger organisms (cells) contain at least 
107 - 109 molecules. Would these molecules be in the state of an ideal gas, then 
this number would allow for relative fluctuations of energy of about 10 3, which is 
probably not sufficient even for a bacterium (see also Section 3.7). 

The fact that living organisms exist exclusively in the condensed (liquid) state 
might apparently indicate smaller fluctuations as compared with those in the gas 
phase. However, the heat capacities of equal amounts of water in the liquid and the 
gaseous state (18 cal mole-1 K- 1 and (3/2)R ~ 3 cal mor1 K- 1 respectively) yield, 
according to (2.98), a larger variance of energy for liquid water. The fact is (and 
we have employed it implicitly deriving the square root rule!) that the relative 
deviation of energy is inversely proportional to the square root of heat capacity: 

The difference between the gaseous and liquid phase is then in favour of the 
latter by the factor ...J6, which is not very much. Therefore other factors are also of 
importance for the preferential existence of life in liquid media. Among these is 
the possibility of the comparatively easy building of 'shells' separating a living 
unit from the outer world and thus keeping it in a non-equilibrium state. 

Another problem connected with fluctuations is the problem of the degeneracy 
of energy levels. Let us consider an example of spin-degeneracy in a paramagnetic 
compound containing one unpaired electron. All chemical experiments (except 
those carried out in space laboratories) are affected by the magnetic field of the 
Earth and that, in principle, removes this degeneracy. The resonance frequency 
(ESR) of such a system in the magnetic field of the Earth is of the order of 3 MHz 
and this resonance can be observed on samples containing N ~ 10-2 N1, molecules. 
The energy of such an ESR transition is much larger than the fluctuation of energy 
(calculated using an average heat capacity (100 cal K- 1) of 0.01 mol of a 
compound of elements of the first half of the Periodic Table with molecular mass 
M= 300 g): 

Nhv = 6.02xl021 x6.62xl0-27x3 106 = 119.5 erg 

V(E) = kI'-Cv= l.38xl0- 16x9xl0-4xl00x4.18xl07 = 5.19xl0-4 erg2 

and a(E) = 2.27x 10-2 erg 

Therefore at room temperature and in the Earth's magnetic field the degeneracy 
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connected with electronic spin is, strictly speaking, removed. However the energy 
difference between the evolved states with the spin oriented parallel and anti
parallel to magnetic field is very small compared to kT: 

ex (hv)=ex [6.62 I0-273 J06)=ex (1.4 10-6)::::1.410-6 
p kT p 1.38 10-16300 p 

This means that in statistical mechanical calculations we can safely consider 
such a state as degenerate. The electronic partition function can either be 
computed as exp(-i::0/kT + 0.71 o-6) + exp(-i::0/kT - 0.710-6) or just 2exp(i::of k7). 
The difference between these two modes of calculation only becomes significant 
below T= 0.001 K. 

2.9 
Conclusions 

In this Chapter we followed the derivation of the connection between 
thermodynamic functions and the properties of statistical ensembles, both from the 
conceptual point of view and giving some guidelines for practical applications. 
The main conceptual result is summarised by the equation connecting the 
Helmholtz free energy (Helmholtz function) with the partition function of the 
canonical ensemble (2.54). 

We have also found that a statistical approach introduces a new variable into the 
thermodynamic description of macroscopic systems, namely fluctuations. The 
latter give a mechanistic interpretation of the values of the second derivatives of 
thennodynamic potentials (e.g. heat capacity), characterising the stability of 
thermodynamic equilibrium. 

In the next Chapter we shall apply this fonnalism to the description of chemical 
equilibria in ideal systems. 



70 2 Ensembles, Partition Functions, and Thermodynamic Functions 

References 

I. Moelwyn-Hughes EA (1957) Physical Chemistry. Pergamon Press, London 
2. Atkins P (1978) Physical Chemistry. Oxford University Press, Oxford 



A.B. Koudriavtsev et al., The Law of Mass Action
© Springer-Verlag Berlin Heidelberg New York 2001

3 The Law of Mass Action for Ideal Systems 

3.1 
The law of mass action, its origin and formal 
thermodynamic derivation 

One of the peculiarities of the development of science was that the law of mass 
action was at first established as the kinetic law of mass action. In fact, chemists 
were anxious to find some parameter that would characterise the ability of 
compounds to react and form the required products. The reaction rates seemed to 
provide such a parameter but it was not that simple. The history of chemical 
discoveries that led to the formulation of the law of mass action is very important 
for an understanding of the contemporary interpretation of this rule. Glasstone [ l ], 
after mentioning the names of Albertus Magnus, Boyle, Newton and other 
precursors, described it as follows (italics are ours): 

But it is to C. L. Berthollet ( 1799) that the credit must be given for the first clear 
emphasis of the importance of mass or concentration. He showed that whereas in the 
laboratory sodium carbonate and calcium chloride reacted to form calcium carbonate, 
the reverse process was occurring in certain Egyptian lakes on the shores of which 
sodium carbonate was actually crystallising. This reversal was attributed to the large 
amount of sodium chloride in the lake water.... The conclusion based on these 
experiments was stated by Berthollet (1803) in the following way: "the chemical activity 
of a substance depends on the force of its affinity and upon the mass which is present in 
a given volume'' ... The work of H. Rose (1842), on the decomposition of alkaline-earth 
sulphides by water and on the reversible reaction between a soluble carbonate and 
insoluble sulphate, once more centred attention on the influence of mass, and in 1850 L. 
Wilhelmy, in the course of a study of the inversion of sucrose in the presence of acid, 
showed that the rate of the reaction at any instant was proportional to the amount of 
sucrose remaining unchanged at that instant. The effect of mass on chemical reaction 
was also brought out clearly by M. Berthelot and P. St. Gilles (1862- 63) who studied 
the reversible formation of ester from ethyl alcohol and acetic acid; they found that the 
reaction did not go to completion, but the proportion of acid converted into ester 
increased as the amount of alcohol was increased.... Berthelot and St. Gilles also 
observed that the rate of formation of ester in any mixture of alcohol and acid was 
proportional to the products of the masses of reactants, and inversely proportional to the 
total volume; in other words, the rate of reaction was found to be approximately 
proportional to the concentrations of the reactants, but this important result was not 
generalised. Although it was commonly realised prior to this that many reactions were 
reversible, in the sense that they could occur in either direction according to 
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experimental conditions, and that a state of equilibrium was attained in which the 
reaction was not complete, it was considered that that the equilibrium was static and that 
in this state all reactions ceased. As a consequence of his interpretation of the 
mechanism of the etherification of alcohol by concentrated sulphuric acid, A.W. 
Williamson (1850) was led to the view that chemical equilibrium was dynamic and the 
reaction appeared to be stationary because both direct and reverse processes were taking 
place at the same rate ... It appeared to C. Guldberg and P. Waage ( 1864 - 67) that a 
reversible reaction involving dynamic equilibrium provided the best conditions for the 
comparison of chemical affinities, and this led them to what is now known as the law of 
mass action and to formulate mathematically the influence of mass on chemical activity. 

Now, the starting point for Guldberg and Waage was the earlier discovered 
empirical rule that the rate of a chemical reaction is proportional to the product of 
the active masses, i.e. the molecular concentrations of reactants. Assuming that the 
proportionality coefficient must characterise the affinities of reactants meant that 
the rates of reaction could serve as a measure of chemical affinity, provided the 
concentrations are known. The most accurate values of concentrations of the 
components of a reaction mixture can be obtained for the state of chemical 
equilibrium. As the concentrations of reactants at chemical equilibrium are not 
zero, the rate of chemical reaction must also be non-zero, which can only be 
explained (in agreement with the initial assumption) by interpreting chemical 
equilibrium dynamically, i.e. as corresponding to equality of the rates of forward 
and reverse reactions: 

(3. I) 

m which Ri, R2 ••• , Pi, P2 ..• are the active masses of reactants and products 
respectively. The experimentally determined ratio of the products 
(P 1P2 ••• )l(R1R2 ••• ) equals then the ratio of the 'affinity coefficients' or 'coefficients 
of velocity' of the direct and reverse reactions k+IL This ratio is known as the 
equilibrium constant and thus provides for a relative measure of chemical affinity. 
Again, this rule enables the calculation of the composition of an equilibrium 
reaction mixture on the basis of a known equilibrium constant and known initial 
quantities of reactants and products. 

We can see that this empirically based postulate (that the rates of chemical 
reactions are proportional to the product of the active masses of reactants, i.e. the 
kinetic law of mass action) leads to the dynamic interpretation of chemical 
equilibrium and thus to the equilibrium law of mass action. The latter could 
therefore be considered as an empirical postulate similar to the First and Second 
laws of thermodynamics. In fact, however, the equilibrium law of mass action can 
be derived from these laws by considering the state of chemical equilibrium as a 
special case of thermodynamic equilibrium in a system involving transformations 
of molecules of one kind into another. 

The state of chemical equilibrium corresponds thus to the minimum of 
thermodynamic potential with respect to chemical composition, i.e. the numbers of 
molecules of different chemical nature. Such a state is then characterised by zero 
complete differential of the thermodynamic potential including partial differentials 
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with respect to the numbers of all kinds of molecules present. When a reaction is 
investigated under the conditions of constant volume and constant temperature the 
Helmholtz free energy may be used as the thermodynamic potential. When we 
carry out a reaction under constant pressure and constant temperature the work of a 
system against the external pressure (pdV) must be taken into account and the 
Gibbs free energy should be used. However, statistical thermodynamic formulae 
based on the Helmholtz free energy are much simpler than those employing Gibbs 
free energy. In fact, we do not in any case lose significantly any generality of 
approach by making this choice (any gas phase reaction can be investigated in a 
closed vessel, and when reactions in the liquid or solid state are studied under 
constant pressure the volume of the reaction mixture remains sensibly constant). 
This allows us to present a comparatively simple chain of derivations of various 
forms of the law of mass action for gaseous, solid and liquid systems'. 

The condition for the minimum of free energy at constant volume and 
temperature for the reaction: 

can be written as: 

(3.2a) 

in which nRi and n1'! are actual (current) numbers of molecules as opposed to the 
initial (analytical) numbers of molecules NRi and Np1. The chemical potentials, µRi 

and µpi, are partial derivatives of free energy with respect to the corresponding 
numbers of molecules under the condition of constant V, T and numbers of all 
other molecules: 

The law of mass action can be obtained from (3.2a) by introducing a single 
variable, namely, the degree of conversion, I;, representing the amount of 
substance transformed in the chemical reaction: 

dn II; = -s II; dE, (3.4) 

According to the equation of the chemical reaction (3.2) the transformation 
(disappearance) of dnRi of a reactant results in the appearance of ( C,r/C,Ri)dn1'!, 
therefore for any product: 

(3 .4a) 

1 It will be shown in the next Chapter (page 108) that in fact the substitution of Gibbs free 
energy by Helmholtz free energy in the derivation of the law of mass action for reactions in the 
condensed state brings about a negligibly small error - even for pressures of up to tens of bars. 
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We can then write (3.2a) with respect to this single variable: 

(3.5) 

or: 

(3.6) 

This is the most general expression of the law of mass action in which the 
relationship between the amounts (numbers of moles) of products and reactants is 
hidden in the dependencies of chemical potentials on these variables. 

The dependence of chemical potential on the number of moles can be derived in 
the following way. The First Law of thermodynamics: 

dE=TdS- pdV (3.7) 

defines partial derivatives of entropy as: 

T 
(3.8) 

Partial differentials of entropy can therefore be written as: 

dSv =(as) dE = J_dE = CvdT 
aE v T T 

(3.9) 

dSJ; = (as) dV = p dV 
av /; r (3.9A) 

Now we can introduce the numbers of moles employing the equation of state. 
For a system containing n moles of a substance in the form of an ideal gas the 
equation of state is well known and is pV = nRT. The differentials (3.9) then 
become: 

dT 
dSv =ncv

T 
(3. I 0) 

(3. lOA) 

in which v = Vin is the molar volume and cv is the molar heat capacity. The 
substitution of volume by molar volume could be considered as an arbitrary 
division of numerator and denominator by n, but, in fact such an operation was 
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suggested by the Gibbs paradox (Section 1.4) and to some extent by the equation 
of state itself. These differentials on integration yield the entropy as: 

S=ncv lnT+nRlnv+C=n(cv lnT+Rlnv+s0 ) (3.11) 

in which C = ns0 is an integration constant. The Helmholtz free energy of this 
system (note that E = ncv7) is: 

F=E-TS=n[cvT(1-lnT)-Ts0 -RTln :J (3.12) 

The free energy of a mixture of molecules of different kinds in the state of ideal 
gas is additive: 

F = LF, = In;[cv,T(1-lnT)-Ts 0, -RTln ~] 
I I I 

(3 .13) 

The chemical potential of the i-th species in such a mixture is: 

[ EJF) ( ) n, o 1 n, µ, = - = cViT 1- In T -Ts0, + RTln- +RT=µ, +RT n-
on; v v 

in which: 

µ~ = cv,T(1- In T)+ RT-Ts0 , (3.14) 

The law of mass action (3.6) can then be written as: 

(3.15) 

or, in exponential form: 

(3.16) 

Note that the numbers of moles were introduced after we had substituted 
pressure by molar volume using an equation of state. The use of molar volume 
(partial molar volume in a mixture) was suggested by the Gibbs paradox. We see 
that in order to derive the law of mass action within the framework of formal 
thermodynamics we had to make use of the equation of state. 

In classical thermodynamics equations of state are fundamental assumptions or 
definitions: the ideal gas state is defined as obeying the equation of state of an 
ideal gas. When we consider the same problem from the point of view of statistical 
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thermodynamics the equation of state becomes an integrated part of the general 
formalism easily obtained for an ideal gas as a collection of statistically 
independent particles from the respective expression for free energy (see (1.65), 
Chapter I). The Gibbs paradox is not merely solved by statistical mechanics, but a 
rational interpretation is obtained as a consequence of the indistinguishable nature 
of molecules. Statistical thermodynamics provides, therefore, for a general and 
rational description of the origin and possible forms of the law of mass action. 

In the following Sections we shall derive a number of forms of the law of mass 
action for gaseous, solid and liquid systems. During these derivations it is 
important to keep in mind the dependencies (sometimes not explicitly shown) of 
all terms on the numbers of molecules or concentrations. Some valuable hints 
concerning the form in which equations should be arranged might be obtained 
when the free energy is expressed as a function of one variable, namely the 
concentration (number of molecules) ofa component of the reaction mixture. 

The current numbers of molecules or moles (denoted by small n's) in a reaction 
mixture are not independent variables. They are interrelated by a system of 
material (mass) balance equations, for example: 

nR = N 11 _ fc,R /C,P Xnp - Np) (3.17) 
I I ~ I I l I 

(3 .18) 

The free energy of a reaction mixture can thus be expressed as a function of one 
variable, namely the number of particles of one of the products or reactants: 

F(nl? , ... nl? ,np , ... np )= F'(N11 , ... N 11 ,N1, , ... Np , n1,) (3.19) 
I k J m I k I m I 

in which the initial numbers of molecules, N;, are constants for a reaction mixture 
of given initial composition. The differential of the free energy F' with respect to 
np 1 is, therefore, a complete differential. The condition of equilibrium (minimum 
free energy) corresponds to zero for the complete derivative: 

(3.20) 

This approach provides a clearer physical significance of these relationships. 
Two pictures on the cover of this book illustrate the versatility of the complete 
derivative (3.20) compared to the use of chemical potential in the derivation of the 
law of mass action. A free energy surface for a binary mixture does not directly 
show that there is a minimum of free energy corresponding to the state of 
equilibrium. It is quite difficult to guess that there is one by analysing the 'slices' 
parallel to vertical coordinate planes (i.e. employing chemical potentials). On the 
other hand, the cross-section along the main diagonal - an operation equivalent to 
the application of the mass balance equation resulting in (3.20) - immediately 
reveals the minimum of free energy corresponding to equilibrium. 
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3.2 
Statistical formulae for free energy 

The Helmholtz free energy of a system of N indistinguishable interacting 
molecules without internal degrees of freedom can be written, (2.53) and (2.54), 
as: 

F kTI [ 1 f f -H(p,q)lkTd d d d ] =- n h3NN! ··· e 'Pt··· PN qt··· qN (3 .21) 

in which His the Hamiltonian function of momenta (p) and coordinates (q) of all 
particles. The integral in (3.21) can be divided into kinetic and potential energy 
terms: 

~! f .. fe-U(q)lkl'dqt ... dqN] 

v v 

(3.22) 

The integration over momenta (omitting the contributions from internal degrees 
of freedom) yields the translational partition function: 

l +oo +oo " I I -Ek;n I kl d d 
h3N . . . e 'Pt ... 'P N (3.23) 

-00 -00 

The term: 

Z - 1 I I -lf(q)/kT ,J ,J 
con/ - NI ... e uql ... uqN 

·v v 
(3.24) 

is called the configurational integral. The factor (I /N!) arises from the 
indistinguishable nature of molecules, which is an essential property of both 
gaseous and liquid states. Hence, for a gas made up of particles without internal 
degrees of freedom: 

F = -kTlnf ( 2Jr~kT)'; ~ f--Je-"'"'"''dq, ... dqNl (3.25) 
h JV. v v 

When some internal degrees of freedom are changed by reaction they must be 
taken into account and the free energy of such a system becomes therefore: 
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l 3N j _ 2nmkT 2 1 -lf(q)lkT 
F--kTln( 2 ) xZintx-,J--·fe dq1 ... dqN (3.26) 

h N.v v 

in which the total partition function for internal degrees of freedom, Zint is: 

N /, 

zint = nn z,.1 
1=! )=I 

(3.27) 

in which fi is the number of internal degrees of freedom of the i-th molecule. In the 
case of identical molecules 

(3.28) 

One of the internal degrees of freedom is connected with the electronic system 
for which the corresponding partition function is very simple because usually only 
the ground state is populated (provided that the temperature is not too high): 

-~ 
zcl = gOe kT (3.29) 

in which g0 is the degeneracy factor and Eo the energy of the ground state of the 
electronic system. The exponential in (3.29) gives rise to a very important term in 
the partition function reflecting that part of the potential energy of a molecule that 
is independent of the state of other molecules2. The terms independent of the 
numbers of molecules in (3.26) can be combined: 

3 

_ ( 2nmkTJ2 -;~. 
q - zint 2 ge 

h 
(3.30) 

This term has the dimensions of concentration [ lli-1 and is not exactly a 
partition function (as it is sometimes called in this book as well as elsewhere). It 
should also be distinguished from the coordinates qi in the configurational integral. 
The free energy can then be written as: 

F = -kTln[qN x ~ J--· f. e-U(q)lkTdq1 ••• dqN] 
N. v v 

(3 .31) 

2 If vibrational partition functions are calculated with respect to the energy of the zero vibrational 
level, (2.83 ), then this term also includes the sum of all zero vibrational energies. In this book, 
however, vibrational partition functions are calculated as [2sinh(hv/2k7)r 1, and therefore are 
on the absolute scale of energies. 
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Further derivation of the law of mass action involves some simplifying 
assumptions concerning the calculation of the configurational integral that we are 
able to introduce for ideal systems. In formal thermodynamics ideal systems are 
defined phenomenologically as those obeying the equations of state (that is a 
P-V-Trelationship) for an ideal gas, an ideal crystal or an ideal solution. From the 
point of view of molecular theory an ideal system is a collection of statistically 
independent molecules. In Chapter I we derived the distribution law and equation 
of state for such a system (an ideal gas) having zero energy of molecular 
interactions. As we shall see later, the observable properties of an ideal crystal can 
also be derived from its definition as a system of independent particles. 

3.3 
Statistical formulae for ideal systems 

The calculation of the configurational integral for ideal systems does not present 
insurmountable problems. If the potential energy of a molecule is independent of 
the coordinates of other molecules then: 

1 _U(q;) 

Z - TI f kT d cont - N! . e q, 
I 

(3.32) 

in which the potential energy of a molecule U(q,) is dependent on the coordinates 
of this molecule alone. In the absence of external fields the potential energy of the 
molecules of an ideal gas is zero3 and: 

0 N 
- 1 TI f -kT d - v 

Zcont - N' e q; - N' 
• i • 

(3 .33) 

This is a system of indistinguishable molecules as indicated by the factor (l/N!). 
Zero potential energy also implies zero radii of molecules, otherwise a repulsive 
interaction would have to be admitted for molecules at certain finite distances. In 
the language of statistical dependence this would mean that the presence of a 
molecule at the point with coordinates (x,y,z) would exclude the possibility of any 
other molecule being within a finite radius around this point. The molecules of an 
ideal gas are thus material points moving freely within the whole volume of a 
system. 

The total partition function for an ideal gas containing N chemically identical 
molecules is: 

3 When molecules collide with each other, then the potential energy of repulsive interaction is 
supposed to be transformed instantly into the kinetic energy of the same particles moving 
along new trajectories. 
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N N VN 
Z = q Z conj· = q --

. N! 
(3.34) 

When we have a mixture of chemically distinguishable molecules A, B, ... Kin 
the quantities nA, n8 , ... nK, the total partition function is: 

(3.35) 

A statistical independence of molecules can also be imagined for a system in the 
state of a crystal with molecules fixed in lattice centres. Molecules do not migrate 
from cell to cell and this is what makes them distinguishable (any molecule can be 
labelled by the coordinates of its centre). A molecule in such a state may perform 
oscillations of small amplitude not affecting the state of other molecules. 
(Appendix 10.4 presents an alternative way of deriving the formulae for an ideal 
crystal resulting in an interesting relationship between the translational and 
vibrational partition functions.) 

The partition function of a three-dimensional oscillator approximating the 
oscillations of a spherical molecule (as a whole) in a centre of a simple cubic 
lattice is given by: 

[ 
-hv/2kT ]

3 [ ( h )]-3 
zVlh = 1 ~e-hv!kT = 2sinh 2kvT (3.36) 

The partition function of a molecule in such a centre can be written as: 

_ -E11 ikT 
z-gzv1hzinte (3.37) 

in which g is the degeneracy factor, Zm1 is the partition function for internal degrees 
of freedom and the exponential exp(-r,0/kT) reflects the electronic energy as well 
as the potential energy in the mean field of the neighbours of the molecules 
concerned. This mean field is static by definition and does not destroy the 
statistical independence of molecules. Such a state approximates the state of 
molecules in crystals at low temperatures and is called an ideal crystal. 

If such a crystal is built of molecules of one chemical kind it can be realised in 
one way and the partition function of a crystal built of N such molecules is: 

(3.38) 

The distinguishable nature of molecules is indicated by the absence of the 
factor (l/N!). 

When several kinds of molecules are present in such a crystal the number of 
realisations is given [2] by: 
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W = (nA +ns +nc + ... +nK)! 

nA !ns!nc! . .. nK ! 
(3.39) 

The total partition function for such a crystal is then: 

(3.40) 

The factor W brings about the contribution to entropy, kin W, called the entropy 
of mixing or the configurational entropy. The configurational entropy of a 
random4 mixture of the molecules A and Bis thus: 

in which XA(B) = NAcs/(NA + N8 ) is the mole fraction of the component A(B). 
The case of the liquid phase is the most difficult: molecular interactions are 

approximately as strong as in solids and at the same time molecules move within 
the volume of a system. There is, however, the possibility of constructing at least a 
pseudo-ideal model of a liquid, which can be helpful in the interpretation of 
relationships observed for liquid state equilibria. 

3.4 
The law of mass action for ideal gases 

Taking into account (3.31) and (3.33), the Helmholtz free energy of an ideal gas is: 

F =-kTln{( 2nmkTJ
3
;[ z e-:~-JN c}=-kTlnqNVN 

ig h2 g mt N! N! (3.42) 

Applying the Stirling formula yields: 

F,K =-kT{Nlnq+N\n(eV)-NlnN} (3.43) 

From the statistical independence of the particles in an ideal gas it follows 
(partition functions being multiplicative) that the free energy of an ideal gas is an 
additive property. Therefore, when we have a mixture of molecules of different 
kinds forming an ideal gas the free energy of such a mixture may be calculated as 
the sum of the free energies of the components: 

4 Equation (3.39) holds when the particles A, B, ... Kare of the same size and their interactions 
are of the same magnitude, otherwise either ordered sequences (such as Na+CrNa+Cr in a 
rock-salt crystal), separate clusters (AAAA and BBBB), or even phases would be preferentially 
formed. 
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FiR = IN,F, =-kTL[N, lnq; +N; lnV-N, lnN, +N,] (3.44) 

Note that the logarithm of the number of particles, lnN, in (3.43) and (3.44) 
appears because the molecules in an ideal gas are indistinguishable (lnN!). 

We now derive the law of mass action for a reversible reaction of the most 
general type: 

SR,R1 +sR,R2 +···+sR,Rk <=>srl1 +sr,P2 +···+sr"'Pm (3.45) 

The state of equilibrium corresponds to a minimum of free energy, i.e. zero 
complete differential dF. Under the condition of constant temperature and constant 
volume the partial differentials with respect to numbers of molecules alone should 
be taken into account: 

dF= I(oF) .. dn; = Iµ,dn, =0 
i on, TV 

' ,n 1~1 

(3 .46) 

According to (3 .6) the condition of equilibrium of the reaction (3.45) is: 

IsRYR, - Isf'yp1 =o (3 .47) 

The free energy of a reaction mixture forming an ideal gas being additive, the 
chemical potentials can easily be obtained by differentiating the following 
expression for free energy: 

The result: 

µ 11, =-kT(ln qR, +In V - In nR,) 

applied to (3.47) yields the law of mass action as: 

(3 .48) 

(3 .49) 

L~ R,[1nq11, +lnV-lnn11,]-I~ rJ[tnqp1 +lnV-lnnP1 ]=0(3.50) 
I j 

If we separate in this equation just the numbers of molecules, then the 
arguments of all logarithmic functions will be dimensionless which is (at least) 
convenient: 
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'1 SP In np .. - '1 SR In nllt = '1 SP In qp V - """"' S11t In qR V (3.51) ~)}~/~]}~I 
J 

Note that the right-hand side of (3.51) contains logarithms of the dimensionless 
function q;V, which is actually a partition function multiplied by the number of 
molecules of corresponding kind. The logarithm itself must therefore be 
proportional to tree energy. This fact will be used a little later when we introduce 
standard tree energies of reaction (Section 3 .4.3). 

The exponential form of the law of mass action is obtained from (3.51) as: 

Ti nSR, 
R, 

(3.52) 

The law of mass action (3.51) and (3.52) is thus written with respect to the 
numbers of molecules and not with respect to either molar concentrations or mole 
tractions. The equilibrium constant Kn is dimensionless for any reaction but 
related to the actual system occupying the volume V. It is therefore convenient to 
use this form of the law of mass action for equilibria in systems confined to a 
vessel of constant volume. In order to get comparable equilibrium constants both 
the volume and temperature must be standard. 

3.4.1 
Conversion to molar concentrations 

Within a gaseous reaction mixture we can always mentally select a region of unit 
volume. The numbers n; become then numerically equal to molar concentrations. 
This is equivalent to combining n, and Vin (3.51) and (3.52): 

(3.53) 

and: 

TI (nP, / V f P1 TI C,p 
qpj 

1 

J 

TI (n 11; IV f'" 
1 =Kc (T) Tiq SR; 

IV 

(3.54) 

The equilibrium constant in (3.54) is a function of temperature alone and 
independent of the volume of the system and this can also be very convenient. 
However, the arguments of the logarithmic functions in (3.53) are no longer 
dimensionless. 
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Now, we must state clearly and explicitly that there is nothing implicitly wrong 
in the taking of the logarithm of a quantity having dimensions, Such an 
operation is merely connected with an implicit assumption that the logarithm of a 
conversion factor (the inverse unit in which this quantity is measured) is zero. 
Even when we compare the logarithms of two quantities having different 
dimensions (units) we assume that the logarithm of the ratio of two units is zero. 
For example the difference of the logarithms of the numbers of apples and the 
number of people is not something nonsensical - it is just the logarithm of the 
number of apples per person (which might be related with the probability of 
finding an apple being eaten!). The only 'problem' arising in such operations is 
that the results depend on the choice of units (e.g. bottles or half-bottles of wine). 

It is therefore not at all necessary to relate a quantity to some standard state 
just in order to get a dimensionless argument of a logarithmic function. On the 
other hand, it is very useful to check the dimensions of the results of mathematical 
operations during the derivation of a mathematical formalism in order to detect 
possible dependence of the results of calculations on the choice of units, i.e. to 
make use of 'quantity calculus'. 

In the conversion of the law of mass action to the form with respect to molar 
concentrations we have chosen a unit volume (one litre) and have thus implicitly 

introduced the conversion factor (I litre )HI'; -HR, into the equilibrium constant. 

This results in a dependence of the numerical value of the equilibrium constant on 
the units of concentration, in other words, when we use non-conventional 
concentrations we must be prepared to obtain different values of equilibrium 
constants. For example using concentrations expressed in terms of I 0-3 M 
(millimolar or mol m-3) we get an equilibrium constant which equals the one based 
on litres multiplied by 

(10-3f1;1'1 -L:!;R, . 

Therefore, in order to obtain comparable equilibrium constants, two parameters, 
namely the units of concentration and the temperature must be standardised. 

3.4.2 
Conversion to mole fractions 

Dividing the numbers of molecules by volume we have normalised them to a 
quantity derived from the configurational integral, i.e. the sum of the statistical 
weights of all configurations of molecules. Another possibility is to refer the 
numbers of molecules of each kind to the total number molecules. We will then get 
the law of mass action written with respect to mole fractions. For equilibria in 
ideal gases a straightforward linear transformation is required because V and N are 
related via the equation of state as: 

V=NkT/p (3.55) 

Equation (3.54) can then be written as: 
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Tinl:,1; TI l:,p} 

( NkT)(L,,,-L;,.,) _ I' 
qi'} 

I 

J (3.56) TI nc,11, TI l:,u, 
- -Kx(T,p) 

qR, p 
R, 

The numbers of molecules can be transformed into mole fractions (xi) by 
moving the factor NCL.si.,- 'LsR, l into the left-hand part of (3.56). The logarithmic 

and exponential forms of the law of mass action become: 

=0 

(3.57) 

(3.58) 
TI Xl:,R, 

R, 

i 

The equilibrium constant in such a case is temperature and pressure dependent. 
It is convenient, therefore, to use this form of the law of mass action for reactions 
under constant pressure (being prepared to obtain quite different values of the 
equilibrium constants at different pressures). Again, in order to obtain comparable 
equilibrium constants temperature and pressure must be standardised. 

3.4.3 
Standard states and standard free energies of reaction 

Note the symmetry in the expressions of the law of mass action when we use mole 
fractions (for equilibria at constant pressure) and numbers of molecules (for 
equilibria at constant volume). In both cases equilibrium constants are 
dimensionless and dependent on two parameters: temperature and either pressure 
(mole fractions) or volume (numbers of molecules). 

In the derivation of the law of mass action, above, we have not used an exactly 
complete differential of the free energy, but that applicable under the conditions of 
either constant volume and temperature, or constant pressure and temperature. As 
a result the equilibrium constants so obtained can only be compared if these pairs 
of parameters are standardised. In the case of an equilibrium constant expressed in 
molar concentrations this dependence reveals itself in the standardisation of the 
units of concentration (which is equivalent to the standardisation of the units of 
volume). 
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By employing standard states it is also possible to introduce a very versatile 
parameter characterising chemical equilibrium, namely the standard free energy of 
reaction. 

Let us investigate how this parameter appears in thermodynamic equations. 
Suppose that P R(P) is the free energy of N1, (the Avogadro Number) molecules of a 
reactant or product in the ideal gas state occupying volume Vat temperature T (the 
pressure is completely defined by the values of N, V and 7): 

F 0 = -kTN In qVe 
L N 

/, 

(3.59) 

Let us use the law of mass action with respect to the numbers of molecules. 
Even in such a case we can introduce a measure or a standard: for example, 
consider N1, as a unit of the number of molecules and call it one mole. The 
standard free energy of one mole of a reactant or a product is: 

F 0 = -RTln[qVe] (3.60) 

in which R = NLk is the 'gas constant' for one mole of molecules. The introduction 
of a measure results in the subtraction of -RTinN1,, i.e. in the introduction of a 
conversion factor. The standard free energy for the reaction (3.45) becomes: 

M 0 = '°' .. ~ P Fp0 
- '°'. ~RF~ =-RT['°' .. ~ P lnqp Ve-'°'. ~ R lnqR Ve] ~ J J ~I l ~ J J ~ l l 

I I I I 

(3 .61) 

We see that the standard free energy of a reaction in the units of RT is 
numerically equal to the negative logarithm of the equilibrium constant: 

~; =-2:~ P, ln[qpre]+ I~ R, ln[qR,ve]=-lnKn(V,T) (3.62) 
./ I 

Knowing the standard free energies of the components of a reaction mixture, 
therefore, makes it possible to calculate the equilibrium constant: a result of 
considerable importance. Employing the thermodynamic expression for free 
energy (1.50) enables the equilibrium constant to be written as: 

Mo Mo 
lnK (VT)=--+-

n ' RT R 
(3.64) 

in which the standard free energy of reaction is divided into 'temperature 
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dependent' and 'temperature independent' parts. This relationship is known5 as the 
van 't Hoff plot. The statistical mechanical relationships in (3.30), (3.53) and (3.54) 
show that (3.64) is a linear approximation of a more complicated temperature 
dependence of the equilibrium constant. Such a linearisation is in fact only 
possible over a narrow range around some given temperature T0. 

Consider a simple non-isomolar equilibrium in an ideal gas: 

A+B c (3.65) 

The equilibrium constant Kn( V, 7) of this reaction can be written, separating 
temperature independent and temperature dependent terms, as: 

In Kn(V, T) =In [[£__!!!L__)3/2 _I_]+ In Qnt - In T312 - Ee - EA - EB 

2rrk mAmB Ve kT 

(3.66) 
in which: 

(3.66a) 

The part1t10n functions for internal degrees of freedom are generally 
temperature dependent and the term In Q;ni is a function of temperature. In some 
cases, however, the lowest level alone is populated (similar to an electronic 
system). These degrees of freedom contribute then to the exponential term in the 
partition function and may otherwise be disregarded. 

The function (3.66) can be linearised with respect to r' in the vicinity of T0- 1 

(omitting for simplicity the symbol of the volume dependence of Kn) as: 

The standard entropy and standard internal energy of this reaction then are: 

Mo =-R(aJnKn(T)J 
ari i·-1· 

- 0 

The derivative in (3 .69) is: 

(3.67) 

(3.68) 

(3.69) 

5 Rather confusingly the same relationship is also called the 'isotherm of chemical reaction', or 
the 'van't Hoff isochore'. 
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( 81nKn(T)) = }_T, _Ee -EA -E8 +(81nQnt) 
ar' 1._.1. 2 ° k ar' 1·-1· - () - () 

(3.70) 

The standard entropy and internal energy6 of (3.65) can thus be written 
explicitly as: 

(3 '71) 

A vO N ( ) 3 R'T' R( a In Qnt ) 
D.,£, = /, Ee -EA -ER -- lo - -I 

2 ar 1._1. - () 

(3.72) 

We see that both the standard entropy and the standard internal energy are 
temperature dependent. The translational partition function contributes largely 
towards the standard entropy of a gas phase reaction. The standard internal energy 
of a gaseous reaction originates mainly from the difference of electronic energies 
of the ground states of products and reactants. 

The temperature dependence of the internal degrees of freedom constitutes an 
important part of both the standard internal energy and the standard entropy of 
reaction as defined by (3. 71) and (3. 72). This fact predetermines a certain 
parallelism in the variations of these parameters in a reaction series leading to the 
phenomenon known as the compensation effect or iso-equilibrium relationship 
(IER) showing that the effects of molecular interactions play a considerable role 
in these phenomena. This will be analysed in detail in Chapter 8. 

The concept of a standard state is also useful when describing the behaviour of 
non-ideal systems. Expressions for the free energy of such systems contain terms 
dependent on squares and higher powers of the numbers of molecules or 
concentrations. However, over a narrow range of concentrations it can be 
approximated by (3 .44) containing only linear and logarithmic terms, thus 
reducing the law of mass action to a pseudo-ideal form (see Chapters 4 and 7). 
This operation is usually referred to as the introduction of a hypothetical standard 
state (for example, that at infinite dilution). We consider such terminology 
confusing, misleading and unnecessary! 

6 For reactions in solutions (under constant pressure) the Gibbs free energy is universally used as 
the thermodynamic potential resulting in the enthalpy of reaction as the factor determining the 
temperature dependence of equilibrium constants. As mentioned above, the difference between 
enthalpy and internal energy in the condensed state is negligibly small for pressures of up to 
tens of bars. Therefore the parameter statistically calculated as internal energy is often called 
the enthalpy (the latter notation being conveniently shorter). We think, however, that it is 
better to avoid inaccuracies - even at the risk of appearing pedantic! 
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3.5 
The law of mass action for an ideal crystal. 
Spin crossover equilibria 

The number of possible types of reactions in the ideal crystal state is limited. First 
of all, any non-isomolar reaction would create either new centres or vacancies or 
change the type of the crystal lattice. Real solid state reactions are often 
accompanied by the formation of new phases (gaseous, liquid or solid) and the 
cases of homogeneous solid state reactions are quite rare. There is, however a 
class, of 'nearly' chemical transformations in the solid state ideally suited to the 
purpose of checking the theoretical descriptions of such reactions. This is the so
called spin crossover equilibrium occurring between high spin (HS) and low spin 
(LS) forms of a transition metal complex [3]. It can be described by a simple 
monomolecular equilibrium: 

A(LS) B(HS) (3.73) 

The free energy of the reaction mixture (3. 73) of the molecules A and B in the 
state of an ideal crystal, according to (3 .21 ), (3 .40) and (3 .41 ), is given by: 

F=FA +F8 -TSconf =-kTN[xAtnzA -lnxA)+x8 (1nz 8 -lnx8 )] 

(3.74) 

in which zA and z 8 are part1t1on functions given by (3.36) and (3.37) for the 
particles A and B respectively and N = nA + n8. We see that free energy is 
dependent on the logarithms of the mole fractions and not on ln(N/V) as in the 
case of an ideal gas, (3.43). Let us write the free energy of such a crystal as a 
function of one variable, namely the number of molecules A (nA): 

k { nA N-nA} F = - T nA lnzA -nA lnN+ (NA -nA)lnz8 -(N -nA )In N 

(3.75) 

Differentiating (3.75) with respect to nA yields the condition of equilibrium as: 

(3.76) 

This results in a conventional law of mass action: 

K (T) = ~ = N - n A = nB = ~ (3.77) 
ZA nA nA XA 

This equation can be written with respect to the numbers of molecules alone 
but, the free energy being a function of mole fractions, the same variables should 
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be used in the law of mass action. The thermal behaviour of such systems is 
usually simulated by expressing lnK via the standard energy and entropy of 
reaction. According to (3.64) and (3.77): 

xH zH !'!Eo !'!So 
ln--=lnK(T)=ln-=--+-

1-xH zA RT R 
(3.78) 

As in the case of the ideal gas, this is just a linear approximation (linear van't 
Hoff plot) of a more complicated temperature dependence. Taking into account the 
actual form of the partition function ofa molecule in an ideal crystal (3.36), (3.37), 
the standard internal energy, 11/!, originates in the exponential term arising from 
the difference in electronic energies and in potential energies in the molecular 
field. The standard entropy of reaction in the crystal state originates mainly in 
changes of vibrational frequencies (both lattice and internal vibrations) but may 
also include a contribution from different degeneracy factors of products and 
reactants (as occurs in spin crossover). 

Spin crossover can be observed experimentally on changing temperature as well 
as on light irradiation and pressure changes [3]. Most spin crossover compounds 
are Fe(II) complexes with the associated crystal fields formally intermediate 
between weak and strong. The state of an Fe(II) ion in a strong octahedral crystal 
field is diamagnetic (singlet 1A 1). In a weak octahedral crystal field the ground 
state of Fe(II) ions is paramagnetic (5-fold spin-degenerate term 5T2). This state 
may be orbitally degenerate: in an isotropic complex a hole in the t2i; orbitals may 
be placed with equal probability in any of them, and therefore the total degeneracy 
may be 3 x 5 = 15 (orbital degeneracy is connected with the orbital contribution to 
magnetic moment). However distortions of the crystal field usually remove orbital 
degeneracy. The HS and LS species differ not only in magnetic moment but the LS 
species also have significantly shorter (by 0.11 - 0.24A [3]) bond lengths. 

The energy difference, 11£·"' in spin crossover compounds is small - of the 
order of I - 2 kcal mor'. Variation of temperature causes a variation in the 
populations of LS and HS states of such complexes, hence changes in the observed 
magnetic properties. An interesting feature of the complexes exhibiting such 
thermally induced spin crossover is that the LS state is always the ground state 
(£0(HS) > £ 0(LS) ). This property is connected with the higher degeneracy of the HS 
state and lower vibrational frequency in HS complexes. Let us consider this 
problem in some detail: 

The partition function to be used in the calculation of the equilibrium constant 
of spin crossover can be written as: 

- 0 . I kl" hv H'i [ ( )]

-3 

ZHs = e Errs x zintHS x gHS x 2sinh 2kT (3.79) 

(A similar partition function may be written for a molecule in the LS state.) 
Components of this partition function and corresponding contributions to the 
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standard entropy of spin crossover can be estimated using various experimental 
data. It has already been mentioned that the energies i;0 for HS and LS states differ 
by ca. 1 - 2 kcal mor'. The degeneracy factor of an Fe(II) complex is 5 in the HS 
state and 1 in the LS state. Vibrational spectra show that intramolecular Fe-ligand 
stretching vibrations are considerably affected by spin crossover. For example, the 
Fe-N stretching vibrations in [Fe(Phen)2(NCSh] [4] show an approximately 
double decrease in frequency upon LS~ HS transition. Table 3.1. shows the 
process of evaluation of vibrational contributions to the standard entropy of spin 
crossover. 

Table 3.1. Calculation of the vibrational contributions (at 200 K) to the standard entropy of spin 
crossover according to literature data on vibrational frequencies 

Lit. C0HS COLS n,lnzv n,lnzv lnQv ( l/7)dln Q/dT1 t:i.:f!R 
(cm- 1) (cm- 1) (HS) (LS) 

---------------------------~------------------------------------------------------

Fe-NCS [4] 252 533 -1.457 -3.791 2.334 
Fe-Phen [4] 220 379 -2.246 -5.182 2.937 

sum 5.271 2.917 2.354 

lattice vib. [5 J 93 108 1.146 0.670 0.476 0.040 0.436 

lattice vib_ [6] 96 67 1.054 2.173 -1.119 -0.061 -L058 

There are two Fe-NCS and four Fe-N(phenanthroline) vibrations per complex; 
the corresponding weighting factors to the logarithms of the partition functions (nv) 
are therefore 2 and 4. For lattice vibrations of the complex as a whole 
(characterised by Debye temperatures 80 obtainable from Mossbauer spectra) the 
corresponding factor is 3 (3-dimensional oscillator). The latter contribution is not 
known for [Fe(Phen)2(NCS)2] and the data shown in Table 3 .1 are on two different 
spin crossover compounds presented here for illustration. The temperature 
derivative of the vibrational partition functions was calculated by computing 
L:{nw[ln(sinh(coHS/2k7)- ln(sinh(coLs/2k7)]} at 180, 200 and 220 Kand estimating 
parameters of the corresponding linear regression equation. According to (3.71) 
the difference lnQ-(l/7)dlnQ/dT 1 represents the contribution of vibrations into 
the standard entropy of spin crossover in units of R. 

The changes in intra-molecular vibrational frequencies contribute considerably 
to the entropy of spin crossover. On the other hand, the temperature dependence of 
the intramolecular vibrational partition function significantly decreases this 
contribution. The effect of lattice vibrations is small and can be either positive or 
negative. However, the total sum of contributions to the entropy of spin crossover 
is positive: 
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Mo = 1.609 + 2.35 + { +o.44 = 3.96{ 
R -1.06 

+0.44 

-1.06 
(3.80) 

in which 1.609 = In 5 represents the contribution of spin-degeneracy. This 
estimate, ~ = (2.8 - 4.4) R, is still less than the lowest level of experimental 
entropy of spin crossover in the solid state(~> 6R). 

The data given above show that the entropy of spin crossover is generally 
positive. If a substance exhibits spin crossover, i.e. if a mixture of equal amounts 
of the HS and LS forms can be observed at some temperature, then the difference 
of energies of the HS and LS states must be positive. When XHs = XLs = 0.5 the 
equilibrium constant is I and the standard free energy is zero. The temperature 
corresponding to such a state is called the transition temperature or temperature of 
spin crossover T 112 (Tse): 

i.e. 

Mo =Mo -T;12!1So =0 

Mo =T;121':.So >0 

(3 .81) 

(3.8la) 

The ground state of a substance exhibiting spin crossover is thus the LS state. 
There are a large number of molecules with HS ground state and the excited LS 
state may be quite close to the ground state. However, following the reasons given 
above, this excited state cannot be accessed by heating. Irradiating the molecules 
with light of an appropriate wavelength can, however, populate such states. A 
well-known example of such excitation is molecular oxygen (02), which is HS 
(triplet) in the ground state. Its excited LS (singlet) state, inaccessible thermally, 
plays an important role in numerous photochemical reactions. 

A paramagnetic molecule might also be converted into the diamagnetic state by changing its 
symmetry. For example, four-coordinated complexes of Ni(II) may often exist in either square 
planar (diamagnetic) or tetrahedral (paramagnetic) conformations in equilibrium. The standard 
enthalpy of transition from square planar to tetrahedral conformations in a series of Ni(II) 
complexes is small and positive (0- 5 kcal mor 1, [7]). These complexes behave formally, 
therefore, as conventional spin crossover compounds with the HS state populated at higher 
temperatures. However, these equilibria are not a thermally induced spin crossover because by 
changing temperature we do not populate excited states but change the 'average degeneracy' of 
the ground state. Furthermore, square planar complexes of Ni(II) can be solvated by donor 
molecules, which results in paramagnetic octahedral complexes. Standard enthalpy of solvation 
of bis-salicylaldoximatonickel(II) by DMSO [8) is negative (-13.5 kcal mor 1) and at higher 
temperatures the LS state is more populated. However, it is the result of decreasing (due to the 
dissociation of solvates) number of molecules in the paramagnetic ground state and not of the 
population of exited states. 

The law of mass action for an ideal crystal can be applied to spin crossover 
equilibria when the species in equilibrium are statistically independent. This is 
possible in two cases: (i) when the properties of HS and LS particles are very 
similar so that the transition of a given molecule from one state to another does not 
affect the states of molecules in its neighbourhood, and (ii) in diluted systems, for 
example in crystals of mixed metal complexes such as Fe/Zn coordination 
compounds. In the latter instance a molecule is mainly surrounded by molecules of 
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'solvent' and hence any spin transition of a given molecule can be considered not 
to affect the state of any other spin crossover complex. 

The volumetric properties of HS and LS species are significantly different due 
to the presence of additional (unpaired) electrons in antibonding eg orbitals in the 
HS state which causes the above mentioned increase of molecular radius by up to 
10%, i.e. an increase in molecular volume by ca. 30%. Such a transformation must 
affect the neighbours of the said molecule. It creates mechanical strain, and this 
changes the potential energy of neighbouring and even remote molecules (up to the 
range of the characteristic length of lattice relaxation). The behaviour of pure, 
crystalline, spin crossover compounds must significantly deflect from that 
predicted by the law of mass action for ideal crystals7• It is generally observed 
experimentally in the form of a steep spin crossover and other deviations from 
ideality that will be considered in detail in Chapter 7. In amorphous solids and 
crystals with a high defect content (for example, after grinding in a ball-mill) spin 
crossover transitions approach those predicted by (3.78). In fact, vacancies in the 
crystal lattice can be considered as a third component of a considerably smaller 
molecular volume. The presence of such species partly compensates the effects of 
the volumetric changes accompanying spin crossover. 

In 'magnetically diluted' systems spin crossover very often follows the law of 
mass action for ideal crystals. Fig. 3.1 shows a practically linear van't Hoff plot for 
the spin crossover equilibrium in highly magnetically diluted crystal of 
[FeyZn i-y(ptz)6](BF 4) 2 [9], corresponding toy= 0.005. 
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Fig. 3.1. Van't Hoff plot for spin crossover in magnetically diluted [FeyZn 1_y(ptz)6](BF4)z, 
y = 0.005. Crosses: experimental data [9], solid line: theoretical curve 

7 In some cases (especially at low temperatures) magnetic interactions between HS species 
(absent for LS species) must also be taken into account. 
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In diluted mixed crystals the species involved in chemical equilibrium are at 
very large distances, which excludes their direct interactions. Nevertheless the 
van't Hoff plot in Fig. 3. I is slightly curved which can be explained by taking into 
account the temperature dependence of zv for the lattice vibrations of a molecule as 
a whole: 

(3 .82) 

where 8 = hv/k is the Einstein characteristic temperature and: 

!J.5° = In g Hzint H 

R gAzintA 

(3.83) 

The entropy /l.S can, to a first approximation, be considered as temperature 
independent (higher temperatures are required to excite internal vibrational 
degrees of freedom). When we approximate the observed temperature dependence 
of lnK by a linear van't Hoff plot the regression error is about ±0.063. A reliable 
estimation of eA 8s from this set of data is impossible. However, by setting 
86 = 40 K, 8A = 180 Kand adjusting M:0 and /l.S we obtain reasonable estimates 
of these parameters (N1,M.0 = 1.634 ± 0.005 kcal mor1, /I.SIR= 2.74 ± 0.03)8 with 
a regression error of lnK = ±0.024. In the spin crossover complex with 
2-picolylamine [FeyZn 1_y(2-pic)3]Cl2.EtOH [10] the curvature of the van't Hoff 
plot is more pronounced and requires 15 internal degrees of freedom (apparently 
corresponding to 15 vibrational modes of an octahedron) to be taken into account 
in order to get an adequate description. 

The phenomenon of spin crossover is often represented not by van't Hoff plots 
but by transition curves, xHs = f(T). The equation of the transition curve for a spin 
crossover in an ideal crystal (Fig. 3.2) can be written in terms of /I.If! and T112 as: 

Xm; = 1 _1 = {1 +exp[ Mo(_!_- _l J]}-I 
l+K R T 'Fi 12 

(3.84) 

When analysing such curves, it is important to remember that the highest limit 
of XHs might be considerably smaller than I. According to (3.84) the asymptotic 
value of XHs corresponding to infinitely high temperatures is: 

X~s = [1 +exp (-~Ji-I 
Rfi12 

(3.85) 

8 Note that this value does not contain the contribution from lattice vibrations and it is still 
higher than the pure electronic degeneracy entropy (R In 5). 
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Fig. 3.2. Simulated spin crossover curves corre~1ponding to a gradual LS --+ HS transition with 
!1E1 = 1.5 kcal mor 1 (crosses) and 2.5 kcal mo! (circles). The graph A illustrates the case of a 
constant transition temperature T 112 = 240 K (and varying /1S1), whereas the graph B shows the 
curves corresponding to identical /1S1=10.42 cal mor 1K- 1 (resulting in varying T112) 

For the curves shown in Fig. 3.2 this value is 0.995 (11~ = 2.5 kcal mor1), and 
0.959 (11~ = 1.5 kcal mor1) but for lower energies of transition it may differ more 
significantly from I. 

3.6 
Liquids 

The difficulties in constructing an ideal model of the liquid state are connected 
with strong molecular interactions and migrations of molecules making the 
integration over coordinates a necessary and quite complicated procedure. These 
difficulties are alleviated by two circumstances. First of all, in systems of 
uncharged particles (excluding, therefore, solutions of electrolytes) the interactions 
between nearest (and perhaps next nearest) neighbours are alone really important. 
Secondly, the number of nearest neighbours of a given molecule is large (the 
coordination number is ca. 10) providing for an efficient averaging of interactions. 
A useful approximate model of the liquid state can be constructed on these 
assumptions: molecules can be considered as mainly residing in the cells of a 
quasi-crystal lattice. Within these cells they may perform various types of motion 
in the average field created by their neighbours. The mean field within a cell can 
be considered as approximately static. The motion within the volume of a system 
is achieved by comparatively rare and very fast jumps of molecules from cell to 
cell. The state of a molecule is then determined by its coordinates within a cell 
independently of the coordinates of all other molecules. Such a system can be 
considered as pseudo-ideal. 
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This model is actually based on the experimental observation that liquids have 
much more in common with solids than with gases. The only feature common for 
liquids and gases is the indistinguishable nature of molecules. On the other hand, 
the volumetric properties ofliquids and solids are quite similar: their densities may 
differ by a maximum of I 5%, whilst the density of the gaseous phase in 
equilibrium with liquid is ca. I 000 times smaller. Even the mode of molecular 
motion in liquids at temperatures close to the melting point resembles that in 
solids: molecules perform motion mostly within their cells with occasional jumps 
from cell to cell whilst in solids such jumps can be neglected. 

The concept of the volume itself is completely different in the cases of the 
condensed and gaseous states. The volume of a gas is the volume of the vessel 
containing it. Liquids as well as solids have their own volume and as a 
consequence they also possess surfaces (or interfaces). The volume of a gas at a 
given pressure is proportional to the number of molecules whereas the volume of 
liquid at a given pressure is proportional to the quantity of matter. Liquids are 
usually considered as incompressible and therefore, at pressures not exceeding tens 
of bars, the specific volume of a liquid is approximately constant and determined 
by the elemental composition of the system. The densities of liquids, either organic 
or inorganic, composed of specified types of atoms lie in a narrow range. For 
example, the liquids composed of atoms of hydrogen, carbon, nitrogen and oxygen 
vary between 0.7 ~ 1.2. Higher densities are achieved by the introduction of 
heavier elements in which matter is made compact by the 'strong' nuclear 
interactions. 

When we look at an equilibrium reaction mixture we notice that it is composed 
of the same atoms and in the same numbers as the initial mixture. Therefore a non
isomolar reaction in the condensed state does not significantly change its volume. 
In contrast, a non-isomolar gas phase reaction (at constant pressure) is connected 
with volume changes proportional to the change in the number of molecules. 
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A simple example illustrates this propos1t1on. The density of the vapour of 
acetic acid (Fig. 3.3) is strongly temperature dependent because of a dimerisation 
equilibrium (via hydrogen bonding) with Mf = 14.3 kcal mor' (see p. 896 in 
[11]). In the liquid phase the same dimerisation equilibrium exists and NMR 
investigations show that the enthalpy is of the same order of magnitude or even 
higher [12]. Despite this fact, the specific volume of liquid acetic acid is but 
slightly increasing with temperature, at a rate similar to the thermal expansion of 
liquids not exhibiting hydrogen bonding (such as methyl formate, curve 2, Fig. 
3.3). 

3.6.1 
The law of mass action for an 'ideal liquid' 

Let us derive the law of mass action for a liquid state reaction taking into account 
only one particular feature of the liquid state, viz. the invariance of the total 
volume of a reaction mixture under constant pressure. The molecules we consider 
as material points moving freely in the whole total volume V. The latter condition 
actually means that molecules are material points, otherwise some space would be 
forbidden for a given molecule. The volume of a liquid system of constant mass is 
independent of the number of molecules. The molecules are supposed to interact 
with a uniform molecular mean field which actually causes them to be confined 
within the volume V. This model seems to be more applicable to a highly 
compressed gas in a vessel placed in a strong external force field than to a liquid. 
The difference is that the pressure in such a gaseous system is proportional to the 
number of particles whilst in a liquid it is constant. Molecules are statistically 
independent and indistinguishable except by their chemical nature. The partition 
function of such a binary liquid mixture (see p. 687 in [ 11]) is: 

where the exponential factors account for the possibility of migration of a 
molecule within the whole volume of a system, E0 is the potential energy 
comprising the electronic energy and potential energy in the mean field, and zi is 
the product of partition functions for internal degrees of freedom. The total volume 
V being independent of composition we can write the free energy as: 

(3.87) 

in which 'partition functions' qA and q8 are independent of composition. Under the 
condition of V = const they are determined by the 'intramolecular' properties of 
corresponding molecules: 
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() 

-~ 
kT (3.88) 

The expressions (3.87) and (3.88) are similar to (3.30) and (3.43) for an ideal gas. 
The latter yielded the law of mass action, (3 .51) - (3 .54 ), with respect to the 
numbers of molecules or molar concentrations. A reaction in the liquid state under 
constant pressure is therefore described by the law of mass action of a gas phase 
reaction at constant volume. We are not able, however, to perform a conversion to 
mole fractions because the equation of state is unknown and the volume V is not 
proportional to the number of molecules. 

Fortunately, it can be easily shown that the form with respect to mole fractions 
corresponds to the invariance of the volume per molecule. By substituting in 
(3.86): 

(3.89), 

in which v is the volume per molecule and by applying the Stirling formula the 
partition function (3.86) can be transformed into: 

(3.90) 

The corresponding expression for free energy becomes: 

F = -kT In Z =[NA (in q A - In NA ) + N 8 (in q 8 - In N 8 )] 
NA+NH NA+NH 

(3.91), 

in which: 

(3.92) 

It is when the volume per molecule vis independent of NA, N8 that the condition 
dF = 0 results in the law of mass action of an ideal gas with respect to mole 
fractions. 

The invariance of the volume per molecule in the liquid phase implies an 
equality of molar volumes of components. In fact, Raoult 's Law when formulated 
in terms of mole fractions is only applicable to mixtures of molecules of 
approximately equal volumes. 

We see that by considering a liquid as a system of statistically independent 
material points and taking into account the invariance of the specific volume of 
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liquids of the same elemental composition, a general rule can be derived: molar 
concentrations should be used as variables in the law of mass action. An 
additional condition is that the quantity of matter remains unchanged, i.e. nothing 
escapes into another phase (gaseous, solid or liquid). The state of infinite dilution 
is a good approximation to a reaction in an 'ideal liquid' because reacting particles 
are randomly distributed and surrounded mostly by solvent molecules. The volume 
of such a system is determined by the volumetric properties of the solvent and is 
independent of the degree of conversion. 

3.7 
'Breakdown' of the law of mass action 

Liquid phase equilibria strongly shifted to one side present the problem that only 
small numbers of molecules are involved in the equilibrium when the volume of 
the reaction mixture is small. It is now nearly a decade since the first publication 
appeared [ 13] declaring a breakdown of the law of mass action in vesicles 
containing I 0 7 - 109 water molecules. The law of mass action indeed predicts for 
such systems (at pH = 7) that the number of pairs of H+ and OH- ions must be less 
than one. Such a result has been interpreted by Blumenfeld et al. [14] as meaning 
that some of the vesicles dispersed in bulk water contain one or more pairs of ions 
whereas others contain none of them. The average numbers of dissociated water 
molecules in vesicles computed in [14] proved to be completely different from that 
given by the law of mass action for bulk water. One of the consequences of such 
behaviour might be a gradient of thermodynamic potential across the membrane 
separating vesicle from bulk water. The authors produced some experimental data 
on the smallest living units supporting this discovery and explained the breakdown 
of the law of mass action by the effects of.fluctuations. 

However, this interpretation is suspicious because fluctuations affect the second 
derivatives of thermodynamic potential (see Chapter 2) whereas the law of mass 
action represents the first derivative. Fluctuations should not therefore affect the 
mean values of concentrations predicted by the law of mass action - although they 
determine the ease with which mean values may deviate from the most probable 
values by variations in temperature, pressure, etc. Secondly, the fluctuations in 
living organisms should not be large according to the answer given by Erwin 
SchrOdinger to 'naive physicist' (see Introduction). In fact, the expected relative 
fluctuations for an ideal gas containing I 06 molecules are of the order I 0-3 whilst 
the deviations from the law of mass action predicted by the formulae of 
Blumenfeld et al. are much larger. This 'breakdown of the law of mass action' was 
critically considered by Sokirko [ 15] whose (clearer) presentation of the problem 
we shall now analyse. 

Consider water ionisation equilibrium occurring in a closed volume containing 
N molecules: 
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(3.93) 

The ions H30+ and OH- are present in small quantities and are therefore 
separated by distances of several tens of nanometers, which provides for the 
validity of the ideal gas laws for such a system. The equilibrium constant of this 
reaction is the ionic product divided by the square of water concentration, i.e. it is 
ca. 3.2xl0- 18 . The equations of the law of mass action and material balance for 
(3. 93) may be written with respect to the numbers of ions as: 

m = n, = n_ = (N - n0 )12 
2 

I K I q+q- I m 
n =n-2-=n( )2 

% N-2m 

(3.94) 

(3 .95) 

in which (neglecting to a first approximation the contributions from rotational and 
vibrational partition functions, see Appendix 10.5): 

3 

-(2rtµ,kTJ2 -:;. q, - 2 e 
h 

(3.96) 

and µ, is the mass of the corresponding particle. Taking into account (3.96) the 
equilibrium constant of(3.93) can be written as: 

3 

(µHO+µowJ 2 ( 8 Ho+ +EOH- - 28 HpJ 
lnK=ln 1 

2 exp ---1-------µHo kT 
2 

(3.97) 

The masses of the particles involved in the equilibrium (3.93) are practically 
identical (µ = 17, 18 and 19) and therefore the equilibrium constant is mainly 
determined by the exponential term in (3.97). According to (3.95) the equilibrium 
value of the number of dissociated molecules m can be found as a solution of the 
quadratic equation: 

m 2 (1-4K)+4K.Nm-KN 2 =0 

2KN 2 

m=----;:====================-
4KN ± ~16K 2 N 2 + 4(1-4K)K.N 2 

(3.98) 

(3 .98a) 

For small equilibrium constants (such as considered here) the number of pairs 
of ions is approximately proportional to the square root of K. This number is less 
than one when NYK < 1, i.e. when the number of water molecules in a vesicle is 
less than 5 x 108 . 

Blumenfeld et al. then considered an ensemble of such vesicles and calculated 
the mean number of vesicles containing a dissociated molecule ( <m> ). Neglecting 
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rotational and vibrational contributions the partition function for the equilibrium 
mixture (3.93) in a vesicle was written as: 

(3.99) 

The masses of particles involved (H20, H30+ and Off) being nearly identical, 
the first three terms equal (q0 Vt. The factorial (N - 2m)! for large N and small m 
may be approximated as: 

(N -2m)!= (N -2mt-2m e-(N-2m) =: (N/e)N (N/et2m (3.100) 

Therefore the partition function (3.99) may be written9 as: 

( VJ N NE0 ( J2 = ~ -Tr __!__ zves N e I e 
m. 

m(E++E_-2Eo) 

kT e-2mN2m (3.101) 

The mean over the ensemble value of m was then calculated using partition 
function (3. I 0 I) as a statistical weight: 

max 

Imzves 
(m)=""--m=-'-----0 -

max 

Lzves 

[ lm 
max i\.e N2 L m -kT 

m=O~ e 7· 

max 1 [ _ i\.e N2 ]"' 
I~-- e kT ~-
m=O (m!)2 e2 

(3.102) 

in which llE = E+ + E_ - 2E0. For large L'lE/kTand complying with the condition: 

(3.103) 

the series in (3. I 02) converge fast and the first two terms corresponding to m = 0 
and m = I are sufficient for a reliable calculation of <m> (see Table 3.2). The 
mean number of vesicles containing one dissociated water molecule can then be 
calculated as: 

9 Note that a certain manipulation has been performed when approximating the factorial 
(N - 2m)!. The difference N - 2m was assumed to equal N as the base but not as the power. In 
this case it is pem1issible, but in general a separation of a small value from a large one can be 
dangerous. 



102 3 The Law of Mass Action for Ideal Systems 

(3.104) 

Table 3.2 The ratio of the mean values of m calculated using the first 2 and the first 12 terms in 
the sums in (3.102) at different values of a= (N/e)2exp(-t'lr./kT) 

a 0.8 0.6 0.4 0.2 0.1 

m(2)/m(l2) 0.753 0.796 0.848 0.914 0.954 

The exponentials in (3 .104) equal the equilibrium constant as defined by the 
law of mass action (3.95), therefore: 

( ) KN 2/e 2 2/ 2 
m = 2 / 2 =KN e 

l+KN e 
(3.105) 

On the other hand, when (N/e)2exp(-!J.r./k7) > 1 the series in (3.102) can be 
substituted by their largest term and both sums cancel out resulting in the mean 
value becoming identical with the most probable value <m> = m* (corresponding 
to the maximum of the partition function). This condition (dlnZ/dm = 0), as we 
know, results in a conventional law of mass action which yields: 

m*= NJK =.NJK 
2JK +1 

(3.106) 

As has been pointed out by Sokirko [15], (3.105) has been obtained for an 
ensemble of essentially closed systems. Such an ensemble when considered as one 
system is not in thermodynamic equilibrium because it is separated by partitions 
impenetrable to molecules. The law of mass action cannot be applied to such a 
system. For a collection of bacteria or cells exchanging water molecules and ions 
with bulk water the averaging must be performed over an ensemble of open 
systems (grand canonical ensemble). In such a case the averaging results in an 
expression identical to that given by the law of mass action [ 15]. 

In a single small isolated system ionisation equilibria can be considered as a 
stochastic process occurring in time. The mean number of dissociated molecules 
per vesicle then corresponds to the number of events of dissociation normalised to 
the total number of trials. 

These problems are not of purely theoretical interest because the formalism of 
Blumenfeld et al. predicts a considerable difference (not connected with surface 
effects) in the concentrations of charged particles in bulk water and in small 
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capsules. These concentrations must differ by the factor '1K, i.e. 10-9 for water, 
which would proportionally affect the rates of reactions catalysed by protons and 
hydroxyls. Although for water ionisation equilibrium the size of a system 
complying with (3.103) is too small to be investigated (1.5 x 10-15 cm3, i.e. a cube 
with sides of 2.5 x 10-4 mm) there are several quite tangible systems complying 
with this condition. The ionic product of saturated hydrocarbons is estimated [ 16] 
as ca. 10-4° mol2 r 2, i.e. there must be less than one dissociated proton in under 
0.17 ml. There are also some very stable complexes of transition metals: the first 
stage of dissociation of[Hg(CN)2] is characterised by K1 = 10-16 mo! r 1; K2 = 10-17 

mo! r 1 [17]. The concentration of free mercury ions in a solution containing 
I mo! r 1 of HgCN2 and 1 mo! r 1 of KCN is then 10-33 mo! r 1. One needs therefore 
to go through at least 1.6 x 109 litres of such a solution in order to find a single 
free mercury ion! 

A single event of dissociation of a molecule can hardly be detected using any 
direct non-invasive method but the rates of 1HPH isotope exchange must be 
proportional to the number of dissociated protons/deuterons. This provides for an 
indirect method of estimating the mean number of acts of dissociation in small 
systems. For example, in a solution of deuterated cyclohexane in an excess of 
protonated benzene (or vice versa) one can expect to observe (after a sufficiently 
long time) an increase in the intensity of the PMR signal of C6HD 11 (CHD5). The 
limiting stage of the deuteron-proton in such a solution is the dissociation of the 
deuteron/proton. Therefore the rate of protonation (easier observed than the rate of 
deuteration) must be different in a small sample (less than 0.2 ml C6D12 in an 
excess ofC6H6) for which (3.105) holds and in a two-litre flask for which the law 
of mass action is valid. The difference is rather dramatic: the rate of protonation in 
the large flask must be larger by the factor '1K, i.e. 1020 ! To our knowledge no 
evidence of such behaviour 10 has ever been made public. 

Theoretically, a process involving rare events can be described using the 
Poisson distribution. Observing for a long time a single 'small' system we detect 
(or rather accumulate in the form of protonated cyclohexane) a certain number (m) 
of events of dissociation. For small degrees of conversion the probability of such a 
result follows the Poisson distribution: 

pm n ~ (pnt e-np 

, ' m. 
(3.107) 

in which Pm.n is the probability of detecting dissociation in m trials out of n and pis 
the probability of a single rare event approaching zero at finite pn. The number of 
trials can be identified with the number of oscillations of a deuteron/proton made 
during the observation period i.e. n = 10 14-c ('r in seconds). For large 11 m >> 1 the 

10 A rather serious disadvantage of this method is that several years must elapse before a 
meaningful answer is obtained and experiments must be carried out deep under the Earth's 
surface in order to exclude the background effects of cosmic rays! 

11 Observing a small change in the intensity of a PMR signal of a deuterated compound means 
that mis large because the sensitivity of PMR is 10 15 protons (events of dissociation) at best. 
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Poisson distribution can be written using the Stirling approximation as: 

-[pn 1-: lm Pmn = -e , m 

This probability approaches 1 when pn!m = 1, that is 

(3.108) 

m 
-= p (3.109) 
n 

i.e. the expected value of m is pn, a well-known result in the theory of random 
processes. The probability of a single act of dissociation can be expressed 
similarly to the equilibrium constant as exp(-~E/k7) and in this sense (3.109) 
formally agrees with (3 .105). However, the physical significance of ~E in (3 .109) 
is completely different: it is not the standard energy of reaction but the height of 
the potential barrier in the reaction path of heterolytic bond cleavage. This 
comparison shows that the mode of computation of mean numbers employed by 
Blumenfeld et al. was essentially stochastic and implied the use of parameters 
different from those of thermodynamic formulae. 

It is also possible to derive the law of mass action in a form mathematically 
correct for small numbers of particles by representing the factorial in terms of the 
r -function. This approximation results (see Appendix 10.6) in the law of mass 
action: 

In q+q- - In (m + 0.52)2 ::::: 0 
2 2 -

% N 
(3.110) 

which predicts that in small systems (KN 2 ::; 0.522) no (thermally actuated) 
ionisation would take place. According to this, the protonation of C6D 12 (if 
observed) in such small systems can only be due to the radiation effects of light 
and cosmic rays! In other words (3.110) predicts the irreversibility of chemical 
reactions, which contradicts the initial assumptions employed in the derivation of 
the law of mass action. It must be remembered that the r -function is just an 
approximation providing for the smoothest interpolation of a function of 
essentially integral arguments. The same problem arises if we try to correct the 
Maxwell - Boltzmann distribution by taking into account that some of the filling 
numbers n, (p. 7) are small and n;! should be represented in terms of the r -
function. Such a correction would result in the distribution: 

(3.111) 

Again, this law actually puts a limit on the possible energy of a particle 
corresponding to the condition: 

(3.112) 



3.8 Conclusions 105 

which does not have any physical significance. This shows that the cell method of 
Boltzmann, allowing for the derivation of the main formulae of statistical 
mechanics and thermodynamics, is not completely correct; particularly in the use 
of combinatorics formulae for the distribution over the energy levels, some of 
which can be empty. This method, however, is based on an extremely clear 
physical model, and, as has been emphasised by Sommerfeld [18], its results are 
correct. 

In fact, the general applicability of the law of mass action to the description of 
chemical equilibria in small macroscopic objects is not questioned by any of the 
singularities described above. A chemical equilibrium also imposes restrictions on 
the composition of the reaction mixture in the form of the mass balance equation. 
The numbers of particles are not independent variables and, mathematically, the 
choice of a variable can be correct or incorrect (fortunate or unfortunate). For 
small systems, the law of mass action should be written with respect to the 
numbers of non-dissociated molecules: 

lnK =In q+q- =In (N -no)2 
2 2 

qo no 
(3.113) 

For small KN but large N this equation yields n0 ~ N to an extremely high 
degree of precision. 

3.8 
Conclusions 

In this Chapter we have shown that the law of mass action is not an empirical 
relationship but a fundamental law originating from the dependence of free energy 
on the composition of reaction mixtures. The general variables of the law of mass 
action in an ideal gas are the numbers of molecules that can be converted to either 
molar fractions or molar concentrations resulting in specific forms applicable to 
the cases of constant volume and constant pressure. The equilibrium constant is a 
function of two parameters in all cases, namely temperature together with either 
volume (Kn), pressure (Kx) or chosen units of concentration (Kc). This fact 
determines the concept of the standard state that includes a standard temperature 
and either standard volume, pressure, or concentration. Chemical affinity can be 
uniformly characterised by the standard free energies of reactions that can be 
calculated from the standard free energies of the components of a chemical 
equilibrium. 

The use of a van't Hoff plot to describe the temperature dependence of 
equilibrium constants corresponds to a linear approximation of a rather 
complicated relationship in the vicinity of the standard temperature. 

The free energy of an ideal crystal has been derived as a function of mole 
fractions, thus indicating that this quantity should be used as the main variable in 
the law of mass action for solid state reactions. The examples of spin crossover 
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equilibria show that the ideal form of the law of mass action can only be applied in 
diluted solid systems (when the species in equilibrium are separated from each 
other). 

By taking into account specific volumetric properties of liquids (viz. the 
invariance of volume with respect to the number of particles in a system of 
constant mass), the general applicability to liquid systems of the law of mass action 
with molar concentrations as the main variable has been demonstrated. Note that 
the law of mass action with respect to mole fractions can only be applied to liquid 
mixtures of molecules of approximately equal molecular volume. 

The 'breakdown' of the law of mass action predicted for pseudo-ideal diluted 
systems by statistical analysis has its origins in the incorrect mode of calculation of 
the probabilities. The fluctuations cannot change the mean values of the first 
derivatives of thermodynamic potentials, one of which is represented by the law of 
mass action. Real deviations from ideality are connected with molecular 
interactions. In the next Chapter we introduce them by employing a semi-empirical 
approach. 
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4 Reactions in Imperfect Condensed Systems. 
Free Volume 

4.1 
Additive volume: a semi-empirical model of repulsive 
interactions 

One of the earliest theories of the liquid state developed by Jager [I] described an 
'ideal liquid' as a collection of hard spheres of finite diameters comparable to the 
distances between their centres and held together by cohesive internal pressure. As 
has been mentioned in Chapter 3, the admission of finite diameters of molecules 
introduces repulsive interactions and the system of such particles cannot be 
considered as ideal. In fact, the ideal liquid of Jager is a slightly imperfect liquid 
in which repulsive interactions are accounted for in the semi-empirical form of the 
finite volumes of molecules. Attractive interactions in the form of cohesive 
internal pressure are introduced irrespective of any molecular model. 

It must be emphasised that the separation of molecular interactions into 
repulsive and attractive contributions is only possible within a theoretical model 
employing a certain (simplified) intermolecular potential (see Section 4.3). In 
reality the volume of a liquid always reflects a balance between repulsive and 
attractive forces. It is the difference in the steepnesses of the repulsive and 
attractive potentials that makes it possible to consider volume as reflecting mainly 
the repulsive interactions (see Chapter 5). 

The volume of a 'Jager' liquid under constant external pressure can be 
considered as an additive property with respect to the numbers of molecules 
provided their diameters do not differ too much. The volume of a mixture of 
molecules of approximately equal size may then be calculated as: 

(4.1) 

in which v, is the volume per molecule of the i-th kind. As the result of finite 
molecular volumes the volume of a reaction mixture becomes a function of 
composition and we must take it into account when deriving the law of mass 
action. We will do this presently neglecting at first another possible contribution 
from non-ideality connected with the energy of attractive interactions. 
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4.1.1 
Binary equilibrium in a liquid with repulsive interactions 

Consider a simple monomolecular equilibrium (e.g. spin crossover) in the liquid 
state without a solvent: 

A B (4.2) 

When deriving a law of mass action for a system exhibiting volume changes the 
Gibbs free energy must be employed as the thermodynamic potential. The Gibbs 
free energy ( G = F + p V) of such a reaction mixture is given by: 

in which N = nA + n8 is the total number of molecules. The condition of 
equilibrium of such a reaction in the liquid phase corresponds to dG/dn8 = 0. 
Taking into account any possible dependence of volume on composition V = f(n8 ) 

we get: 

__ l dG =-1nqA -1neV+1n(N-n 8 )+(N-n8 )[dlnV + l l 
kT dn 8 dn 8 N -n 8 

[ din V 1 l p dV +lnq 8 +1neV-1nn8 +n 8 ---- ----=0 
dnB nB kT dnB 

(4.4) 

We see that although the terms In V cancel out, those containing the derivative 
of volume with respect to n8 do not, and the law of mass action must therefore be 
written as: 

(4.5) 

We also see that the work against external pressure is represented in the law of 
mass action by the term: 

pV dV 

NkT dn 8 

The ratio pV!NkT equals I when all N molecules are in the ideal gas state. The 
volume of a liquid or solid system containing N molecules is ca. I 000 times 
smaller. Therefore, for pressures of up to l 0 bars, the error connected with the use 
of the Helmholtz free energy instead of the Gibbs free energy would not exceed 
I%. Neglecting, therefore, the term p V/NkT modifies equation ( 4.5): 
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(4.6) 

The changes in volume expected for a liquid system of constant elemental 
composition are small. Therefore the last term in ( 4.6) can be considered as a 
small parameter and represented in logarithmic form', that is ±8 = ln(l ± 8). When 
taking into account that N = nA + n8 , the non-ideality term can be transformed into 
activity coefficients: 

q B [ ( n B dV )] [ ( n A dV )] ln--ln n8 1---- +In nA 1+--- =0 
qA v dnB v dnB 

(4.7) 

Note that the activity coefficients for products and reactants have different 
signs: a result of differentiation with respect to one variable (dnJ/dnA = -1). This 
law of mass action can be written with respect to one type of variable, viz. molar 
concentrations, by adding and subtracting In Vin the left-hand part of(4.7). 

If the volume V is additive with respect to the numbers of molecules of 
components, then: 

(4.8) 

in which vA and v8 are molecular volumes of the components and L1v = v8 - vA. 
The derivative dV/dn8 then equals Av and the law of mass action (4.6) becomes2 : 

(4.9) 

We may use mole fractions or numbers of moles (the reaction is isomolar) as 
variables in the ideal part of (4.9) but volumetric properties remain important as 
indicated by the non-ideality term. In order to describe the thermal behaviour of 
this equilibrium the term ln(qJ!qA) can be represented as: 

In ~ = _ L1E + 11S 
qA RT R 

( 4.10) 

The parameters AE and AS are the 'ideal parts' of the standard internal energy 
and entropy of (4.2). They correspond to zero volume changes and are controlled 
exclusively by intramolecular parameters. Calculating the temperatures 
corresponding to given x8 values thus enables transition curves to be simulated: 

1 In other words expanding exp[(NIV)dV/dn8 ] into a power series and truncating it at the linear 
term. 

2 Note that the derivatives in ( 4.6) and ( 4.7) are complete, and not partial, derivatives. The latter 
are aV/anA = VA, av/ans= Va. 
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M 
T = ------------

thlo - R In -5L_ + __ R_Li_v __ 
( 4.11) 

1-xR VA +xRLiv 

Note that, theoretically, the tangent to the transition curve at the deflection 
point can be vertical when: 

( 4.12) 

However, the roots of ( 4.12) are either negative (i.e. x < O) or x > 1, both of 
which are meaningless. 

Fig. 4.1 shows that the transition curves simulated according to ( 4.11) run 
slightly steeper when Liv > 0. Corresponding van't Hoff plots (Fig. 4.18) show 
that the non-zero balance, Liv, affects mainly the entropy of transition 
(Liff= 10.41 cal mor1 K- 1 vs. 10.0 cal mor1 K- 1 in an ideal solution). The standard 
energy of spin crossover is changed to a lesser extent (Lif!l = 2.473 kcal mor1 vs. 
2.5 kcal mor1 in an ideal solution)3. Van't Hoff plots remain practically linear and 
only a slight decrease in apparent energy of reaction can be expected for large 
volume changes (2.309 vs. 2.500 kcal mor1 for Liv!vA = 1). Reactions in the 
condensed state are, in general, accompanied by comparatively small changes in 
volume. For example, spin crossover equilibria are characterised by Liv!vA :::; 0.3 
which can result in a small contribution to the standard entropy of reaction. 
Significant deviations of van't Hoff plots from linearity (steep spin crossover) 
cannot therefore be explained by volume changes. 
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Fig. 4.1. Transition curves (A) and van't Hoff plots (B) simulated for a spin crossover system 
with 11£ = 2.5 kcal mar', !1E/!1S = 250 K. Curve I corresponds to an ideal solution (!iv= 0). 
Curve 2 corresponds to !iv= 0.3 Vi..s and curve 3 to !iv= Vi..s 

3 These values are the standard (apparent) internal energy and entropy of reaction and include the 
effects of non-ideality. 
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4.1.2 
Non-isomolar equilibrium in liquid with repulsive interactions 

One of the most intensively studied types of reaction in the liquid phase is the 
formation of weak molecular complexes in solutions [2, 3, and 4]: 

A+B c (4.14) 

Equilibria of this type are usually investigated by measuring some property such 
as optical density, shift of band maximum, NMR chemical shifts, etc. as a function 
of the initial concentrations CA, CR. The dependencies so obtained are then 
analysed either by non-linear regression or by employing some linearised 
regression equations. It is of interest to find out what might be the effects of non
ideality in such systems. 

Consider, for example, the formation of the molecular complex of CH Ch (acid) 
with tri-butylphosphate (base) in cyclohexane (solvent) which can be followed by 
measurements of the chemical shift of the CHC13 proton. The dependence of the 
exchange averaged chemical shift of the CHC'3 proton originates from a simple 
additivity rule: 

( 4.15) 

in which oA is the chemical shift of CHC'3 in the absence of base, oc is the 
chemical shift ofCHC'3 in its complex with TBP. Employing the ideal form of the 
law of mass action, the concentration of complex [ C] is obtained as the real 
positive root of the quadratic equation: 

K(CA -[c])(cB -[c])-[c]=O ( 4.16) 

Under the condition of a large excess of base, Cs>> CA (hence CR>> [C]), this 
equation becomes linear: 

( 4.17) 

The observed (averaged) chemical shift (c.s.) is then a simple function of the 
equilibrium constant, the chemical shifts in free and complexed states (oA and oc), 
and the analytical concentration of the base Cs: 

( ) KCB 
0 obs = 0 A + 0 C - 0 A 

l+KC!i 
( 4.18) 

This equation can be transformed into the so-called Foster - Fyfe plot [3] which 
is an NMR version of the Benesi - Hildebrand equation employed in optical 
spectroscopy [ 4 ]: 
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(b - D )-1 = C ~I + } 
ohs A K(8c - 8 A) (8c - 8 A) 

( 4.19) 

The equilibrium constant, K, and the difference of chemical shifts (8c - 8A) can 
be obtained from the slope and intercept of ( 4.19). This method is applicable to the 
study of weak complexes when a considerable amount of free acid is present in 
solutions containing an excess of base. Experimental data [5] on the dependence 
of the chemical shift (c.s.) of the CHC13 signal on the concentration of 
tributylphosphate (TBP) are shown in Table 4.1. According to the regression 
equation shown in Fig. 4.2, the equilibrium constant of complex formation is 
K= 4.13 1 mor'. 

Using this value we can calculate the composition of a reaction mixture within 
the investigated region of concentrations and in the actual solvent alone. (Whether 
it may be employed at other concentrations and in other solvents is not completely 
clear.) Equilibrium constants for the self-association of alcohols in inert solvents 
were found to be dependent on the molar volume of solvent [6]. That such 
behaviour can be a rule will presently be demonstrated by analysing the law of 
mass action in liquid mixture of molecules of finite diameters. 

Table 4.1. Chemical shifts of CHCb in cyclohexane solution containing additions of TBP. The 
concentration of CHCli is constant and equal to 0.01 mo! i- 1 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 

8/ppm 7.635 7.843 7.979 8.072 8.139 8.184 8.229 
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Fig. 4.2. Foster - Fyfe plot of the data from Table 4.1 
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The free energy of such a reaction mixture, written as a function of the number 
of molecules of the product (nc), is: 

-:r =(NA - nc)[ln q A +In e V - ln(N A - nc}] 

+(N8 -nc)[lnq8 +lneV-ln(N8 -nc)] 

+ nc [In q c + In e V - In nc] 

+ N 8 [lnqs + lneV - In Ns] 

(4.20) 

in which NA, N8 are the initial numbers of molecules (or moles) of reactants and Ns 
is the number of molecules (or moles) of solvent. Considering the volume, V, as a 
function of composition (nc) the law of mass action can be obtained from the 
condition that dF/dnc = 0: 

( 4.21) 

in which n is the current number of molecules in a system, i.e. where 
n =NA+ NB+ Ns- nc. The volume of the reaction mixture (4.14) of molecules 
having finite diameters can be written as: 

(4.22) 

The derivative din Vldnc is then: 

d In V v c - v A - v 8 Liv 

dnc V V 
(4.23) 

The law of mass action becomes: 

(4.24) 

The equilibrium constant computed via the numbers of molecules 
(Kn= nclnAn8 ) is dependent on the volume i.e. on the initial quantities of reactants 
and solvent. This can be rather inconvenient and therefore the law of mass action 
with respect to molar concentrations is usually preferred. By adding and 
subtracting In V, (4.24) can be written in terms of the concentration [C] = nc!V: 

In ___!k_- In [c] + nLi~ = o 
qAqB (cA-[c])(c3-[c]) v 

(4.25) 

in which CA and C8 are the initial (analytical) molar concentrations of reactants 
and [ C] is the current concentration of product. 
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Note that the last term in (4.24) and in (4.25) is actually the ratio of the volume 
balance flu and the mean volume per molecule, <u>: 

(v)=V/n (4.26) 

In general, the mean volume per molecule, <u>, is a function of [C]. Equation 
(4.25) can then be written in the following form: 

(4.27) 

When the volume balance flu is zero, the law of mass action, (4.25)- (4.27), is 
obviously reduced to an ideal form (in terms of molar concentrations{ This 
condition implies that the volume of products equals the volume of reactants, i.e. 
molecular volumes are additive: 

Ve =VA +VB (4.28) 

Equation (4.28) is approximately obeyed and corresponds to the Kopp rule [7,8] 
of the additivity of molar volumes. According to this rule, the molar volumes of 
liquids at the boiling point can be estimated from their molecular formulae by 
using Kopp's 'atomic volumes'. However, the type of bonding (single, double, 
etc.), which is often changed in chemical reactions, also contributes to molecular 
volumes. For example, Kopp's volume for oxygen in C=O is 12 whilst in OH it is 
7.8 [8]. This example illustrates to what extent rule (4.28) may be obeyed. 

In the state of infinite dilution (Ns >>NA, NH), the mean volume per molecule is 
approximately the molecular volume of the solvent, which is independent of 
composition: 

(4.29) 

This is an almost ideal law of mass action with an equilibrium constant 
containing the additional factor exp(flulus) controlled by the volumetric 
properties of the solvent and the actual balance of molecular volumes of reactants 
and products. 

These parameters determine, at least in part, the observed solvent effects in 
complexation equilibria in dilute solutions. In fact, at infinite dilution one should 
expect to obtain quite different values of the equilibrium constant in solvents 
having different molar volumes. 

4 When the balance Ll.v is zero, the volume Vis independent of the current composition and is 
controlled by the initial quantities of components. In the case of non-zero !!. v, concentrations 
should be measured with respect to the equilibrium volume of the reaction mixture. 
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These effects contribute towards the difference in the values of equilibrium 
constants of complex formation in solutions obtained by optical spectroscopy and 
NMR studies. The ranges of concentrations employed in these types of 
experiments are drastically different, I 0-5 - I 0-4 M in the case of optical 
spectroscopy and 10-2 - I M in the case of (early) NMR studies. The mean 
volume per molecule is different in these cases and this results in different 
equilibrium constants. 

In concentrated solutions the mean volume per molecule is a function of current 
composition and the law of mass action therefore deviates from the ideal form. 
When the balance of molecular volume, ~v, is small these deviations can be 
described in terms of activity coefficients. Molar concentrations introduced m 
(4.25) are already non-linear functions of the numbers of molecules: 

( 4.30) 

in which V0 = NA VA + NB VB+ NsVs. Using the material balance and separating the 
constant number of molecules of solvent (Ns) means that (4.25) can be written as: 

ln_!!_s_-ln[ []c[] 1+{ [A]+[B]+[c] }~v+Cs~v=O (4.31) 
qAqB A B 

If the products [A]~v, [B]~v and [C]~v are small compared to I they can be 
represented in logarithmic form (±8 o:= ln(I ± 8)) and introduced under the 
logarithm: 

i.e. ( 4.32) 

This law of mass action defines act1v1tles as polynomial functions of 
concentrations that in their tum are polynomial functions of the numbers of 
molecules. 

The thermal behaviour of the equilibrium (4.14) can be conveniently analysed 
using (4.25) expressed in terms of the dimensionless parameters related to the sum 
of initial concentrations of reactants (N = NA +NB) and the molecular volume of 
one of the reactants (e.g. vA): 

In qc -lnV -In x + ~v XA +XB +Xs -x =0 (4.33) 
qAqBVA r (XA -x)(XB -x) VA v* 

in which the reduced volume V* is: 

(4.34) 

and: 
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(4.35) 

Note that the x-values are not mole fractions and Xs can be higher than 1. The 
first term in ( 4 .3 3) can be expressed in terms of the 'ideal' standard energy and 
entropy of reaction (see above): 

_ LiE + LiS -lnV*-ln x +(Liv)XA +X8 +Xs -x =0(4.36) 
RT R (xA -x)(X8 -x) vA V* 

Van't Hoff plots can easily be simulated by calculating equilibrium 
temperatures for given values of x instead of obtaining numerical solutions of 
(4.36): 

T= 6..E 

6..S - R{ln v *+In (x A -x )(x B -x) ( ~~ J x A + x ~: x s -x} 

(4.37) 

The simulations carried out according to (4.37) show (see Fig. 4.3A) that a 
visible curvature of the van't Hoff plot should be expected in non-dilute mixtures 
characterised by very large positive Liv/VA > 2 or negative LivlvA approaching -2 
(i.e. when the volume of product is approaching zero). Neither event, however, is 
very probable. The value LivlvA < 0.6 for XA = X8 and vA = Vs seems to be an 
upper limit. Furthermore, Fig. 4.38 shows that the curvature of the van't Hoff plot 
disappears when small amounts of solvent are added to the mixture of reactants. 
Therefore the only effect of the non-ideality considered here is a modest 
contribution to the standard entropy ofreaction (to the extent of about R!ivl<v> ). 
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Fig. 4.3. Van't Hoff plots simulated according to (4.37) for the reaction (4.14) with /'J.£= 10 
kcal mor 1, /'J.S = 40 cal mor 1 K' 1; VA= Va= Vs; XA = Xa = 0.5; and /'J.vlvA =-1.7 (I), -1.5 (2), 
0(3),+1 (4), +2 (5) at x, =O (A). The right-hand side graph, (B), shows the effects of solvent on 
van't Hoff plots of the same system with !'i.vlvA =-1,7 andX,= 0 (I), 0.3 (2), I (3) and JO (4) 



4.2 Lattice theories of the liquid state 117 

4.2 
Lattice theories of the liquid state 

Using a semi-empirical model based on the additivity of the volume of reaction 
mixtures, we have analysed the possible effects of repulsive molecular 
interactions. We have clarified the nature of activity coefficients and obtained a 
comparatively simple form of the law of mass action applicable to imperfect 
systems such as lager's 'ideal liquid'. The same problem can be approached on 
the basis of a molecular theory of the liquid state that takes into account both 
repulsive and attractive interactions. In this Section we consider some theoretical 
models of the condensed state leading to refined forms of the non-ideal law of 
mass action. 

The main problem to be solved by any theory of the condensed state is the 
calculation of the configurational integral. It can be done in a direct way by 
employing computational methods and performing an integration of exp(-U(r)lkT) 
over randomly generated spatial configurations of molecules for a given type of 
intermolecular potential U(r). This is the substance of the well-known Monte
Carlo method. On the other hand, analytical solutions are also possible for simple 
models that represent liquids as systems of pseudo-independent particles in the 
mean molecular field 5. Such analytical solutions have been found within two 
types of models, namely, the 'cell theory of liquids' and the 'hole theory of 
liquids'. The former is associated with the names of Lennard-Jones and 
Devonshire and the latter was developed by Eyring and his co-workers. Both these 
theories are based on the method of cells in which the liquid is considered as a 
molecular assembly retaining, to a large extent, crystal structure. Therefore they 
are also known as lattice theories of the liquid state. 

The configurational integral of an ideal gas is merely the N-th power of 
volume. When we introduce molecular interactions the analogue of the volume 
becomes not the whole configurational integral but only that part of it connected 
with the energy of displacement of a molecule from the position of mechanical 
equilibrium. 

A system of N molecules can be imagined in a state in which all molecules are 
in the centres of their cells corresponding to the minima of potential energy, u(O) 
called the lattice energy [9]. 

Any deflection of molecules from these positions brings about an increase in 
potential energy. Considering all molecules identical and pseudo-independent we 
may move the factor exp(-u(O)lkT) from under the integral: 

5 The advanced theories of the liquid state operating with radial distribution functions and pair 
correlation functions also admit of analytical solutions [10) in the form of integral equations. 
Solutions of the latter for given potentials approach the results of computational methods. Here 
we are interested, however, in a simple model illustrating the origin of the concepts of free 
volume and lattice energy and providing for an approximate description of reaction mixtures. 
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I _ Nu(O) u(r)-u(O) V N _ Nu(O) 

- kT f f f kT d d = _J_ e kT z conf - N! e . . . . . . e rl . . . r N N! (4.38) 

in which ri is a vector of the coordinates of the i-th molecule with respect to the 
centre of its eel I. The integration in ( 4.3 8) results in the N-th power of the 
parameter V1 that is termed the free volume. The difference u(r) - u(O) is always 
positive, making the free volume always smaller than the volume V. The free 
volume can be interpreted as the volume in which the centres of mass of the 
molecules can move. The term exp(-u(O)lk1) manifests itself in the corresponding 
equation of state in the form of the internal pressure. 

In the original Lennard-Jones and Devonshire model, all cells were considered 
as occupied and molecules did not 'explicitly' migrate between cells. The 
availability of the whole volume to molecules, and hence their indistinguishable 
nature, was accounted for by the introduction of the so-called 'communal entropy 
factor', s. This varies between e (the whole free volume is available for any 
molecule) and 1 (V1/N is available for each molecule, as in the system of localised 
states). A refined treatment of molecular motion in the framework of the Lennard
Jones and Devonshire model resembles the theory of ordered structures in the 
solid state (see Chapter 7). Molecules are supposed to be distributed between two 
types of position (a and ~) representing occupied and vacant centres. In the solid 
state the a centres alone are occupied making such a system completely ordered. 
In the liquid state some molecules can move into ~-centres and thus migrate over 
the whole volume of a system. The availability at the melting point of N additional 
centres explains the commonly observed entropies of fusion of monatomic liquids. 

In Eyring's model, molecules are also distributed between two types of 'states': 
the actual centres of a quasi-crystal lattice and the 'holes'. The behaviour of 
molecules in these states is supposed to be different: in the centres of the quasi
crystal lattice the molecules perform oscillations of small amplitude (as in the 
solid state), whilst in 'holes' they move freely (similar to gas-phase molecules) 
within the volume assigned to the 'holes'. The entropy of melting of a crystal 
containing N molecules is identified with the entropy of mixing of N centres and 
nh holes. The ratio of the number of holes to the number of molecules (y = n 1,IN) 
thus estimated varies from 1.3 for Ar to 0.7 for Hg. Another adjusting parameter 
employed in this model is the volume fraction of holes estimated from the volume 
changes on melting (Ji;= (V1. - V.~)!Vs). A liquid reaction mixture is thus 
represented as a superposition of gaseous-like and solid-like reactions. Employing 
two interpolation coefficients as mentioned above, it is possible to derive the law 
of mass action for such a model. However the equations obtained in this way are 
extremely cumbersome and contain too many parameters. 

The Lennard-Jones and Devonshire model on the other hand allows for the 
derivation of a practical law of mass action taking into account both the repulsive 
and the attractive interactions between molecules. 
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4.3 
The Lennard-Jones and Devonshire model 

Consider a solid in equilibrium with a liquid phase at the melting point. Molecular 
motion in both phases must be similar and can be described as free movement 
within a cell (molecules are supposed to have neither rotational nor internal 
degrees of freedom). The partition function for the solid phase then is: 

2nmkT 312 [ J
N 

Zs = ( h2 ) ZconfSol (4.39) 

The state of a given molecule being independent of the state of all other 
molecules implies that the configurational integral for such a solid is to be taken 
over the volume of all cells independently: 

[ ;

N 
Nu(O) u(r)-11(0) V Nu(O) 

- ----;;:;:- __ k_T_ _ f ----;;;:-
Z confSol - e J... J ... Je drl ... drN - - e 

&=VIN N 
(4.40) 

in which r is the vector of the coordinates of a molecule with respect to the centre 
of its cell. This expression defines thefree volume per molecule as: 

u(r)-u(O) ''""' u(r)-u(O) 

kT dr = f e ----u- 4nr 2 dr ( 4.41) 
0 

in which r max is the maximum possible deflection of the centre of mass of a 
molecule from its position of equilibrium and ti signifies integration over the 
volume of a cell. 

When such a solid melts, any point within the free volume of a system becomes 
accessible to any molecule thus making molecules indistinguishable and the factor 
(l/N!) must be added to the configurational integral. The integration, on the other 
hand, must be performed over the whole volume of the system: 

l _ Nu(O) u(r)-u(O) V N _ Nu(O) 

Z - kT f f f kl d d _ f kT Confl,1q - N' e . . . . . . e rl ... rN - NI e (4.42) 
. v . 

The free energies of the solid and liquid phases at the melting point are, 
according to the above: 

( 4.43) 
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F = -kTln nm - 1-e kT {( 
2 kT) 3; VN _Nu,(O)} 

r h 2 N! 
(4.44) 

The ratio of NN to N! is eN and therefore the entropy of fusion must be Nk per 
mole. In fact, the entropy of fusion of many metals lies within 1.7 -
2.3 cal mar' K-1• In order to obtain better agreement, the communal entropy, s, 
was introduced as an interpolation factor between the systems of distinguishable 
and indistinguishable particles: 

(4.45) 

Whens= e, (4.45) is identical to the expression (3.42) for the free energy of 
ideal gas with volume substituted by free volume ( rj). The calculation of the free 
volume thus becomes an important part of the theoretical description of the 
thermodynamic properties of liquids. 

The free volume can be calculated according to ( 4.41) for a given binary 
potential and geometry of a cell using either computational methods or obtaining 
an analytical solution (see Section 5 .6). A rough estimate of free volume can also 
be obtained by considering it as a space within which the free motion of the 
centres of mass of hard spheres is allowed. The simple geometrical model shown 
in Fig. 4.4 yields the following equation (cr being the molecular diameter): 

(4.46) 

Similar expressions can be obtained for other types of lattices which actually 
differ by the factor 2K where K is the structural constant connecting the volume of 
a crystal with the lattice constant a (see Table 4.2): 

V=NKa3 ( 4.4 7) 

The free volume thus obtained is smaller than the volume but its temperature 
dependence is not shown explicitly by this equation. It can be established by 
deriving the corresponding equation of state. The pressure derived from (4.45) 
comprises two terms arising from the derivatives of free volume and lattice 
energy, both being functions of volume: 

(aF) a In Vr 
p-- - =NkT · 

av 1 av 
N au(O) 

av 
(4.48) 
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Fig. 4.4. Estimation of the free volume from a geometrical model in a simple cubic lattice. 

Table. 4.2. Coordination numbers and structural constants for several types of crystal lattice 

Type cubic 

Coordination 
number, c 

Structural 
constant, K 

6 
(NaCl) 

space 
centred 

................................. 

8 
(alkali metals) 

4;3..J3 

face 
centred 
. ...... ----·······-··········-

12 
(noble gases) 

11..J2 

hexagonal tetrahedral 

·················-····-................ ··························---......... _. .......... 

12 4 
(hard spheres) (diamond) 

11..J2 (2/../3)3 

The derivative of free volume by volume is easily obtained from (4.46) as: 

f 3 v 1 f av [( ) 113 ] 2 [ v ) 21 3 ---3N 2K - -cr -2K -av - ( ) N 3N1'3v213 - v (4.49) 

The derivative of lattice energy with respect to volume in ( 4.48) is actually the 
internal pressure Pmi = -8u(0)/3V. The equation of state can now be written as: 

8u(0) 2K 
p- Pint= P + N-- = NkT 113 213 

av vr v 
( 4.50) 

and the free volume then becomes: 

v =-1 [2KNkrl( + N au(0))] 3 

t v2 I P av (4.51) 

The lattice energy increases upon expansion, therefore the cohesive internal 
pressure is negative. On the other hand, the internal pressure can be considered as 
mainly responsible for the reduction of volume from Vga., = NRT!p to 
Vcond = NRTl(p;n1 + p). This reduction (Vga./Vcond) is ca. 1000-fold and therefore 
IPm1I >> p. 
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The term N8u(0)/8V can be approximated as the density of potential (lattice) 
energy U/V and hence, approximately, the vaporisation energy per unit volume. 
Neglecting the external pressure in the denominator of ( 4.51) yields: 

v =-I [2KNkT;Nau(0)]3 =V[2KNkT]3 
1 v2 av u (4.52) 

Note that the free volume cannot be larger than the total volume of a system, 
therefore the molar energy of vaporisation must be higher than 2KRT. We see that 
free volume is proportional to the volume of a system and to the cube of the ratio 
of the thermal energy (Nkn to lattice energy. The latter appeared when we 
calculated pressure as the volume derivative of free energy i.e. took into account 
the dependence of lattice energy on the size of a cell. 

This cubic dependence is an important feature determining, as we will see later, 
critical phenomena in condensed systems. It originates from the three-dimensional 
model for which the free volume was estimated (see (4.46) and Fig. 4.4). If we 
consider the motion of a molecule in a two-dimensional lattice, then the resulting 
expression for free 'volume' is: 

( 4.53) 

For motion in a one-dimensional lattice (chain-like polymeric molecules) the 
free 'volume' would be proportional to the first power of the ratio of thermal and 
lattice energies. 

4.4 
Chemical equilibria in Lennard-Jones and Devonshire liquids 

At first glance the substitution of volume by free volume should not substantially 
change anything in the derivation of the law of mass action for a reaction in the 
liquid phase. One can assume the additivity of free volume and obtain a non
ideality term in the form of f..v11<vj>. However, free volume and lattice energy are 
not independent variables: they are connected via the equation of state ( 4.48). Free 
volume is a function of both repulsive and attractive interactions as reflected by 
( 4.51 ). The stronger the attractive interactions ( U) the less space is left for free 
movement of the centres of masses of the molecules. To a first approximation, 
both the volume and the lattice energy can be considered as additive quantities. 
Chemical equilibria in such a (seemingly ideal) model liquid are described by the 
law of mass action [11] containing non-ideal terms. 

For a mixture of two types of molecules in chemical equilibrium in solution: 

A B (4.54) 

the additivity of the lattice energy can be written as: 
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( 4.55) 

in which uA, u8 and us are the molecular lattice energies of components (the 
symbol (0) has been dropped for convenience) and N = nA + n8. The free energy 
can be written (assuming a 'communal entropy' factor equal toe) as: 

_ _!_=(N-n 8 )[lnqAeV+31n 2K(N+Ns)kT -ln(N-n8 )] 

kT NuA+N 8 u5 +n8 (u 8 -uA) 

[ 
2K(N+N~)kT ] 

+n8 lnq8 eV +31n · -lnn8 
NuA +N8 u5 +n8 (u 8 -uA) 

(4.56) 

[ 
2K(N+N~)kT ] 

+N8 lnq8 eV+3ln · -lnN8 
Nu A +N8 u5 +n8 (u 8 -uA) 

The term In q; includes the contributions from translational and internal 
partition functions as well as the factor exp[-(E;+ u;)lkTJ, where E represents the 
electronic energy of a molecule. As a result of the assumed additivity of V and U, 

the molecular parameters v, and u, are independent of composition. For lattice 
energies this is only a rough approximation and the formalism we are developing 
now accounts, therefore, for only a part of the non-ideality. The case of non
additive lattice energy will be considered in detail in Chapter 7. 

We have considered the effects of finite volumes of molecules in preceding 
Sections and now, therefore, for simplicity we assume ~v = 0 and investigate the 
effects of internal pressure alone. The law of mass action derived from the 
condition dF/dn8 = 0 contains the derivative of the lattice energy with respect to 
ns: 

In 9-ri_ _In n8 _ 3(N + N,,,) dU = O 
qA N-n8 U dn8 

( 4.57) 

According to the assumed additivity of lattice energy ( 4.55) this derivative is 
~u = u8 - uA, and therefore (4.57) can be rewritten as: 

31lu(N + N 8 ) 
=0 

Nu A+ N 8 us + n8 1lu 
( 4.58) 

Approximating ln(qsiqA) by -~EIRT (arising from the terms exp[-(E + u)/kl)]) 
and ~SIR (originating in the contribution from partition functions) we get: 

_ M + llS - In n8 

RT R N-n8 

31lu(N + Ns) 
(4.58a) 

Dividing numerators and denominators by N we can re-write the law of mass 
action ( 4.58) with respect to the degree of conversion, x = ns/N: 
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t:-.E t:-.S x 3t:-.u(I + N8 IN) 
--+--In--- =0 

RT R I-x uA+(N8 /N)us+xt:-.u 
(4.58b) 

By relating the lattice energy balance 11u to uA we get the law of mass action 
with respect to dimensionless variables: 

_M +M- 3(t:-.u/uA)(l+N5 1N) -ln-x-=O (4_5Sc) 
RT R I+(N8 /N)(u5 /uA)+x(t:-.u!uJ 1-x 

Transition curves can therefore be simulated by expressing the temperature as a 
function of x. Fig 4.5 shows such transition curves computed for a non-diluted 
(N.1· = 0) system with varying f..u. A zero or small f..u obviously results in an ideal 
law of mass action. Negative 11u increase the slope of the transition curves (Fig. 
4.5, left-hand graph) whilst small positive 11u decreases it. However, at f..u/uA > I 
the maximal slope increases with increasing positive f..u. Equation (4.58c) predicts 
a vertical tangent to the transition curve when: 

(4.59) 

in which a = f..u/uA. For x = Yi we have two values of a.E that correspond to a 
vertical tangent a = I ± '13 i.e. ca. 2.7 and -0.7. Equation (4.59) has a single 
(meaningful) solution with respect to a at x = % corresponding to the balance of 
lattice energy 11u = -(2/3)uA. At more negative f..u, the transition curves become 
S-shaped, i.e. over a certain region of temperatures there are two possible 
equilibrium compositions of such a system (Fig. 4.6). Similar S-shaped transition 
curves and van't Hoff plots are expected for positive a> 2 (see Fig. 4. 7). 
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Fig. 4.5. Transition curves simulated for the system (4.54) characterised by 11£= 2.5 kcal moi- 1; 

11£/t>.S = 250 K; N.1· = 0 with negative (left-hand graph A); 11uluA= 0 (I), -0.3 (2), -0.5 (3), 
-0.66 (4) and positive (right-hand graph B) 11uluA = 0 (I), 0.5 (2), 1.0 (3), 1.5 (4), 2.0 (5) 
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This situation is incompatible with the homogeneity of the considered system, 
and therefore these effects correspond to the separation of two condensed phases. 
An S-shaped curve can only be obtained by computing T as a function of x. When 
we solve the equation of the law of mass action with respect to x using a numerical 
method we obtain a sharp transition from one branch to another as shown in Fig. 
4.6. Two pathways obtained by searches starting from higher and lower values of 
x imitate cooling and heating of the reaction mixture that must exhibit, therefore, 
hysteresis. 

1.00 111111 111111111 

0.80 

0.60 

x:::J 
0.00 •·· . . . 

1W 1~ 160 100 

T/K 

Fig. 4.6. Transition curves calculated by numerical solution of (4.58c) with respect to x for a 
non-ideal binary system (!::.£= 2.5 kcal mor 1; !::.El!::.S = 250 K; N1 = O; !::.uluA = -0.7). The 
S-shaped curve was obtained by simulating temperatures 
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c: 

5.00 

3.00 

1.00 

-1.00 

-3.00 

-5.00 

-7.00 

0.00 2.00 4.00 6.00 8.00 

1000/T I K-1 

Fig. 4.7. Van't Hoff plots calculated for a non-diluted spin crossover system: Ns = O; 
t.E = 2.5 kcal moi- 1; t.E!t.S = 250 K with varying balance of lattice energy; a= +2.5 (!), 2(2), 
+I (3), +0.5 ( 4), 0.0 (5), --0.3 (6), -0.5 (7), --0.66 (8) and -0.7(9) 
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Table 4.3. Approximation of the curves in Fig. 4.7 by linear van't Hoff plots 

1'>.uluA MfJ t-S' T112 
(kcal mor 1) (kcal morl K~ 1 ) (K) 

2 4.54 5.97 760.6 
1 3.11 7.27 427.9 

0.5 2.68 8.13 329.5 

0 2.49 9.99 249.9 

-0.3 2.638 12.80 206.0 

-0.5 3.11 17.68 176.0 

-0.66 4.45 29.74 149.7 

Steep transition curves, sometimes exhibiting hysteresis, similar to those shown 
in Fig. 4.6 are experimentally observed in non-diluted crystalline spin crossover 
compounds but not in the liquid state. In fact, up to now no pure liquid spin 
crossover compound has ever been synthesised. Known examples of spin 
transitions in the liquid state (gradual spin crossover) have been observed for very 
dilute solutions and, in principle, there is no reason why a steep spin crossover 
should not be observable in the liquid state. 

Table 4.3 shows the results of the linear approximations (in the vicinity of the 
transition point) of the van't Hoff plots shown in Fig. 4.7. Increasing magnitude of 
the balance of lattice energy (both positive and negative) increases the effective 
standard internal energy b..I!. A negative liu brings about an increase in the 
effective entropy of transition whilst a positive liu decreases it (Table 4.3). These 
two effects cause the transition temperature to vary over a wide range. 

Similar critical phenomena may be observed in other reaction mixtures when 
the products of reaction are drastically different from the reactants with respect to 
molecular interactions. It is of interest therefore to analyse the case of a non
isomolar reaction in a highly non-ideal solution. 

For the equilibrium of complex formation in solution: 

A+B c (4.60) 

the law of mass action can be written by substituting volume by free volume in 
(4.2l)as: 

( 4.61) 

in which n =NA +NH+ Ns - nc is the current total number of molecules in the 
reaction mixture. 

Approximating free volume by (4.52) leads to: 
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2KnkT 
In V1 = In V + 3 In . u (4.62) 

Assuming the volume V to be constant (for simplicity) we get the derivative of 
In V1 with respect to nc as: 

dlnV1 3 3 dU 

For additive lattice energy the derivative dU!dnc equals the balance f'..u: 

dU/dnc =du= Uc -UA -UB 

and the law of mass action becomes: 

qc nc { ( 2KnkT) du } ln-·--lnV-ln-·--3 In +n-+l =0 
qAqB nAnB u u 

(4.63) 

(4.64) 

(4.65) 

When f'..u = 0 this law of mass action is reduced to a form which is not, strictly 
speaking, ideal: 

(4.66) 

The numerator in the last term in ( 4.66) is the energy of thermal motion of 
molecules proportional to the current number of molecules (n) whilst the 
denominator of this term is the lattice energy which under the condition f'..u = 0 is 
independent of nc. Therefore the free volume remains composition dependent and 
the system behaves non-ideally6. This quasi-ideal form of the law of mass action 
can be written as: 

Under the condition of excess of solvent (N.1· >>NA, N8 ; U :::= N.~us) the complete 
form of ( 4.65) is reduced to a pseudo-ideal form: 

(4.68) 

When one of the reactants is taken in excess it plays the role of solvent and 
similar pseudo-ideal behaviour should be expected for such systems. The factor 
applied to the equilibrium constant resulting from non-ideality strongly depends 

6 This case is exclusively of 'theoretical' importance: an exact equality ti.u = 0 could hardly be 
expected to hold in a real system at different temperatures! 
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on temperature (proportional to T 3) which distinguishes non-ideality originating 
in internal pressure from that arising from the finite volume of molecules. 

In concentrated solutions and non-zero but small f..u the last term in ( 4.65) can 
be represented in logarithmic form (8 ~ ln(I + 8)): 

in which the mean lattice energy per molecule is a function of composition: 

(u)=U =NAuA+N8 u8 +Nsus+ncfiu 

n NA + N 8 + N s - nc 

(4.69) 

(4.70) 

The non-ideality term in (4.69) can then be easily converted into activity 
coefficients, 

e.g. (4.71) 

When f..ul<u> is not a small parameter the behaviour of such a system is 
described by exact solutions of (4.65) which can be found by numerical methods, 
for example, dichotomy. Numerical methods must also be employed when the 
thermal behaviour of such models is investigated: it is impossible to neglect the 
cubic temperature dependence of the non-ideality term, therefore temperature 
cannot be found as an explicit function of composition. 

The law of mass action in the form showing temperature dependence of the 
equilibrium constant can be written (remember, we have supposed f..v = 0, i.e. 

V = canst.) as: 

(4.72) 

The temperature dependence of the equilibrium constant computed according to 
(4.72) exhibits singularities when f..u is sufficiently large, either positive or 
negative (Fig. 4.8A). A 'jump' in the degree of conversion may be expected at that 
temperature at which the energy of molecular interactions of the product is either 
ca. twice that of reactants and (f..ul(uA + u8 ) > I, i.e. Uc> 2(uA + u8 )) or when it is 
considerably smaller than that of products (f..ul(uA + u8 ) < -0.88, i.e. 

uc < 0.12(uA + u8 )). This 'jump' is more gradual in dilute systems (Fig 4.8 B) and 
may disappear completely in solutions containing about I 0 moles of solvent per 
mo le of reactant. 
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Fig. 4.8. Van't Hoff plots computed according to (4.72) for the equilibrium (4.60) with 
AE = I 0 kcal mor 1; molar lattice energies of reactants N1.uA =Ni.us= 6 kcal mor 1; 

Aul(uA + u8 ) = +1.5 (I), +0.66 (2), 0.0 (3), -0.75 (4), -0.833 (5), -0.875 (6), -0.916 (7) in a 
mixture of pure components (plots A). B shows the effects of dilution in a strongly non-ideal 
system (Au/(uA +us)= 1.0; CA= CB= 5.55 (5), 3.98 (4), 2.65 (3), 2.03 (2), 1.5 (1) mo! r 1) 

These singularities draw to mind the unfortunate incident involving the 
synthesis of ethyleneglycol diacetate from ethylene oxide and acetic anhydride 
related in the Introduction to this book. An unexpected 'jump' in the degree of 
conversion at equilibrium could indeed bring about a very fast heating of the 
reaction mixture because this reaction is exothermic (ca. 40 kcal mor1). However 
the heat of vaporisation of the product is only about 25% smaller than the sum of 
the heats of vaporisation of reactants. Therefore the balance of the energy of 
molecular interactions cannot be sufficiently large to produce the discontinuities 
described above. Another possible explanation of this mini-disaster (besides a 
trivial miscalculation of the necessary amount of cooling agent!) could be that it 
had its origin in strongly non-ideal kinetics (see Section 4.6) 

4.5 
The non-ideal law of mass action, activities, and standard 
states 

After considering several special cases of non-ideality we are now able to analyse 
in general the case of equilibria in condensed state characterised by additive 
volume and energy of molecular interactions. We start with the expression for the 
free energy of the liquid (4.45) writing it (assuming communal entropy s = e) as: 

3 

- FL =Nln( 2rrmkT)"2 +NlneV -NlnN- N(E+u) 
kT h2 1 kT 

(4.73) 

The free energy of a mixture of quasi-independent molecules of different chemical 
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kinds is given by: 

3 

F1, _ L . 1 (2rrm,kT)2 -;~. L 1 V - - - n n e + n ne 
kT I h2 I f 

L n,u, L I - --- n nn 
kT . I I 

I I I I 

(4.74) 

In general, Vt· and each individual lattice energy u, may be composition 
dependent; therefore, the chemical potential of the i-th species is: 

µ, I u, I oln V1 _"!.!.!__auk 
- kT = nq, -kT + nV1 -Inn, +n · L,,, 

on; k kT on; 
(4.75) 

in which (4.76) 

We assumed, to a first approximation, both the volume and (total) lattice 
energy to be additive ( V = L.n;V;, U = L.n,u;). The partial (per molecule) volumes 
and lattice energies ( V;, u,) are independent of composition and 8uk/8n; = 0. 

Let us consider a chemical equilibrium of the most general type: 

The law of mass action for ( 4. 77) is: 

(4.78) 
J 

By taking into account the explicit expression for the chemical potential (4.75), 
the law of mass action (4.78) can be written as: 

The first line in (4.79) is the law of mass action for equilibrium in an ideal gas in 
which the volume has been substituted by the free volume. The second line is the 
non-ideality term associated with the dependence of free volume on composition. 
A relationship between volume and free volume was obtained using a version of 
the Eyring equation of state: 
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(4.80) 

Further assumptions made were: (i) that the molecular potential is 'V-shaped' 
(see Fig. 4.9) and hence the internal pressure dU/dV can be substituted by the 
density of lattice energy dU/dV = UIV and (ii) that the internal pressure is much 
higher than the external pressure and we can neglect p in the denominator of 
(4.80). 

v 

.. .. 

u 

Fig. 4.9. The shape of the potential of a system of hard attracting spheres used in the derivation 
of(4.51) 

These assumptions result in a relatively simple relationship between the volume 
and free volume: 

(4.81) 

in which T = 2KkT!<u> and is termed (in books on the statistical theory of liquids) 
the reduced temperature. The lattice energy per molecule, u,, has been estimated 
as the molecular energy of vaporisation; there are, however, other methods of 
estimating this parameter (see Sections 5.3 and 5.7.2). 

The relationship ( 4.81) can be interpreted in the following way: the stronger the 
attractive forces between molecules (represented in the model of V-shaped 
potential by U) the smaller is T, and hence the free volume. On the other hand, the 
stronger the repulsive forces the larger is the total volume V. 

Under the conditions of additivity of U and V the partial derivative 8ln V1l8n, is 
obtained from (4.81) as: 
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oln V1 

on, 
(4.82) 

We are now able to completely separate the ideal and non-ideal terms in the 
law of mass action: 

L(P, [ ln qP, + ln V - In nP, J -L(R, [ lnqR, + ln V -Inn11,J + 
j I 

( J [ olnV olnV] (4.83 ) 
+ L .. (pj - L(R, lnr3 +n L(P, t - LS'R, i =0 

I i I On 1 / On1 

The first contribution to non-ideality is connected with the reduced temperature 
1, which determines the ratio of volume to free volume. This term, being 
logarithmic and having proper multipliers (stoichiometric coefficients), can 
always be introduced into the ideal part as associated either with concentrations or 
with the equilibrium constant. The second contribution to non-ideality (the term in 
square brackets) represents the balance of the effects of molecular interactions in 
the reaction mixture. 

The second non-ideality term can be transformed into activity coefficients by 
employing at least two different approaches. The first route is suggested by the 
stoichiometric coefficients available in (4.83). The law of mass action can then be 
written as: 

[ n f'. l [ nR l ". ( lnq. -ln-1 
- ". ( lnq - In-' + L..i p1 P1 V L..i R, R, V 

I I 

(4.84) 

( o In v . J [ o In v . J + L. ( P, In 't3 + n . f - L( R, In 't3 + n I = 0 
I On I ; on1 

The non-ideality terms in (4.84) may then be considered as factors applicable to 
the corresponding concentrations. However, such activity coefficients are rather 
complicated functions of the numbers of molecules: 

3 ( olnV l [2KkT_Ln,]3 
[v,_Ln, 3u1 ,Ln, ] 

y, = 1 exp n---1 = ' exp --'-- ' +3 
an, I n,u, I n,v, I n;u, 

i 

(4.85) 

in which the summation is to be performed over all components (solvent, reactants 
and products). This expression can be compactly written using the mean volume 
<v> and the mean potential energy <u> per molecule: 
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(4.86) 

The term n(81n V/8n;) is, in general, not a small value. We are considering 
mixtures of molecules of similar size and similar energy of molecular interactions, 
therefore, n(81n V/8n;) = nv/V = 0.5 - 2. Hence the corresponding exponential in 
( 4.85) cannot be readily expanded into a truncated series (which would result in an 
approximately polynomial activity coefficient). 

This problem can be solved if we extract that part of the non-ideality term that 
remains constant under the given conditions. A system can be studied over a 
limited range of variations of <v> and <u> around some standard value <v0> and 
<LJo>. Extracting the constant part of the non-ideality term: 

e.g. '°' I 3 3 ( v, 3u, l L;} R, ne 'o exp (va) - (ua) (4.87) 

enables the variable part to be expressed as: 

(4.88) 

The terms containing the differences <vo> - <v>, <u0> - <u> may, however, be 
small and the corresponding exponential can then be expanded into a series and 
truncated at the linear (or higher) term: 

e+, ((~~'.)) -3u, ((~~'.)) J ~ 1 + (~;) [ t:i -1J-3 (::) ( ~~: -+ 
(4.89) 

Every such term may be introduced into the ideal part of the law of mass action 
as an activity coefficient: 

(4.90) 

The constant term corresponding to the standard state (<v0>, <u0>) is added to 
the equilibrium constant: 

IT c,,., 

qi' [ J ( J 1 1 J J v 1 3u 1 i J v 3u 
lnK =In IT c,n, + L~ r, lne T0 exp -( )--( ) - L~ R, lne T0 exp -( ')--( ;) 

qR, J v" u" ; Vo Un 

( 4.91) 
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This method of transformation of the non-ideality term into the act1V1ty 
coefficient has the advantage that every term in the original equation ( 4.83) 
appears with the correct stoichiometric coefficient. The disadvantage is a rather 
insecure expansion of exponentials around the point corresponding to a standard 
state. In the examples considered in this Chapter we have been transforming non
ideality terms into activity coefficients in a different manner. 

Our method was based on approximate rules governing the changes of volume 
and vaporisation energy in a reaction mixture, i.e. in a mixture containing always 
the same numbers of atoms of each element. In the condensed state these changes 
are generally small which apparently always results in a small term in the square 
brackets in (4.83). This small term can be further separated into individual 
contributions from every species present. What is perhaps not obvious is that (as 
follows from the mass balance equation) the term in square brackets in (4.83) is 
proportional to the complete derivative of free volume with respect to the number 
of any given species: 

(4.92) 

in which the summation is performed over both products and reactants; the 
stoichiometric coefficient s is negative when associated with a reactant and 
positive when it belongs to a product7. Taking into account that n = L.n, the total 
non-ideality term in (4.83) can be written as: 

( 4.93) 

The complete derivative of the logarithm of the free volume of a reaction 
mixture reflects, as we have seen, the relative balances of volume and lattice 
energy and can be small. We may therefore expand the second term in (4.93) as a 
truncated series and write the total non-ideality as: 

and then define the activity coefficient of a given species (k) as: 

Yk =t3(1+2 dVt I 
V1 dnk j (4.94) 

in which t may also be a function of the corresponding number of molecules. 

7 We are avoiding the use of this (very versatile from the point of view of mathematics) notation 
in order to preserve the habitual shape of the equation of a chemical reaction - one of the few 
links between the material of this book and chemistry! 
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Apparently, even when the balance of molecular volume and lattice energy is 
considerable, we are able to extract a constant term corresponding to the standard 
state (similarly to the above) and use the ideal form of the law of mass action. This 
shows that the concept of a standard state is a very versatile cure for many cases 
involving quite serious problems. 

It must however be remembered that only a part of the possible effects of 
molecular interactions have been considered, whereas those leading to the non
additivity of molecular lattice energy have been neglected. The latter case will be 
considered in Chapter 7. Also the results above are only applicable to equilibria 
and do not include the effects of non-ideality in kinetics that will be considered in 
the next Section. 

In general, frequent application of the concept of a standard state and the use of 
a pseudo-ideal law of mass action can promote some dangerous side effects, 
namely forgetting possible critical phenomena occurring when molecular 
interactions of reactants drastically differ from those of products. Indeed one could 
envisage a system that exhibited pseudo-ideal behaviour characterised by a small 
enthalpy and highly negative entropy (small equilibrium constants) yet at only a 
few kelvins above (or below) the investigated range a complete conversion to 
products would take place (see Figs. 4.6 and 4.8). 

4.6 
Kinetic law of mass action 

The equilibrium and kinetic laws of mass action are in fact completely different 
relationships bound together by the dynamic interpretation of chemical 
equilibrium as the state in which the rate of the forward reaction equals the rate of 
the reverse reaction. At equilibrium the main variable of kinetics, time, disappears 
and, furthermore, time is completely ignored in classical thermodynamics. 

Note that the dynamic interpretation of equilibrium logically follows from the 
empirically based assumption of the proportionality of reaction rates to the 
concentrations of reactants (see Section 3.1). In a system containing non-zero 
quantities of reactants, the reaction rate should not be zero and the only 
explanation of a stationary state (observed in experiments) is the equality of the 
rates of forward and reverse reactions. The dynamic interpretation of chemical 
equilibrium may therefore be considered as one of the general postulates of 
physical chemistry along with the first and second laws of thermodynamics. On 
the other hand, the proportionality of the reaction rates to the product of 
concentrations ofreactants can also be explained (from a molecular point of view) 
as reflecting the probability of collision between reacting molecules. 

The number of collisions per unit time determines the rates of chemical 
reactions in the gas phase. The corresponding expression is commonly derived 
using the so-called collision tube (Fig. 4.10): 
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(4.95) 

in which cr is the molecular diameter and <c> is the mean molecular velocity. It 
shows that the number of collisions is proportional to the volume concentration of 
molecules and not to the mole fraction. By compressing a gaseous system we 
increase the concentrations (increasing proportionally the number of collisions) 
but leave the mole fractions unchanged. This, of course, can be interpreted as a 
dependence of a rate constant expressed in mole fractions on pressure (similar to 
that of the equilibrium constant (3.56)). However, such an interpretation would 
merely conceal the ongzn of this pressure dependence, namely the 
increased/decreased probability of molecular collision. This is a typical case of 
correlating two functions (k and p) of the same variable (the number of collisions) 
and declaring one of them a function of the other8• Mole fractions are therefore 
seldom used in formulating the kinetic law of mass action. 

In gaseous systems we can change the volume over a wide range by applying 
external pressure. The volume of a system is thus an independent variable and 
reaction rates always increase with decreasing volume (increasing pressure). 

o e • e 
blue green purple red 

Oo 
0 

Fig. 4.10. 'Collision tube': there are 20 'blue' molecules of which five expecting to be hit by the 
'red' one turned purple. The reaction, however, only occurs if the 'red' molecule is at least red 
hot and strikes at a proper angle; the result will be a large 'green' molecule visible in the comer. 
If we compress this gas the number of 'blue' molecules to be hit will proportionally increase 

8The number of 'jaywalkers' passed by a car per hour depends on the population per mile of road 
and the speed of a car. The life expectancy of an average jaywalker depends on both of these 
parameters and not exclusively on the average number of cars per person. 
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In the condensed state the situation is very different. Reaction rates are found 
both to increase and to decrease with increasing pressure. The molecules in a 
condensed phase are closely packed and surrounded by an approximately fixed 
number of nearest neighbours (the coordination number). The rate of occurrence 
of molecular collisions is the frequency of vibrations multiplied by the probability 
of reacting molecules being in the first coordination sphere of each other. This 
obviously leads to the idea of using mole fractions in formulating the kinetic law 
of mass action for reactions in the condensed state. 

One, seemingly unimportant, point changes the situation, however: 
When calculating mole fractions we must take into account not only material 

components but also vacancies in the first coordination sphere. According to 
theoretical models of the liquid state, the number of vacancies at the melting point 
must approximately equal the number of molecules (Nv = N according to the 
Lennard-Jones and Devonshire model and Nv = (0.7 - 1.3 )N according to the 
Eyring theory). Furthermore, the thermal expansion of liquids is mainly due to an 
increasing number of vacancies: the mean intermolecular distance in liquids, 
according to X-ray diffraction experiments, does not depend on temperature [12]. 
It is practically impossible to get data on the total number of centres both occupied 
and vacant in a liquid reaction mixture, but a quantity proportional to this number 
is certainly the volume. Therefore molar concentrations are advantageously used 
in formulating the kinetic law of mass action for liquid state reactions. 

This model does not, however, explain the effects of pressure on reaction rates 
in the liquid state. These effects are explained not by an increase/decrease of the 
number of vacancies and of the frequency of vibration but by a quasi-equilibrium 
model of the transition-state. When the transition-state is more compact than the 
ground state of the reactants then the pressure shifts the equilibrium towards the 
formation of this transition state and hence the reaction rate is increased. When the 
volume of the transition-state is larger than the volume of the molecules in the 
ground state then the effect of pressure on reaction rate is negative. 

This model can be treated, at least semi-quantitatively, using the formalism 
developed above. According to the transition-state model the irreversible reaction: 

A+B c (4.96) 

should be written as: 

A+B AB* c (4.97) 

The rate of reaction ( 4.96) depends on the concentration of the transition-state 
or activated complex AB': 

d[C]!dt = [AB']vo (4.98) 

in which the frequency of transitions of the activated complex over the potential 
barrier, v0 , may be considered as proportional to the frequency of collisions 
(vibrations) or to a semi-quantum factor (kTe/h). The concentration of activated
complex at a given time can be obtained by a solution of the law of mass action 
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for the equilibrium part of(4.97) and the law of mass action (4.25) may be used: 

In q AB* - In [[A]B[ *]]+([A]+ [B ]+[AB*]+ [c ]+ [s DL'1v AB* = O 
qAqB A B 

(4.99) 

in which L'1vAB* = VAs* - vA - v8 and the additivity of the volume of the whole 
system is assumed: 

(4.100) 

Equation ( 4.99) yields the following expression for the concentration of 
activated complex: 

(4.101) 

in which the mean volume per molecule is, in general, a function of composition: 

or: 

(v)= nAVA +nBVB +ncVc +nAR*VAB* +N.,ys 

n A + n R + nc + n AR* + Ns 

( v) -i = [A) + [ B) + [AB *) + Cs 

Correspondingly the reaction rate of (4.96) is given by: 

(4.102) 

(4.102a) 

(4.103) 

Equation ( 4.103) signifies that, for dilute systems, we must multiply the ideal 
rate constant qAB*lqAqB by a constant factor higher or smaller than I according to 
the sign of L'1v (in agreement with the qualitative explanations given above). In 
concentrated solutions one might expect a slight dependence of the term 
exp(t.vl<v>) on the concentration of reactants but this type of non-ideality does 
not bring about any critical phenomena. 

More significant effects can be expected when we use the model that takes into 
account the changes in internal pressure during the formation of the activated 
complex. Simple qualitative arguments show that this should be the case most 
often met with. Experimentally it is found that, although there are some cases of 
decreasing reaction rates with increasing pressure, such examples are rare. Usually 
reaction rates are only increased significantly by application of pressures of 
several hundreds of bars. This indicates that the volume of the transition-state is 
smaller than the volume associated with reactants. On the other hand chemical 
bonds in the activated complex must be weakened and the transition-state may be 
viewed as a semi-gaseous collection of atoms or molecular fragments packed into 
a small volume. The internal pressure or the density of potential energy of 
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molecular interactions in the transition state must drastically differ from that in 
either products or reactants. Equilibria of formation of activated complexes can 
therefore be characterised by large balances of lattice energy. For such systems the 
law of mass action ( 4.69) should be applied: 

In q AB* 3 - In vi - In n AB* + n( v AB* - v A - v B - 3 u AB* - u A - u B) = 0 ( 4.104) 
qAqBe nAnB v u 

in which Vr is given by ( 4.52), and V and U are additive functions of composition. 
The concentration of the activated complex at a given moment of time can be 

calculated as a root of(4.104). At each given moment of time the current numbers 
of molecules of reactants NA(BJ - nc play the role of NA(BJ in a normal equilibrium 
(the equilibrium between reactants and transition-state is assumed to be very fast). 
The product C can thus be considered as a co-solvent. According to the arguments 
given above we may assume large positive ~E for the activation equilibrium. 
Fig. 4.11 shows the "pseudo-van't Hoff' plots computed for the equilibrium part 
of (4.97) under the condition of varying content of reactants (taken in equimolar 
quantities) dissolved in a constant amount of solvent. 

The initially small, and not very temperature sensitiv{:, content of activated 
molecules AB* exhibits a sudden increase upon reaching a certain temperature 
(Fig. 4.11 B). Such a sharp increase in the concentration of the activated complex 
would cause a corresponding 'jump' in the reaction rate and, as the enthalpy of 
reaction is considerable, it would cause at least a local increase of temperature etc. 
However, such a system would stabilise itself because the dilution of the reaction 
mixture by the product shifts the critical point in the transition curves to higher 
temperatures (Fig. 4.11 A and B). 
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Fig. 4.11. Van't Hoff plots (A) and 'transition curves' (B) of the equilibrium of formation of 
activated complex (4.97) in a mixture described in Table 4.4. with varying quantities of reactants 
NA= NB= 4 (1), 2 (2), I (3), 0.5 (4), 0.25 (5) moles. The volume of activated complex was 
assumed to be equal to the sum of the volumes of reactants whilst the lattice energy was taken to 
be much higher than the additive value (~u = 25 kcal mol~ 1 ) 
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The kinetics of such reactions can be simulated by including calculation of the 
reaction rate according to ( 4. 98) and ( 4.101) in the procedure of numerical 
integration of the differential equation for the reaction (4.97). Fig. 4.12 shows the 
kinetic curves of the accumulation of the product C in the reaction (4.97) 
computed using the program 'Model' [5] (parameters of the reaction mixture are 
given in Table 4.4). In one case the 'ideal kinetics' was simulated and the balance 
of 'lattice energy' associated with the formation of the transition-state was 
supposed to be zero (Au*= 0). Corresponding kinetic curves have zero intercept 
and their initial slopes regularly increase with temperature (see Fig. 4.12A). The 
initial slope of the kinetic curve is directly proportional to the rate constant and 
therefore the corresponding Arrhenius plot can be drawn using the degrees of 
conversion at t = I min (first non-zero point in Fig. 4. l 2A). The curves in Fig. 
4. 12A thus yield an activation energy of 17.9 kcal mor' (see the Arrhenius plot in 
Fig. 4. 13A) which is smaller than the 20 kcal mor' due to the cubic temperature 
dependence of V; in ( 4.52). In the second instance the non-ideal kinetics was 
simulated corresponding to a large balance of lattice energy (Au* = 25 kcal mor'). 
These kinetic curves exhibit (Fig. 4. I 2 B) above certain temperature a non-zero 
intercept whilst the Arrhenius plot drawn from initial rates shows a well-defined 
step (Fig. 4.138). 

The low-temperature part of this plot yields an activation energy of 
19.3 kcal mor1 that is close to that for ideal kinetics. In the high-temperature 
region (after the step) this Arrhenius plot shows an activation energy of about 
twice that of the low-temperature part (40.4 kcal mor1). The logarithms of the pre
exponential factors of these parts of the Arrhenius plot are respectively 25 and 
60.6 whilst that for an ideal solution is 32.8. We see that positive Au* always 
increases activation energy but may decrease (at lower temperatures) the pre
exponential factor9 • 

If we disregard the intercept of the kinetic curves (supposing that some initial 
quantity of a product was present at t = 0) then the slopes of the kinetic curves in 
Fig. 4.12B yield an activation energy of24 kcal mor1 and lnv0 = 32.45. When the 
zero point is thus disregarded, a large positive Au* increases substantially the 
apparent Ea but leaves the pre-exponential factor practically unchanged 

The dilution of such a system by the product of reaction stabilises the kinetics 
when the conditions are strictly isothermal. This can be achieved in a laboratory
scale experiment but might present a problem in larger reactors. One should 
expect therefore a heating of the reaction mixture proportional to the degree of 
conversion, which can neutralise the effects of dilution and cause an acceleration 
of the reaction. This has probably happened in the synthesis of ethyleneglycol 
diacetate from ethylene oxide and acetic anhydride mentioned above. 

9 In a reaction series with varying !lu* the anti-compensation effect may thus be observed (the 
case which up to now has admitted of no rational explanation) 
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Fig. 4.12. Simulated kinetic curves for a system with an activation energy of 20 kcal mor' in the 
cases of ideal solution: ~u* = 0 (A) and highly non-ideal solution ~u* = 25 kcal mol-1 (B) 
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Fig. 4.13. Arrhenius plots for initial reaction rates corresponding to the kinetic curves m 
Fig. 4.12. The right-hand graph corresponds to a large positive ~u* 

Table 4.4. Parameters of the reaction mixture ( 4.97) 

20 

UA 

(kcal mor') 

6 

E0 ff1Sa 
(K) 

300 

Ue 

(kcal mor') 

9 
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The thermal effect of the reaction: 

( 4.105) 

is considerable (ca. 40 kcal mor1) and the amount of steam used to heat the 
reaction mixture to a predetermined temperature must be exactly calculated and 
controlled according to the data on the degree of conversion. The vaporisation 
energies of ethylene oxide and acetic anhydride are approximately 6 and 
9 kcal mor 1 respectively and that of the product is about 11 kcal mor1• The 
'vaporisation energy' of the transition-state may well be different from those of 
reactants because the transition-state can be highly polar. The dipole moment of (a 
probable) transition-state for the reaction (4.106) shown in Fig. 4.14A is 5.769 D 
whilst the dipole moment of the product is l.278 D (Fig. 4.14B) 10. The energy of 
dipole-dipole interactions of these species may therefore differ by the factor 
(µc/µA 8·)2 ::= 20. The energy of molecular interactions of reactants is of the same 
order of magnitude as that of the product (the respective heats of vaporisation 
differ by about 25%). Therefore t:,.u' for this reaction can be quite large - even if 
the dipole-dipole interaction is responsible for only a small part of the 
experimental heat of vaporisation (9 - 15 kcal mor1). According to the analysis 
given above, the non-ideality of the activation equilibrium sharply increases the 
thermal sensitivity of a reaction over a small temperature range. In laboratory 
experiments, carried out under practically isothermal conditions, this non-ideality 
might pass unobserved because the dilution of a system by the product provides 
for an apparent stability. The intercepts of the kinetic curves might be disregarded 
as originating in an impurity of the reactants. Such a misinterpretation is a result 
of an habitual approximation of real systems by pseudo-ideal models with activity 
coefficients playing the deus ex machina. It is important to bear in mind that this 
model might fail from time to time. 
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Fig. 4.14. Probable structure of the transition-state in the reaction of ethylene oxide with acetic 
anhydride (A) and that of the final product of this reaction (ethylene glycol diacetate), (B). Thin 
lines in the transition-state structure indicate the original bonds in the reactants. Structures were 
optimised using the Molecular Mechanics method (HyperChemJ"') 

10 The results of MNDO calculations using the HyperChem3' program. 
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In this Chapter we have derived a number of forms of the law of mass action 
applicable to imperfect liquid systems under the assumption of the additivity of 
total volume and of the total energy of attractive molecular interactions (lattice 
energy). 

Non-ideality was introduced in a formal way by taking into account the 
dependence of these parameters on composition arising from this additivity. The 
combined action of these parameters resulted in the dependence of free volume on 
the composition of a system. Although the model was mainly empirical and 
approximate it predicted correctly what type of effects can be expected in systems 
of interacting particles and sketched a way in which they can be analysed. 

This model predicted the appearance of non-ideality terms in the law of mass 
action in the form of relative balances of volume and lattice energy (potential 
energy of attractive molecular interactions approximated by the energy of 
vaporisation). Empirical rules, such as the Kopp rules, indicate that these balances 
are not large, which enables these non-ideality terms to be transformed into 
activity coefficients. A general form of activity coefficient arising from this type 
of non-ideality has been derived and involves reduced temperature and the 
complete derivative of free volume with respect to the numbers of actual species. 

In dilute solutions these non-ideality terms bring about the dependence of the 
equilibrium constant on the volumetric and distillation properties of the solvent. 

Extremely large balances of lattice energy in a reaction might cause critical 
phenomena related to phase transitions and manifested by singularities ('jumps') 
in the van't Hoff plots. Balances of such magnitude are not very probable for 
equilibria but may be expected for the formation of a transition state step in 
chemical kinetics. 

The analysis given in this Chapter disregards the possible dependence of 
molecular lattice energies and volumes on composition and the derived terms only 
reflect a part of the effects of non-ideality. The case of non-additive lattice energy 
will be considered in Chapter 7 and in Chapter 9 where a general form of the law 
of mass action for non-ideal systems will be constructed. Chapter 6 is dedicated to 
an analysis of the effects of non-ideality arising from binary molecular 
interactions in gases. In Chapter 5 we shall consider the description of molecular 
interactions employing empirical binary potentials. 
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5 Molecular Interactions 

5.1 
Introduction 

In the preceding Chapter we introduced the effects of molecular interactions into 
the law of mass action assuming a formal dependence of free volume on the 
composition of reaction mixtures. In dilute solutions these effects reveal 
themselves by dependence of the equilibrium constant on molecular volume and 
vaporisation energy of the solvent, whereas in concentrated solutions deflections 
of van't Hoff plots from linearity may be observed. A theoretical description of 
these phenomena requires a knowledge of the actual equation of state and/or the 
shape of the intermolecular potential. A very rough model has been used in order 
to obtain the relationship between free volume, volume and internal pressure. 
Nevertheless, the formalism derived explained a number of deviations of the law 
of mass action from ideality and predicted some critical phenomena. 

In this Chapter we shall consider various forms of the most widely used 
molecular potentials as well as sketch the way in which the equation of state can be 
derived based on the given shape of the potential. Also some examples will be 
given of how to estimate the parameters of intermolecular potentials from 
experimental data. 

The nature of intermolecular forces (according to our knowledge of the 
structure of matter) is electric. The coulombic forces may however be of different 
ranges of action. The forces of the longest range are those between point charges 
corresponding to ions either in electrolyte solutions or in plasma. The interactions 
between neutral particles having asymmetrical charge distribution and hence non
zero permanent electric moments are of shorter range and that is reflected in the 
higher powers of their radial dependencies (the energy being proportional to r-2 

for ion-dipole and r-3 for dipole-dipole interactions). Uncharged symmetric 
molecules, which possess neither dipole nor quadrupole permanent moments, are 
attracted to each other by the so-called dispersive forces. These are inversely 
proportional to the 6-th and higher powers of distance and originate from the 
interaction of instantaneous electric moments associated with the polarisation of 
electronic orbitals in external electric fields, which are created either by light 
(bringing about the phenomena of dispersion) or by the oscillating electrons of 
neighbouring molecules (causing molecular attraction). Quantum theory (London) 
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shows that dispersive forces exist even between spherically symmetrical atoms of 
the noble gases where classical electrostatics fails to explain such interaction. 

Repulsive short-range forces occurring at collisions of uncharged molecules 
originate in the Pauli principle, according to which two electrons with the same 
spin can not be in the vicinity of each other. These effects are called electron 
correlation effects. This results in a very steep radial dependence of repulsive 
forces at short distances. 

The theoretical description of molecular interactions is based on the concept of 
the force field (created by a partner particle or by some number of particles). The 
fields considered in the theories of equilibrium properties are always potential i.e. 
there must be such a function cp that the force X (acting on a molecule) along a 
coordinate equals the derivative of rp by this coordinate: 

X = -8cp/8x (5.1) 

Such forces are called potential forces and the function cp is the potential. 
Statistical mechanics deals exclusively with potential forces whilst non-potential 
forces (such as forces of friction for example) belong to other fields of science 
(e.g. the mechanical theory of heat). In many cases potential forces are also central 
i.e. derived from a spherically symmetric potential. 

General electrostatics predicts the potential of attractive molecular interactions 
to be a hyperbolic function of distance: 

(5.2) 

in which the exponent m may (theoretically) be I, 2, 3, 4, 6 and 8 (see also Table 
5.1 ). The constant B can be calculated for certain models theoretically but usually 
it is considered (as well as the exponent m) as merely an empirical constant. For 
repulsive interactions originating from electron correlation effects the potential is a 
product of exponential and polynomial, R(r), functions: 

cp = R(r) e-rlp (5.3) 

In real molecular systems, different modes of interaction contribute to the 
intermolecular potential. Therefore, any general formula describing such a 
potential is at least an interpolation or, in fact, an empirical equation. The 
repulsive part, for example, is rarely described by (5.3) because of purely 
computational difficulties. Instead a hyperbolic term similar to (5.2) is used, with 
higher exponents, to account for the steep radial dependence. Electrostatics and 
quantum mechanics give a hint rather than provide an exact form of the 
intermolecular potential applicable to practical calculations. 



5.2 Empirical binary potentials 147 

5.2 
Empirical binary potentials 

An exact solution of the equation of motion of a system of interacting bodies can 
only be obtained for a two-body system. Approximate solutions can be found for 
systems of larger numbers of particles when it is possible to select one principal 
binary interaction (e.g. a given planet and the Sun) whilst other interactions (with 
other planets) can be considered as small perturbations. Molecular interactions are 
generally considered as if occurring within independent isolated molecular pairs. 
This is true if these pairs are statistically independent i.e. the interaction in one pair 
does not change the interactions in all other pairs. Such a condition might hold for 
rarefied gases but not for the condensed state where the interactions of molecules 
with molecular pairs and those between the pairs of molecules should, in principle, 
be taken into account. 

However, the approximation of binary interactions can be used as an effective 
description, bearing in mind that the parameters of a binary potential include the 
contributions from higher order interactions. Such a 'neglect' of the higher order 
interactions results in a certain non-additivity of the energy of molecular 
interactions in the condensed state (see Chapter 7). With these reservations in 
mind, the binary potential can be considered as a building block of the theoretical 
description of molecular interactions. Some model potentials that are frequently 
used in such studies are shown in Table 5.1. 

The choice of a potential depends on the nature of the calculations and involves 
striking a balance between the required precision and the computation time. Most 
potentials assume spherical symmetry of interaction, although the Stockmayer 
potential allows for the introduction of angular dependence. The '6-exp' potential 
gives a better description of the repulsive part but requires longer computation 
times than the use of hyperbolic potentials. 

Table 5.1. Model intermolecular binary potentials 

Rigid-core potential u(r) = oo at r < cr; u(r) = 0 at r > cr 

Sutherland's potential u(r) = oo at r < cr; u(r) = -cr-m at r > cr 

Square potential well u(r) = oo at r < cr, - E at cr < r < 'Acr, and 0 at r > 'Acr (/... = 1.5) 

'6--exp' potential u(r) =be a' -6 -er 

Stockmayer's potential u(r,8A,8s,<jlA---(f>B) = 4De[(cr/a) 12 -(cr/a)6] 

- (µAµs/r 3)[2cos8Acos8s- sin8Asin8scos(<pA- <ps)] 
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In this Chapter we shall be using a spherically symmetrical hyperbolic potential 
known as the Lennard-Jones 1 potential: 

cp = Aa-n - Ba-m (5.4) 

In (5.4) m and n are positive integers (n > m, reflecting a steeper repulsive 
potential) and A and B are positive constants. Fig. 5 .1 shows an example of the 
Lennard-Jones potential curve computed for a pair of argon atoms. 

The Lennard-Jones potential can be written in a number of convenient fonns by 
defining the constants A and B via the coordinates of the point of mechanical 
equilibrium ae and <re (Fig. 5. I). At this point the derivative of potential with 
respect to coordinate is zero: 

(dcp/ da t=a, = -nAa;n-I + mBa;m-I = 0 (5.5) 

Equation (5.5) reflects the balance of repulsive and attractive forces at the point 
of mechanical equilibrium. Employing this equation the constant B can be 
expressed in tenns of the constant A and vice versa as: 

B = (n/m)(A/ a;-m) (5.6) 

Equation (5.4) can thus be rewritten as: 

[ ( )
m -n] -n n A -m -n n ae q;=Aa --~a =Aa 1-- -

m ae m a 
(5.7) 

The potential in the point of equilibrium <re(a = ae) then equals: 

(5.8) 

The constants A and B then are: 

(5.9) 

The equation of the Lennard-Jones potential (5.4) is thus transfonned into: 

_ <re [ (ae )n (ae )m] cp--- m - -n -
m-n a a 

(5.10) 

1 Actually, the general form of this equation was first suggested by the Austrian scientist Gustav 
Mie [I]. The Lennard-Jones potential corresponds tom= 6 and n = 12. 
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Fig. 5.1. Lennard-Jones potential for an Ar-Ar pair. 

The potential energy at the equilibrium point cpe is usually negative and its 
magnitude can be identified with the energy of dissociation of the molecular pair: 

De = -<pe (5.11) 

The potential ( 5 .10) may then be written as: 

(5.12) 

Equation (5.12) can, in tum, be written in terms of volume (v oc a\ 

(5.13) 

The energy of displacement of a particle from the point of equilibrium in an 
isolated molecular pair2 can be expressed as: 

(5.14) 

Introducing the dimensionless parameter characterising the deviation from the 
position of equilibrium, x =(a - ae)la., yields: 

2 A much more complicated procedure is required to obtain the average displacement energy of a 
molecule in a cell in the condensed state (see Section 5.5). 
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W = <p - <p e = ~ { n[l - (1 + x r ]- m[l - (I + x t] 
n-m 

(5.15) 

This equation will help us find the frequency of vibrations of a particle at the 
bottom of the potential well. 

For small displacements (x << 1) we may expand (I + x)n into a series and cut 
off this expansion at the square term: 

(I+ xtn = 1-nx + (1/2)n(n + 1)x2 (5.16) 

The displacement energy then becomes: 

(5.17) 

The potential curve for small displacements is thus a parabola corresponding to 
harmonic oscillation of a particle at the bottom of a potential well. The frequency3 

of such oscillations is: 

(5.18) 

in which µ is the reduced mass. For a molecular pair this is: 

(5.19) 

Instead of the position of equilibrium (ae), the distance corresponding to zero 
potential, cr, (Fig. 5.1) is often employed. According to (5.10), zero potential 
corresponds to the following relationship: 

I 

_ ( n )n-m ae - CT -
m 

(5.20) 

The potential (5.10) can then be written in the following convenient form: 

<p = n~'m ( ;: J"'· [ (: r tr (5.21) 

The most frequently used pairs of n and m are 12 and 6 as well as 9 and 6 

3 The idea that any potential curve with a minimum can be represented by a parabola is of course 
trivial. The derivation given was necessary in order to obtain the relationship between the 
frequency of a harmonic oscillator and the parameters of the essentially asymmetric Lennard
Jones potentials. 
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(depending on the nature of the actual molecular system and macroscopic 
properties). Accordingly the last equation can be written as: 

(5.22) 

Parameters of this equation for hetero-molecular interactions can be calculated 
(for non-polar molecules) using empirical rules: 

a AB =(aAA +aBB)/2 (5.23) 

These rules, although of empirical origin, are supported by the theory of 
dispersive forces. For example, when the frequencies of electronic oscillations in 
both molecules are identical the constant B in the Lennard-Jones potential for a 
hetero-molecular pair can be calculated to be: 

(5.24) 

On the other hand, if their polarisabilities are identical, then the following rule 
should be used: 

(5.25) 

In general, the polarisabilities vary over a wider range than do those of the 
electronic frequencies and therefore (5.24) is commonly used. 

5.3 
Taking into account nearest, next nearest, and longer 
range interactions in the condensed phase 

Binary interactions are typical for rarefied gases. A molecule in the condensed 
state interacts with c nearest neighbours (the coordination number) as well as with 
molecules outside the first coordination sphere. The total potential energy can be 
approximated as the sum of energies of binary interactions with these neighbours. 
In a system of N molecules there are Nc/2 nearest neighbour interactions (one 
should not count the same interaction twice!). The total potential energy of nearest 
neighbour binary interactions is thus: 

U _ Ne _ Ne (A -n B -m) --<p-- a - a 
2 2 

(5.26) 

The average energy of nearest neighbour interactions per molecule is then one 
half of the energy of interaction of a selected molecule with its surrounding: 
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_ U _ C (A -n B -m ) u---- a - a 
N 2 

(5.27) 

In crystals, the interactions with molecules beyond the first coordination sphere 
can easily be taken into account because there is a strict relationship between the 
parameters of a cell and the number of molecules and radii of the second, third and 
so forth coordination spheres. For example, in a lattice of the NaCl type any ion 
(atom or molecule) has 6 neighbours at a distance of a. Twelve neighbours are at a 
distance of a-12 and 8 neighbours at a distance of a.../3. The repulsive and attractive 
parts of the potential energy of a particle in such a lattice can thus be written as: 

<prep = 6A [i + _2_ + 4 + .. ·] = cAs n 
an 2n/2 3(n+2)/2 an 

cBsm 
<ratt =--m

a 

in which the coefficients sn and Sm are: 

2 4 
s =l+--+ +· .. ; 

n 2 n/2 3(n+2)/2 

2 4 
s =1+--+ +· .. 

m 2 m/2 3(m+2)/2 

The potential energy is then: 

U =Ne (snAa-n -smBa-m) 
2 

(5.28) 

(5.29) 

(5.30) 

(5 .3 I) 

The coefficients Sm and Sn for several simple crystal lattices are given in Table 
5.2. As is expected, the coefficients corresponding to higher exponents (m, n) are 
close to 1. For c = 12, m(n) = 6 and 12 means that the effects of the outer 
coordination spheres are just 20% and 1 % respectively. However, even these 
contributions can change considerably the results of calculations (see the Lennard
Jones and Devonshire equation of state, page 162). 

Table 5.2. Coefficients Sm(n) for cubic lattices [2] 

m(n) 

6 

9 

12 

Simple cubic lattice 

1.4003 

1.1048 

1.0337 

Space centred lattice 

1.5317 

1.2368 

1.1395 

Face centred lattice 

1.2045 

1.0410 

1.0]] 0 
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Table 5.3. Values of coordination numbers c, structural constants K, and coefficients Sn(mJ for 
different types of the quasi-crystal lattice of liquids [2] 

c K K S6 S9 s12 
····················-··········· ·········-··-···""·""·-·····--···--········-···-- ······--···--·-····---·····---·---······---- --······--·--···-·····--·· 

face-centred lattice 12 11..J2 ..J2 1.219 1.038 1.009 

diamond lattice 4 8J..J3 4J..J6 1.449 I. I 03 1.057 

In liquids there is no long-range order, therefore molecular interactions are 
taken into account in a slightly different way. They are divided into two parts: (i) 
those with the molecules of the first coordination sphere (described by (5.27)) and 
(ii) those with all other molecules. The number of nearest neighbours in liquids 
(the effective coordination number, c) is usually known and their contribution to 
the total potential energy is Nccp/2. 

The effects of molecules outside the first coordination sphere in liquids are 
estimated assuming these layers to be a continuum. If the concentration of 
molecules in a liquid is some constant value4 q = (NIV), then the number of 
molecules in a spherical layer of the radius rand thickness dr is q4nr2dr. The total 
energy of interaction of a given molecule with molecules outside the first 
coordination sphere can be found by integration over the distances from the radius 
of the border between first and second coordination spheres (R2) to infinitely large 
distances: 

"' 
<pout =4nq f(Ar-n -Br-m)r 2dr (5.32) 

112 

The radius R2 can be assumed to be proportional to the average distance 
between molecules (R2 =Ka). To a first approximation the volume of the first 
coordination sphere can be identified with the volume of a crystal cell Ka3 whilst 
the concentration of molecules q is the inverse volume of a cell (q = 11Ka3). The 
values of K and K for a liquid can be assumed to be the same as in a similar 
crystalline solid (see Table 5.3). 

The integration of (5.32) then yields the energy of interaction of a molecule 
with its 'remote' surroundings as: 

4n [ Aa-n Ba-m l 
<i>out =-; (n- 3)K11-3 - (m- 3)Km-3 (5.33) 

The total potential energy of binary interactions in liquids can be conveniently 
written (similar to solids) using the coefficients Sn and sm: 

4 Better agreement is achieved when the radial dependence of molecular concentration is taken 
into account, e.g. in the form of a radial distribution function. In this case, however, we must 
integrate it within (5.32). 
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(5.34) 

The coefficients Sn and smfor liquids are given by much simpler equations than 
in the case of solids, namely: 

47t 
s =1+------
m cK(m - 3 )Km-3 

(5.35) 

The potentials (5.31) and (5.34) can be expressed in terms of the coordinates of 
the point of equilibrium ( cp, and a,) as has been done for binary interactions. The 
potential energy per molecule in a lattice is: 

(5.36) 

and has a minimum at (du/da) = 0, hence: 

(5.37) 

The ordinate of the equilibrium point is then: 

u. =- csmB(l- m)=- csnA(!.:_-l) 
.\ m n 

2a, n 2a, m 
(5.38) 

The expression for potential energy per molecule may therefore be written as: 

_ u.,. [ (a.,. )n (as )m] u---m- -n-
m-n a a 

(5.39) 

Note that the energy u,, can be identified with the energy of vaporisation 
because the gaseous state can be considered as the result of an infinite expansion 
of the condensed phase: 

(5.40) 

The energy of vaporisation of a liquid can, of course, be estimated as the 
vaporisation enthalpy less the work of expansion (RT for one mole). However a 
better approximation is obtained when the data derived from surface tension are 
employed. The molecular energy of vaporisation according to Stefan's law is 
double the surface energy per molecule [3]: 

Uv = 2yv213 (5.41) 

in which y is the surface tension and v is volume per molecule. Expressing v as 
Vm!NL allows the molar vaporisation energy to be written as: 
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(5.42) 

Using this approximation for Us the velocity of sound in a large number of 
liquids was calculated on the basis of Lennard-Jones potentials and found to be in 
good agreement with experimental data (see Section 5.7.2). 

5.4 
Frequency of vibrations 

The vibrational partition function is responsible for a considerable part of the free 
energy of solids and liquids. Therefore a knowledge of the frequency of vibration 
and its relation to the parameters of intermolecular potential is important. The 
movement of a particle in a potential well is always a kind of oscillation or (if the 
bottom of the potential well is flat) a mixture of translational motion and 
oscillation. A pure harmonic oscillation corresponds to a parabolic potential curve; 
the force acting on a particle in such a potential well ( <p = ki) is: 

x = -o<p/ox = -2kx (5.43) 

in which x is the displacement from the equilibrium point and 2k is the elastic 
constant. The mode of motion of a particle in a given force field can be found by 
integrating the equation of motion: 

d2 
µ-2 + 2kx = F(t) 

dt 2 
(5.44) 

in which µ is the reduced mass and the term µd2x!dt2 represents the 'dynamic 
force', whilst the term -2kx is the 'returning force' derived from the potential 
(5.1 ). 

The reduced mass µ in a system of a particle surrounded by a large number of 
neighbours is approximately the mass of this particle. The right-hand part of(5.44) 
contains the external force F(t). Equation (5.44) is a second order linear 
differential equation and a general solution of this type of equation is the sum of 
exponentials: 

(5.45) 

in which C1,2 are the coefficients to be determined from the initial conditions and 
A1,2 are the roots of the characteristic equation: 

( ) I 12 A. 12 = ± 2k Iµ (5.46) 

For a U-shaped potential well, k is positive and both roots of (5.46) are imaginary. 
The exponential function of an imaginary argument is a periodic function 
connected with the cosine function as follows: 
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cos(t~2k!µ)=_!_[euJ2k1µ +e-;1J2k1µ J 
2 

The movement is therefore a harmonic oscillation with frequency: 

co= (2k I µ) 112 ; v = - 1 (2k/ µf 2 

27t 

(5.47) 

(5.48) 

The case of a potential in the form of a cubic parabola ( <.p = kx3) corresponds to 
a vibrating string with a massive object fastened to its centre. A potential well of 
an arbitrary shape can always be approximated in the vicinity of its minimum by a 
quadratic parabola. Therefore small amplitude oscillations in the case when 
<.p = kx3, as well as in any other potential, may be considered as harmonic. 
However, a classical particle of mass µ that possesses energy E in a square 
potential well with infinitely high walls and the width l would perform a 'saw
tooth' motion with a period ll(E/2µ) 112 • 

In order to calculate the vibrational frequency we must find the connection 
between the elastic constant and parameters of intermolecular potential. According 
to (5.43), the elastic constant is the second derivative of potential with respect to 
coordinate: 

(5.49) 

For the Lennard-Jones potential this leads (derivation see in [2]) to: 

K = d2<.p = 2usmn [(n-l)(~)n -(m-l)(~)m] 
dx 2 3a 2 (m-n) a a 

(5.50) 

The frequency of vibrations of a particle in a condensed isotropic medium is 
therefore: 

v -- - --- n-1 - - m-1 -_ I (K) 112 
_ I { 2mnus [( {a_,. )n ( {a"' )m]} 112 

"' 2n µ 2na 3µ(m-n) a a (5.51) 

Equation (5.51) shows that the frequency of vibration depends not only on the 
parameters of potential but also on the amplitude of vibrations (a - as). This 
should be expected for any not strictly parabolic potential. However, for small 
amplitudes (a"" a,) the vibrational frequency is given by the simple formula: 

[ ]

1/2 

=-1- 2mnl-u.1 I v,. 
· 2na_, 3µ 

(5.52) 

We now consider the relationship between the shape of the potential well in a 
cell in the condensed state and parameters of the Lennard-Jones potential. 
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5.5 
The shape of the potential well in a cell 

The dependence of potential energy on the distance a discussed above corresponds 
to the expansion or compression of the whole solid or liquid. On the other hand, 
the potential energy profile for a molecule in a cell (required for the calculation of 
free volume) can be found on the basis of the binary potential employing some 
model averaging so as to simulate the effects of molecular motion. 

In the Lennard-Jones and Devonshire theory of the liquid state, the molecular 
motion is approximated as a random circling over a sphere of varying radius 
(within the allowed space). The corresponding variation of the distance between 
such a molecule and a fixed neighbour can easily be determined from a geometric 
model (Fig. 5.2). The average distance <z> =a remains constant and characterises 
the equilibrium properties. The radius of the sphere r is an independent variable 
imitating the amplitude of thermal motion. 

A B 

Fig. 5.2. Geometrical models of the averaging of intermolecular potential 

The current distance between two molecules in this model (Fig. 5.2 A) is: 

z = a 2 + r 2 + ar cos 8 ( )
1/2 

(5.53) 

Considering all angles e to be of equal probability (spherically symmetrical 
potential) the distribution law for z is given by the ratio (see Fig. 5.2B): 

element of spherical surface 

total surface of sphere 

2rrr 2 sin 9de 
1t 

f 2rrr 2 sinede 
0 

sin9d9 
1t 

fsinede 
0 

The average potential energy of such a binary interaction is then: 

sin 9d9 

2 
(5.54) 
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1 7t 

(cp) = - f cp(z)sin ede 
2 0 

(5.55) 

Taking into account that dz!d8 = -arsin8/z, i.e. sin8 d8 = -zdzlar the above 
expression can be transformed into: 

l a-r l a+r 

(cp) = -- fzcp(z)dz = - J z<p(z)dz 
2ar 2ar 

(5.56) 
a+r a-r 

For the Lennard-Jones potential: 

(5.57) 

In addition, the integration of(5.56) results in: 

( ) _ 1 { A [( )-n+2 ( + )-n+2 J B [( )-m+2 { )-m+2 J} cp -- -- a-r - a r --- a-r - a+r 
2w n-2 m-2 

(5.58) 

Employing an effective (averaged over the whole system of molecules) 
coordination number c we can write the average potential energy of the molecule 
performing motions of amplitude r within a cell as: 

\V(a, r) = c( cp) 

--- -- 1-- - I+- --- 1-- - l+-_ca{Aa-"[( ')·-n+l ( r)-n+ll Ba-m[( r)-m+2 ( ')-m+2]} 
2 r n-2 a a m-2 a a 

(5.59) 

For small displacements (rla) << I (taking into account the fact that 
(I ± Ci)k ~ I ± kCi), the potential energy of such a molecule becomes equal to the 
sum of energies of its interactions with its nearest neighbours at a distance a: 

(5.60) 

The displacement energy w can then be defined as: 

(5 .61) 

in which the polynomials ~ and 18 represent the motion of a molecule within a 
cell: 
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e,(a.r.•)=H~t~ 2 [(1-~r, -(l+~r} (5.62) 

e ,(a,r,m) = H~) m~ 2 [(1-~r" -(1 +~r, ]-1 (5.62•) 

The constants A and Bin (5.61) can be expressed in terms of the parameters D., 
and a., or De and cr (see (5.10) and (5.21 )). However, expressing the displacement 
energy as a function of volume is also convenient. For m = 6 and n = 12 this 
results in: 

(5.63) 

in which v* = vive is the reduced (i.e. normalised to the equilibrium value) volume 
of a cell. The polynomials fA, £8 can be conveniently written with respect to the 
dimensionless parameter y = (r!af Form= 6 and n = 12 they become [4]: 

£'A(y,12)=(1+12y+25.2y 2 +12y3 + y 4 )(1-ytlO -1 

l' 8 (y,6)= (1 + y){l - Yt4 -1 
(5.64) 

(5.64a) 

Fig. 5.3 shows the radial dependencies of the potential energy \(/(a, r) as a 
function of the relative displacement (r/a) computed for several reduced volumes. 

3.0 2 4 s 

2.0 1 3 
"' Q -..... ,,-.-, 1.0 .... 

1:::f 
"'-" 
~ 0.0 

-1.0 

-1.0 -0.S 0.0 0.5 1.0 

rla 

Fig. 5.3. The radial dependence of the potential energy of a molecule in a cell of the quasi
crystal lattice ofa liquid: (1) v* = 3.2; (2) v* = 2.2; (3) v* = 1.6; (4) v* = 1.0; (5) v* = 0.8 
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When the volume of a system is considerably higher than the equilibrium 
volume (curve I, v' > 2) the potential well resembles two Lennard-Jones binary 
potentials combined. This means that in a highly expanded liquid, molecules 
interact mainly in pairs. A molecule may perform oscillations around two 
positions of equilibrium corresponding to interaction with either the left- or the 
right-hand neighbour. With decreasing volume, two positions of equilibrium 
become less and less pronounced and a flat-bottomed potential curve determines 
the motion of a molecule in such a cell. The motion is then a superposition of 
translational movement and harmonic oscillations. When v' < 1.6 there is just one 
minimum of potential energy and the motion can be described (at the limit of small 
amplitudes) as harmonic oscillation. 

5.6 
Free volume of a Lennard-Jones and Devonshire liquid 

Consider a system where all molecules reside at the centres of their cells and have 
approximately the same energy close to the bottoms of potential wells (Fig. 5.4). 
The potential energy of such a system of quasi-independent molecules is one half 
the sum of the potentials IJl(O): 

U(O) =Ne lf/(O) 
2 

(5.65) 

Indeed, should we remove every second molecule to an infinite distance the 
work done would be Nc/2 whilst the remaining N/2 molecules would posses 
approximately zero potential energy because there would be no nearest 
neighbours. 

1.5 

" 8 0.5 
~ 

:.... 
t;;f 
~ -0.5 

-1.5 

0 2 3 4 

xla 

Fig. 5.4. A system of cells occupied by identical molecules at low temperatures. Potential curves 
correspond to v* = 1. The total potential energy of this system is Nc\j/(0)/2. 
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On the other hand the displacement energy of a molecule (from which the free 
volume is derived) must be calculated with respect to the potential energy of a 
given molecule at the bottom ofa well (1.V(O)): 

(5.66) 

The potential energy of a given molecular configuration (represented by the 
average vector of coordinates r) can then be defined as: 

Ne [ - ] U(r) = U(O) + Nw =-\lf(O)+ Ne \lf(r)-\lf(O) 
2 

(5.67) 

The displacement energy enters (5.67) with the coefficient N and not N/2 because 
it is the energy of a molecule and not the energy per molecule. Under these 
conditions the partition function (to be used in the derivation of the equation of 
state) may be written as: 

JN Nc1j1(0) 

Z -(2rtmkTJ 2 -~ ( )N - e sv1. 
h2 

(5.68) 

in which sis the 'communal entropy' and v1 is the free volume per molecule: 

'max w(r) Ymox I w(y) 

v 1 = J e -J:T 4nr 2dr = 2rta 3 J y2e -Tr dy (5.69) 
0 0 

in whichy = r2/a2• Using the expression (5.61) for the displacement energy we get 
the free volume as: 

V. =2rta3g=2rta/mf"y112 exp[-~(£A(y) _2£ 8 (y))]dy (5.70) 
f T* v*4 v*2 

0 

in which T* = kTIDe is the reduced temperature. The upper index of integration 
can be roughly estimated as corresponding to rmax = ai2 (i.e. Ymax = 'h) or deduced 
from the actual geometry of a cell. However, this value is of no particular 
importance since the integral gin (5.70) becomes stable aty > 0.2 for DefkT> 0.1, 
(Fig. 5.5). 

The shape of the dependence of free volume on reduced temperature (which 
determines the possibility of various critical phenomena, see Section 4.4) appears 
to be practically linear for a normal liquid (curve v* = 1, Fig. 5.5B) and slightly 
curvilinear for a compressed liquid (v* = 0.8, g oc (T*) 1 2). This is, however, only 
true for large reduced temperatures, i.e. weak molecular interactions. In the range 
of small reduced temperatures (T* < 0.1, implying strong molecular interactions) 
the curves g = f(T*) correspond to the proportionality of g to (T*) 15 - practically 
irrespective of compression. 
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Fig. 5.5. Numerical integration of Ie-wikT in the Lennard-Jones and Devonshire model ( v* = I, 
c = 6) for A. The dependencies of the reduced free volume g on the reduced temperature for a 
liquid at equilibrium ( v* = 1) and for compressed ( v' = 0.8) liquid (c = 6) for B 

This shows that the Lennard-Jones potential is associated with a weaker 
dependence of free volume on the reduced temperature compared to the 
'V-shaped' potential employed in a crude estimation of the effects of internal 
pressure (Section 4.3). It must, however, be remembered that the hyperbolic 
potential is too smooth to approximate the real repulsive interactions between 
molecules very well. Therefore a rough model employing V-shaped or square
shaped potentials might produce a better description of some properties. 

The equation of state corresponding to the described model can be derived by 
differentiating the free energy with respect to volume: 

p =-kT(oF/av)r (5. 71) 

Using (4.42), (4.44) along with (5.63)-(5.70) one obtains [4] the Lennard-Jones 
and Devonshire equation of state: 

L-1+~[-l (c+±) __ l (D+ 2gm): 
NkT T * v * 4 g v * 2 g 

(5.72) 

in which T* = kTIDe. The integrals g1 and gm are similar to the reduced free volume 
g: 

g 1(v*,T*) = Je A(y)y112 exp[-;* ( £ ::{) - 2 £ i:{'))] dy (5.73) 

gm(v*, T*) = Je 8 (y)y 112 exp[-;* ( e::~) -2 ci:~)) ]dy (5.74) 
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The coefficients C and D equal 1 when only the nearest neighbour interactions are 
taken into account and C =Sn= 1.01, D =Sm= 1.205 (see Table 5.2) when 
interactions with the next nearest neighbours are also taken into account. The 
isotherms calculated according to (5.72) are shown in Fig. 5.6. Above certain 
temperatures the isotherms do not show any maximum/minimum, i.e. such a 
system can only exist in the gaseous state. When calculations are performed with 
C = D = 1 (i.e. taking into account the nearest neighbour interactions alone) the 
critical reduced temperature for c = 12 (inert gases) is ca. 0.95 (Fig. 5.6A). 

By introducing next nearest neighbour interactions and reducing the 
coordination number to c = 10 (i.e. accounting for the presence of vacancies in the 
quasi-crystal lattice) it is possible to obtain Tc*~ 1.35 (Fig. 5.6B) in good 
agreement with experimental data (see Table 5.4). 

It must be mentioned here that the isotherms given by (5.72) are very sensitive 
to the values of the coefficients C and D. Therefore, it is not difficult to get a 
correct value of the critical temperature by a fine adjustment of these coefficients. 

Table 5.4. Comparison of critical parameters obtained from the Lennard-Jones and Devonshire 
model with experimental values [4] 

Lennard-Jones and Devonshire 
Experimental Values 
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Fig. 5.6. Lennard-Jones and Devonshire isotherms (5.72) calculated for c = 12, C = D = 1 and 
varying reduced temperatures T* = kTID, = 1.6 (1), 1.2 (2), 1.0 (3), 0.9 (4) and 0.8 (5) (A), and 
similar isotherms calculated for c = 10, C = 1.01 D = 1.205 and varying reduced temperatures 
T* = kTID, = 1.6 ( 1 ), 1.5 (2), 1.4 (3), 1.3 (4) and 1.2 (5). The curves 4 in both graphs still exhibit 
extrema 
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However, once one parameter is adjusted the remammg ones are strictly 
defined. Therefore the values of critical volume and pressure given by this 
equation disagree considerably with experimental data (Table 5.4). It has been 
shown by Prigogine and Garikian [5] that the type of binary potential employed 
does not significantly change these results. The problem remains mainly with the 
original assumption that one cell is occupied by one molecule. Improvements in 
the cell theory are, therefore, connected with accounting for either multiple 
occupation of cells or for the presence of holes or vacant cells as well as with 
taking into account any correlated character of molecular motion in neighbouring 
cells. 

5.7 
Experimental determination of parameters of the 
Lennard-Jones potential 

The Lennard-Jones potential is characterised by four parameters: the exponents m, 
n and two constants A and B (5.4). The constants A and B can be expressed in 
terms of the coordinates of the point of equilibrium, ~e, ae or ~e, cr. (See (5.10) -
(5.13) and (5.21).) Some of these parameters are usually chosen according to the 
assumed model of molecular interactions. In the condensed state, however, binary 
potentials provide for an effective description and some parameters must be 
adjusted in order to achieve an agreement with experimental data. For example, 
experimental data on ionic crystals can be described employing the Lennard-Jones 
potential with m = 1 and the constant B equal to the square of the ion's charge 
multiplied by the Made lung constant (i.e. the coefficient s 1) as predicted by the 
electrostatic model of attractive interactions [2, 6]. However the repulsive part 
must be completely neglected which does not, of course, mean that repulsive 
interactions do not exist in ionic crystals but is a consequence of the application of 
a binary potential to systems with many-centre interactions. On the other hand, an 
effective repulsive potential can be derived describing extremely well 
experimental data on molten metals and electrolyte solutions, and neglecting the 
attractive part [7]. Again this is merely a form of accounting for many-centre 
forces. In systems of uncharged particles (in the gaseous and liquid state) the value 
of m was at first assumed to be 3 as follows from the van der Waals equation of 
state. However, the theory of dispersive forces predicts for such systems m = 6. 
This value is now widely used in various applications of the Lennard-Jones 
potential whereas the value of n is adjusted according to the actual experimental 
data. The methods of experimental determination of parameters of intermolecular 
potential discussed in books on physical chemistry are therefore rather illustrations 
of the connections between macroscopic properties and theoretical models 
involving molecular interactions. Several examples will be given here. The method 
employing virial coefficients of gases will be considered in the next Chapter. 



5.7 Experimental determination of parameters... 165 

5.7.1 
Compressibility: the Born - Lande method 

Parameters of intermolecular potential may be determined, at least in a crystal, 
from the values of isothermal compressibility extrapolated to absolute zero. 
Indeed the first law of thermodynamics: 

dE = TdS-pdV (5.75) 

defines the second derivative of internal energy with respect to volume at absolute 
zero as 

(5.76) 

in which ~r =-(Bin V/8p)r is the isothermal compressibility. Kinetic energy is not a 
function of volume, and therefore the derivative in (5.76) refers to potential energy 
and the isothermal compressibility may be found from the shape of the Lennard
Jones potential. For example, calculating potential energy per molecule and 
employing (5.13): 

<p = cpeµv [_!_ [~)v _ _!_(~)µ l 
µ-v v v µ v 

(5.77) 

in which µ = m/3 and v = n/3, we get the first and second derivatives of potential 
energy with respect to volume as: 

(5.76) 

(5.79) 

If the deformations accompanying the measurements of compressibility are 
small, then we may assume vef v :::=: 1 and the term in square brackets is v - µ,which 
results in: 

[ a2cp) cpeµv ueµv uemn 
av2 T = ------;;- = 7 = 9v 2 

(5.80) 

in which Ue is the depth of the potential well or double the potential energy per 
molecule. 
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Table 5.5. Initial data and results of calculations of the product mn from compressibility [2]. 

T v PsI012 Ve mn 
K (cm3 mole-1) (cm2 dyne- 1) (kcal mole-1) 

................................................................... 

Hg 0 14.035 3.55 15327 55.5 
Hg 273. l 14.7556 3.946 15142 53. l 
LiF 273.l 9.818 1.53 238000 5.80 
KC! 273.l 37.43 5.64 163000 8.75 
CCJ4 0 71.5 29 ± 8 11220 51±14 

According to (5.76) and (5.80), isothermal compressibility at absolute zero is 
inversely proportional to the product mn (Born - Lande equation [2, 8]): 

uemn 

13r=o 9v 
(5.81) 

The value of ue for substances in crystalline form can be obtained using the 
Born - Haber [9] cycle. The extrapolation of experimental data for 9v/!)yue to 
absolute zero is quite a lawful operation for crystals. The data on Hg (Table 5.5) 
show that extrapolation to zero brings about a correction of about 3% relative to 
the value obtained at 273 K. For ionic compounds the product mn equals the 
exponent n (m = 1) and these values are quite small (n = 6 - 9). 

5.7.2 
Acoustic measurements: the B.B. Kudryavtsev method 

The extrapolation to zero temperatures for liquids is of rather doubtful reliability. 
Fortunately, there is no need for such an operation because a relationship between 
the product mn and the isothermal compressibility at any temperature can be 
derived. Furthermore, the isothermal compressibility is related to the velocity of 
sound that can be measured very accurately in liquids. These are the foundations 
of the method of estimating the product mn from the data of acoustic 
measurements suggested by B.B. Kudryavtsev [10). 

Using the first law of thermodynamics and one of the Maxwell relations: 

(as;av)1 = (ap/ar)v (5.82) 

the following equation can be obtained for the volume derivative of internal energy 
at any temperature: 

( aE) ( ap) - --p+T -
av r ar v 

(5.83) 

Differentiating it a second time with respect to volume we get: 
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( <i E) = -( op ) + r (~ ( op )J 
av2 r dV r ar av r 

(5.84) 

On the other hand the phenomenological theory of propagation of sound in an 
elastic continuum gives the following relationship between the velocity of sound 
(c) and isothermal compressibility: 

c2 =yV2(8p) = yV 
av T Pr 

(5.85) 

in which y = CµICv and Vis the specific volume, i.e. the considered system is of 
unit mass. This is one version of the Laplace formula, a detailed derivation of 
which can be found in [11]. Differentiating (5.85) with respect to temperature at 
constant volume yields: 

(a(c 2 
)) = V 2y(~( op)) 

ar v ar av r 
(5.86) 

Combining (5.84) and (5.86) yields the relationship between the second 
derivative of internal energy by volume and the velocity of sound: 

v2(82E) =c2 -r(~) 
Y av 2 ar 

T V 

(5.87) 

The kinetic energy of molecules is not a function of volume and therefore the 
derivative (ilE!8V2) refers to potential energy: 

(5.88) 

We have already obtained the expression for the second derivative of the 
Lennard-Jones potential (5.80) with respect to volume: 

2(8 2cpl V -- =-cpµv av2 e 
T 

(5.89) 

The only condition was that the amplitude of a sound wave should not approach 
the cavitation limit and we may assume VJV = 1. The parameters of the Lennard
Jones potential are then directly related to the velocity of sound in the form of a 
differential equation: 

µvycpe =c2 -r(a(c2)) 
ar v 

(5.90) 

The solution of this linear differential equation is: 
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c 2 = yvµcpe + aT + g(V) (5.91) 

The function g( V) appears because the derivative in ( 5. 90) is the partial 
derivative at constant volume. Its form, as well as the meaning of the coefficient a, 
is found from the boundary conditions corresponding to the critical state. These 
are (i) the velocity of sound in liquids can be assumed to be equal to the velocity 
of sound in vapour, (ii) the vapour phase may be treated as an ideal gas and (iii) 
the depth of the potential well, cpe, equals zero. Under these assumptions and using 
the Laplace formula5 we get: 

g(V)= O; a =yR/M (5.92) 

in which M is the molecular mass. The velocity of sound, therefore, is related to 
the parameters of the Lennard-Jones potential by: 

c 2 =yvµcpe +yRT/M (5.93) 

When the depth of the potential well cpe is estimated as the heat of vaporisation 
(A) this formula yields velocities of sound that are too high except for the pair µ = 

1, v = 2 (i.e. m = 3, n = 6). For these exponents (5.93) yields velocities of sound 
agreeing with experimental data within the range ± 16 - 20% (Table 5.6). (The 
heat of vaporisation must, of course, be calculated or determined at the same 
temperature as that at which the velocity of sound was recorded.) 

As has been mentioned above, the depth of the potential well may also be 
estimated from data on surface tension (5.42). This results in the following 
relationship for the velocity of sound: 

2 2 N113 cr yRT c - µvy +--
- L Ml/3p2/3 M (5.94) 

in which a is the surface tension and N1, is the Avogadro number. This equation 
has been tested on 50 liquids of different chemical nature [8]. The best fit was 
obtained with µ = 2, v = 4 (i.e. min= 6/12) assuming an average of y = 1.4 (see 
Fig. 5.7). 

For 12 liquids of quite different chemical nature (octane, acetone, formic acid, 
ethyl bromide, tert-BuOH, acetic acid, etc.) calculations produced an excellent 
agreement with experimental data (±5%). Similar calculations for six liquids 
(stearic acid, palmitic acid, octyl alcohol, cyclohexanol, aniline, ethyl aniline, and 
quinoline) exhibit large negative deviations from the experimentally determined 
velocities of sound (from -20 to -30%). The remaining 32 liquids investigated 
exhibit mainly negative deviations of medium magnitude (5 - 20%). 

Better results can be obtained with n = 14 as well as by using actual values ofy 
instead of the average value 1.4. Using these parameters, (5.94) yields a very good 

5 According to the Laplace equation (5.85) for one gram of a substance in the ideal gas state the 
velocity of sound is given by: c2 = yplp = ypV= yRTIM, (Vis the specific volume). 
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temperature dependence of sound velocities in benzene and ethyl alcohol, fitting 
the experimental data within ±5%. 

Table 5.6. Velocities of sound calculated according to (5.93) and assuming y = 1.4, and (JJe = A.IM 

T (f...11) [12] Cca/c Cexp ( Cca/c-Cexp )/ Ccxp 

(K) (cal mole- 1 K- 1) (m s- 1) (m s- 1) 

Benzene 283 29.6 1140 1370 +0.2 
CCl4 273 29.3 800 !()10 +0.2 

Heptane 273 34.0 1050 1230 +0.18 
CH Ch 273 28.8 920 1070 +0.14 
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Fig. 5.7. Comparison of calculated, (5.94), and experimental sound velocities in liquids [8] 

These results indicate a better coincidence of theoretical and experimental 
velocities of sound when the depth of the potential well is estimated from surface 
tension rather than from the heat ofvaporisation6• 

6The reason why surface tension provides a better estimate of potential energy at the minimum is 
not clear. Of course surface tension gives the energy and not the enthalpy (which is obtained 
from the heat of vaporisation). However the correction for the work of expansion is small and 
cannot account for the observed deviations. The heat of vaporisation probably contains a 
contribution from various associative equilibria especially strong, for example, in the case of 
carbonic acids. 
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5.7.3 
Viscosity of gases: the Rayleigh - Chapman method 

The temperature dependence of the viscosity of real gases originates from the 
variations with temperature of (i) the number of binary collisions and (ii) the least 
distance between molecules at impact. The first type of dependence is given by the 
kinetic theory of gases as: 

11 =_I 2 (µkTj112 
'ITCT 71: ) 

(5.95) 

in which µ is the molecular mass and CT is the molecular diameter. The second 
component originates from the temperature dependence of CT. At the distance of 
least approach, all the kinetic energy of colliding molecules (along a given 
coordinate, i.e. kT for a pair) is transformed into potential energy: 

(5 .96) 

At short distances (see Fig. 5.1 ), the positive contribution from the first term is 
much higher than the energy of attractive forces, and we may therefore neglect the 
second term in (5.96) and write: 

(5 .97) 

The temperature dependence of the viscosity of gases is then given by: 

J (kT) 21 n(µkT) 112 c 11=- - -- =ConstxT 
n A n 

(5.98) 

in which the constant C = (2/n + 1h). Such a temperature dependence is observed 
experimentally with C varying from 0.5 for rarefied gases to 1 for saturated 
vapours. This method yields n = 6.4 - 12.7 with an average value of 8.9 (see Table 
5.7). 

Table 5.7. Values of n estimated from viscosity of gases 

He Ne Ar Hg CO NO 

12.2± 1.4 12.7 6.33 7.9±3.I 10.3 7.81 7.75 7.14 6.37 
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In this Chapter we have considered how the potential energy and the free volume 
can be represented in terms of binary potentials. These potentials contain 
parameters that can be expressed in terms of the coordinates of the point of 
mechanical equilibrium in a molecular pair (ae, De) and the exponents (m, n) 
determining the range of action of the repulsive and attractive forces. When 
applied to molecular interactions in dense gases and condensed states these 
potentials give an effective description with parameters containing contributions 
from triple and higher order interactions. Estimates of the parameters of binary 
potentials depend, therefore, on both the subject under discussion (i.e. gaseous or 
condensed sates, systems of charged or uncharged particles, etc.) and the methods 
of estimation. The latter are based on measurements of physico-chemical 
properties, such as compressibility, viscosity, surface tension, velocity of sound, 
etc. 

The potential energy of a molecule obviously depends on the nature of its 
environment and hence the composition of the system. The molecular lattice 
energies and free volumes are therefore composition-dependent and corresponding 
improvements must be introduced into the equations of the law of mass action for 
condensed state reactions. This will be done in Chapter 7, whereas in Chapter 6 we 
will apply the concept of binary interactions to gaseous reactions. 
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6 Imperfect Gases 

6.1 
Introduction. The virial theorem 

In this Chapter we will investigate the effects of molecular interactions on the 
form of the law of mass action for equilibria in the gas phase. The volume of a 
gaseous system is directly connected with the number of molecules, and therefore 
a knowledge of the actual equation of state is important for the study of reactions 
in gases. In an ideal gas the volume of a system at constant pressure is linearly 
dependent on the number of molecules. A large number of empirical equations of 
state have been suggested for the description of real gases, among which the van 
der Waals equation is the most famous. 

A theoretical equation of state can be obtained using statistical-mechanical 
expressions for free energy. Alternatively, an equation of state for a gaseous 
system can also be derived on the basis of the virial theorem, which, separately 
from statistical mechanics, establishes a connection between macroscopic and 
molecular parameters. When an equation of state is obtained in this way, the 
corresponding expression for free energy can be derived by integration. The virial 
theorem provides, in some cases, an easier and more elegant way of deriving the 
required mathematical formalism. It is based on the concept of the virial of forces. 
Clausius 1 defined the virial of forces (it seems to have no abbreviation) as: 

Virial = _ .!._ L (X,xi + r:Y, + Z,z,) 
2 I 

(6.1) 

in which Xh Y;, and Zi are components of forces acting on material points 
(molecules) having coordinates x;, y,, z,. The virial theorem demonstrates that the 
virial of a stationary ideal gas (contained in an immovable vessel) is equal to the 
sum of the kinetic energies of the molecules: 

l 
Boltzmann, and some other authors, apply the same name to '°'(Xx + Yy. + z -) L... I I I I 1-1 
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By taking into account the fact that: 

_!_ d 2 (x 2
) _ ~(x dx) _ x d 2 x + (dx) 2 

2 &2 -& & - &2 & 
(6.3) 

the product YzXx may be represented by: 

~Xx=;<>:,: ( "'.:} ;(:,)' (6.4) 

Summing over coordinates we obtain (x2 + y2 + z2 = r2): 

I d 2 
( 2 ) mv 2 I ( ) -- mr =--+- Xx+Yy+Zz 

4 dt 2 2 2 
(6.5) 

Summing over molecules we get: 

d2 2 
_!__2 L (mr/ )= L mv, + _!_ L (X;X; + Y,y, + Z,z;) (6.6) 
4 dt i i 2 2 i 

When averaged over a sufficiently long time in a system with a fixed centre of 
gravity (e.g. molecules of a gas contained in a vessel) the left-hand part of (6.6) is 
zero. Therefore: 

(6.7) 

The mean kinetic energy of a molecule in an ideal gas is kT/2 per degree of 
freedom, and therefore: 

3 1-------
-NkT =--L(X,x, +Y;y; +Z,z;) 
2 2 . 

l 

(6.8) 

In an ideal gas, the forces acting on molecules only originate in collisions with 
the walls of the vessel (resulting in the external pressure p). The mean force acting 
on all molecules of a monomolecular layer in the plane yz is <X> = - pyz 
(assuming the vessel to have the shape of a cube, see Fig. 6.1 A). The mean 
coordinate along the x-axis is <x> = Vix and therefore the mean value of <Xx> is 
-Y:zpxyz = -Y:zpV. All six walls of the considered cube contribute identically and 
hence the average virial of the ideal gas is: 

I 3 3 
--L(X;x, +Y,y, +Z;z,)=-pV=-NkT 

2 i 2 2 
(6.9) 

This is actually an equation of state of an ideal gas. 
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y, 

.x 

A B 

Fig. 6.1. Calculation of the virial of external (A) and intermolecular (B) forces 

This equation of state is thus connected with the virial of external forces as: 

(6.10) 

Let us now consider a gas with intermolecular interactions. In such a system the 
virial of intermolecular forces must be added to the virial of the ideal gas: 

i.e. 
1 

NkT = pV + 3 I (xintx + i:ntY + zintz) ( 6.11) 

or: ::r = 1- 3~kT I (xintx + i:n1Y + zintz) (6.12) 

We can now find the actual form of the virial in a gas with binary interactions, 
i.e. when the molecules interact as isolated pairs. The state of a given pair is thus 
statistically independent of the state of any other pair. The forces acting on a 
molecule in such a pair are then the derivative of the binary potential ({J along the 
line connecting the two molecules in a pair (Fig. 6.1 B): 

dqi 
f =!2 =-J; =-

da 
(6.13) 

The component of force acting on molecule "2" along the direction x 
(Fig. 6. IB) is obviously: 

(6.14) 

The similar component of force acting on the molecule "l" 1s X 1 = -X2• 

Therefore, for an isolated molecular pair: 
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(6.15) 

The same is true for other coordinates, which results in the following internal 
virial of a molecular pair: 

(6.16) 

The virial of the whole system can then be written as: 

I N 12 dq>, 
pV=NkT--2>;-

3 i=I da; 
(6.17) 

in which the summation is carried out over molecular pairs. 

6.2 
The Rayleigh equation 

The sum in (6.17) can be calculated by employing the distribution law and 
defining the number of pairs with a given distance of separation a. This number 
equals the number of molecules in a spherical layer around a selected molecule. 
The Maxwell - Boltzmann distribution law gives the concentration of molecules 
at distance a from a considered molecule as: 

N - cp(a) 
C =-e kT 

a V (6.18) 

The number of molecules in the spherical layer of radius a and thickness da is 
C0 x 4na2da. Each pair contributes (I/3)a(d<p/da) to the virial. The total 
contribution can then be obtained by integration: 

oo ( ) cp(a) I f dcp N -k.T 4 2d - a - -e na a 
3 0 da V 

(6.19) 

Taking into account that d<p = (d<plda)da and that the number of pairs is N/2 we 
may write the total virial of interactions as: 

2 oo cp(a) 
4nN f -k.T 3 ,] -- e a ucp 

6V 0 

(6.20) 

The integration by parts of (6.20) (assuming U= a3, and V=-kTexp(-<plk1)) 
yields: 



00 ~ ~ f e - kT a3 dcp = - a3 kTe - kr 

0 0 
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00 ~ 

- f-kTe- kT 3a 2da (6.21) 

0 

At large distances, the potential energy is zero and exp(-q>/k7) = 1; at 
vanishingly small distances q> = oo, and exp(---<p/kn = 0. The right-hand part of 
(6.21) therefore transforms into: 

00 ~ 

-kTa! + Jkre-kT3a 2da 
0 

(6.22) 

The term -kTa00
3 can be represented as -kTf:3a2da, which results in the virial 

of interactions being expressed as: 

2 oo ~(a) 2 oo ~(a) 
1 "'""' dcp; _ 2rcN J -Tr 3 ,] _ 2rtkTN f< -Tr l) 2d ( 3) - L,, a; -- - --- e a ucp - e - a a 6.2 
3 , da 3V 0 V 0 

The complete virial of a gas with binary interactions can thus be written as: 

p V = NkT - - La -52_ = NkT 1 + ---2:._ J<I - e kT )a2 da 
1 d [ 2 N 00 

- ~(a) l 
3 da V 0 

(6.24) 

This relationship is known as the Rayleigh equation. Note that the integral in 
the Rayleigh equation is some (temperature dependent) constant having the 
dimensions of volume. In the case of weak interactions ( q>lkT approaching zero), it 
is only a small fraction of the total volume of a system. 

6.2.1 
Virial coefficients: the Lennard-Jones method for the determination 
of the parameters of a binary potential 

The Rayleigh equation is one of a series of equations of state of an imperfect gas 
of the general type: 

(6.25) 

in which deviation from ideality is accounted for by a series of powers of density 
- the so-called virial expansion. The coefficients B2, B3, ••• are called the second, 
third (and so on) viria/ coefficients. The Rayleigh equation takes into account 
binary interactions alone and contains one term linear in density. The integral in 
(6.24) becomes, therefore, connected with experimentally measurable values of 
the second virial coefficient. From the temperature dependence of virial 
coefficients it is possible to estimate parameters of the intermolecular potential: 
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oo <P(a) oo <P(r•) 

B2 = 2n Jo - e -kI' )a 2 da = 2na; Jo - e -J:r )r *2 dr * (6.26) 

0 0 

in which r* = alae. Using a Lennard-Jones potential in the form (5.12) the second 
virial coefficient can be written (for practical calculations) as: 

in which r* max is some large value (10 - 40, depending on the type of potential) 
providing a good approximation of the integral to infinity. For weak molecular 
interactions (D/kT<< 1) the theoretical temperature dependence of B2 given by 
(6.27) is close to inverse proportionality (see Fig. 6.2). Experimental data [1] for 
the second virial coefficient of argon at different temperatures yield excellent 
agreement between theoretical and experimental values (Fig. 6.2) when analysed 
according to (6.27) (by using a non-linear regression method). The estimates of De 
and ae so obtained are shown in Table 6.1. The original model of Lennard-Jones 
[2] involved m = 4 and n = 40/3, 20 and 24. Afterwards the same data were 
analysed assuming m = 6 as predicted by the theory of dispersive forces [3]. The 
regression error corresponding to different combinations of m and n is 
approximately the same (ca. 0.25 - 0.4% of the highest absolute value of B2). It 
seems that the description depends mainly on the shape of repulsive potential: 
even the combination m = 3, n = 9 yields as good a description as the combination 
619. However the combinations m = 6, n = 9 and m = 6, n = 12 only result in 
reasonable values of the constants A and B (5.4) and (5.26) coinciding with the 
estimates of the Born - Lande method. It must be mentioned at this point that the 
data for the second virial coefficient of He do not fit (6.27) (the temperature 
dependence of B2 exhibits a maximum). 

Table. 6.1. The estimates of De. a, and the constants A and B in the Lennard-Jones potential 
obtained from temperature dependence of the second virial coefficient of argon (assuming 
different combinations of the exponents m and n) 

m n Delk ae x 108 Regr. error A B 
(K) (cm) ofB2 (erg cm") (erg cmm) 

........................................ ............................................... . ...................................................... -..... ................................................................................... 

6 9 89.86 4.059 0.0094 7.425 X 10-&I 1.66 x I o-58 

6 12 119.77 3.814 0.0097 1.568 x 10-101 1.01 x 10-58 

6 14 135.4 3.710 0.0101 1.314 x 10-118 8.53 x 10-59 

4 13.3 47.27 4.208 0.0108 1.339 x 10-111 2.92 x 10-44 

4 20 65.89 3.857 0.0126 1.211 x 10-163 2.51 x 10-44 

4 24 73.16 3.752 0.0133 1.228 x 10-193 2.40 x 10-44 

3 6 2.512 7.871 0.0153 8.249 x 10-59 3.38 x 10-37 

3 9 7.373 5.623 0.0094 2.861 X 10-&I 2.71 x 10-37 
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Fig. 6.2. Experimental data (crosses) for the second virial coefficient of Ar [I] and the theoretical 
curve (line) corresponding tom= 6, n = 9 (see Table 6.1) 

The Rayleigh equation of state employing the Lennard-Jones potential is 
completely different from the Lennard-Jones and Devonshire equation of state 
considered in Chapter 5. That equation was derived for the condensed state and 
does not explicitly contain a term linear in density (i.e. the second virial 
coefficient is formally zero) whilst the terms proportional to v*-2 and v*-4 are 
present. However one has to take into account the volume dependence of g/g and 
gmlg in (5.72)-(5.74) that leads (in the range of higher 'reduced temperatures') to 
the non-ideality terms being proportional to v*-3 3 (repulsive term) and 
v*- 17(attractive term). This can be interpreted in terms of an additional term linear 
in density. 

6.2.2 
Free energy derived from the Rayleigh equation of state 

Noticing that: 

p=-(8F/av)r (6.28) 

the Rayleigh equation can be written as a differential equation with respect to free 
energy: 

(6.29) 

The solution of this differential equation (obtained in quadratures) contains some 
unknown function of temperature, f(T), because the derivative in (6.29) was the 
partial derivative: 
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[ 
2nNoo _cp(a) l 

F = -kTN In V + V f (e kT -1)a2da + j(T) (6.30) 

The nature of this function is quite clear: when N/Vapproaches zero the first term 
approaches -kTMn V and the functionfi7) represents the volume independent part 
of the free energy of an extremely rarefied gas, i.e. that derived from kinetic 
energy. 

For lcp(a)lk11<<1 and low density (NIV) the term: (2nN!V)f(e-cp(a)lkl_ l)a2da is 
much smaller than I. It can then be represented as 8 ~In(! + 8): 

{ [ 
2nN 00 

- cp(a) ]} 
F=-kTNln v l+v J<e kr -1)a 2da +f(T) ( 6.31) 

In the next Section we shall obtain a similar equation employing the methods of 
statistical thermodynamics. 

6.3 
A gas with weak binary interactions: a statistical 
thermodynamics approach 

Let us now consider the same gaseous system, where only binary interactions 
occur, from a statistical thermodynamics point of view. We shall take into account 
all such interactions - even between molecules at opposite ends of the vessel. The 
number of binary interactions is, therefore, N(N - 1)/2 (the number of elements of 
the square matrix in the upper/lower triangles excluding the diagonal). In general, 
the free energy of a gaseous system with molecular interactions is given by (3.25) 
(Chapter 3): 

F _ -kT I ( 27t mkTJ 2 -:~. _1_ J· .. J -U(q)I ktd l JN o 1 
- n 2 e e q1 •• • dqN (6.32) 

h N!v v 

in which integration must be performed over the coordinates (q;) of all molecules 
within the volume of a system. The potential energy of the whole system, U(q), we 
assume to be additive with respect to the potential energies of binary interactions: 

N-1 N 

I.e. U(q)= L L:u,1 (6.33) 
i=I .1=1+l 

The configurational integral in (6.32) is then transformed into: 
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(6.34) 

in which dq, represents the product dx,dy;dz;. The integration in (6.34) can be 
performed consecutively, starting from the coordinates of molecule number N. 
The terms depending on the coordinates qN are obviously exp(-"i.iU,NlkT). 
Resolving the exponentials exp(-"i.i"i.iU;/k7) into the components according to the 
coordinates of the molecules: N, N - 1, ... 1, we may write the integral (6.34) as a 
product of integrals: 

l _ u~: _ u13 ~'.'n -'f.' u,,~ 1 _''f.1 u,,: 
Z . = - fdq fe k7 dq fe k7 dq ... fe ;=1 kl dq fe ;=• kl dq 

con{ N! 1 2 3 N -1 N 

(6.35) 

The integral over the coordinates of the first molecule (dq 1) is obviously the 
volume V and the configurational integral can be represented as: 

(6.36) 

in which: 

( 
K-1 U J 

I K = J exp - L ___!E_ dq K 

i=I kT 
(6.37) 

This integral has the dimensions of volume and when the energy of interaction 
is small (for IV,KI << kT the exponential approaches 1) h must be approximately 
the volume of the system. For weak interactions we can, therefore, extract the 
small parameter and write exp(-U;Klk1) in the form: 

_':!A_ 

e kT = 1 + f,K (6.38) 

in which /;K is a small parameter given by: 

_'.!_,_!;_ 

f, - kT -1 iK -e (6.39) 

The term exp(-"i.;U;Klk1) in (6.37) can then be expressed as a product: 

exp(- ~1 U;K ) =TI (1 + f;K) 
1=1 kT i=I 

(6.40) 

This product is, in explicit form, a polynomial2 the first term being and the 

2 In the case of identical/,K it will become the Newton binomial to the power (K - I). 
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second the sum of allfiK: 

K-1 K-1 

Il (1 + f,K ) = I + I f,K + ... ( 6.41) 
i=I i=I 

We can neglect terms with higher powers of ftK and the integral h may be 
expressed as: 

(6.42) 

All binary potentials U;k in a system of identical molecules can be considered as 
identical. Therefore his equal to the volume of a system plus the sum of (K - I) 
identical integrals, ~: 

(6.43) 

(6.44) 

The integral ~ can be calculated in a molecular coordinate system by placing 
the considered molecule at the origin: 

(6.45) 

in which L is a characteristic dimension of a system (e.g. its radius). If the 
molecular interactions are short range, then the integration in (6.45) may be 
performed within the volume of the molecular pair (outside this volume the energy 
of interaction is zero): 

T ( [! (r) ) 
~ ;::; 4 re f e - ---;:;:- - I r 2 dr (6.46) 

in which T is the effective radius of the molecular pair. The integral ~ can be 
divided into two parts representing the effects of repulsive and attractive forces. 
At distances (r) smaller than the molecular diameter ( cr) the potential energy of 
repulsive interactions is infinitely high. The integration within r = 0 ~ cr yields, 
therefore, a negative constant equal to 4ncr3/3, i.e. eight molecular volumes per 
pair (Fig. 6.3B). At distances larger than cr, the potential energy becomes negative 
and smaller (by a magnitude) than kT. The integration within r = cr ~ T yields a 
positive value dependent on temperature. 
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Fig. 6.3. Integration over the intermolecular distance in a pair. The potential energy (A) is high 
and positive within r = 0 ~ cr, small and negative within r = cr ~ i: and approaches zero at r > i:. 

The radius of action of attractive forces i: was assumed to be 5cr. Two possible radial 
dependencies of potential energies are shown (proportional to r -3 and r -4). Parameters of these 
dependencies are adjusted in a way providing for equal area under the curves 
f{r) = exp(-u(r)/k7) - 1 (B) 

For I U(r > cr)] << kT, the positive part of the integral ~ is considerably smaller 
than the negative part. The integral ~ is thus a negative quantity having the 
dimension of volume and its absolute value is much smaller than the volume per 
molecule (VIN). 

The configurational integral for such a gas containing N molecules is: 

zconf 
V N V N VN { } 13 } =-Jl!K =-,Il(V+(K-l}i3)=-1 1+-;:)N(N-1)-+ ... 
N. K=2 N. K=2 N. •. v 

(6.47) 

The term (K - 1 W is about four times the total volume of the molecules and is 
much smaller than the volume of the system V if the density of the considered gas 
is not high. Therefore it is allowable to cut off the binomial expansion in (6.47) at 
the second term. The factor N(N - 1 )/2 represents the number of binary 
interactions. For a macroscopic system it is approximately N2/2. 

Using the results obtained above we get the free energy of a gas of low density 
in which molecules interact in pairs as: 

(6.48) 

Comparing this expression with the formulae for an ideal gas, (3.25) and (3.33), 
we see that the volume has been replaced by the free volume: 
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(6.49) 

The free volume as defined by (6.49) is dependent on temperature, the 
concentration of molecules, and the parameters of intermolecular interaction. As 
the integral p is small and negative the free volume of an imperfect gas is slightly 
less than the volume of the system as a whole. For N 2 p!2 V << 1 the root of the 
N-th power in (6.49) can be computed approximately ((1 + o) 11N = 1 + o/N): 

v1 = v[1 + ~:J (6.50) 

The free energy then becomes: 

(6.51) 

or, using (6.50) and writing p explicitly: 

F ~ -kTlnl ~!(zn:T) '; e ~" j 
-kTN lnHI + Z~N I( e-':~ 1 

-I }'dr )] 

(6.52) 

A similar equation ( 6.31) has been obtained in the preceding section: 

i.e. { [ 
2nN"' _<JJ(a) ]} 

F=-kTNln v I+v f<e kT -I)a2da +f(T) (6.53) 

We see that the unknown function of temperature in (6.31) is: 

(6.54) 

We see that both the virial theorem and the statistical mechanical treatment of a 
gas with binary interactions result in similar formulae for free energy. Let us now 
compare these descriptions with that given by the van der Waals equation of state. 
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6.4 
Van der Waals equation of state 

We shall now demonstrate that a low-density gas with weak binary interactions 
obeys the van der Waals equation of state. The integral P consists of two parts: (i) 
negative, arising from repulsive short-range forces and (ii) positive, resulting from 
attractive intermolecular forces. If attractive interactions are weak (I Uaul!kT < < 1) 
then the corresponding part can be calculated approximately by using the first two 
terms of the expansion: 

This results in: 

_ lf(r) U 
e kT - 1 ::::: _ __id 

kT 

~ = -4 7t Jr 2 dr + 4 7t J ( -:r } 2 dr = - 2 b + ~; 
0 cr 

where band a are positive constants given by: 

2 
b = -ncr 3 

3 
and 

t 

a= -27t J U(r)r 2dr 
cr 

(6.55) 

(6.56) 

(6.57) 

The constant b equals four times the volume of a molecule if taken to be a hard 
sphere. The value of the constant a depends on the functional dependence of 
potential energy on the intermolecular distance. For a typical hyperbolic 
dependence U(r) = -B/rm (see Fig. 6.3, above) the constant B can be determined 
via the potential energy Uom of attractive interaction at r = cr (the 'minimum' in 
Fig. 6.3): 

(6.58) 

The constant a can then be represented as: 

(6.59) 

in which -r* = -r/cr and r = r!cr. Equation (6.59) then transforms into: 

form= 3 (6.60) 

form> 3 (6.61) 

If the intermolecular forces are not short-range and•* approaches infinity, then 
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the values of m ~ 3 result in infinite values of a. On the other hand, ifthe potential 
forces are short-range i.e. the potential energy profile is cut off at a finite (and not 
very large) 1*, and luomllkT<< 1, then any shape of potential can be assumed (for 
example, a square-shaped potential well). The constant a is in any case 
proportional to the potential energy in the 'minimum' (Fig. 6.3A) therefore alkT is 
inversely proportional to the reduced temperature (T* = kTluom). The exponent 
m ::'.': 4 provides for finite values of a even when the integration is performed to 
infinity (see (6.61 )). 

Under these conditions the integral p is independent of volume and we can 
easily derive the equation of state. Using (6.48) for free energy: 

i.e. 

the pressure as a derivative of free energy with respect to volume becomes: 

p=NkT(a!nV) +kTa1n(l+N2p/2v)=NkT - N 2p/2v2 

av r av v 1+N2p/2v 
(6.62) 

Under the condition of low density, N 2 p12 V << 1, the denominator in (6.62) is 
approximately 1 and hence: 

= NkT _ N 2 k713 = NkT [i + N (b _ _!!_)] 
p V 2V 2 V V kT 

(6.63) 

This equation contains one (linear) term of the expansion with respect to 
density. It can be further transformed into: 

JS: 

NkT N 2kTb 
p=--+---

v v 2 
(6.64) 

On the other hand, the van der Waals equation of state (for one mole of a gas) 

( p + ; 2 ) (V - b) = RT (6.65) 

in which a and bare the molar van der Waals constants. The virial form of the van 
der Waals equation is: 

pV v a 
(6.66) 

RT V-b V 

and this can be rewritten in terms of an infinite expansion over powers of bl V: 
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pV = -~ + 1 + ~{1 + ~[1 + ~(1 + ... !_ _ _!'.:._]]} 
RT V V V V V V-b 

(6.67) 

This equation, (6.67), shows that, despite its simplicity, the van der Waals 
equation might provide a better description of the properties of dense gases than 
equations based on a limited number of terms in the virial expansion such as 
(6.64). The van der Waals equation for n moles of gas is: 

(p+ ;~ }v-nh)=nRT (6.68) 

which can be transformed into: 

(6.69) 

Considering then the restricted volume nb to be much smaller than V, we get: 

nRT n 2 RTb n 2a 
p=--+---

v v 2 v 2 
(6.70) 

Comparing this equation with (6.64) we notice that they are identical if we 
assume NkT = nR, nb =Nb, and n2a = N 2a. The equation of state of the gas with 
weak binary interactions becomes identical with the van der Waals equation of 
state when the restricted volume is much smaller than the total volume of the 
system. This condition (low density) has been used in the derivation of the 
expression for free energy (6.48) and the equation of state (6.64). A rarefied gas 
with binary interactions thus obeys an equation of state that can be considered as a 
special form of the van der Waals equation. The latter e:quation is based on a 
simple model not involving the condition of low density (see Appendix 10. 7) and 
may even be applied to liquids. 

The available volume (V - nb) in the van der Waals equation is not identical 
with the free volume derived for a gas with weak binary interactions (6.49) and 
(6.50) because the latter also includes a contribution from attractive interactions: 

N~ Na 
V = V + - = V - Nb+ -

f 2 kT 
(6.71) 

in which the term NalkT represents the effect of attractive forces (which keep 
molecules closer together, thus making the free volume larger). 

V1 = v - Nb (I - 3 ~~ In i: *) (6.72) 

The free volume thus defined decreases with increasing reduced temperature, 
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which is opposite to the behaviour of the free volume of liquids. Calculations 
employing the van der Waals constants for N2 show that this effect is not 
negligible. 

The origin of this difference in behaviour of the free volume in liquids and 
gases lies in the different significance of the concept of volume in these aggregate 
states. The volume of a gas is always the volume of the vessel containing it, 
whereas the volume of a liquid is (usually) its equilibrium volume in contact with 
its own vapour (or other gaseous phase) at a given temperature and pressure. 

6.5 
Chemical equilibria in imperfect gases 

In a system containing two different kinds of molecules (e.g. A (NA) and B (N8 )) 

the number of binary interactions is (NA+ N8 )(NA + N8 - I )/2 = (NA + N8 )212. Of 
this number there are N} of AA, N8 2 of BB and 2NAN8 of AB interactions. Each 
type of interaction can be characterised by its integral p, PAA, P88 and PAB· The last 
of these is taken over the distance apart in a hetero-molecular pair: 

(6.73) 

The free energy of such a system can then be written as: 

(6.74) 

in which: 

3N., NII 

[ 2nm kT]-2 ---""- VN·' [ ] 
F;gA =-kTln : e kl'--, =-kTNA lnqA(T)+lneV-lnNA 

h NA. 

(6.75) 

The parameters a and b of hetero-molecular interactions are usually estimated 
using some empirical combination rule from a large number of suggested 
interpolation formulae. The most frequently encountered are the arithmetic mean 
for b and the geometric mean for a: 

b _ b AA + bBB 
AB - 2 (6.76) 

( ) I/ 2 
a AB= aAAaBB (6.77) 

We are thus able to describe a system involving a chemical equilibrium and 
derive the corresponding law of mass action. 
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6.5.1 
lsomolar equilibria in imperfect gases 

Equations (6.74) and (6.75) yield the following expressions for the chemical 
potentials of a binary mixture in the state of an imperfect gas: 

µA=:~ =-kT[lnqA-ln~ ]-kT[nAJ3AA ;nBJ3AB] (6.78) 

(6.79) 

The condition of equilibrium of a mono-molecular reversible reaction: 

A B (6.80) 

requires the equality of these chemical potentials, which then yields the following 
law of mass action: 

ln:l.fl._-ln nB _ _!_[ (nB~fiB +nA~AB)-(nA~AA +nB~Afi) ]=o (6.81) 
qA nA V 

The last term in ( 6. 81) describes the effects of non-ideal ity introduced by 
molecular interactions. The terms n~IV are by definition small compared to 1 
therefore they can readily be converted into activity coefficients without any 
further restriction. The form of the non-ideality term involving the product of 
integral ~(volume) times concentration n/V (1/volume) suggests that the numbers 
of molecules in the ideal part of this law of mass action should also be converted 
into volume concentrations: 

Combining terms we get: 

JnilL-Jn[[B]] -{[B] (J31:iB-J3AB)-[A] (J3AA-J3AB)}=o 
qA A 

(6.83) 

Converting small non-ideality terms into logarithms we get a pseudo-ideal form 
of the law of mass action with respect to activities: 

In ifL - In~ = 0 (6.84) 
qA aA 

in which activities are polynomial functions of concentrations: 
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a A =[A]- [A ]2 (J3 AA - J3 AB) 
G13 =[B]-[B]2(J3BB -j3AB) 

(6.85) 

(6.85a) 

These activities obviously approach molar concentrations when the differences 
WAA - PAB) and CPBB - PAB) approach zero: 

~AA =~AB (6.86) 

These conditions imply that: 

(6.87) 

This does not however mean that molecules A and B are identical: equal integrals 
PAA, P88, and PAB may have different contributions from repulsive and attractive 
forces (see Fig. 6.4 ). 

PAA= l,@lil ® 
~AB= Ii®: '' I ® 
PBB= li@I 1 j I: , 

. 1 II ® 
Fig. 6.4. Possible differences in the nature of molecular interactions corresponding to equal 
integrals P 

An interesting case arises from the condition: 

(6.88) 

i.e. the situation in which the sum of the coefficients of square terms in (6.85, 
6.85a) is zero. The activities then become: 

(6.89) 

In this both the product and the reactant are characterised by identical activity 
coefficients y. However the law of mass action is not hereby considerably 
simplified: 

(6.90) 

In fact, any further simplification is apparently impossible. On the other hand, 
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when we apply the condition (6.88) to the genera/form of the law of mass action 
(6.81) - (6.83) and not to that expressed in terms of activities, (6.84), we find that 
the behaviour of a system obeying (6.88) is practically ideal: 

Jn i.JL-Jn~ -{([A]+ [B n(!3BB -13 AA)}= 0 
qA [A] 2 

(6.91) 

The sum of concentrations [A] + [BJ = C0 and therefore the non-ideality term 
can be added to the equilibrium constant. We see that a general form of the law of 
mass action provides for a more correct way of asymptotic analysis of the 
behaviour of a system approaching the ideal state. The form with respect to 
activities does not allow this because too many approximate transformations have 
already been made in order to obtain an expression for the activity coefficients. 

In fact, a direct indication of such a pseudo-ideal behaviour of a system under 
the condition (6.88) can be obtained when we express the free energy as a function 
of one concentration, let us say that of the reactant (nA/JI). By allowing for the 
material balance (nA + nR = N) in (6.74) we get the excess free energy as: 

fex = F - F,gA - F,gR = - kT [ n~ (p AA + p BB - 2P AR)+ 2Nn ,r(p AB - p RB)+ N 1P BB] 
2V 

(6.92) 

When condition (6.88) is obeyed, i.e. when the parameter of hetero-molecular 
interaction is the arithmetic mean of the parameters of the corresponding homo
molecular interactions, 

I.e. (6.93) 

then the quadratic term with respect to the current number of molecules 
disappears. The remaining linear term will contribute a constant term to the law of 
mass action, thus changing the equilibrium constant. 

Condition (6.93) repeats the combination rule (6.76) for the repulsive part of p 
which might constitute its major part. This means that the condition (6.93) may be 
expected to be generally obeyed, i.e. a practically ideal gas law of mass action can 
be applied to isomolar equilibria in a gas oflow density: 

I qB -2:(Jlwi-Jlu) I [B) -0 
n-e - n---

qA [A] 
(6.94) 

It requires little more imagination to guess that such a non-ideality term can 
also be introduced into the concentrations: 

In~ - Jn n 8 + Jn n A = O 
qA V(I + NPBB /2V) V(I + NPAA 12V) 

(6.95) 

Such a form implies composition independent free volumes of the A and B 
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species: 

_ ( Nf3AA )· 
VA/ree -V 1 +lV ' ( Nf3ss) VB/ree = V 1 +--. 2V 

(6.96) 

This is not, however, the whole truth concerning the possible effects of 
molecular interactions on equilibria in the gas phase. In fact the condition (6.88) is 
sufficient only for isomolar equilibria. The general case of non-isomolar reactions 
is a little more complicated. 

6.5.2 
A non-isomolar reaction in an imperfect gas 

For a bimolecular reversible reaction: 

A+B c (6.97) 

the material balance equations (supposing that the product C was not initially 
present) are: 

NA = n A + nc ; NH = n B + nc (6.98) 

The ideal gas free energy of the reaction mixture is: 

F,g ( n A ) ( n 8 ) ( nc ) --=nA lnqA -In- +n8 lnq8 -In- +nc lnqc-ln- (6.99) 
kT eV eV eV 

The contribution from molecular interactions, i.e. the excess free energy of the 
reaction mixture is: 

_ _[__ n.~PAA +n~PHB +nz.f3cc +2nAnH[3AB +2nAncf3Ac +2nHncf3Hc 
kT 2V 

(6.100) 

Written as a function of nc (using material balance equations) the excess free 
energy becomes: 

_ _f_ =_I_ { nz. (p AA + PHB +Pee + 2P AH - 2p AC - 2PHc) 
kT 2V 

-2nc[ NAPAA +PAR -pAc)+NB(PHs +PAB -Pw·)] 
+N3iPAA +N~pBH +2NANBpAH } 

(6.101) 

As in the previous example we notice that such a system must behave pseudo
ideally when the coefficient of the quadratic term in (6.10 I) is zero. Applying the 
condition of equilibrium to this reaction we get the Jaw of mass action: 
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}n___iL_-ln [c] + nVC ~AA +13BB +13cc +2j3AB -213Ac -213sc) 
qAqB [A][B] 

+~A (13AA +13AB -13Ac)+ i (13sB +13AB -13sc)=O 
(6.102) 

Taking into account that the terms ~ncfV are small and employing material 
balance equations for this reactions we get the law of mass action with respect to 
activities: 

in which: 

ln---3..£_-ln~ = 0 
qAqB aAaB 

a A = n~ [ 1 - ~ (13 AA + 13 AB -13 AC)] 

a B = ~ [ 1 - n; (13 BB + 13 AB -13 BC ) ] 

ac = n;. [i- ~- (13cc -13Ac -13sc)] 

(6.102a) 

(6.103) 

(6.103a) 

(6.103b) 

Activity coefficients as defined by (6.103) and (6.103b) are linearly dependent 
on the corresponding concentrations. The coefficients of the linear terms in square 
brackets in (6.103) and (6.103b) include (i) the integral of the corresponding 
homo-molecular interaction and (ii) the integrals of two hetero-molecular 
interactions with positive sign, if the interaction occurs on one side of the reaction 
equation, and with negative sign ifthe interaction occurs across the arrows. 

Such a system behaves ideally if all these coefficients separately are zero (a 
trivial solution): 

Another solution is available when the sum of coefficients in (6.103,a,b) is 
zero. Such a possibility is directly indicated by (6.101) and (6.102): 

13 AA + 13 BB + 213 AB +Pee - 213 Ac - 213 sc = 0 (6.105) 

The square term (with respect to nc) in (6.101) disappears under such a 
condition. If we apply the 'combination rule' for hetero-molecular interactions 
(6.88) then the sum (6.105) does not become zero, but is transformed into: 
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PAA + P BB - Pee (6.106) 

The additional requirement therefore is: 

p CC = p AA + p BB (6.107) 

We have obtained (similarly to the cases discussed in Chapter 4) a certain 
'conservation rule' for the parameter p characterising molecular interaction. If 
repulsive interactions are prevalent then the condition (6.107) expresses the 
additivity of molecular volumes of the products of reaction exactly as has been 
obtained in a semi-empirical manner in Chapter 4 (the Kopp rule of additivity of 
molar volume (see page 114)). 

This condition did not appear for an isomolar reaction because it is fulfilled 
automatically when the combination rule (6.88) is applied. Under conditions 
(6.88) and (6.107) the law of mass action (6.102) is reduced to: 

(6.108) 

The constant non-ideality term can either be added to the equilibrium constant 
or converted into a composition independent activity coefficient. The integrals PAA 
and P88 are small compared to the volume of the system per molecule (VIN) 
therefore the last term of ( 6.108) can be written in logarithmic form as: 

(6.109) 

Adding and subtracting this term to (6.108) yields the activity of any 
component as linearly proportional to its concentration: 

(6.110) 

This act1v1ty is actually the concentration calculated with respect to a 
composition independent free volume: 

(6.111) 

Remember that the integral P is generally negative and the free volume is thus 
smaller than the volume V. It has already been mentioned that this integral is made 
up of a contribution of both repulsive and attractive forces which obey different 
combination rules. The conditions (6.88) and (6.107) have therefore different 
meanings for these parts of p. In order to elucidate the significance of the 
conditions under which a gas phase equilibrium behaves ideally, we must consider 
the effects of the attractive and the repulsive parts of p separately. 
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6.5.3 
Separate conditions of ideal behaviour for attractive and repulsive 
molecular interactions 

Consider a non-isomolar chemical reaction: 

A+B c (6.97) 

The condition (6.105) (under which such a reaction mixture behaves ideally) 
written separately for repulsive and attractive parts is: 

(6.113) 

a AA+ a BB+ Gee - 2aAC - 2aBC + 2aAB = 0 (6. l 13a) 

The repulsive part obeys this condition when (i) the combination rule (6.76) is 
valid and (ii) when the constant b of the product C is additive with respect to its 
constituent parts: 

i.e. b AA + b BB = b CC (6.114) 

The combination rule for the attractive part of integral ~ is different ( 6. 77): 

( ) 1/2 
a AB= aAAaBB (6.115) 

and therefore the condition (6. l 13a) is transformed into: 

a AA+ a BB+ ace - 2~aAAaCC -2~aBBacc + 2~aAAaBB = 0 (6.116) 

The expression in the left-hand part of(6. l 16) is nothing else but: 

(~aAA + ~aBB - ~ace )2 (6.117) 

The condition (6. l 13a) then holds if: 

(6.118) 

or: 

Gee =aAA +2~aAAaBB +aBB =aAA +2aAB +aBB (6.119) 

Equation ( 6.119) implies that the attractive interactions of two molecules of the 
product C only include two homo-molecular and two hetero-molecular 
interactions of the reactant molecules (see Fig. 6.5). In other words reaction does 
not introduce any new attractive intermolecular forces. 
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Fig. 6.5. The origin of attractive interactions between the molecules of reaction products 

Under condition (6.119) attractive forces still contribute to the free energy: 

- - 1- (NA .r;;:,: + NB ~a BB )2 
2V 

but the corresponding term does not appear in the law of mass action. 

6.5.4 
Associative equilibria in the gaseous phase 

(6.120) 

Associative equilibria in the gaseous phase can be considered as a good (and 
perhaps the only) example of reactions obeying the rules derived in the preceding 
section. Let us consider a dimerisation reaction: 

A+A (6.121) 

This reaction is a special case of reaction (6.97) - both reactants being 
identical. The integrals l3ii are therefore reduced from five to three: 

(6.122) 

Taking also into account that 13 = -2b + 2alkT and applying the material 
balance for ( 6.121) the excess free energy, ( 6.101 ), can be re-written as: 

in which N (corresponding to NA+ N8 ) is: 

N = n 1 + 2n2 =canst (6.124) 

The constant b22 can be assumed to be to be double the constant b 11 (the volume of 
the dimer is double the volume of the monomer). This (along with the 
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combination rule b12 = (b 11 + b22) = (3/2)b 11 ) results in the coefficient of the square 
term in the first line of (6.123) being zero: 

i.e. (6.125) 

The value of a is proportional to the potential of the attractive forces at the 
equilibrium distance and to the volume of the molecule: for m = 6 and a 
sufficiently large 1'* (6.61) gives rise to: 

(6.126) 

If we assume that the energy of molecular interactions per dimer (uzi) is double 
that value per monomer (u22 =2u 11 ) then the constant a for the dimer will be: 

a22 = 2b112u11=4a11 

which is consistent with condition (6.119): 

(6.127) 

(6.128) 

This makes the coefficients of the square and linear terms in the second line of 
(6.123) equal to zero. The excess free energy then becomes a linear function of the 
current concentrations: 

_L=_!_[(n -N)Nb +N2~]=-(n1 +nz)Nb +N Na11 
kT v 2 11 kT v 11 v kT 

(6.129) 

The first term (b 11N << V) can be converted into the restricted volume and the 
expression for the total free energy of reaction mixture becomes: 

_ .f_ = n1 [lnq1 - lnn1 + lne(V - Nb11 ) ]+ n2[lnq2 - lnn2 + lne(V - Nb11 ) ]+ N 2a 11 

kT VkT 
(6.130) 

In other words, the system behaves as an ideal gas mixture of monomers and 
dimers occupying a volume slightly less than the volume of the system. The law 
of mass action for this system is similar to that of an ideal gas with concentrations 
calculated with respect to a constant free volume. 

The assumption made above (that the energy of interaction of two dimeric 
molecules is twice the energy of molecular interactions of two monomeric 
molecules) implies that the energy of actual bonding (e.g. hydrogen bonding) 
should not be taken into account. On the other hand it also implies that the 
electronic system of those molecules in monomeric form and those in the dimer do 
not considerably differ. 

A certain doubt might arise at this point concerning possible neutralisation of 
electric dipole moments of individual molecules in a dimer (as, for example, in the 
dimer of acetic acid). 
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Fig. 6.6. Optimisation of the structure of an acetic acid tetramer. The energy difference between 
the optimised structure and a pair of separated of dimers is ca. 6.4 kcal 

The dipole moment of such a dimer is indeed close to zero and the energy of 
dipole-dipole interactions of two such associates separated by large distances is 
zero. When four molecules of acetic acid are brought close together the 
distribution of electric charge in individual molecules becomes important. Fig. 6.6 
shows the optimisation of the geometry of such a system starting from a pair of 
acetic acid dimers. The result is a complicated structure with bent hydrogen bonds 
corresponding, apparently, to the minimum of electric dipole-dipole interactions 
of individual molecules. 

6.5.5 
Molecular interaction via a chemical reaction 

These questions touch on one of the fundamental problems of the description of 
equilibria in systems of interacting molecules: should the formation of an 
associate be considered as a chemical reaction or as a kind of molecular 
interaction? Molecular interactions, as we considered them in Chapter 5, do not 
result in the formation of a stable associate of an a priori known composition 
moving as a whole (at least during a certain number of periods of oscillations of 
its parts sufficient to detect such an aggregate by spectroscopic methods). Such an 
associate may be the result of a chemical reaction. For example when a diatomic 
molecule is formed a new degree of freedom appears which can be detected by the 
rotational structure of spectral lines and by additional contribution to the heat 
capacity. Molecular interactions, on the other hand, can be considered as 
phenomena resulting in a higher probability of two molecules to be found in the 
vicinity of each other. Their motion is not correlated and such associates do not 
posses a rotational degree of freedom. 

Molecular dynamics simulations carried out on the dimer of acetic acid 
molecules show that this aggregate behaves like a chemical compound only at 
very low temperatures. Of course, the results of such simulations depend very 
much on the type of potential used in the calculations and can only be considered 
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as qualitative3. However they are useful in elucidating the physical significance of 
a model describing molecular interactions employing the concept of molecular 
association or formation of ion pairs. 

Vapours of alkali metal atoms under very low pressure present an interesting 
case of a system of particles interacting practically only chemically and forming 
dimeric molecules which can be detected spectroscopically. The state of such a 
system is that of an ideal gas, but chemical reaction changes the number of 
particles, which results in apparent deviations from the equation of state of an 
ideal gas. Such a reaction can be studied by measuring JrV-T relationships 
(actually by determining the second virial coefficient) as will be shown below. 

Imagine a dimerisation equilibrium of atoms A in the ideal gas: 

2A :;;==~ (6.131) 

Suppose that the reaction (6.131) occurs in unit volume (1 cm3). The total 
number of molecules is (n1 + n2) whilst the total number of atoms is N0 = n1 + 2n2. 

The pressure in such a system is given by the equation of state: 

(6.132) 

Applying the law of mass action for an ideal gas: 

K = !!:1_ =No -n, 
2 2 n1 2n1 

(6.133) 

shows that the concentration of atoms (monomers) equals the real positive root of 
the quadratic equation: 

(6.134) 

i.e. 
~1+8KN0 -1 

ni=------
4K 

(6.135) 

For a rarefied gas with 8KN << 1, the square root in (6.1135) can be calculated 
approximately as: 

8 82 

.JI+8 = l+---
2 8 

The number of monomeric molecules is thus: 

(6.136) 

3 The 'molecular mechanics' method provides for a convenient speed of calculation thus 
allowing one to view the tumbling of molecules. However, It does not give a correct value of 
the energy of h~drogen bonding (it gives 3 - 4 kcal mole-1 instead of the experimental value 
of 20 kcal moi- ). Therefore the temperature scale employed in such calculations is wrong! 
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(6.137) 

Substituting n1 in (6.132) we find the equation of state of an 'ideal' gas 
involving a dimerisation equilibrium: 

(6.138) 

Taking into account the fact that the derivation has been performed for unit 
volume (N0 = N/V), the equation of state can be rewritten as: 

pV -I KN -- - -
NkT V 

(6.139) 

The second virial coefficient in such a gas equals the equilibrium constant K 
and must show a considerable temperature dependence (lnB2 oc 1/T and not 
8 2 oc IIT as for weak molecular interactions (see page 179) 

6.6 
Conclusions 

In Chapter 5 we have considered the theoretical aspects of the description of 
molecular interactions. In this Chapter we have applied the concept of molecular 
interaction to the derivation of the equation of state and the evaluation of non
ideality terms in the law of mass action as applied to gas-phase reactions. 

A specific feature of gas-phase reactions is that the non-ideality terms in the 
law of mass action are generally small and can easily be transformed into activity 
coefficients that are linearly dependent on concentrations. However this form is 
not to be analysed any further because it is only an approximate relationship. 

By analysing the general form of the law of mass action we have found that, 
under certain conditions, the ideal law of mass action can describe reactions in real 
gases. These conditions correspond to a general conservation rule: a reaction 
should not introduce any new molecular interactions. For repulsive interactions 
this results in the conservation of the incompressible molecular volume. This rule 
is to be expected to be approximately followed over a wide range of reactions. For 
attractive interactions, this rule implies that molecules of the products are attracted 
to each other as if they consist of independently interacting fragments of reactants. 
This means that molecular interaction is expected mainly to proceed from the 
noble gas residue of electronic structure, excluding valence electrons. Taking into 
account that the constants of molecular interactions a and b are interrelated: 
a~ bu0, the quantitative expression of the conservation rule (6.118) for attractive 
interactions in the equilibrium of formation of the molecular complex results in 
the following relationship between the potential energies u0 : 
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b 
u ~+ OA 

bee 
(6.140) 

This implies that the square root of the potential energy of a molecule is 
additive with respect to the volume fractions of the constituent parts. We have thus 
obtained a refinement of the additivity rule for molecular vaporisation energies 
derived in Chapter 4. 

The gas with binary interactions considered in this Chapter is, of course, a first 
approximation to the description of real gases. It does not take into account triple 
and higher order interactions (not mentioning the truncation of series carried out in 
the derivation of the expression for free energy). For gases, higher order 
interactions can be accounted for and this has been done by Mayer [4]. This theory 
allows, in principle, for the introduction of collisions of any order. The 
configurational free energy is then written in virial form (expansion over 
densities): 

-kTln- ... e---dql···dqN=NkT l+--+--+--+··· l f f U(q) [ ~1 N 2~2 Nz 3~3 N3 ] 
N! kT 2 V 3 V2 4 V 3 

(6.141) 

in which the ~s are irreducible integrals corresponding to irreducible ensembles of 
s + 1 interacting molecules: 

13.1 = ~ f ... f If1(J;K }lql ... dq, 
S. s+l>L j>L 

(6.142) 

This produces quite good agreement with experimental data for gases at high 
pressures. However, at densities corresponding to liquids (note the importance of 
volumetric properties) the series into which free energy is expanded does not 
converge. Therefore, this approach, although being fundamentally correct, cannot 
be applied to the liquid state due to purely mathematical difficulties. 
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7 Reactions in Imperfect Condensed Systems. 
Lattice Energy 

7.1 
Exchange energy 

In Chapter 4 we considered reactions in imperfect liquids on the basis of a semi
empirical and generally phenomenological model based on the assumption of the 
additivity of volume and energy of molecular interactions. This assumption 
implies the independence of molecular volumes and lattice energies of 
composition. It can also be said that under these conditions the energy of a 
molecule is independent of the nature of its surroundings. The non-ideality then 
reveals itself in the dependence of the free volume on composition. The lattice 
energy, when additive, contributes towards the standard internal energy of reaction 
and does not introduce any additional non-ideality terms into the equation of the 
law of mass action. 

That this is a too rough an approximation for mixtures of molecules differing 
by the energy of molecular interactions can be illustrated by a simple argument. 
The energy of a polar molecule is certainly different when surrounded by similar 
polar molecules and in a cluster of non-polar molecules. Therefore the total lattice 
energy in such a mixture is non-additive and the description of non-ideality 
developed in Chapter 4 reflected only a part of the effects of molecular 
interactions. 

In this Chapter we will consider the non-ideality connected with the 
dependence of molecular lattice energy on the nature of the surroundings. The 
formalism derived below is based on combinatorial formulae for the probabilities 
of molecular configurations. This limits the scope to mixtures of molecules of 
approximately equal size and strength of molecular interactions. Strictly speaking, 
solely in such cases does the probability of finding a centn: of a crystal (or quasi
crystal) lattice occupied by a molecule of a given type equal the mole fraction of 
these molecules. However, we shall see that the derived formalism successfully 
describes the behaviour of mixtures of molecules considerably differing m 
energies of molecular interactions (by more than 2R7). 

Consider a binary mixture of molecules A and B. The potential energy of 
interaction of a molecule A with its surroundings (coordination number c) is then: 
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(7.1) 

in which 'PAA and 'PAB are binary potentials of AA and AB interactions. Similarly, 
the potential energy of interaction of a molecule B with its surroundings is: 

(7. la) 

The potential energy per molecule is one half of the energy of interaction of a 
given molecule with its surroundings (see Chapter 5), therefore the total potential 
energy of N= NA+ N8 molecules is: 

(7.2) 

A rather ingenious transformation (see Appendix 9.10) allows one to express U 
as an additive quantity with respect to binary homo-molecular potentials plus an 
excess term: 

(7.3) 

The excess term represents the energy of random mixing of N/2 molecules of A 
and N/2 molecules of B and hence liuex is sometimes referred to as the excess 
mixing energy. However, this term has another meaning that is clarified by writing 
liuex as follows: 

Equation (7.4) shows that liuex is the energy accompanying a simultaneous 
transfer of molecules A and B from hetero-molecular surroundings into homo
molecular surroundings, i.e. it characterises an interchange of molecules. This 
excess term is also called the cooperativity term or cooperativity thus reflecting 
the co-operative behaviour of molecules in non-ideal mixture. Guggenheim and 
Fowler [ 1] defined co-operative ensembles as those where interactions are not 
negligibly small. However, according to (7.4), the excess term represents the 
difference in the interactions of molecules in homo- and hetero-pairs rather than 
the absolute strength of such molecular interactions. Therefore it is more to the 
purpose to call liurn following Moelwyn-Hughes [2], the interchange energy. For 
the sake of brevity, we call it here the exchange energy emphasising its analogy to 
the corresponding quantum mechanical parameter. 

The partition function of the binary mixture considered here can be written as: 

[/ 

N N N! "kl" Z=z"zll e"· 
A B N 'N' A· B· 

(7.5) 

in which z is the molecular partition function. 
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The free energy of such a system is then: 

F [ ccp AA ] [ ccp BB ] Au ex ---=XA lnzA -lnxA --- +xB lnzB -lnxB --- -XAXB --
NkT 2kT 2kT kT 

(7.6) 

in which fA = -kllnzA - c<pAA/2 and JB = -kllnzB - ccpB8/2 are the free energies of 
the particles of corresponding type per molecule in an ideal crystal. Equation (7.6) 
explains a number of phenomena and properties of non-ideal liquid and solid 
mixtures such as the relationship between vapour pressure and composition of 
liquid, phase separation in liquid mixtures, etc. [l, 2]. The mixtures (either solid or 
liquid) obeying (7.6) are called regular solutions. Regular ensembles are such co
operative ensembles where interactions can be represented as the sum of binary 
nearest neighbour interactions [1]. The functions cpAA, cp8B and cpAB in (7.6) are 
binary intermolecular potentials, which enables an easy estimation of the effects of 
molecular interactions. However this model only defines the excess mixing energy 
whilst the nature of the excess mixing entropy remains unclear. Therefore this 
quantity is taken as zero for regular solutions. 

Another approach to the description of imperfect mixtures in the condensed 
state has been recently developed by Koudriavtsev [3]. This approach is based on 
the statistical aspect of molecular interactions, considering them as the 
dependencies of the states of molecules on the nature of their surroundings. In the 
following Sections, we shall apply this approach to the description of chemical 
equilibria in the condensed state. It will be shown that it provides for a more 
general formalism than the approximation of binary interactions. 

7.2 
Non-ideality as a result of dependence of the partition 
function on the nature of the surroundings 

Let us consider a crystal of simple cubic symmetry (without defects) formed by 
particles A and B. The molecular lattice energies and vibrational frequencies of 
particles in this crystal are assumed to be dependent on the nature of the 
surroundings (in contrast to the ideal crystal where they are determined by the 
nature of the particle alone). These variations of energy and vibrational frequency 
we assume to be sufficiently small to consider molecules as randomly distributed 
over all centres in the crystal lattice. In a simple cubic lattice (coordination 
number c = 6) there are seven possible types of surroundings, each having a 
statistical weight' varying from I to 20 (Fig. 7.1). 

1 These statistical weights arise from the number of ways in which the given surroundings can be 
realised. 
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Fig. 7.1. Possible configurations in a binary cubic crystal. The values of w represent statistical 
weights 

When molecules A and B are similar, the total probability of a particular 
environment is the weighted product of mole fractions to proper powers. The free 
energy of particles A can then be written as: 

FA =kTNA~~ lnzAo +6x~x8 lnzA1 +15x~x~ lnzA2 +20x~x~ lnzA 3 

+ l Sx~x! In z A4 + 6x Ax~ In z As + x~ In z A6 ) 

(7.7) 

in which zA, are the partition functions of molecules in corresponding surroundings 
(a similar expression can be written for particles B). Such an initial equation 
promises a complicated derivation that hardly provides for an analytical solution. 

The problem is considerably simplified when we consider the effects of just 
two neighbours along a coordinate (Fig. 7.2). 

0-®-0 • © 0 . ~ . 
w=1 w=2 w=1 

Fig. 7.2. Three types of possible environment along a coordinate in a cubic lattice 

We may then sum over three coordinates and afterwards over molecules. This 
mode of calculation implies that the motion of molecules along three spatial 
coordinates is independent. This simplification is valid for not very strong 
interactions (such as in molecular crystals). Another implication is that this model 
takes into account triple interactions (which are harder to estimate than binary 
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interactions) but of a primitive kind, viz. those with three interacting particles 
lying on one line (bond angle 180°). The free energy per degree of freedom of a 
molecule in a simple cubic lattice under the defined conditions is: 

JA = -kT In ziAJ (7.8) 

in which the partition function z,A, is dependent on the nature of the two nearest 
neighbours along a coordinate, mainly through the lattice energy and the 
frequency of vibration: 

[ ( )l-3 
-u. /3kT o · hv,A 

z . = e '·lJ x z. x g e-•,, 13k7 x 2sinh -.--Y 
1A; mt A 2kT (7.9) 

The electronic partition function, gA(B)exp(-e}!3k1), as well as other internal 
degrees of freedom of particles, can be considered as unaffected by the 
surroundings. The vibrational frequency, V;A1, is dependent on the surroundings 
due to the varying depth and width of the potential well. The factor 1/3 that is 
applied to the energies u;AJ and EA 0 indicates that these energies are calculated per 
linear oscillator. Molecular lattice energies, u0;•/3 can be estimated as the 
potential energies of triple molecular interactions (i*j); they can also be 
approximated as one third of the potential energy of a molecule in the 
surroundings containing proportional quantities of components, A6 (A* A), 
B6 (B*B) or A3B3 (A*B) (the asterisk indicating any molecule). 

Summing (7.8) over coordinates2 and molecules of each kind and adding the 
configurational entropy, we get the free energy of a binary mixture in an isotropic 
crystal as3 : 

F = -kTN[3xAx~ lnzAAA +2xAxB lnzAAB +x~ lnz8A1J 
+ 3x B ( x~ 2 In z ABA + 2x Ax 8 In z ABB + x~ In z BBB)- x A In x A - x 8 In x 8 ] 

(7.10) 

in which N =NA + N8 and xA, x8 are the mole fractions of corresponding 
molecules. The terms -3kTNln(z;A1) and-3kTNln(z,81) in (7.10) can be considered 
as the standard free energies of molecules in corresponding surroundings: 

F,.J = - 3kTN In z,.1 (7 .11) 

The free energy of such a system can therefore be expressed as: 

2 If a crystal is isotropic, then the summation over coordinates is equivalent to multiplying lnz by 
3, i.e. by cubing the partition function. 

3 The configurations ABB and BBA are considered to be indistinguishable (as are also AAB and 
BAA). 
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F = xAx~F AAA+ 2xAx8 FAAB + x~F8A 8)+ xAx~FABA + 2xAx8 FABB + x~F888) 
+ NkT(xA lnxA + x8 lnx8 ) 

(7.12) 

Note that the standard free energies, Fyk, form a three dimensional (cubic) 
matrix F(2 x 2 x 2) and the polynomial part of (7.9) is the sum of the products of 
Fuk by the corresponding X;Xf"k· The coefficients 2 in (7.12) just reflect the identity 
of non-diagonal elements in the upper and lower 'half-cubes'. 

In a mixture with a negligibly small difference in molecular interactions, we 
can assume that F,AJ =FA, F,81 = F8 . The terms in square brackets in (7.12) are then 
transformed into (xA + x8 )2FA(BJ = FA(B) corresponding (as might be expected) to an 
ideal crystal. A similar situation occurs in dilute solid solutions of molecules A 
and B in a third (inert) component S where the predominant species are SAS and 
SBS (xs = I = canst.): 

F = xAx,~F.,.As + x8 x~Fs8s + NkT(xA lnxA + x 8 lnx 8 + x 8 lnxs) (7.13) 

This equation does not contain cross terms involving both reacting species and is 
therefore an analogue of the expression for the free energy of an ideal crystal (see 
also Section 7 .11) 

7.3 
Exchange free energy 

Expressing the free energy (7.12) as a function ofone variable (xA), we get: 

F = x~ /\.( 3) + x~/\.( 2 ) + x A/\.< 1l + F888 + NkT[x A In x A + (1- x A )ln(l - x A)] 

(7.14) 

in which: 

t/3) = (FAAA + FBAB - 2FAAB) - (FBBB + FABA - 2FABB) 

/\.(l) = FABA - 4FABB + 2FAAB - 2FBAB + 3FBBB 

/\.(l) = FBAB + 2FABB - 3FBBB 

The coefficients of the cubic, square, and linear terms are interrelated: 

~(l) = -~(O) _ ~(2) _ ~(3) 

(7.15) 

(7.16) 

(7.17) 

(7.18) 

in which the term /\.(o) can be identified with the ideal part of the standard free 
energy: 

/\.(Ol = Fsss - FAAA = /\.E - T/\.S (7.19) 

Equation (7.14) can then be written in the following equivalent forms, thus 
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elucidating the nature of the non-ideality terms: 

F = -xAI- x~)A(J) - xAl- xA)A< 2l -xAA(o) + F888 + TN!llm (7.20a) 

F = -x8 (1- x8 )(2 - x8 )A<3l - x8 {I- x8 )A< 2l + x8 A(O) + Fw + TN!llm (7.20b) 

in which the mixing entropy, lllm, can be written as: 

Asm = k[xA lnxA +(1-xA)ln(l-xA)]= k[xA lnxA +x8 lnx8 ] (7.20e) 

Comparing (7.20c) and (7.6), we find that the coefficient A(Z) plays the role of 
the exchange energy. The set of four coefficients A<0l - A<3l in these equations 
represents the least number of adjustable parameters (the free energies F888 or 
FAAA can be considered as the zero level). At first sight the coefficients A (ll, A <2l 

and A<3l as defined by (7.15)-(7.17) do not possess any explicit physical 
significance. They are just combinations of the free energies of molecules in 
different surroundings. These free energies form, however, a system of energy 
levels (an example of which is shown in Fig. 7.3). The diagram in this Figure 
implies that a particle having higher free energy causes the free energy of its 
neighbours to increase and inversely the particle having lower free energy 
decreases the free energy of its neighbours. 

BBB 
.ii~ 4-

D,=yeDe 

" 
·~ ABB 

0 8 < 0 
o. 

Ds=Ao-DA ,, 
" ABA 

06= -AD+D1-D3 

A 0 

' BAB ' . t D2 
" 

0 .ii~ AAB 
0, = yADA 

AAA ,, 
Fig. 7.3. Free energy level diagram of a binary mixture with significant non-additive influence of 
the nearest surroundings 
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Table 7.1. Representations of the coefficients ti. in (7.14) in terms of binary differences of 
standard free energies 4 

D1 = FAAB-FAAA 
Dz = FBAB - FAAB 
DJ= FsBA - FsBB 
D4 = FABA - FBBA 

2Ds = 2(FBBB - FsAB) 
2D6 = 2(FAAB - FBBA) 
-DJ = FsBJr FBBA 

D4 = FABA - FABB 

ti,(3l = (D2 - Di)- (D4 - Di) ti.< 2l = 2Ds + 2D6 - DJ+ D4 
ti.(J)=(J -2yA)DA-(1-2yB)DB ti.<2)=(1-4yB)DB-2(1-yA)DA 

-Ds = FBAB - FBBB 
2Di = 2(FBBA - FBHB) 

ti. 11 J= -Ds + 2Di 
ti.(I) =DA+ 2yBDs-ti.0 

An important property of the coefficients ~ (i) is that they can be represented as 
combinations of binary differences of free energies as shown in Table 7 .1. The 
coefficients ~ (l) - ~ (3) can then be represented in terms of four parameters: DA, DB, 
YA, YB, having clear physical significance. The differences of free energies DA and 
DB characterise the effects of the formation of completely hetero-surroundings of 
the molecules A and B separately: 

DA= DI+ D2 = FBAB - FAAA; DB= D3 + D4 = FABA -FBBB (7.21) 

The dimensionless coefficients YA and YB characterise the relative efficiency of 
the first substitution in a homo-environment: 

D 
Y - _I 

A -
DA 

Using these notations, (7.14) can be written as: 

(7.22) 

F =x~[(I-2yA)DA -(l-2Ys)D8 ]+x~[(I-4y8 )D8 -2(1-yA)DA] (7.23) 

+ xADA + 2yBDB - ~o )+ FBBB + NTfum 

When the effects of first and second substitutions in the environment of a given 
molecule along a coordinate are identical: 

the levels corresponding to asymmetric surroundings (FAAB, FABE) lie in the middle 
between the levels of symmetric surroundings (FAAA - F8A8 and F888 - FAsA). The 
coefficients YA and YB are then exactly 1h. It can be said that the effects of the 
surroundings under these conditions are additive and the standard free energy of a 
molecule in asymmetric surroundings is the arithmetic mean of the free energies 
of the same molecule in symmetric surroundings: 

4 There are four possible combinations of the effects of surroundings in a binary mixture (DA> 0, 
DB< O; DA> 0, DB> O; DA< 0, DB> 0 and DA< 0, DH< 0) and for each case the relationships 
shown in Table 7.1 hold. 
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(7.25) 

Under these conditions the coefficient i:\<3l is zero irrespective of the actual 
signs and magnitudes of DA and D8 whilst the other two coefficients (i:\<2l and i:\< 1>) 
contain only the diagonal elements of the matrix F: 

11<2) =-(DA +DB)= -(FBAB - FAAA + FABA - FBBB) 

11<1) = -11(0) -11<2) = -11(0) +DA +DB 

(7.26) 

(7.26a) 

The sum DA +DB is obviously an analogue of the exchange energy and may be 
called the exchange free energy: 

(7.27) 

A non-zero cubic term is therefore connected with a certain non-equivalence of 
the effects of first and second substitutions. Such a non-equivalence or non
additivity indicates an interaction not taken explicitly into account. In fact, we 
have assumed the independence of these effects along three spatial coordinates, 
which ignores any interaction 'along a diagonal'. Therefore the coefficients YA and 
YB may well deviate from Yi. For example, suppose that molecule B is larger than 
molecule A as occurs in spin crossover reactions. The transformation A ~ B in a 
cluster of molecules A shifts the equilibrium positions of the central molecule 
(Fig. 7.4A). Such a transformation also changes the interaction of the central 
molecule A with two molecules along another coordinate. A second substitution 
restores the initial symmetry. 

A B 

(1-2yA)DA 
_.......,.._...__ BAB 

AAB 

AAA 

Fig.7.4. The difference in the effects of first and second substitutions in the surroundings of a 
molecule (A) and the free energy level diagram with opposite signs of DA and D8 complying with 
condition (7.29) (B) 
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The cubic term in (7.23) may also be zero when YA*YB* Yz: the deviations 
from additivity for the central molecules A and B may compensate each other 
(possible for either identical or opposite signs of DA and DB, - the latter case being 
illustrated in Fig. 7.4B): 

(7.28) 

Under the condition (7.28) the coefficients ll.<2J and ll.(tJ are transformed into: 

(7.29) 

According to (7.29) the exchange free energy is smaller by (1 - YB)DB, 
otherwise the formalism is the same as in the case of YA =YB= 1/z. The free energy 
of a binary mixture under the conditions providing for a zero cubic term can be 
written as: 

or: 

(7.30) 

(7 .31) 

In the approximation of regular solutions (ll.Sex = 0) we can substitute the 
exchange free energy by the exchange energy Mex: 

(7.32) 

The equation (7.32) then becomes identical to (7.6) when: 

Ne Ne 
FAAA = -NkTln zA + -cp AA; F 888 = -NkTln z 8 + -cp88 ; 

2 2 
and: (7.32a) 

The developed formalism can therefore be reduced to that of regular solution 
theory if we neglect (i) the contribution from triple interactions (the cubic term in 
(7 .14)) and (ii) the effects of the surroundings on vibrational frequencies 
(l\.Fex = Mex). 

When the exchange energy approaches zero, we obtain the expression for free 
energy identical to that of perfect solutions [ 1,4]: 

(7 .33) 

The effects of the surroundings (DA,D8 ) must not necessarily be negligibly 
small: it is sufficient that they are of equal magnitude and opposite sign: 

i.e. (7.34) 

We shall later see that such an occurrence in not anything extraordinary and 
practically linear van't Hoff plots in strongly non-ideal systems might originate 
from such a balance. 
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7.4 
Phase separations in binary mixtures 

Although the formalism presented above has been derived for imperfect crystals it 
can be applied (at temperatures not far from the melting point) to liquid mixtures. 
The restrictions placed on such extrapolations are connected with the absence of 
any periodic structure in liquids and amorphous solids. For example, a description 
of a solid body employing a single Debye temperature can only be successful for a 
periodic crystal. Thermodynamic properties of amorphous and liquid bodies 
require for their calculation a knowledge of the Debye spectrum. So long as we do 
not employ features associated with the periodicity of a crystal, we may use a 
common formalism for liquids and for solids. 

In Chapter 3 we have shown that mole fractions may be used in the law of mass 
action for liquid systems when the volume per molecule remains approximately 
constant. The molecular partition function is then of the form (3.90): 

(7.35) 

in which v = Vl(N A+ N8 ). The variation of v and zA;n1 from surroundings to 
surroundings partly determines the entropy of exchange. The required 
independence of v thus limits possible variations of the entropic term. The lattice 
energy, uA, may vary considerably depending on the surroundings, which is taken 
into account in the fonn of exchange energy. With these reservations, knowledge 
of an explicit form of the partition function is not required, provided that the 
molecular standard free energies fA, / 8 and the exchange free energy !'ifex are 
defined. 

Let us consider a liquid mixture of non-reacting molecules A and B in 
equilibrium with its gaseous phase and examine the relationship between the 
compositions of these phases. The gaseous phase we can treat as an ideal gas 
whilst the non-ideality of the liquid phase can be taken into account by applying 
an expression derived for an imperfect mixed crystal with additive effects of the 
surroundings. (We can drop three letter indices of standard free energies since 
they are now redundant.) Equation (7.32) can therefore be written with respect to 
the numbers of molecules as: 

NANB ( ) F = /'J.fex + NA fA + N 8 f 8 + kT NA In x A + N 8 In x 8 
NA +NB 

(7.36) 

Differentiating (7.36) with respect to NA yields the chemical potential of this 
component in the liquid phase: 
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( 8F] 2 µAI.= -- =xB/':.fex + JA +kTlnxA 
8N A N T v H, , 

(7.37) 

The chemical potential of the same molecule in the gas phase treated as an 
ideal gas is: 

(7.38) 

in which qAc; = (2nmAkT/h2)312ekT and PA is the partial pressure of the component 
A. The chemical potential of molecules A in pure liquid component A (xA = I) is 
the free energy per molecule µ0 AL= fA· At equilibrium, the chemical potentials in 
the gas and liquid phases are equal, therefore: 

(7.39) 

in which PA 0 is the (saturated) vapour pressure over the pure component A. 
In a mixture of components A and B, the chemical potentials of the component 

A in the liquid and the gaseous phases are: 

µAI. = x~/':.fex + µ~G + kTln xA; µAG = µ~G + kTln(p A/ p~) (7.40) 

At equilibrium they must be equal, therefore: 

x~/':.fex +kTlnxA =kTln(pA/P~) (7.4 l) 

oc p,/ p: ~x, exp[ (I-xi~ ilfa l (7.42) 

This dependence of partial pressure on the composition of the solution has 
several interesting features. It may have extrema at compositions given by the 
roots of: 

i.e. 

d(p A Ip~)= 2/':.fex x~ - 2/':.fex x A + 1=0 
dxA kT kT 

a±~a 2 -2a 
XAe = 

2a 

(7.43) 

(7.44) 

in which a = 11fjkT. The real roots of (7.43) are obtained when a> 2. When 
a= 2 there is just one deflection point with dp/dxA = 0, namely at XAe ='Ii. For 
a> 2, there is a maximum and a minimum in the curve p(x) (Fig. 7.5). In such 
cases, three different compositions correspond to the same vapour pressure, 
which is incompatible with the idea of a homogeneous system. This means that 
such a system can only exist as a mixture of separate condensed phases over a 
certain range of compositions. Fig. 7.58 shows how the total vapour pressure 
changes with the composition of such a liquid phase. 
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Fig. 7 .5. Partial vapour pressure as a function of the composition of a binary mixture for 
different values of a = t:.fe,!kT.(A) The right-hand graph (B) shows partial and total vapour 
pressures over the mixture with a= t:.feJkT = 2.7 and with equal p/ and pB0. Note that the total 
pressure is higher than that in an ideal mixture, which shows that a mixture having a tendency to 
phase separation would boil at lower temperature than either of its components. This 
phenomenon is used in the purification of organic compounds by steam distillation. 

Phase trans1t1ons in a non-ideal binary liquid mixture (Mex i= 0) can be 
followed using the diagrams xAgm vs. xAliq· The composition of the gas phase (ideal 
gas approximation) can be calculated to be xAc = PAl(pA+ PB). Fig. 7.6 shows such 
curves computed for a system with slightly different vapour pressures of pure 
components (pB0 = 0.78p}) and a= AFexfkT= -3, +2 and +2.7. For negative and 
small positive (a < 2) exchange energies, a single point exists at which the 
composition of the vapour phase is identical to the composition of the liquid 
phase. This is obviously an azeotropic mixture. At any other composition a sample 
being completel/ evaporated (up arrows in Fig. 7.6) starts to condense (down 
arrows in Fig. 7.6) as a liquid mixture of another composition. The new liquid 
phase is depleted/enriched in one of the components as shown in Figs. 7.6. 

In the special case of a large positive exchange energy (Fig. 7.6C), there is a 
region of composition where two or three compositions of the liquid phase 
correspond to one and the same composition of the gas phase. The sample 
containing ca. 60% (molar) of the component A being completely evaporated, 
starts to condense as a mixture of solutions of A in B and B in A (solid arrows in 
Fig. 7.6C). These solutions are saturated (i.e. correspond to a minimum in the free 
energy) at the actual temperature of condensation. The dashed arrow indicates the 
composition of a non-existing (metastable) homogeneous liquid solution 
corresponding to the gaseous mixture containing 60% of component A. 

5 I.e. when the composition of the gas phase is identical with the composition of the original 
liquid phase (the diagonal lines in Fig. 7). 



216 7 Reactions in imperfect condensed systems. Lattice energy 

1 

0 8 
(1 :: -3.0 0.8 (( = +2.0 0 8 (( = +2.7 

0 6 0 6 0.6 
0 0 0 
< ~ ~ x 

04 04 0.4 
I 

0 2 J ' 
0 2 ' 

~ 
0.5 0.5 05 

iA XAL B XAL IC XAL 
I 

Fig. 7.6. Compositions of the vapour phase of binary mixtures with different exchange energies 

This model qualitatively pictures the behaviour of the vapour pressure over 
mixtures of liquids with limited miscibility (e.g. aqueous solutions of higher 
alcohols). If /'l,.fex is large and 'temperature independent' (/'!,.sex = 0), then (7.43) 
implies that a temperature exists below which liquids cannot be mixed in any 
proportion, the so-called critical temperature of miscibility. Water and propylene 
carbonate are miscible in any proportions above 73 - 75°C but separate into two 
phases at lower temperatures - an effect employed in the 'homogeneous' 
extraction of metal salts [5]. 

7.5 
The law of mass action for an imperfect mixture in the 
condensed state 

Suppose now that molecules A and B can transform into each other, i.e. a 
monomolecular equilibrium exists in an imperfect system as described above: 

A B (7.45) 

The law of mass action for this reaction can be obtained by differentiating 
(7.14) with respect to xA: 

dF = 3x 2 ~< 3 l + 2x ~< 2 J + ~< 1 > - NkT[ln(I - x )- In x ] 
d A A A A 

XA 

(7.46) 

which leads, taking into account (7. I 8), to6 : 

2 ~(3) ~(2) ~(O) + ~(2) + ~(3) I - x A 

3x --+2x --- -ln--=0 
A NkT A NkT NkT 

(7.47) 

6 Equations of the law of mass action in this Chapter appear to be different when compared to the 
similar equations in Chapter 4. This is because free energies are proportional to the negative 
logarithms of the partition functions In qA(B!· 
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This law of mass action contains linear and quadratic terms (with respect to xA), 
the latter being the result of accounting for triple interactions. One can expect that 
when higher order interactions are taken into account, the terms with higher 
powers of xA will appear in the law of mass action. 

Inversely, when binary interactions only are taken into account, i.e. when: 

(7.48) 

the quadratic term in (7.47) disappears and non-ideality under these conditions is 
described by the linear term proportional to exchange energy: 

- 2x Mex - 11(0) - Mex - In I - X A = 0 
A NkT NkT XA 

(7.49) 

Equation (7.49) can also be written in the following equivalent forms: 

(I _ 2x A ) 11Fex _ l1E - T 11S _ In I - x A = O 
NkT NkT XA 

(7.50) 

(1- 2x,i)l1Fex + 11E -Tl1S - In I - xB_ = 0 
NkT NkT XB 

(7 .51) 

in which /',,.E - Tt.S = F888 - FAAA· The non-ideality terms in these laws of mass 
action (including the general expression (7.47)) can be transformed into activities 
if they are much smaller than 1. The small parameter can be either xA (dilute 
solutions) or the coefficients /l,,.(i) (weak interactions with respect to kD. The law of 
mass action (7.47) can be reduced (see Appendix 10.9) to: 

----In x 1+x ---x 2 -·-- +In x I+x --+x 2 -·-- =0 /l,,.(o) [ ( !',,.< 2) 1 5/1,,.(3) J] [ ( /1,,.(2) 1 5/1,,.(3) J] 
NkT B B NkT B NkT A A NkT A NkT 

(7.52) 

The effects of triple interactions introduce a certain asymmetry into the activity 
coefficients of reactant and product (quadratic terms have different signs). The law 
of mass action (7.47) written with respect to one variable shows that dilute 
solutions of one component in another (very small xA) are described by a 
practically ideal law of mass action with the effective free energy of reaction 
W = /l,,.(O) + /l,,.< 1l+ /l,,.<2l. This does not follow from (7.52) employing activities. 

The laws (7.50) and (7.51) (valid for systems with zero cubic term) can also be 
written in a pseudo-ideal form with respect to activities (assuming lxA/l,,.Fexf kT1 << I 
and taking into account the fact that I - 2xA = x8 - xA): 

Mo T. So 
- ~ -ln~=O 

NkT a A 
(7.53) 

in which the activities are polynomials of the second order: 
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(7.54) 

Systems highly diluted by an inert component (S) behave similarly to perfect 
solutions as indicated by (7.13) above. This equation yields the following law of 
mass action: 

- X 2 F.~BS - F.'>'AS } - X A 
-~-~-ln--=0 

s NkT XA 
(7.55) 

In Chapter 3 we considered an example of spin crossover equilibrium in a very 
dilute solid solution of a spin crossover complex in its diamagnetic analogue: 
[FeyZn 1_y(ptz)6](BF4h. Equation (7.55) shows that the estimates obtained for MfJ 
and 1'1.:fl. should be corrected by taking into account the factor xl It will not, 
however, be a significant correction for the considered spin crossover equilibrium 
since the fraction of 'solvent' is close to 1 (xs = 0.995). 

In non-diluted systems, the law of mass action can also approach that for a 
perfect solution when 1'1.Fex becomes negligibly small compared to kT The effects 
of the surroundings must either be small (IDAI << kT and ID8 I << kT) or balance 
each other (DA ~ -D8 ). The latter case is apparently realised in the spin crossover 
equilibrium in crystalline [Fe(2-picolylamine)3]Cl2CH30H exhibiting, as it does, a 
nearly linear van't Hoff plot over a wide range of degrees of conversion 
(0.03 - 0.93) (See Fig. 7.7A). It is hardly possible that the structure of this 
compound excludes interaction between HS and LS species: a bulkier solvating 
molecule C2H50H results in a steep spin crossover indicating molecular 
interactions (Fig. 7.7B). Therefore the approximately linear van't Hoff plot for 
spin crossover in the methanolic solvate reflects, most probably, the approximate 
equality DA~ -D8 . 
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Fig. 7.7. Van'! Hoff plots for spin crossover: linear in the case of[Fe(2-pic)i]ChCH30H (A) and 
S-shaped for [Fe(2-pic)i]CliC2HsOH (B) drawn using the data in [6]. The curve in the right-hand 
graph is the best fit according to (7.51) with t.If'= 1.85 kcal mor 1, t.S1= 15.3 cal mor 1 K- 1 and 
D.Eex = 250 cal mor1, Mex= 0 
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7.6 
The regular solution model of steep spin crossover 

A more pronounced curvature of the van't Hoff plot is observed for spin crossover 
in pure crystalline [Fe(ptz)6](BF4) 2 (see Fig. 7.8). The temperature dependence of 
the internal vibrational partition functions may account for a positive curvature 
(see page 93) but not for an S-shaped van't Hoff plot. Slichter and Drickamer [7] 
explained these phenomena using a phenomenological equation of the law of mass 
action for regular solutions: 

(l-2x8 )r+L1G0 =kTNln I-xH 
XH 

(7.56) 

in which r is an interaction constant and b.G0 is the standard Gibbs free energy of 
spin crossover. For not very high pressures, this equation can be considered (the 
term pdV being small) as identical with (7 .51 ). The interaction constant r is then 
identical with the exchange energy b.Eex and b.G0 corresponds to F888 - F AAA· 

Equation (7.56), in general, correctly describes transition curves and van't Hoff 
plots of steep spin crossover (e.g. that for [Fe(ptz)6](BF4) 2, Fig. 7.8A). However, 
in the regions of dilute solutions of one component in another, the theoretical 
curves deviate from experimental data. When the relative regression error is 
optimised (dashed line in Fig. 7.8A) the region of low HS content is best fitted, 
whereas when the absolute error is optimised (solid line in Fig. 7.8A) the best 
agreement is achieved in the region of high HS content. These deviations probably 
arise from insufficient accuracy when calculating equilibrium constants at very 
low or very high XHs· 
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Fig. 7.8. Temperature dependence of the equilibrium constant of spin crossover in pure 
[Fe(ptz)6](Bf4)i [8] described by (7.51) assuming !lScx = 0 (left-hand graph) and !lSa ,o O (right
hand graph) (see Table 7.2). Dashed lines correspond to optimised relative and solid lines to 
optimised absolute regression errors 
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Table 7.2. Estimates of the parameters of the spin crossover equilibrium in [Fe(ptz)6](BF 4)2 
obtained from the data in Fig. 7.8 using a non-linear regression method, following (7.50) 

Parameter l:iSer 1'- 0 l:iSer = 0 

error error rel. error error 

11£°/kcal mor 1 2.60 ± 0.01 2.49 ± 0.008 3.21±0.015 1.82 ± 0.01 

i1S0/cal mor 1 K- 1 20.68 ± 0.03 19.80 ± 0.05 25.5 ± 0.06 14.4 ± 0.07 

i1Eexlkcal mor 1 1.14 ± 0.07 1.12 ± 0.02 420 ± 19 451±22 

'1Ser/cal mor1 K- 1 5.73 ± 0.5 5.62 ± 0.2 0 0 

However, a very good agreement can be obtained in both regions when non
zero exchange entropy (Fig. 7 .8B) is adjusted. The estimates of 11If1, f.S!, Mex and 
'1Sex are shown in Table 7.2. The fitting of these curves has been done by 
calculating theoretical values of xHs for given temperatures using (7 .51) and 
employing the dichotomy method. 

An 'easier' way of regression analysis, by following (7.50), is to consider 
temperature as a dependent variable and simulate it as a function of xH.';: 

T _ ---'-(I _-_2_x 8--'-)_11F_e'---'x _+_li_E_ 

- !1S + R ln[(l -xB )/xR] 
(7 .57) 

In the following examples we assume '1Sex = 0 and analyse the effects of 
exchange energy. Equation (7 .57) predicts increasing steepness of the transition 
curves with increasing 11Ee,. At 11Eex = 2RT,, the tangent to the transition curve at 
the transition point (xHS = 'h) becomes vertical and at higher 11Eex this equation 
yields two or three equilibrium compositions of reaction mixture at a given 
temperature over a certain range around the transition point (Fig. 7.9). As has been 
mentioned before, two equilibrium compositions indicate a possible separation of 
a previously homogeneous solution into individual phases. In the case of spin 
crossover, the separating phases are those of HS and LS species. They retain, in 
many cases, an identical type of crystal structure but differ in density and optical 
properties (colour). Such phase transitions are reversible and occur without any 
detectable break-up of the sample (which is remarkable!). That such a phase 
transition might be accompanied by hysteresis has been confirmed experimentally 
and follows from (7 .51) and (7.57). If (7.51) is solved with respect to xHs using the 
'consecutive search' method then the results may be different when this search is 
performed from xHs = 0 upwards and from xH.'; = I downwards. 

For systems with high 11Eex > 2RTv, there are two solutions in the region of the 
S-loop of the transition curve given by (7.57) and illustrated in Fig. 7.9. These 
methods of search imitate two possible pathways of spin crossover corresponding 
to heating and cooling of a sample respectively. Why hysteresis is not always 
observed becomes clear when we consider how the free energy of the reaction 
mixture depends on temperature and composition. Fig. 7. IOA shows the 
temperature dependencies of xHs and the free energy of a significantly non-ideal 
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system (Mex~ 2.SRTy,). The dependencies of free energy on composition are 
shown in Fig. 7.lOB. When this system is cooled down to temperatures below 
246 K, the possibility of building an LS-rich phase arises (the second minimum in 
the dependence of free energy on composition curve in Fig. 7 .1 OB). 
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Fig. 7.9. Spin crossover trans1t1on curves calculated (A) according to (7.51) for 
!lft = 2.0 kcal mol-1, T112 = 200 K, !lSex = 0 and varying exchange energies: 11En= 0 (I), RT; 2 

(2) 2RT1 2 (3) and 3RT1 2 (4). Graph B shows the transition curve for a similar system 
(!lEa= 1.2 kcal mol- 1) obtained by numerical solution of (7.51) in the 'cooling mode' (•)and 
'heating mode' (o). The dashed line was obtained similarly to the curves in graph A 
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represent the free energies of HS-rich (HT) and LS-rich (LT) phases. The graph B shows free 
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The formation of an LS-rich phase under these conditions although being 
possible, is highly improbable because the macroscopic states corresponding to 
higher free energy are practically unpopulated7. It is only when the temperature 
reaches T.1, and the free energies of the HS-rich and LS-rich phases become equal 
that a real probability exists for the formation of a new phase. A fluctuation of 
energy or formation ofa nucleus ofa new phase (for example, an impurity of high 
crystal field strength that is capable of stabilising the LS state) might overcome 
the potential barrier between these states. However, if this barrier is high, then a 
sample can be super-cooled below the transition point. The dashed arrow in 
Fig. 7 .10 indicates, therefore, a possible and probable but not a necessary onset of 
the phase transition in both the cooling and the heating branches of a transition 
curve. 

The height of the potential barrier is proportional to the ratio !'i.Ee/ RTv, and 
therefore systems with larger !'i.Eex can be more readily super-cooled - in other 
words, a wider hysteresis has a higher probability of being observed. At 232 K the 
original minimum of free energy corresponding to the HS-rich phase disappears 
(Fig. 7.1 OB) which means that at lower temperatures there is only one stable LS
rich phase. A system must therefore transform very sharply into this phase. This 
process is termed 'switching' (thus indicating its possible use in information 
storage devices) and is experimentally observed. 

Fig. 7.1 lA shows experimental data on the H20 solvate of the iron(II) 
picolylamine complex [7] that exhibits a wide hysteresis and a sharp transition 
from HS to LS state in the cooling mode. 
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Fig. 7.11. A: Spin crossover transition curve simulated according to (7.51) (solid line) and the 
experimental data from [7] (o) for the spin crossover of[Fe(2-pic)3]Cl2H20. B: Transition curves 
and heat capacity peaks for the spin crossover in the FeL(NCS)z complex with an N4-dentate 
ligand [9] 

7 In the same way, the probability that a steel ball of 1.0 g weight will of itself jump up I mm is 
negligibly small notwithstanding the fact that the energy difference between these states is 
only ca. I erg- i.e. much less than RT at 300 K. 
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Theoretical curves (obtained by numerical solutions of (7.51) in the 'heating' 
and 'cooling' modes) correspond to M = 2.5 kcal mor1, Mex= 1.6 kcal mor1 

6.Sex = 0, and T,, = 250 K. The transition in the heating mode observed 
experimentally is evidently not so sharp as in the cooling mode, the cause of 
which remains unclear. Theoretically, the shape of the transition curve of a steep 
spin crossover, especially one exhibiting hysteresis, cannot be other than a sharp 
switch. At the transition point (FHs = F13) the composition of a sample is 
undetermined within the range x 1(Ty,) ~ xi(T vJ as indicated by the dashed arrow 
in Fig. 7.lOA. 

The experimentally observed average composition is controlled, not by the 
temperature, but by the amount of heat transferred to or abstracted from the 
sample. In order to be able to discuss the shape of a steep transition curve the 
sample composition must be determined (by magnetochemical or Mossbauer 
measurements) simultaneously with calorimetric measurements. Unfortunately, to 
our knowledge no such experiments have yet been conducted. Even when one -
and - the same sample is investigated subsequently by magneto-chemical and 

calorimetric measurements the results may differ. 
Transition temperatures of the [FeL(NCS)z] complex with N4-dentate ligands of 

the phenanthroline type [9] determined from magnetic susceptibilities and 
measurements of specific heat (Fig. 7 .11 B) do not coincide, probably because of 
different modes of heating/cooling in corresponding devices. Therefore, it is 
possible that the shape of a transition curve reflects the impatience of an 
experimenter rather than reality. 

Another complication might arise from the kinetics of spin crossover itself. The 
exchange between HS and LS states is normally fast but at low temperatures (in 
general, below 50 K but even at 77 K for some compounds [IO]) it becomes slow 
and fast cooling may trap a metastable HS state. At 10 K such a metastable state 
can exist for a long time, the rate of the relaxation process being controlled 
exclusively by tunnelling through the potential barrier. Another way of trapping a 
metastable HS state is to irradiate a deeply cooled sample (ca. 10 K) by light of 
the appropriate wavelength. The HS state appears then as a result of a series of 
electron transitions involving a relaxation from the excited LS state. This effect is 
known as light induced electron spin state trapping (LIESST). 

7.7 
Heat capacity changes in spin crossover 

The uncertainty of the composition of a spin crossover compound characterised by 
high exchange energy (11Eex ~ 2R7) predicted by (7.50), (7.51) or (7.57) in the 
region of switch indicates macroscopically large fluctuations and a first-order 
phase transition. Such transitions must be accompanied by (infinitely) high peaks 
of heat capacity that are observed experimentally for substances exhibiting steep 
spin crossover. 
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Fig. 7.12. Temperature dependence of the heat capacity of [Fe(phen)2(NCSe)2] drawn from the 
data in [I I] (recalculated per gram-atom). The curve in graph A represents the approximation of 
experimental data (crosses) two Debye functions with 80 1 = 130 Kand 802 = 1130 K taken in the 
ratio 1 :5. Graph B shows the approximation of the same data by a single Tarasov function for 
one-dimensional crystal (weakly interacting chains) with 81 = l IOOK. 

One of the first observations of this kind was made by Sorai and Seki [11) in 
their study of spin crossover in [Fe(phen)2(NCSe)2) (See Fig. 7.12). In systems 
exhibiting steep spin crossover the composition of the sample below the transition 
point is mainly LS and above it mainly HS. The low temperature region of data 
shown in Fig. 7.12 can therefore be described employing the Debye or the Tarasov 
approximations (see Chapter I) for a pure (LS) substance. It proved that these data 
cannot be described by a single Debye function, but a weighted sum of two 
functions with drastically different 80 fits experimental data very well (see Fig. 
7.12 A). On the other hand, the same data also fit (although with a lower 
precision) a single Tarasov function for a one-dimensional crystal (m = 1 in 
(1.156), see Fig 7.12 B). The latter model has the advantage of employing a 
smaller number of adjusting parameters and providing a clearer physical 
interpretation of the observed relationship. According to the Tarasov model, 
[Fe(phenh(NCSe)2] must be built of weakly interacting polymeric chains with 
strong atomic interactions (8 = 1100 K) within the chain. 

At the transition point there must be a step in heat capacity corresponding to the 
standard entropy of transition ~S0 = ~lfl/T,1,_ However, this step is not 
considerable (0.1 - 0.2 cal g-atom- 1, for the system shown in Fig. 7.12). 

The peak itself can be described by calculating the heat capacity as: 

The derivative dxldT can easily be found from the law of mass action (7 .51) 
<l>(x,7) = 0 noticing that dxldT= -{8<I>/87)j(8<1>/8x)7: 
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Fig. 7.13. Temperature dependencies of XHs and the heat capacity calculated using (7.59) for 
!1£ = 2.5 kcal mor 1, T1 2 = 240 K, !1Sex = 0 and !1£,, = 950 cal mor 1 (A) and 964.25 cal mor 1 (B) 

This yields the following expression for the specific heat: 

(7.59) 

in which tiC v = C vHs - C VI,.\» Fig. 7 .13 shows the temperature dependence of C v 

calculated for a system characterised by exchange energies slightly below (A) and 
slightly above (8) the critical value of2RT,,. 

In the first case one sharp maximum of heat capacity is predicted, whilst in the 
second case the heat capacity exhibits two separate peaks: one in the heating and 
one in the cooling modes (compare this with the experimental data in Fig. 7.13). 

There are also systems exhibiting a double peak in each mode (see Fig. 7.14). 
Transition curves of spin crossover compounds with such a temperature 
dependence of heat capacity show, when examined closely, a plateau at xHs = Yi 
(Fig. 7 .148). This is the case of so-called two-step spin crossover. Note a much 
better matching of the results of calorimetric measurements and transition curves 
(obtained using Mossbauer spectroscopy) carried out by different workers on 
different samples of [Fe(2-pic)3]Cl2C2H50H as indicated by the derivative dxldT 
in Fig. 7. l 4A than in the case of the steep spin crossover with hysteresis (Fig. 
7.118). 

The phenomenon of two-step spin crossover cannot be explained by the effects 
of higher order molecular interactions. A non-zero quadratic term in the law of 
mass action (7.4 7) results in some asymmetry of the transition curve but not in the 
step. With increasing negative ti (3) the steepness of the transition curve increases 
and the "critical point" (corresponding to a vertical tangent) is achieved at lower 
values of ti(2J. Positive tiC3l decrease the steepness of the transition curve. 
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The double peak of heat capacity must reflect some phase transition of either 
first or second order. The origin of phase separation in a steep spin crossover is the 
large positive exchange energy reflecting a much stronger interaction of molecules 
in homo-pairs than in hetero-pairs. Some critical phenomena should also be 
expected in the reverse case of molecules in hetero-pairs interacting stronger than 
those in homo-pairs, i.e. in the case of large negative exchange energy. The result 
must apparently be an ordered structure (A-B-A-B-A-B). The formalism predicting 
such phenomena must employ some parameter(s) characterising ordering in a 
binary mixture. Such a parameter is missing in the law of mass action (7.47) and 
therefore we cannot expect it to describe the case of two-step spin crossover. 

7.8 
Negative exchange energy. Ordering. 
The Bragg - Williams approximation 

It has long been known that in binary alloys of similar metals (e.g. Cu-Ag) there is 
a tendency to form (albeit very slowly) regular sub-lattices for individual metal 
ions detectable by XRD without, however, an apparent formation of separate 
phases [2]. This indicates that an ordered structure has a lower tree energy but that 
ordering does not involve the formation of new phases. The process of ordering 
can be described by taking into account the non-equivalence of centres in the 
crystal lattice, i.e. by distinguishing the centres belonging to the A and B sub
lattices. Apparently, they are characterised by different potential energies and the 
corresponding Boltzmann factors should be used when calculating the probability 
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of a molecule being found in such a centre. This approach can be used in 
numerical simulations such as in the Monte-Carlo method8 but it excludes the 
possibility of an analytical solution of this problem. 

There are, however, several elegant approximate analytical solutions of the 
problem of ordering in binary systems developed by Bragg, Williams, Gorsky, 
Bethe and Kirkwood (see [I], pages 570jf.). The Bragg- Williams approximation 
is the simplest among those mentioned above. It takes into account the existence 
of two sub-lattices consisting of a- and P-centres equivalent from the point of 
view of the probability of finding either molecule A or B in any centre. However, 
when these centres are regularly filled by molecules A and B (i.e. an A in the a 
centre and a B molecule in the P-centre, or vice versa) the number of hetero
molecular interactions is maximal for any composition. When hetero-molecular 
interactions are stronger than homo-molecular interactions (negative f..Eex), such a 
regular distribution would also imply a minimum of potential energy of the whole 
system. Therefore there is a 'driving force' to bring such a binary system into an 
ordered state. This 'driving force' also includes a special configurational entropy 
that must take into account the existence two types of centres. 

Let us consider a crystal built from the molecules A and B (with similar 
characteristics) in which two sub-lattices can be formed, each having the same 
coordination number c. N centres of such a crystal are then divided into N/2 
a-centres and N/2 P-centres. These two kinds of centre form a regular lattice in 
which an a-centre is surrounded by c P-centres and a p centre is surrounded by c 
a-centres. The main simplification of the Bragg - Williams model amounts to the 
suggestion that molecules A and B are randomly distributed among the a and p 
centres. The ordering in such a system can be quantitatively characterised by the 
degree of ordering, s, introduced in the following way: 

Consider a system of NA particles A and N8 particles B, distributed over N/2 
a-centres and N/2 P-centres (N =NA + N8 ). The probability p of a molecule A to 
get into an a-centre is: 

(7.60) 

in which NA(a) is the number of molecules of type A in a-centres. In the state of 
complete disorder, this probability is obviously Yi. The state of complete order, on 
the other hand, is characterised by Porder = I (all molecules A occupy a-centres). 
Note that such a situation is possible at xA ~ Yi. The degree of ordering is then 
defined as the ratio: 

s= P - P disorder p-0.5 =2 -1 
0.5 p 

(7 .61) 
Porder - Pdisorder 

Accordingly the probability p expressed in terms of s is: 

8 Monte-Carlo simulations of a spin crossover system have shown the possibility of a two-step 
spin crossover [12]. 
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p = (1 + s )/2 (7.62) 

The number of molecules A in a-centres is: 

(7.63) 

in which xA = NA/N. The state of complete order corresponds to s = I and the state 
of complete disorder is characterised by s = 0. Such a definition is exactly valid 
within the range 0 < xA :<;:; Yi. For systems with a higher content of A molecules, the 
reference state with p = I is inaccessible. This leads to an a priori requirement that 
s cannot be higher than (I - xA)/xA. On the other hand, in the range I > xA > Yi the 
degree of ordering can be defined in terms of the probability of a molecule B 
occupying a P-centre: 

p'=Ns(P)/Ns 

s=2p'-1 

(7.64) 

(7.65) 

The degree of ordering, s, is thus defined for each type of molecule, strictly 
speaking, on one half of the total range of compositions (xA = 0 - Y2). This does 
not affect the description of mixtures of non-reacting particles because a 
symmetry exists between the regions 0 < xA < Yi and Yi< XA < I. If, however, 
molecules A can transform into molecules B and vice versa then such a symmetry 
disappears: one of the species is stable at high temperatures and another at low 
temperatures. It will be shown that this feature still does not affect the transition 
curve but it does change the shape of the temperature dependence of the degree of 
ordering. 

The configurational entropy of the system defined above corresponds to the 
number of ways in which (N/2) a centres can be filled by NA(a) A-particles and 
N8(a) B-particles multiplied by the number of ways in which (N/2) P centres can 
be filled by NAP) A-particles and N8(P) B-particles. In the approximation of 
random filling this leads to [2]: 

W = (N/2)! x {N/2)! 
(Ny1/2)! (N(l - y1)/2)! (Ny2 /2)! (N(I- yJ/2)! 

(7.66) 

in which y 1 and y2 are the respective probabilities of finding an a- and a P-centre 
occupied by a molecule A: 

(7.67) 

The configurational entropy defined in terms of this number of realisations is: 

Swnf = k In W 
(7.68) 

An argument of a logarithmic function cannot be zero or negative and therefore 
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I - y 1 > 0 and this leads to the a priori condition mentioned above: 

S < (1 - X A)/ X A (7.69) 

The next step is to define the potential energy of the system. This is done by 
counting the number of AA, BB and AB binary interactions characterised by the 
corresponding potentials (<J>AA, <p88 and <J>As). The relative number of homo- and 
hetero-interactions depends on the composition and degree of ordering. The 
potential energy of such a system thus becomes a function of the degree of 
ordering. It is not difficult to derive this dependence in an explicit form [ 1,2]. The 
energies of ordering and disordering resulting from such a derivation are: 

_ <sJ col _ 2 2 cN [ ]- 2 2 !J.UorJ -U -U --S XA- <pAA +<pBB-2<pAB --S XAW 
2 

(7.70) 

!J.U. =U<'J-u<1J =(1-s 2 \ 2 w 
J1s fX A (7. 71) 

in which: 

(7.72) 

The quantity w is identical with the exchange energy taken with negative sign. 
The interesting case of negative exchange energy corresponds, therefore, to 
positive w and to lower potential of an ordered structure. The free energy of 
ordering and disordering can be found by adding the configurational term 
(-T~conf) to (7.70) and (7.71): 

Now the configurational entropy of a completely disordered system is 
obviously: 

klnW(OJ =-kN[ xA lnxA +(1-xJln(l-xJ] 

whilst that corresponding to s = 1 according to (7.66) is9 : 

The free energies of ordering and disordering are therefore given by: 

(7.74) 

(7.75) 

9 A completely ordered structure with x = Yi ( .. .ABABAB ... ) can only be realised in one way and 
for this composition alone W11=1. When calculating W11 for an arbitrary composition one has 
to take into account that O! = I, i.e. 0 In 0 = 0. 
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+ kTN [ y 1 In y 1 + (1- y 1 )ln(l- y 1 )+ y 2 In y 2 + (1- Y 2 )ln(l - Y2) ] 
2 

-kTN[ XA lnxA +(1-xA)ln(l-xA)] 

(7.76) 

!1Fd1s = -x~(l-S 2 ~ex 

+ kTN [ y 1 lny1 +(1-y1)1n(l-y1)+ y 2 lny2 +(l-y2)ln(l-y2)] 
2 

- kTN [ 2xA ln2xA +(l-2xA)ln(l-2xA)] 
2 

(7.77) 

In a system of chemically non-reactive particles there is a certain degree of 
ordering corresponding to the minimum of free energy, i.e. the state of equilibrium 
characterised by: 

(7.78) 

Applying this condition to (7.77) yields: 

kTN In Yi (l - Y 2 ) + 4sx !1E = 0 
( ) A ex 

Y2 1- Y1 

(7.79) 

This equation has a trivial solution of s = 0 which is the only solution for 
positive exchange energies. 

Non-trivial solutions of (7 .79), s = f(xh T), can only be obtained for large 
negative lt1Eexl > 2RT. They form a surface with a ridge along xA = Y2, rising in the 
direction of lower temperatures (See Fig. 7 .15). The transition from s = 0 to non
zero solutions of (7.79) with changing xA or T is very sharp, indicating the 
involvement of a large number of molecules, i.e. cooperativity of the ordering 
process. 

Fig. 7 .16 shows diagrams of the free energies of ordering and disordering as 
functions of composition and temperature. Both free energies are negative because 
the values of s employed in calculations correspond to the minimum of F. Only 
half of the diagram of Fd1s(x, 1) may be calculated according to (7. 77) because the 
state s = I for molecules A can only be defined within the range xA = 0 - Yz. 
However, the degree of ordering may also be defined with respect to molecules B, 
therefore, the total diagram of the free energy of disordering must be symmetric. 
Both free energies exhibit then a global minimum at x = Yz. The depth of this 
minimum increases in the direction of lower temperatures for the free energy of 
ordering (Fig. 7. l 6A) and in the direction of rising temperatures for the free 
energy of disordering (Fig. 7 .16B). 
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The free energy of ordering (t...F0 ,d, diagram in Fig. 7.16A) represents a change 
of free energy which would be observed if we equilibrate a random mixture of A 
and B molecules. In this case, there is a unique minimum of free energy. In a 
mixture of molecules A and B possessing equal chemical potentials the ordering 
would stabilise only the composition xA = x 8 = Yi. 

The free energy of disordering (t...FJ1,, Fig. 7 .168) represents a change of free 
energy that would be observed during the equilibration of a completely ordered 
mixture. For such a process there are other minima of t...F (although not very deep 
and lying higher than the global minimum at x = Yi) corresponding to 
xA(B) = 0.15 - 0.3. This might result in a special kind of hysteresis. 

I _00 
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0.60 
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Fig. 15. The degree of ordering at equilibrium as a function of composition and temperature 
calculated for Mex= -I kcal mor' 
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Fig. 7.16. Free energy of ordering (A) and disordering (B) as functions of T and x calculated for 
a binary system with !J.Erx =-I kcal mor' and equilibrium values of s 
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7.9 
Description of ordering taking into account triple 
interactions 

Let us now apply the formalism taking into account triple molecular interactions 
in the condensed state to the description of a binary ordered system. We can 
assume that partition functions are dependent on the nature of the surroundings 
and consider the effects of two nearest neighbours along a coordinate. In general 
(i.e. before applying the Bragg - Williams approximation), we must distinguish 
between the molecules in a and p centres, therefore the following configurations 
should be taken into account: 

AAA 
AAB 

BAB 

AAA 

AAB 

BAB 

ABA 

ABfl. 
fl.Ell. 

ABA 

ABB 

Bfl.B 

The molecule A occupying an a-centre is thus denoted by A and the same 
molecule occupying a P-centre is denoted by d_. Similarly, the molecule B in an 
('improper') a-centre will be denoted by fl.. 

The probabilities PA, Pt!> PB, Pll to find a- and P-centres occupied by the 
molecules A and B, as well as the mole fractions XA, XB, Xd, Xll of the molecules A 
and Bin these centres, are given in Table 7.3. 

According to these assumptions, the contribution of the configuration d_Ad_ can 
be written as: 

(7.80) 

in which XA = NA(a)/N is the fraction of molecules A in a-centres, Pd= y2 is the 
probability of finding a P-centre occupied by a molecule A. 

The asymmetric configuration d_AB can be realised in two ways, therefore: 

(7 .81) 

in which PB= (1 - y2) is the probability of finding a P-centre occupied by a B 
molecule. 

Table 7.3. Formulae for calculating the probabilities of filling lattice centres with molecules A 
and B. The values of XA and XR are mole fractions of the molecules A and Bin lattice centres 

PA PB 
------·-------------------------

a-centre 
P-centre 

Yi= (1 + s)xA 
Y2= (1-s)xA 

I -y1 yi/2 
I -yz yz/2 



7.9 Description of ordering taking into account triple interactions 233 

The third possible configuration with central molecule A contributes: 

-3NkTX AP~ In z BAB = {Yi)y1 (1- y2 )
2 FBAB (7.82) 

Obtaining similar expressions for configurations with central molecule d. and 
combining them with those above we obtain the free energy of molecules A 
(analogous computations can easily be performed for the molecules Band .B.) as: 

2FA = Y1Yi FdAd + Y2Y12 FAdA + 2y,y2 (I - Y2 )FdAB + 2Y2Y1 (1- Y1 )FAAB 

+ Y1 (1 - Y2 )2 FBAB + Y2 (1 - y, )2 FBAIJ. 

(7.83) 

The main assumption of the Bragg - Williams approximation is that the 
random distribution of molecules over a and ~ centres implies that the free energy 
of a molecule does not depend on the nature of the centre in which it, or its 
neighbour, resides. The standard free energies FA.Ad and FAA.A must, therefore, be 
(at least approximately) equal. The same is true for other pairs of standard free 
energies: 

(7 .84) 

We may then drop the notations of 'proper' and 'improper' centres. Expressing 
y 1 and y2 in terms of s and xA (Table 7.3) and combining terms with equal powers 
of xA, we can write the free energy of the whole system as: 

F = x~ (1- s 2 )[(FAAA + FHAB - 2FAAB )-(FBBB + FABA - 2FABH )] 

- x~ [2FBAB - 2FAAB + 4FABB -3FBBB - FABA - s 2 (FABA - FBBB + 2FBAB - 2FAAB )] 

+ x A (FBAB + 2FABH - 3FBBB) + FBBB 

+ NkT [y1 In Y1 + y 2 Iny2 + (! - Y1 )In(! - Y1) + (1- yz}In(l - Y2 )] 
2 

(7.85) 

in which the last line represents the configurational entropy. (A similar expression 
can be obtained when the degree of order is defined with respect to molecules B, 
via NB(~) [3]). When the effects of the surroundings are additive: YA = y8 = '.Ii the 
coefficient of the cubic term in (7.82) is zero and hence the free energy becomes: 

F = -X~ (1 - S 2 ).1F,,x + X A (.1Fex - FBBB + FAAA) + FBRH 

NkT 
+-[y, lny1 + y 2 lny2 + (1- y 1)ln(l-y1)+ (!- y 2 )ln(l- y 2 )) 

2 
(7.86) 

When the exchange entropy is zero (.1Fex = 11.Eex) this equation gives the free 
energy of a regular ordered solution. It is a function of the composition of a 
system and of the degree of ordering. When s = 0 this equation becomes identical 
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with (7 .30) of regular solution theory. The differentiation of (7 .84) with respect to 
s (at constant xA) produces an expression identical with the (7.75) derived in the 
Bragg - Williams approximation. 

We have thus obtained a modification of the Bragg - Williams approximation 
of ordered binary structures which takes into account triple interactions. The 
degree of ordering, s, enters the coefficients of the cubic and square non-ideality 
terms in the expression for free energy (7.85). The contribution from triple 
interactions is therefore dependent on the process of ordering. 

7.10 
Chemical equilibrium in ordered systems. Two-step spin 
crossover 

When a chemical reaction takes place in a system with ordering, the state of 
equilibrium is determined by the minimum of free energy with respect to both 
composition and degree of ordering. The isotherms calculated according to (7.84) 
with FAAA=O, F888 =+5kcalmor', llEex=-lkcalmor', Tv,=140K and 
equilibrium values of s exhibit one minimum (Fig. 7.17), thus indicating 
homogeneity of the system (in contrast to systems characterised by an equally 
large positive exchange energy). 

This minimum tends to remain in the region x = Yi which can be interpreted as a 
plateau in the transition curve. It can be explicitly shown as follows: A minimum 
in an isotherm in Fig. 7.17 corresponds to the state of chemical (spin crossover) 
equilibrium: 

A (LS) B (HS) (7.87) 

x 
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Fig. 7.17. The free energy isotherms for a spin crossover equilibrium mixture characterised by 
!lE,, = -1.0 kcal mor 1, !lE = 5 kcal mor 1 and T1 2 = 140 K 
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When we also take into account the process of ordering, the state of equilibrium 
corresponds to zero complete differential of free energy: 

dF = ( aF ) dx A + (BF) ds = 0 
ax A V ,T,s as V,T,x_.1 

(7.88) 

It implies separate equalities to zero of both partial derivatives (either 
considering xA and s as independent variables or admitting that s is bound to x 
through the condition 8F/8s = 0, (7.78)): 

( BF) =O· 
8XA V,T,s ' 

(BF) _0 
as VT . . x .. , 

(7.89) 

This system of equations can be solved as follows. Let us remove temperature 
from both these equations and equalise the expressions so obtained. Using (7.84) 
derived for the case of additive effects of surroundings we get: 

T= M 0 -Mex(1-2xAl-s2 )] ( 7.90) 

!!_{(1 + s)ln(_li_) + (l -s)ln(--1'.L)} + M 0 -Mex[1-2xA(1-s2 )] 
2 l-y1 l-y2 

The system of equations (7.90) and (7.90a) can be solved with respect to s for a 
given xA using an appropriate numerical method. The temperature can then be 
calculated from w (7.90). For positive exchange energies Mex> 0 (7.90), (7.91) we 
have only the trivial solution s = 0. When AEex is negative and sufficiently large 
two solutions: one trivial (s = 0) and another non-trivial (s * 0), are possible within 
a certain range of composition and temperature. 

Fig. 7 .18 shows the transition curve and temperature dependence of the degree 
of ordering calculated employing (7.90) and (7.90a) for a system characterised by 
a large negative exchange energy AEex = -1.0 kcal mor1• According to these data, 
a significant ordering must be expected between 107 Kand 167 K. Over the same 
region of temperature the transition curve experiences an inflection similar to the 
plateau experimentally observed in two-step spin crossover. 

The calculations using the degree of orderings defined either in terms of NA(a.) 
or of N8(~) result in the same transition curve but the temperature dependencies of 
s are different for these two cases. 

'°Equation (87a) is an uncertainty whens= 0. 
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Fig. 7.18. Transition curve in a system with ordering (!'>.En= -I kcal mor 1, !'>.£ = 5 kcal mor 1 

and T112 = 140 K). The curve s1 shows the degree of ordering defined in terms of NA( a); the curve 
s2 (o) shows the degree of ordering defined in terms of NA( a) above the transition point and in 
terms of NB(fl) below it 

When defined in terms of NA(a) the degree of ordering (curve s 1 in Fig. 7.18) 
passes through a maximum close to xA = Vi and decreases to zero with increasing 
content of A (lower temperatures). The degree of ordering defined in terms of 
NH(~) increases at xA > Vi approaching s = 1 and then falls abruptly to s = 0. These 
phenomena can be explained as indicating a stabilisation of ordered structures at 
low temperatures. However, below certain temperatures the amount of the 
molecules B (HS) is so small that the formation of a stable ordered structure (a 
sub-lattice with a very large lattice constant) becomes impossible, thus causing a 
sharp fall ins. 

Taking into account that ordered structures can be formed as sub-lattices of 
either A (LS) or B (HS) the combined definition of s should apparently be used, 
viz. with respect to N8(~) below Ty, (1 > XA;:: Vi) and with respect to NA(a) above 
Tv, (Vi > XA > 0). 

The least negative exchange energy connected with non-zero degrees of 
ordering depends on the energy gap between the HS and LS states (F888 - FAAA). 
Observable deflections from a smooth transition curve, which can be interpreted 
as a plateau, occur when ordering is considerable, e.g. s = 0. 7 - 0.8 (Fig. 7. l 9B). 
A defined plateau can be observed when s approaches 1 (Fig. l 9C). 

The formalism developed here qualitatively predicts the main features of 
experimentally observed two-step spin crossover. However, all attempts to obtain 
a quantitative agreement between theoretical and typical experimental transition 
curves have so far failed. Experimental two-step transition curves are usually just 
slightly modified steep spin crossover curves (!'!.Eex > 0). On the other hand, the 
slopes of theoretical curves predicted by (7. 90) for negative exchange energies 
beyond the region of ordering are even smaller than those expected for perfect 
solutions (!'!.Eex = 0). 
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Fig. 7.19. The shape of transition curves computed at fixed exchange energy Mex=-0.6 
kcal mor1 and varying !'1£ = 1.25 kcal mor1 (A), 2.5 kcal mor 1 (8), and 5.0 kcal mor1 (C) 

This dilemma can nevertheless be solved within the suggested model if we 
consider the case of non-additive effects of the surroundings (yA * y 8 * Yz) and take 
into account the possibility of different signs of these effects for molecules A and 
B (DA and D8 ). Under these conditions the cubic term in (7.85) is, in general, non
zero. Employing four parameters characterising molecular interactions, DA, D8 , YA, 
andy8 allows (7.85) to be written as: 

F=x~(l-s 2 )[ (1-2yA)DA-(1-2y8 )D8 ] 

+x~[ (1-4y8 )D8 -2(1-yA)DA+s 2 (D8 +2(1-yA)DA)] 

+xA(DA + 2yBDB -FBBH + F AAA)+ FBBB 

+ NkT [ y1 In y 1 + y2 lny2 + (1- y1 )tn(l - yi)+ (1- yz}ln(l - y 2 ) ] 
2 

(7.91) 

A similar expression can be obtained for the case when s is defined in terms of 
N8 {P). Applying the procedures described above, the law of mass action can be 
obtained and, solving numerically the equivalents of (7.90) and (7.90a), the 
equilibrium values of xHs, s, and T can be calculated for given DA, D8, YA, y8, M, 
and T,, (see in Ref. [3]). 

Fig. 7.20 shows experimental [13] and theoretical (based on (7.91)) transition 
curves for solid [Fe(2-pic)3]C)z.EtOH. The estimates of the parameters obtained 
by this regression are given in Table 7.4. The agreement between experimental 
and calculated data of xHs is very good over the whole region (xHs = 0.02 - 0.94) 
the standard regression error being 1.47 K (in the procedure described the 
dependent variable was temperature). This description is insensitive to the choice 
of the magnitude of D8 in the range 620 - 1000 cal mor1 provided its counterpart 
DA, as well as YA, y8 , M, and T,, are adjusted. This might indicate an over
parameterisation of a model but may also be the result of insufficient accuracy of 
"experimental" data (which have been read from the graph in the original paper 
[13]). 
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Fig. 7.20. Experimental transition curve (circles) of the two-step spin crossover of 
[Fe(2-pic)i]Cb.EtOH [13] and the regression curve (line), corresponding to the parameters 
presented in Table 7.4. The curves is the temperature dependence (computed) of the degree of 
ordering. The right-hand graph (8) shows, in detail, the central part of the transition curve 

Table 7.4. The estimates of parameters in (7.91) obtained by regression of the experimental data 
on spin crossover in [Fe(2-pic)3]Ch.EtOH. 

+0.581 

-0.64 

Da 
(kcal mor1) 

-0.65 

+0.571 

0.84 

0.19 

0.12 

0.95 

t..E 
(kcal mor 1) 

1.150 

1.147 

T112 
(K) 

116.7 

116.7 

This mathematical model is invariant with respect to a simultaneous change of 
sign at DA and DB provided that the coefficients YA and YB are adjusted. In other 
words, practically the same regression error can be achieved for both negative DA 
and positive DB with symmetrically changed values of YA and y 8 (see Table 7.4). 
These two descriptions are illustrated by the energy level diagrams shown in 
Fig. 7 .21. The diagram A in Fig. 7 .21 admits a simple interpretation based on the 
assumption that the energy of a spin crossover molecule is largely determined by 
the energy of repulsive molecular interaction. In such a case the formation of a 
hetero-molecular surroundings of an LS molecule is connected with an increase in 
potential energy because HS molecules are larger than the (original) LS molecules 
(the ratio of radii rHs/rLs is usually of the order of 1.1). On the other hand, the 
potential energy of a large HS molecule decreases when its environment is 
transformed from homo-molecular to hetero-molecular (made up of smaller LS 
molecules). 
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Fig. 7 .21. Energy level diagrams illustrating theoretical descriptions of two-step spin crossover 
in [Fe(2-pic)3]C]z.EtOH. The diagrams A and B correspond to parameters in the first and second 
rows of Table 7.4 respectively. 

Estimation of the coefficient YA shows that the appearance of the first HS 
molecule in the environment of an LS molecule brings about 84% of the total free 
energy change that is connected to the formation of the sequence HS-LS-HS. On 
the other hand, the value of y8 shows that the first substitution of an HS molecule 
in a homo-environment of an HS molecule results in only 12% of the total energy 
change, which is connected with the formation of the sequence LS-HS-LS. 

The first stage of a substitution of an LS molecule by an HS one creates an 
asymmetric environment and changes the interaction of a central molecule with 
other neighbours (see Fig. 7.4A, above). Therefore a higher effect is to be 
expected at this stage and is actually observed. On the other hand, the appearance 
of the first, small, LS molecule in the environment of an HS molecule might not 
be connected with a considerable energy change because a small molecule can 
easily be accommodated in a large vacancy. 

When the second neighbour of an HS molecule is converted into an LS 
complex a large effect is observed and this is connected with the formation of 
regular structures. In fact, the complete formation of an LS-HS-LS structure is 
equivalent to the formation of an HS-LS-HS structure and the energies of these 
types of environment must be identical. In fact, the estimates of M, DA, and D8 

confirm this within the experimental error (see Table 7.4, the diagram A in the 
Fig. 7 .2 I deviates slightly from the exact values in order to be legible). 

The diagram B in Fig. 7.2 I implies that the energy of an HS molecule increases 
when its surroundings are transformed into a hetero-molecular one. This is 
possible when a strong magnetic interaction exists between unpaired electrons of 
HS species. However, such an interaction (with a constant of ca. 600 cal mor', i.e. 
ca. 200 cm- 1) would bring about the formation of a magnetically ordered phase at 
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lower temperatures, which is not observed experimentally. Neither can the 
decrease in energy of an LS molecule upon the formation of a heteromolecular 
environment be explained. These arguments allow us to choose one of the 
descriptions in the first row in Table 7.4 as physically meaningful. 

This example clearly shows that such parameters as volume and lattice energy 
are only indirectly connected with repulsive and attractive interactions. Lattice 
energy changes in spin crossover are mainly determined by the repulsive 
interactions and are therefore strongly related to the corresponding volume 
changes. The separation of molecular interactions into repulsive and attractive has 
a physical meaning in relation to forces between molecules but not to the energy 
and much Jess to macroscopic parameters that are determined by the balance of 
these forces. Therefore the concept of internal pressure, although useful in 
depicting a simple model of the condensed state. might be misleading when we 
consider its relationship to the potential energy of molecules. 

It is interesting to note that the estimates of 11If1 and T112 yield the entropy of 
spin crossover at the lowest experimentally observed level that is typical for such 
systems [14]: 

Mf = 11E1!Tv, = 9.86 cal mor1 K- 1 (7.92) 

The contribution to the entropy from change in the electronic spin-degeneracy 
is Rln5 = 3.186 cal moi-1 K-1 which is nearly exactly 1/ 3 the value obtained above 
(3Rln 5 = 9 .56). Such a coincidence suggests use of the formula for entropy with 
the cube of the degeneracy factor [2]. By doing this we assume that vibrations are 
unaffected by spin crossover, which might indeed be the case for the lowest 
observed entropy. 

7.11 
Diluted systems 

Let us now consider the effects of dilution of a reacting system in the solid state 
by an inert solvent. Spin crossover in magnetically diluted crystals is a good 
example of such a reaction: 

A B (7.93) 

The mass balance for this reaction can be written as: 

(7.94) 

in which S denotes the solvent. The free energy of such a reaction mixture can be 
written in terms of molecular standard free energies FA(HS) = -3kTinzArss/ 

(7.95) 

In an ideal system these free energies are independent of the nature of molecular 
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surroundings, whereas in an imperfect crystal we must consider the influence of 
the nearest (and also, perhaps, the next nearest) neighbours. Taking into account 
(as above) the effects of two neighbours along a coordinate we get: 

FA =x~FAAA +2xAxRFAAR +2xAxsFAAs +2xRxsFRAS +x~FRAR +x,~FsAs 

FR =x~FABA +2xAxRFABR +2xAxsFARs +2xRxsFRRS +x~FRRR +x.~FsBs (7.96) 

F.~ =x~FASA +2xAxRFASR +2xAxSFASS +2XsXsFRSS +x~FRSR +x.~F.~ss 

According to (7.95) and (7.96), the chemical potentials (BF/Bx;) of the species A 
and B are given by: 

J=A,B,S J=A,B,S 
µA= Ia,1x,x1 + kTlnxA; µ 8 = Lb,,x;x1 + kTlnx8 (7.97) 

t=A,B,S 1=A,B,S 

Table 7.5 contains the coefficients aiJ, bi/; the sums of the corresponding 
columns yield the coefficients Ai/ entering the law of mass action: 

µA -µB = Ai1X~ +A12XAXB +A13XAXs +A23xBxs +Anx~ +A33X,~ 
+kTln(xA/xB)=O 

(7.98) 

None of the standard free energies repeat twice in a column of Table 7.5, and 
therefore, in general, the law of mass action (7.98) contains polynomial terms of 
up to the second power (similar to the law of mass action (7.47)). In order to 
analyse these polynomial terms and elucidate their physical significance let us 
express them as a function ofxA. 

The fraction of reacting species we denote as y: 

J -y = Xs 

The law of mass action (7.98) then becomes: 

x~ (A11 -A12 + A22 )+ xJ y(A12 - 2A22 )+ (1-y )(A13 -A23 )] 

+ y2A22 + y(1-y)A23 + (1-y)2 A33 + kT ln ~ = 0 
1-XA 

(7.99) 

(7.100) 

Note that the coefficient of xA 2 in (7 .100) does not contain the standard free 
energies of the configurations involving solvent: 

Ai 1 - A12 +An = 3[(FAAA - 2FAAB + FBAB )-(FBBB - 2FBBA + FABA )] (7. I 0 I) 

It is identical with the coefficient 3!\ <3l at the square term in (7.4 7) obtained for 
a non-diluted system. This shows that the quadratic term arises from triple 
interactions between reacting species alone. This term disappears when the effects 
of the surroundings on the free energy of reacting species are additive. 
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Table 7.5. Coefficients of the x,x1 terms in the expressions for chemical potentials 

XA 2 XAXB XAXS XJJXs XB 2 Xs 2 

a,1 + 3FAAA +4FAAB +4FAAS +2FaAS +FBAB +2FA.\'.V 
+2FABA +2FASA +2FABS +2FABB +FsAS 

+2FAsB 

-b,J -2FAAB -4FABB -2FaAS -4FaBs -3Faaa -2Fass 

--FABA -2FaAB -2FABS -2Fa.m -Fsas 

-2FASB 

A11 A12 A13 An A22 A33 

The coefficient of the linear term can be written as a weighted sum of two 
contributions: one from the configurations without solvent and another from those 
involving it: 

(2) - ( ) 2~ - 2y 2F AAB + FABA + 3 FBBB - 4 FAAB - 2FBAB 

+ 2(1-y )(2F AAS + FASA - 2FBAS - 2FABS - 2FASB + FBSB + 2FBBS) 
(7.102) 

Interestingly, when the effects of the surroundings are additive, the terms in 
brackets in (7 .102) become identical, which results in the exclusion of the 
parameter y. The linear term in (7.100) is then reduced to a very simple expression 
involving the effects of the reacting species alone, in fact, a complete analogue of 
the corresponding term derived for non-diluted systems in (7.50): 

(7.103) 

in which, as usual: 

(7.103a) 

The terms independent of the concentration of reacting species in (7 .100) are: 

A(J') - 2A (1 )A (1 )2A -Ll - y 22 + y - y 23 + -y 33 -

=y 2(A22 +A33 -A23)+y(A23 -2A33)+A33 
(7.104) 

They contain combinations of standard free energies not repeating twice in a 
term and thus cannot be further simplified. However, for additive effects of the 
surroundings, the coefficient of y2 in (7. I 04) equals zero and this term can be 
written as: 

~(I) = y(FBAB - FBBB + FABA - FBBB) + (1 - y XF.~AS - FSBS + FASA - FBSB) (7 .105) 

Taking into account the physical significance of the differences of free energies in 
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(7 .105) this equation can also be written as: 

(7.105a) 

The first term in (7.105a) is similar to that occurring in the law of mass action 
for non-diluted systems (t...Fex - t...F). The second term comprises the standard free 
energy of reaction (7.93) in the state of infinite dilution (-t...F"' = FsAs- FsBs) and 
the change of free energy of solvent molecules due to a spin crossover in their 
neighbourhood (-t...Fwtv = FAsA - F888) accompanied by the weighting factor 
( 1 - y). 

Under the condition of the additivity of the effects of surroundings, the law of 
mass action is, in general, similar to that for non-diluted systems: 

(7.106) 

The exchange term is seemingly independent of dilution (y) but this is only a 
seeming independence because the law of mass action (7. I 06) is written with 
respect to the mole fraction of xA and not with respect to the degree of conversion. 
Therefore the steepness of the transition curve varies with dilution which can be 
demonstrated by writing (7 .106) in terms of the degree of conversion XA(Bl, 

defined by the mass balance equations (7.94) and (7.99) as: 

hence: 

The complete law of mass action with respect to x can then be written as: 

3y 2x~~(J) + 2YXA~(l') + ~(!') + kT In(~) = 0 
1-XA 

and under the condition of additivity of the effects of surroundings: 

(7.107) 

(7.107a) 

(7.108) 

(7.109) 

We see that dilution (lower y) decreases the effective exchange energy and 
hence diminishes the probability of critical phenomena (e.g. phase separation, or 
steep spin crossover) occurring. Experimental data on magnetically diluted spin 
crossover compounds [14] are in agreement with this. 

According to (7. I 09), when exchange free energy is zero the standard free 
energy contains contributions from spin crossover in clusters of reacting species 
(t...F), fully solvated species (t...F 00), and from changes in the state of solvent 
molecules due to spin crossover in their nearest neighbourhoods (t...Fwiv). In fact, 
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the latter two contributions cannot be estimated separately as they enter (7 .109) 
with the same coefficient 1 - y. Experimental data can therefore be analysed either 
assuming M 00 = 11£, l1S00 = 11S and non-zero M""'"' llS.rniv, or assuming the latter 
two parameters to be zero and varying 11£00 and 11500 • 

Fig. 7.22 shows experimental data on spin crossover in [FeyZn 1-y(ptz)6](BF4)z 
with varying content of a diamagnetic component acting as a solvent. The data on 
dilute solution (y ~ 0, open circles lying on a straight line in Fig. 7.22) provide 
for an independent estimation of 11Einf= 11£00 + 11E.wiv as well as corresponding 
entropies. On the other hand the data on non-diluted system (y = 1, filled circles in 
Fig. 7.22) yield the estimates of Mm M and 115. A good coincidence of 
theoretical and experimental curves indicates that the interpolation according to 
(7. I 09) is valid. Two rows of Table 7 .6 show two possible estimations of the 
parameters of (7.109), both corresponding equally to the 'whisk-broom' pattern of 
experimentally observed van't Hoff plots employing the least number of adjustable 
parameters. However, both these interpretations of the estimates are wrong from 
the point of view of physically allowed values of the parameters. 

It is highly improbable that the state of the Zn-complex is not changed by a 
transformation of its nearest surroundings from a small LS complex into a large 
HS complex. Due this difference in molecular volumes the energy of a Zn
complex must be increased by an LS~HS transition in its nearest neighbourhood. 
Therefore, 11E.wiv must be non-zero and positive. 

In order to comply with this requirement the standard energy at infinite dilution 
must be considerably smaller than 11£ in the pure Fe complex. It is not improbable 
that the presence of the Zn-complex decreases the energy difference between LS 
and HS states of the Fe-complex: 

Since the exchange energy is high and positive such a relationship implies that 
Zn-complex is similar to the HS species of the Fe complex (see the diagram of 
free energy levels shown in Fig. 7.22). These arguments lead to the following 
possible estimates of the parameters of (7.109): M = 1.74, M 00 = 1.1 and M.rn/v = 

0.1 kcal moi- 1. 

Table 7.6. Parameters of (7.110) approximating experimental data from [8] and illustrated in 
Fig. 7.22 for spin crossover in [Fe,Zn1-y(ptz)6](BF4)2; !JS., was assumed to be zero 

/!;Ea /!;£ !JS /!;£,, !!Soc Msolv /!;Ssolv 
(cal mol- 1) (cal mor') (cal mor1 K-1) (cal mol-1) (cal mor' K-1) (cal mor') (cal mor1 K-1) 

480 1740 7.0 1200 6.7 0 0 

480 1740 7.0 1740 7.0 -540 --0.3 
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Fig. 7.22. Theoretical van't Hoff plots based on (7.109) with parameters shown in Table 7.6 
describing experimental data on spin crossover in magnetically diluted [FeyZn,_y(ptz)6](Bf4)2 [8]. 
The diagram in the right-hand side of the picture shows possible positions of free energy levels 
in non-diluted and diluted species. 

It is more difficult to make a similar guess about the entropies !1S00 and t.S.wiv· 
The difference between !1S and !1S00 in the assumption of zero !1S.wlv is small 
(0.3 cal mor' K-1) and might arise from combined changes in the vibrational 
frequencies of Fe and Zn complexes. 

We see that the model of molecular interactions employed here puts some 
restrictions on possible values of the parameters and thus enables us to draw 
additional conclusions. 

The relationships obtained also explain why singularities such as steep spin 
crossovers are not observed in the liquid state. The quasi-crystal lattices of liquids 
contain a large number of vacancies that can be considered as an inert diluting 
component. According to lattice theories of the liquid state about 70 - 100% 
additional centres occur upon melting (according to the entropy of fusion of 
simple mono-atomic solids). This means an effective decrease of the exchange 
energy by a factor (1/y) of 2, which might well prevent any possibility of 
observing critical phenomena in spin crossover in the liquid state. On the other 
hand, phase separation in liquid mixtures must, in reality, be connected with 
approximately double the exchange energies estimated from the critical 
temperature of miscibility. 
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7.12 
Conclusions 

In this Chapter we have derived various forms of the law of mass action that take 
into account the non-ideality connected with non-additivity of lattice energy. It has 
been shown that such non-additivity is a direct result of molecular interactions and 
can be described either on the basis of binary potentials or represented as a result 
of dependence of a partition function on the nature of the molecular surroundings. 
The latter approach yields a more general formalism than that employing the 
approximation of binary interactions. In fact, it provides a way by which higher 
order interactions in the condensed state can be taken into account. 

The model of binary interactions yields the formalism of the theory of regular 
solutions, and this explains a number of phenomena connected with phase 
transitions in liquid mixtures as well as in the solid state (steep spin crossover). 
The improved model, taking into account triple interactions, yielded the law of 
mass action describing equilibria in ordered systems in the solid state such as the 
two-step spin crossover quantitatively. This formalism can be reduced to that of 
the theory of regular solutions when the effects of molecular surroundings are 
assumed to be additive. 

The non-ideality terms thus introduced are determined by the magnitude of the 
exchange energy, i.e. the energy accompanying a simultaneous transfer of a pair 
of molecules from homo-molecular to hetero-molecular surroundings. When the 
exchange energy is positive and larger than 2RT, singularities such as steep spin 
crossover (indicative of first-order phase transitions) are predicted. Other 
singularities predicted for binary mixtures are connected with the phenomenon of 
ordering originating from negative exchange energy, i.e. in the higher energy of 
hetero-molecular interactions compared to that of homo-molecular interactions. 

Multi-component mixtures can also be described using the concept of exchange 
energy and separating the additive and non-additive parts of the lattice energy. 
The total potential energy L.n,ui of a mixture of m components can be written in 
terms of binary potentials as: 

m m m n 
In,u, =~ Ln;I-1 <l'u 

I 2 1=! /=I N 
(7.110) 

in which N = L.n, and c is the co-ordination number. For such a system there are 
m(m - 1 )/2 possible types of hetero-interactions and the corresponding number of 
exchange energies: 

(7.111) 

Equation (7.1 IO) can then be written as: 
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(7.112) 

The second term on the right-hand side of (7 .112) equals Ln,<p;; because the sum 
of mole fractions of all components equals 1. The same is true for the last term: 
the order of summation can be changed - the indices of summation being 
independent. The matrix of exchange energies lluu is symmetric and therefore the 
sum Lx1!:iu,i is double the sum of either of the triangles: 

(7.113) 

This equation represents the energy of molecular interactions as being made up 
of two parts: one additive with respect to the number of molecules and reflecting 
interactions with homo-molecular surroundings, and another proportional to the 
binary products of the numbers of molecules, this reflecting interactions in hetero
surroundings. 

The part of a chemical potential arising from such a dependence of the energy 
of molecular interactions on composition is given by: 

_l ~[Ln1Ua.1)=~~+~[N-n,L!!_l_ !J.uii _LLn.1:k !:i:jk) (7.114) 
kT on, i 2 kT 2 N 1 ~, N kT .J"'i k"''·i N T 

Note that for a binary mixture (i = 1, j = 2), the second term in brackets 
disappears. The term C<{J,/2kT will contribute towards the standard internal energy 
of reaction whilst other terms, being concentration dependent, will contribute 
towards non-ideality. 

It must be emphasised that the non-ideality terms considered reflect only a few 
of the possible effects. Another type of non-ideality terms originates from the 
dependence of free volume on composition (see Chapter 4). These terms are 
functions of the relative balances of volume and lattice energy whereas those 
connected with the exchange energy are referred to the energy of thermal motion. 
The non-ideality terms originating from free volume produce effects of a limited 
magnitude which are practically independent of temperature. On the other hand, 
non-ideality connected with the non-additivity of lattice energy, being referred to 
the energy of thermal motion, manifests itself especially strongly at low 
temperatures. 

These two types of non-ideality terms have been considered up to now 
separately. When put together, they appear in the law of mass action as: 
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(7.115) 

in which stoichiometric coefficients ~ are positive for products and negative for 
reactants, each u01 is a function of composition and L.n1u1 is given by (7 .110) and 
(7.112). The free volume itself is a function of lattice energy and this complicates 
the derivation of an explicit general form of non-ideality terms in (7.115). 
However, at least for a binary equilibrium, these difficulties are not 
insurmountable and the corresponding law of mass action can be obtained (see 
Chapter 9). A general form of the non-ideal law of mass action can be written as: 

(7.116) 

It includes the non-ideality term Qn given by (7 .115) and represented (in the 
approximations considered above) by a polynomial function of mole fractions of 
components. It predicts non-linear van't Hoff plots and critical phenomena 
corresponding to phase transitions of first- and second-order (two-step spin 
crossover). This law of mass action thus warns one that a reaction in the 
condensed state might run in a way unpredictable by a pseudo-ideal form of this 
law employing activities. 
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8 Chemical Correlations 

8.1 
Studies of variations of chemical reactivity 

The law of mass action establishes a measure of chemical affinity in the form of 
equilibrium or rate constants or their equivalent, the standard free energies of 
reaction or activation. This is the first step in the formulation of the rules 
connecting chemical structure and reactivity. Statistical mechanics explains the 
origin of the relationship between molecular parameters and standard free energy 
of reaction or activation and enables corresponding formulae to be derived. 
However, quantitative calculations are (or rather were) only possible for a small 
number of simple reactions. Therefore, for the majority of practically important 
cases, a number of empirical correlations has been developed, effectively 
substituting variations of chemical reactivity and modification of the reaction 
mixture for theoretical relationships. 

Although a reaction mixture can be modified in a large number of ways, two 
general types of systematic study are quite common, namely those involving 
modifications of either the reactant or the solvent. 

Studies involving modification of reactants may be further subdivided into two 
classes, namely those in which the modification is 'remote' with respect to the 
reaction centre (in other words involving the nearest atoms) or 'direct' (i.e. 
involving a modification of the reaction centre itself). Modification of a reaction 
centre leads to the largest effects but there is, for such modifications, a high 
probability of concomitant change in the reaction mechanism. In practice, 
modification is often achieved by the introduction of substituents into reactant 
molecules. 

The studies of solvent effects can be classified according to the chemical 
reactivity of the solvent. A solvent can be chemically inert, it can form molecular 
complexes with reacting species (i.e. solvate them) or it can be directly involved 
in the considered reaction (i.e. behave like a reactant in large excess). The 
variation of solvent is therefore connected with the variation of parameters of the 
mean molecular field (inert solvents) and with the introduction of additional 
equilibria (active solvents). 

Quantitatively, modifications can be characterised in two ways: Some 
molecular parameter or a set of parameters (molecular or ionic radii, dipole 
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moment, ionisation potential, energy of LUMO or HOMO, etc.) as well as 
macroscopic physical properties (e.g. dielectric, constant, density, viscosity, etc.) 
can be employed to characterise the variation. This mode of characterisation 
normally implies a reference to the actual reaction mechanism and some 
theoretical relationship. However, real modifications are always connected with 
simultaneous changes of several molecular parameters controlling chemical 
reactivity that complicates the interpretation of the observed variations. In Section 
8.1.4, we will consider this problem in some detail. 

Another way is to characterise modifications by their effects on a reference 
reaction. These effects can be conveniently characterised by variations of the 
logarithms of the equilibrium or rate constants of reactions involving modified 
reference reactants. This allows one to compare the effects of modification on 
reactions of different orders as well as to bring together kinetic and equilibrium 
data. As will be shown later, however, this approach only partly solves the 
problem of the multidimensionality of variations of parameters. 

In any case it is desirable (if not necessary for a meaningful interpretation) to 
have a knowledge of the physical significance of any correlation and hence to 
know what molecular parameters govern the chemical reactivity and in what 
manner they operate. 

8.1.1. 
Molecular parameters governing variations of chemical reactivity 

Molecular parameters which control the standard free energy (or activation free 
energy) of reaction are in fact not very numerous. In an ideal approximation, i.e. 
taking into account purely intramolecular properties, we must expect contributions 
(in order of increasing importance) from rotational, translational, vibrational and 
electronic partition functions. For example, the reaction between two atoms 
resulting in a diatomic molecule: 

A+B AB (8.1) 

is accompanied by the formation of one vibrational and one rotational degree of 
freedom as well by a change in the potential energy of the system. The 
equilibrium constant of (8.1) can be expressed as: 

3 

In K = - In e v( 2nkT mAmB )2 +In 8n2 / ABkT -1n[2 sinh( hv AB J]- /'!£ 
h 2 mA + mB crh2 2kT kT 

(8.2) 

in which tiE is often referred to as the difference of the 'electronic energies' of 
products and reactants. In fact, /'iE is the difference of potential energy of the 
systems 'electrons+ nuclei' of products and reactants. It corresponds to the so
called 'total energy' (sum of electronic energy and the energy of the core-core 
interactions) computed by quantum chemical programs such as HyperChem®. 
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Taking into account the fact that a reaction mixture contains the same set of 
atoms, the 'binding energy' (i.e. the total energy less the energy of isolated atoms) 
can also be used to calculate 11£ yielding identical results. 

The moment of inertia, IA8 , of a diatomic molecule is: 

(8.3) 

and using this we can get the standard free energy of reaction (8.1) as a function of 
the reduced mass (µA 8), the intermolecular distance (r As), the vibrational 
frequency ( v As), and the change in potential energy (11£). 

For equilibria that involve polyatomic molecules we have: 

I c;RiRi <=>I C,pJPi 
.I 

(8.4) 

In addition, the changes in all degrees of freedom must be taken into account: 

(8.5) 

in which In Q = ~srlnzp - ~sRlnz11 • For example, for vibrational degrees of 
freedom In Q becomes: 

I 
( )

-1 ( )-1 m, hv . n m, hv 
LC,p1 L:In 2sinh--1 -Ic;R,Lln 2sinh--1 

i=I J=I 2kT i=I J=I 2kT 
(8.5a) 

in which land n are the numbers of products and reactants respectively, m, is the 
number of vibrational degrees of freedom in the i-th molecule, and v1 is the 
vibrational frequency of the )-th degree of freedom. 

The number of vibrations and their corresponding frequencies can be 
determined from normal mode analysis. Such an analysis does not present any 
difficulties, even for complex molecules, because programs for quantum chemical 
calculations (such as HyperChem®) are now generally available. This program 
allows one to evaluate all parameters necessary for the calculation of the standard 
free energy including vibrational frequencies, potential energies, moments of 
inertia etc. 1• 

Modifications of reactants also bring about variations. in the parameters of 
molecular interactions referred to in this book as non-ideality terms. As the main 
object of making chemical correlations is to establish relationships between 
reactivity and molecular structure (independent of the state of all other molecules) 
the non-ideality terms are unwelcome participants and are usually disregarded. In 

1 Unfortunately, semi-empirical methods (providing a reasonable time of computation) are 
optimally parameterised for the calculations of one property. The results of such calculations 
are therefore only illustrative. 
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reality, as will be shown below, they determine many features of chemical 
correlations in the condensed state. 

To a first approximation, assuming volume and lattice energy to be additive, 
non-ideality can be conveniently expressed in terms of the balances of volume and 
lattice energy (Lw and !}.u - see Chapter 4 ). A non-additivity of the lattice energy 
results in non-ideality terms expressed via the exchange energy (!}.um Chapter 7). 
In our discussion of correlations based on a linear free energy relationship, the role 
of non-ideality will be illustrated in terms of the balances of volume and lattice 
energy. On the other hand, the phenomena of isoequilibrium and isokinetic 
relationships (Section 8.4) are connected with the temperature dependencies of 
equilibrium and rate constants where the exchange energy plays a significant role. 
These phenomena will therefore be analysed by applying both types of description 
of non-ideality. 

Under the condition of additivity of volume and lattice energy the law of mass 
action for reaction (8.1) can be written as: 

in which !}.v, !}.u are the balances of molecular volume and lattice energy and <v>, 
<u> are the corresponding mean quantities per molecule. Any modification of 
reactants can bring about a variation in the balances and (in non-diluted systems) 
the mean values of v and u that contribute toward changes in the equilibrium 
constant. 

8.1.2 
Solvent effects 

When a reaction is studied in a series of inert solvents, solvation equilibria can be 
disregarded and non-ideality terms alone need be taken into account. For a binary 
chemical equilibrium in solution with non-zero balances of volume and 
vaporisation energy: 

Solvent 
R p 

(8.7) 

the expression for free energy ( 4.56) yields the following law of mass action: 

(8.8) 

The balances !}.v, /}.u have been considered (Chapter 4) as composition 
independent and the mean values <v>, <u> as additive properties. Even such a 
quasi-ideal approximation resulted in singularities up to phase transitions in the 
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case of large f>u. In dilute solutions, however, non-ideality terms resulted merely 
in a solvent dependent equilibrium constant: 

(8.9) 

in which the mean volume and mean lattice energy per molecule are determined 
by the corresponding solvent properties. The variation of the logarithm of the 
equilibrium constant of (8.7) arising from the variation of solvent can thus be 
described by the following expression: 

K(S) [ 1 1 J [ 1 1 J ln--=~v --- -3~u ---
K(S0) v 5 v 80 Us u80 

(8.10) 

in which S0 denotes a reference solvent. 
When solvent molecules form complexes with the molecules of reactants and 

products we must consider additional effects produced by salvation equilibria - a 
common component of a chemical reaction in the condensed state which is very 
rarely taken into account explicitly. In addition to the chemical equilibrium, one 
has to consider the equilibria of solvation of reactants and products. Solvation 
equilibria can be approximated as the formation of' 1: l' molecular complexes: 

KsR 
R+S RS (8.11) 

P+S PS (8.12) 

Real concentrations of the components of such an equilibrium mixture can be 
calculated from the combined law of mass action and mass balance equations. For 
the system of reactions (8.7), (8.11) and (8.12) they are: 

CR= [R]+ K[R][s]+ Ks11[R][s]; [PS]= KKsp[R][S]; [s]=: c.,. (8.13) 

The equilibrium constant calculated from the concentrations of reacting 
species, both solvated and non-solvated (i.e. disregarding the solvation equilibria) 
depends, of course, on the strength of salvation. For the reaction (8. 7) it is given 
by: 

Kett 
[P]+ [PS] 
[R]+ [RS] 

Taking into account (8.13), this can be transformed into: 

=KI+ KspC, 
Kett 

1 + KsRCs 

(8.14) 

(8.15) 
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The effective constant is thus higher for strongly solvated products and lower 
for strongly solvated reactants. When KsRC, and KspC, >> I, the effective 
equilibrium constant is roughly proportional to the ratio of the equilibrium 
constants of solvation of products and reactants: 

Ksp 
K =:.Kett 

Ks11 
(8.16) 

One should not expect significant deviations of the volume and energy of 
vaporisation of molecular complexes from additivity (at least in a system of 
uncharged particles). Therefore the effects ofnon-ideality considered above might 
be important for the chemical reaction (8. 7) but, to a first approximation, they can 
be neglected for the solvation equilibria. Combining the effects of non-ideality in 
the chemical reaction (8.7) with those of solvation, the effective equilibrium 
constant of (8.7) can thus be written as: 

In Ke11 (S) =In Ks!' + ~v -3 ~u 
· Ksu Vs Us 

(8.17) 

The terms on the right-hand side of (8.17) represent the balances of (i) the 
'solvability', (ii) the volume, and (iii) the energy of molecular interaction between 
products and reactants. The variation of the effective equilibrium constant of a 
chemical reaction in a series of solvating media with respect to the reference 
solvent 'S0 ' can then be expressed as: 

Although the solvability terms might constitute the major part of the variation 
of free energy any detailed study of solvent effects must also take into account the 
non-ideality terms. 

8.1.3 
Kinetic studies 

Equilibrium constants (standard free energies of reaction) provide us with a 
relative (referred to the reverse reaction) measure of chemical affinity. A more 
direct measure (but also more difficult to obtain, either theoretically or 
experimentally) is the reaction rate constant (standard free energy of activation). 
The rates of chemical reactions can be described theoretically using approaches 
based on a quasi-thermodynamic model. These include, inter alia, the Arrhenius 
equation as well as the model of the transition state developed by Eyring [I]. 
Another description is based on the kinetic theory of gases and is known as 
collision theory (Lewis [2], Trautz [3]). Non-equilibrium thermodynamics has also 
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been successfully applied to the description of the kinetics of chemical reactions 
(Kramers [4], McCoy and Carbonell [5]). 

The transition-state model is based on the idea of a chemical equilibrium 
between the ground state of the reactants and their state on the top of the potential 
barrier of reaction (transition state, activated complex). The motion achieving the 
final transformation of the activated complex into products is taken to be an 
oscillation of relatively low frequency, m*. The rate of a chemical reaction is thus 
the product of the frequency m* and the concentration of the activated complex. 
The latter is calculated using the law of mass action for the activation equilibrium 
and statistical mechanical formulae for the corresponding 'equilibrium constant'. 
One of the partition functions involved is that of oscillation with frequency m*, 
i.e. kT!hm*, which results in the cancellation of this frequency. This then leaves 
the factor kT/h as a general frequency of the attempts to pass the potential barrier 
for any reaction: 

kTe ( M#J 
k=hexp - RT (8.19) 

The fundamental problem connected with this model is that the frequency of 
oscillations along the reaction coordinate at the top of the potential barrier, m*, 
(although cancelled in the final equation) becomes an imaginary value. Again, the 
rate of formation of the activated complex is arbitrarily assumed to be much faster 
than that of any reaction. In other respects this model provides a convenient 
calculation of the standard free energy of activation, t,.P = t,.£1 - rt,.Si by 
employing statistical formulae. 

The molecular collision model successfully describes experimental data on a 
large number of gas and condensed phase bimolecular reactions [6]. The rate of 
reaction is calculated as the number of collisions of molecules having kinetic 
(energy along the line of mutual approach) higher than that of some required value 
£*: 

(8.20) 

in which µAB is the reduced mass. Due to the compensating effects of masses and 
radii of molecules, theoretical values of the pre-exponential factor (the term in 
square brackets in (8.20)) vary in a relatively narrow range tJ= 10 10 -10 11 s-1. 

Pre-exponential factors higher than predicted by this theory (positive activation 
entropy) are explained either by invoking a chain mechanism or by the distribution 
of energy over a number of oscillators [6]. According to the latter model, the 
vibrational energy of a large number of weakly interacting oscillators may be 
concentrated in one crucial degree of freedom, thus causing an elementary act of 
chemical reaction. This theory yields the rate constant as a function of the height 
of the potential barrier E* and the number of oscillators s: 
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k2 == zO e -:;;.I (E* /.~Tr 
1=0 I. 

(8.21) 

This model was originally developed by Hinshelwood, Fowler and Rideal [7] to 
explain monomolecular reactions activated by molecular collisions. In general, zi 
can be considered as the frequency of attempts to pass the potential barrier. For 
example, the rate constant of molecular rotation is given [8] by: 

ki == 2r(s + 112) v(E*)112 e-;;;. I (E* I RT)' 
r(s) kT i=O i! 

(8.22) 

in which v = (E*/4n21) 112 is the frequency of rotational oscillations of a molecule 
in the ground state whilst for the transition state a free rotation along the reaction 
coordinate is assumed. 

Lower than expected reaction rates (negative activation entropy) can be 
interpreted as arising from a specific mutual orientation of reactants being 
required for an elementary act of a chemical reaction. Similar factors decreasing 
the rate of chemical reactions with respect to that given by the number of binary 
collisions are steric hindrances. They can be described by introducing equilibria of 
structural transformation ofreactants into chemically active forms. Due to the high 
potential energy of these forms they are present in small amounts and are 
practically independent of temperature. Formally, these stages contribute towards 
the entropy of activation alone but only at low temperatures2. 

For completeness, it must be mentioned at this point that reactions can also be 
inhibited by the 'spin conservation rule'. A good example of where this applies is 
in the reactions of molecular oxygen with organic compounds because such 
reactions must include either the occurrence of spin crossover or the formation of 
radicals. In other words, the spin conservation rule can be overcome either by a 
spark causing the atomisation of molecular oxygen followed by a radical chain 
reaction or by the formation of a catalytic spin crossover complex. These 
examples also reveal the principal difference between equilibria (independent of 
the reaction path) and kinetics (which is dependent on the path). 

Within the framework of non-equilibrium thermodynamics, a chemical reaction 
is considered as a stochastic process of molecules crossing a potential barrier via 
many-quantum excitations actuated by molecular collisions. The reactants are 
considered as distributed among some number (sN) of closely spaced energy levels 
and the molecules on the highest level are assumed to transform irreversibly into 
the products. The probability of transition from level to level due to interaction 
with the heat bath (vibrational motion of surrounding molecules) is given by the 
non-diagonal matrix elements of the corresponding Hamiltonian. Under steady 
state conditions this model yields [9] the first order reaction rate constant as: 

2 At kT2 !J.E the amounts of active forms become lemperature dependent. 
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(8.23) 

in which '/iro is the energy spacing between the levels of reactants and tiv is the 
energy spacing of the heat bath. The numerator in the second exponential in (8.23) 
is then the height of the potential barrier. This tenn corresponds, therefore, to the 
usual exponential describing an activation process. The argument of the first 
exponential is the height of the potential barrier (s,vffi) with respect to the energy 
spacing in the heat bath. By expanding the first exponential into a series and 
truncating it at the sN""th term we obtain an equation similar to that of the model for 
the distribution of energy (8.21 ): 

k1 = ~sN[~)2.£1(hsN~/ hv )'exp[- sNnw) 
k'I'i,ath i=O 1· k'I'i,ath 

(8.23a) 

The potential barrier height in (8.21) can be identified with E* = N1,ns,v(O; the 
energy level spacing in the heat bath can be assumed to be of the order of RT 
(Jlv = kT). Equations (8.21) and (8.23a) then yield nearly identical dependencies of 
the rate constant on temperature and potential barrier height. Both these models 
predict a certain parallelism in the variations of entropy and internal energy of 
activation, i.e. the isokinetic relationship (IKR) (which will be considered in 
Section 8.4). 

The transition-state model seems to be the most comprehensive and 
comprehensible. It allows one to draw, at least qualitative, conclusions about the 
nature of the transition state and the mechanism of reaction. The kinetic theory of 
gases provides a clear physical significance of the kinetic parameters of 
bimolecular reactions in gases. The stochastic model, on the other hand, is more 
applicable to reactions in the condensed phase, where the interactions of 
molecules should be described using the concept of a molecular field rather than 
that of molecular collisions. 

8.1.4 
Multidimensionality of variations. Reference reactions 

As has already been mentioned above, a modification of a reaction mixture is 
connected with a simultaneous variation of more than one of those parameters 
detennining chemical affinity. By varying a substituent, one changes potential 
(electronic) energy, masses and volumes of particles and their moments of inertia 
as well as vibrational frequencies. In the condensed state free rotation is fairly 
damped and it is reduced to rotational oscillations depending on molecular 
properties (moments of inertia) as well as on parameters of intermolecular 
interactions. The latter are governed by intermolecular distances (molecular 
volume) and electric properties of molecules (dipole moments, polarisability). 
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This shows that, in studies of variations of reactivity, the independent variable is 
practically always a vector: 

(8.24) 

As an assumption (supportable by some arguments), the variations of all 
components of Q but one can often be disregarded. Table 8.1 shows the results of 
calculations of the contributions from translational, rotational, vibrational 
(neglecting lattice vibrations) and electronic partition functions to the molecular 
free energy of halogen-substituted benzene: 

f ~ 1 [ hv ] E - = canst - In m 2 - In (1AI 8 I c )2 - L In 2 sinh ___I!!!_ + - (8.25) 
kT 2kT kT 

in which m is molecular mass and h 18 , le are the moments of inertia about the 
respective three axes and the subscript int refers to the internal vibrational degrees 
of freedom. The potential energy E was obtained by MNDO calculations on 
optimised molecular structures (HyperChem3®) as the 'total energy'; the same 
program was used to determine the moments of inertia and vibrational 
frequencies. 

According to Table 8.1, the variations of the potential ('total') energy E of a 
molecule are indeed much higher than the variations of translational, rotational 
and vibrational contributions. However, the standard free energy of reaction is the 
difference of molecular free energies of products and reactants. Therefore, large 
variations of electronic energy can be cancelled out whilst the variations of minor 
contributions (e.g. moments of inertia) will not. When a reaction is studied in a 
number of weakly solvating solvents, the observed variation of reactivity might 
originate either from a variation of the molecular volume of the solvent or from a 
variation of the energy of weak molecular interactions. 

Table 8.1. Variations3 of energy (in kcal mor 1) of molecules of mono-substituted benzene, 
C6HsX, and of translational, vibrational (for 30 normal vibrational modes) and rotational 
contributions to the free energy with respect to the iodine-derivative calculated at 303 K 

Substituent Br Cl F 

Total Energy 0 -150.35 -311.45 -3189.64 
-RTLlnzv 0 0.264 0.708 2.332 

-R7lnm 3/2 0 0.235 0.535 0.678 

-R7ln (J,IJz) 1/2 0 0.139 0.368 0.623 

3 Data in Table 8.1 are referred to the iodine derivative (and not to the unsubstituted benzene) in 
order to get comparable results of semi-empirical quantum chemical calculations using the 
same set of orbitals (sand p). 
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Fig. 8.1. The variations of the terms of (8.25) as functions of the variation of binding energy in 
halogen substituted benzene: f, = -RITlnzv (1 ); -Rnn m312 (2); -RT!n (J,/yf,) 112(3); and -RT!n v 
(4) 

Note also, that in the sequence F, Cl, Br, I several apparently independent 
parameters, namely molecular volume, molecular mass, vibrational temperature, 
moments of inertia show variations (Fig. 8.1) closely related to the variations of 
binding energy (total energy less the energy of isolated atoms). All these 
parameters constitute a multidimensional vector Q. 

For any reaction, there are several parameters most strongly affecting the 
reactivity. They can be selected based on the actual reaction mechanism and 
characterised by the parametric sensitivities au;aq;, u denoting the standard free 
energy ofreaction (activation) or a property directly connected with it. 

Significant effects can be expected from the variations of the parameters q, 
having 8U/8q; above a certain level. These parameters constitute the vector q. The 
variations of reactivity observed in a given reaction series characterised by the 
vector Q thus originate in variations of the components of Q belonging to the 
intersection Qr.q. If this intersection is multidimensional then any results 
obtained cannot be unambiguously interpreted. It is possible to reduce the number 
of variables characterising a reaction series to one by employing a reference 
property as an independent variable. The variation of reactivity (or some physical 
property connected with reactivity) R of a reference substance in a reference 
reaction can be measured for a given type of modification of reactants or solvent. 

A single empirical parameter therefore replaces a vector of theoretical 
parameters. The behaviour of the reference property can be thoroughly 
investigated on the basis of a molecular model, thus providing an indirect way of 
theoretical interpretation of the observed variations of reactivity. 

The problem of multidimensionality is thus transformed into the problem of a 
correct (fortunate?) choice of the reference reaction and reference property. For 
example, in the Gutmann scale of donicity [ 1 O], SbCl5 was chosen as a reference 
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substance and its heat of complexation with molecules in dilute solutions in 
dichloroethane (DCE) was taken as a reference property. In the Hammett scale of 
reactivity [ 11], substituted benzoic acids and the constants of their electrolytic 
dissociation were chosen as reference substance and reference property 
respectively. Common sense suggests that the stability of the molecular complex 
of an acid with a number of bases must be proportional to the donor number of the 
bases. On the other hand, the reactivity of a compound modified by substituents 
and involved in reactions of nucleophilic or electrophilic substitution must follow 
the Hammett rules. The reference object must, therefore, have some crucial 
parameter in common with the investigated reaction or, in other words, the 
reference and investigated reactions must be closely related. In such cases, we can 
expect a correlation between the reactivity U and reference property R. 

Another requirement for the reference substance or reaction is that the 
corresponding vector of parameters QR determining the reactivity R must be, as far 
as possible, one-dimensional. In other words, the parametric sensitivity with 
respect to one parameter must be much higher than those with respect to all other 
parameters. Having a set of such reference objects we would then be able to 
analyse the behaviour of the system using multidimensional regression and 
evaluate the contributions of different mechanisms. 

One-dimensionality of variations in a reference object can be achieved by 
employing a reference compound showing extremely strong properties (e.g. a 
strong electron acceptor such as SbC15 for donor numbers or a strong electron 
donor such as tri-methylphosphine oxide for acceptor numbers [12]). On the other 
hand, a reaction can be virtually insensitive to any other effects but one (the 
electrolytic dissociation of benzoic acid is seemingly sensitive only to the electron 
distribution in the aromatic ring). 

Suppose that the molecular parameters varied in a reaction series constitute the 
vector Q. The investigated and reference properties can then be defined as 
functions of Q: U(Q) and R(Q). The variations of these properties originate from 
the variation of parameters constituting the vectors Qu and QR that correspond to 
the highest sensitivities. The observed changes (very rarely is an experiment 
designed for the observation of zero changes!) of both U and R signify that 
intersections of Q and Q are not void: 

(8.26) 

in which Z is a void set. The physical significance of these observations depends, 
however, on whether the changes in U are caused by the intersection unr or not. 
If there is a non-void intersection of the vectors u and r: 

unr=p:;t:Z (8.27), 

then the observed correlation might reflect a dependence U = f{R). This actually 
happens when the observed variations of U and R are caused by variations of the 
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same independent variable(s). The correlation of U and R can then be considered 
as a functional dependence defined parametrically: 

U = f (p) ; R = <p(p) (8.28) 

and this situation is highly probable when the dimensions of both qu and qR are 
small. 

On the other hand, if the dimension of qu is large (the dimension of qR we 
assume to be small) then the observed variations can be caused by the components 
of u not belonging to p. Unfortunately, these effects can completely mask the 
effects due to the components belonging to p. Such variations of U and R 
represent then a pseudo-correlation that arises from the multidimensionality of the 
variable Q. 

Also an absence of variation of U over some range of R (a horizontal line in a 
graph) does not necessarily mean that unr = p = Z. The multidimensionality of u 
might cause the effects of variations of u, not belonging to p to compensate those 
of u1 belonging to p. In order to get a physically significant correlation the vectors 
u and r must be of small dimensions and their intersection p must be not void. 

This is, in fact, a mathematical formulation of the condition that the 
investigated and reference reactions must be similar. We see that the introduction 
of a reference property does not solve the problem of multidimensionality. In 
order to obtain a physically significant correlation the r4erence reaction must 
comply with the requirement of one-dimensionality and the investigated and 
reference reactions must be similar. 

8.2 
Linear free energy relationship. Modification of reactants 

Experimentally, a large number of linear relationships have been established 
between standard free energies of reaction (and activation). One of the best known 
correlations is the Hammett equation. Such relationships are known as linear free 
energy relationships (LFER). A linear relationship between standard free energies 
of equilibria involving identical modifications of a reactant can be established on 
the basis of a simple rule that the variations of molecular free energy due to a 
given modification are equal for a number of similar molecules forming a class 
and differ by a constant factor for the molecules belonging to different classes. 

Suppose that one of the reactants taking part in the reaction ofa general type: 

(8.29) 

is systematically modified by substituents. Apparently, one of the products must 
also be similarly modified. Let us assume that they are the reactant 'l' and the 
product '1 '. Stoichiometric coefficients corresponding to these molecules must be 
identical. The law of mass action for (8.29) can then be written as: 



262 8 Chemical Correlations 

=0 (8.30) 

Separating the constant and varying parts (over the reaction series), we get the 
equilibrium constant of (8.29) as: 

In K(s) = L 1n[P1 ]'
1'1 - L ln[R, ]'R· =In Q+ <; 1 (in q P, (s)-ln q 111 (s)) (8.31) 

J 

in which the symbol 'S' signifies the modification by the substituent 'S'. The 
variation of the logarithm of the equilibrium constant with respect to the reference 
substituent 'O' becomes: 

In K(S) = <; 1 {(1n q P. (s)- In q P. (o ))-(1n q 11 (s)- In q 11 (o ))} (8.32) 
K(O) I 1 I 1 

The terms in square brackets are the variations (in units of kl) of molecular 
standard free energies, j; = -kTinq" of the product 'I' and the reactant 'I' 
modified by the same substituent. Molecules of reactant 'I' and product 'I' 
belong, most probably, to different classes and the variations of their free energies 
must differ by a constant factor: 

8fp (s)=fp (s)- fp (o)=a8f11 (s) 
I I I I 

(8.33) 

This results in: 

K(S) ( ) 8/111 In-=-r 8if, (s)-8if (s) = -r (a- I)-
K(O) -,,1 11 111 -,,1 kT 

(8.34) 

Note that when a= 1, i.e. when the reactant and product are (nearly) identical 
molecules, no variation ofreactivity will be observed in a reaction series. 

The variation of free energy of the reactant 'l' is, in its turn, linearly related to 
the variation of molecular free energy of some reference compound R: 

(8.35) 

This allows us to write (8.34) as: 

In K(S) = -b (a -1) 8/R (s) 
K(O) <; 1 kT 

(8.36) 

This equation holds for any reversible reaction hence also for the reference 
reaction involving the reference compound. In this case b = ba = I and a = aa. 
The logarithm of the ratio of equilibrium constants of a reference reaction 
involving modified and 'unmodified' (substituent 'O') reference compounds can 
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therefore be used as a parameter characterising the change in chemical affinity due 
to such a modification: 

(8.37) 

Comparing (8.36) and (8.37) we see that as characterises the variation of 
chemical affinity in a series of equilibria of an arbitrary type involving a reactant 
modified by substituents: 

I K,(S) _ 
n K,(O) - p,crs (8.38) 

in which 

(8.38a) 

Equation (8.38) is similar to the Hammett equation in which a substituent 
constanr4 a is defined employing the equilibrium of electrolytic dissociation 
(reference reaction) of the substituted benzoic acid (reference compound) but 
applied to characterise the rates of chemical reactions: 

(8.39) 

This equation successfully describes correlations of kinetic rate constants of a 
large number of reactions, which means that the principle of linear free energy 
relationship can be applied to the equilibrium of formation of the transition state. 
Although the effects of modification of the transition state might be thought to be 
completely different to those of the ground state, the general assumption of the 
principle of LFER holds: identical modifications of similar transition states must 
result in identical changes in the free energy. The ground and transition states can 
be considered as molecules belonging to completely different classes and the 
coefficient a in (8.36) can be imagined to be large and positive, large negative or 
zero but not a = 1 for which no correlation would be observed. 

The physical significance of the coefficient a is quite difficult to establish. In 
general, even the variation of molecular free energy due to a substitution cannot be 
expressed explicitly because the total energy E can only be obtained as a solution 
of the corresponding Hamiltonian. One can simulate these variations using 
quantum chemical calculations on actual molecules and thus estimate a 
'theoretical' value of a. Such an estimation is, however, just a numerical 
experiment. According to the data in Table 8.1 (above) the variations of the total 
energy calculated for halogen-substituted benzene are much higher than the 

4 The Hammett equation employs decimal logarithms which brings about the conversion factor 
2.3 (crs = 2.3cr) 
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variations of translational, rotational and vibrational contributions. However, the 
variations of the total energy caused by identical substitutions (modifications) of 
different molecules are astonishingly similar (see Table 8.2). They are practically 
identical for substituted benzene and naphthalene: the difference is far less than 
RT at 300 K. The variations in substituted ethylene molecules differ from those of 
the corresponding benzenes by less than 2RT. It is only in saturated hydrocarbons 
that substitution by halogens brings about changes in total energy differing from 
those observed in aromatic compounds (by 6 - 9R1). These results show that the 
basic assumption of the principle of the LFER is qualitatively correct with respect 
to the total energy. 

Table 8.2 Variations (with respect to the iodine derivative) of the total energy (MNDO 
calculations) due to substitution in molecules of various classes 

Br Cl F Br Cl F Br Cl F 

8£ A= 8£/8£rhx (8£ - 8EPhx)IRT 
(kcal mol- 1) 

---~-----~-------

Ph-X -150.3 -311.4 -3189.6 I I 0 0 0 
Naphth-X -150.4 -311.5 -3189.6 1.0002 1.0001 1.0000 -0.055 -0.057 -0.028 

C2l·hX -150.5 -312.0 -3191.0 1.0009 1.0019 1.0004 -0.219 -1.001 -2.335 

C2H5X -154.3 -316.7 -3192.5 1.0263 1.0170 1.0009 -6.6 -8.804 -4.951 

CiH7X -154.6 -317.0 -3193.1 1.0280 1.0179 1.0011 -7.019 -9.302 -5.949 

Table 8.3. Variations of the main components of free energy of meta-substituted benzoic acids 
and corresponding anions compared to the variation of the Hammet substituent constant (at 
298 K) 

EAc (kcal mor I) 

EAn(kcal mor 1) 

(£An - £Ac)/ RT 

Lin ZvAn - Lin ZvAc 

EAc (kcal mor 1) 

EAn (kcal mor 1) 

(£An - EAc)f RT 

Lin ZvAn - Lin ZvAc 

2.3Licr 

Br CJ F 

Absolute values 
-44997.156 -45147.546 -45308.529 -48187.051 

-44687.473 -44837.646 -44999.377 -47877.616 

524.851 525.217 523.951 524.430 
13.872 13.959 13.982 13.897 

Values with respect to those of the iodine-derivative 

0 -150.389 -311.372 -3189.895 

0 -150.173 -311.903 -3190.143 

0 0.366 -0.899 -0.420 
0 0.086 0.109 0.024 

0 0.092 0.046 -0.023 
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Fig. 8.2. The variation in the contributions to the standard free energy of ionisation of substituted 
benzoic acids from the total energy (A) and vibrations (B) as functions of Hammett substituent 
constants 

The product and reactant molecules must, however, be drastically different in 
order to get a substantial variation of the standard free energy. In fact, the 
variations of reactivity reflected by the Hammett substituent constants correspond 
to extremely small variations of the standard free energy of dissociation of 
modified benzoic acids. Theoretical differences of the total energies (MNDO) of 
the molecules of non-dissociated benzoic acid and corresponding anion exhibit 
variations, (although very small compared to the variations in these molecules 
separately) several times higher than the expected value of2.3Lia, see Table 8.3. 

Furthermore, the computed variations of LiE = EAn(S) - EAc(S) show no 
correspondence with the variations of substituent constants (Fig. 8.2). In fact, a 
good correlation could hardly be expected because the variations of LiE result from 
a balance of very large values corresponding to non-dissociated acid and anion. 
The same calculations show that the vibrational contribution (o~lnzv) is of the 
same order of magnitude as the variations of experimental substituent constants 
(Fig. 8.2 B). Therefore, experimental values might result from a complete balance 
of major effects, whereas minor contributions such as vibrations, solvation and 
non-ideality might contribute significantly to the Hammett constants (especially as 
the products (ions) drastically differ from the reactant (non-dissociated acid) with 
respect to molecular interactions). 

The variation of chemical reactivity can be also described directly by using a 
simplified model of interactions, i.e. calculating some part of the free energy 
whilst assuming other contributions to be constant. For example, the difference in 
the free energies of substituted benzoic acid in non-dissociated and dissociated 
forms can be represented as arising from the electrostatic interaction of the dipole 
moment of the C-X bond and the proton point charge in the molecule of non
dissociated acid [6]: 
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Eel zHµCX cose 1 
2 3cr==-==-----

. kT kTr~x D 
(8.40) 

in which zH is the charge on the OH proton, µex is the dipole moment of the C-X 
bond, 8 is the angle between the dipole moment and the line connecting its centre 
with the OH proton, D is an effective dielectric constant accounting for the 
shielding of the electrostatic field by electronic orbitals. Table 8.4 shows the 
results of such calculations for meta-substituted benzoic acids. According to these 
data, (8.40) predicts, in some cases, the wrong sign for cr. The difference between 
the electrostatic component Eetf kT and 2.3cr increases regularly in the series F, Cl, 
Br, I, which indicates some unaccounted for contribution, e.g. the non-ideality 
terms which must be considerably different for a neutral molecule when compared 
with a solvated cation and anion. 

Hammett substituent constants do not, therefore, reflect exclusively the intra
molecular properties but contain a significant intermolecular contribution. They 
provide us with a measure of reactivity originating from the variation of several 
parameters and establish a formal scale that can be useful in predicting the 
behaviour of similar molecules in similar reactions. The well-known example of a 
linear correlation of Hammett constants with the reaction rates of methanolysis 
concerns the esters of substituted benzoic acids. In this case, the investigated 
reaction includes a heterolytic cleavage of the COO-R bond, which is very similar 
to the reference reaction of proton dissociation. Such a scale of reactivity can be 
adjusted by a selective choice of objects or by employing additional parameters 
determined from other reference reactions such as has been done in the Taft 
system [ 13]. 

Table 8.4. Charge distribution, interatomic distances (AMI calculations5 HyperChemJ''), dipole 
moment of the C-X bond and the energy of electrostatic interaction of this dipole with the OH 
proton in molecules of meta-substituted benzoic acids. The factor I ID was assumed to be I 

x Atomic charges Distances µ ElkT 2.3cr 
(electron charge) (A) (Debye) 

x c H X-C X-H X-C 
--~--····-···-······-----···--··--·---·--··--·····-··- -~~---·--------·--------------~·-~---··-·------·---·---·-·--·---~----

H 0.14 -0.149 0.248 I.I 5.794 1.525 0.652 0 
F --0.1 0.075 0.248 1.354 5.965 -1.137 -0.458 0.782 

Cl -0.003 -0.082 0.248 1.698 6.198 0.643 0.240 0.874 

Br 0.066 -0.188 0.248 1.871 6.324 2.281 0.819 0.897 

0.158 -0.285 0.248 2.019 6.431 4.293 1.49 0.805 

5 The method AMI was found to provide the best agreement between calculated and 
experimental values of the dipole moments of substituted benzenes. 



8.3 Linear free energy relationships. Variation of solvent 267 

8.3 
Linear free energy relationship. Variation of solvent 

One of the drawbacks of the Hammett and related systems of substituent constants 
is that the reference reaction exhibits very small variations of free energy and 
these can only be determined exactly because of the extremely high (at least in 
theory!) precision of electrochemical measurements. The system of donor and 
acceptor numbers developed by Gutmann and his co-workers is based on very 
strong electron donor/acceptor properties of the reference compounds. It can be 
advantageously used for predicting reactivity in solvents forming Lewis acid-base 
complexes with reacting species. The donor number being the heat of reaction of 
SbCl5 with bases, measured in dilute solution in dichloroethane (DCE), 
corresponds to the standard internal energy (enthalpy) of the reaction of formation 
of an acid-base complex: 

A+B AB (8.41) 

The stability constant of such a complex is controlled by molecular parameters 
as represented by the statistical mechanical expression: 

(8.42) 

in which Q = zA8/zAzB are the contributions of translational, rotational and 
vibrational degrees of freedom and till is the (total) energy difference between the 
product and reactants. Neglecting rotational degrees of freedom of the reactants, 
the first two contributions can be written as: 

( 2rckT J-Yi 
Q,= ~µAB ; (8.43) 

The vibrational contribution can be found from the frequencies of the normal 
vibrations of reactants and products to be: 

Qv = fl2sinh~fl2sinh~/fl2sinh kT 
2hv A 2hv B 2hv AB 

(8.44) 

The standard entropy of(8.41) includes the derivatives 8lnQ/811: 

APO -RI [(~~]112 
2 Q (T. )]-}!__(8lnQ1,QrQvJ U0 - n r AB v 0 I (8.45) 

µAB kTo Ta ar- T=T,, 

The same quantity also enters the expression for the standard internal energy 
(see (3.71) and (3.72)): 
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(8.46) 

According to (8.43), the derivative for the product Q1rQr is -YiT0 and that for the 
vibrational contribution can be found by the numerical experiment of calculating 
lnQv for several temperatures around T0 and estimating the coefficient av of the 
linear regression equation lnQv = avr' + bv. 

Table 8.5 shows the computed components of the standard tree energy of the 
reaction of SbCl5 with bases in vacuo. The standard internal energies computed 
with respect to that of DCE (oe) are of the order of magnitude of the 
corresponding donor numbers and qualitatively follow (Fig. 8.3) in their variation. 
The absolute values (/...If) calculated for DCE are apparently too high whereas 
those for acetone and dioxane are too small. It must be mentioned that the 
computed ~ is sensitive to the details of the assumed structure of the acid-base 
complex. For example, the molecule of formamide (ja) can be oriented parallel to 
the bond Sb - 0 or perpendicular to it (ja (h) andfa (v) in Table 8.3). The standard 
internal energy of complexation in these two cases differs by 1.5 kcal. Of the same 
order of magnitude (2.3 kcal mar') is the mean square difference between the 
standard internal energy (i.e. the heat of reaction) and standard tree energy. 

The standard deviation of tie!RT0 (in the shown set of bases with respect to the 
mean value, last row in Table 8.5) is ca. 10.5 whilst that of lnQv is 2.7. Other 
components show much smaller variations (0.3 - 0.5) and may (to a first 
approximation) be disregarded. 

Table 8.5. Components of the standard free energy (in kcal mor 1 at T= 300 K) of the 
complexation of SbC15 with several donor molecules (dichloroethane - dee, acetic anhydride -
aean, dioxane - di, acetone - ae, acetonitrile - an, formamide - fa, dimethylformamide - dmf 
and dimethylsulphoxide - dmso ), calculated using the PM3 method (HyperChemJ") 

Solvent MIRT lnQ, -lnQ,, lnQv -avlT !1E1/RT -d.'{J/R --0E1 -OF Dn 
kcalmor' kcalmor 1 

dee -11.37 9.70 61.70 7.12 5.84 -5.02 41.03 0.00 0.00 0 
aean -17.51 9.53 61.73 2.72 5.64 11.36 45.83 3.76 0.91 10.5 

an -27.62 8.55 60.61 3.00 4.97 -22.15 46.08 10.17 7.17 14.1 

di -5.09 9.58 61.57 9.53 5.71 1.12 36.24 -3.65 -0.80 14.8 

ae -13.17 9.01 61.06 8.88 5.76 -6.90 39.40 I. I I 2.08 17.0 

fa (h) -21.29 8.53 60.74 2.65 5.67 -15.12 45.88 5.99 3.11 24.0 

fa (v) -23.96 8.53 60.74 2.70 5.82 -17.63 45.67 7.48 4.73 24.0 

dmf -24.00 9.50 61.34 6.26 5.95 -17.54 41.61 7.43 7.08 26.6 

dmso -41.21 9.14 61.42 5.40 6.05 -34.65 42.82 17.60 16.5 29.8 

Std.Dev. 10.53 0.48 0.43 2.75 0.30 10.25 3.40 
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Fig. 8.3. Standard internal energy ( o) and standard free energy ( +) of complexation of SbCls with 
bases (computed using the PM3 method, HyperChem3 ") as a function of donor numbers 

Vibrational contributions thus constitute the major part of the difference 
between the variations of~ and l'l~ and in detailed studies it must be taken into 
account. Donor numbers characterise, therefore, the relative stability of acid-base 
complexes with the precision of this term, i.e. ca. 30%. According to the principle 
of linear free energy relationships, the logarithm of the equilibrium constant of 
reaction (8.11) (of the basic solvent S with some molecule R showing acidic 
properties) must be proportional to the donor number of the base Dns: 

lnK 511 =a 11 Dns (8.47) 

The proportionality coefficient aR must reflect the acidic properties of R with 
respect to SbCl5 . Acceptor numbers [12] offer such a measure and the 
proportionality coefficient a11 can be calculated as: 

(8.48) 

in which 100 is taken as the acceptor number of SbCl5 and the conversion factor 
aR accounts for the difference between donor numbers and lnK. Donor and 
acceptor numbers may thus be used to characterise solvent effects in reactions. 
The effect of solvation on the equilibrium constant of a chemical reaction can then 
be expressed in terms of donor numbers as: 

K(S) K. K ( ) In---= In ___jjJ!__ ____!)Ji_= !la Dn - Dn 
K(So) Ks11 Kap s So 

(8.49) 

in which l'la = ap - aR represents the relative balance of acidic properties of 
products and reactants whereas the term Dns - Dns0 represents the donor 
properties of the actual solvent with respect to a reference solvent (S0). 
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We have thus obtained another linear free energy relationship involving 
empirical parameters characterising the ability of a molecule to form molecular 
complexes with Lewis acids. This accounts for solute-solvent interactions of a 
chemical nature, i.e. attractive interactions acting at short distances, saturated 
according to the stoichiometry of solvation, and resulting in species behaving (at 
least during about I 00 oscillation periods) like molecules. The variations of 
chemical reactivity due to solvation and non-ideality are then given by: 

K(S) ( ) [ I I ) [ I 1 ) ln--=11a Dn80 -Dn0 +!iv --- -311u --- (8.50) 
K(S0 ) v5 Vs0 u 8 u.\.0 

The terms on the right-hand side of (8.50) represent the balances (~) of 
'solvability', volume, and energy of molecular interaction of the molecules of 
products and reactants calculated with respect to a reference solvent (S0). 

8.4 
lsoequilibrium and isokinetic relationships 

A deeper insight into the origin of variations of chemical react1V1ty can be 
achieved when the 'temperature dependent' and 'temperature independent' 
components of the free energy (Mf! and ~5° or Mt and DS) are determined and 
analysed. Theoretical analysis of the contributions towards /1.E and ~ of the 
complexation of SbC1 5 with organic bases (shown in Table 8.5, above) 
demonstrate that ~5° is mainly controlled by the vibrational component whilst Mf! 
is governed by the total energy difference between product and reactants. 
However, even in such a case there is a certain correlation (Fig. 8.4A) between 
11.E and ~ arising from a concerted variation of ~E and the vibrational 
contribution. 

Experimental data quite often show more pronounced correlations between ~5° 
and Mf (see, for example, Fig. 8.4B) as well as between corresponding activation 
parameters which cannot be explained by the parallel variations of molecular 
mass, vibrational frequencies and total energy. This phenomenon is called the 
compensation effect or the isoequilibrium (isokinetic) relationships (JER, IKR). 
These correlations manifest themselves in (sometimes spectacular) intersections of 
van't Hoff and Arrhenius plots (hence the name IER, IKR). An intersection of 
several van't Hoff plots means that the equilibrium constant at a certain 
temperature is independent of the parameters (xi), the variation of which brings 
about the observed changes in ~E° and~. Mathematically this can be written as: 

dR in K = I(a11so -_I_ 811£0 Jdx, = O 
i ax, T,"' axi 

(8.51) 

in which 7';50 is the isoequilibrium temperature. 
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Fig. 8.4. Theoretical correlation between t:.S1 and Mf1 for the reaction of SbCls with organic 
bases (A) and experimental isoequilibrium relationship [14) for the formation of cyclodextrin 
inclusion complexes (B) 

It is highly improbable that a random variation of several independent parameters 
x, in a reaction series results in the same T.,0 • One possibility for the observation of 
an IER (IKR) is that only one parameter (x,J is varied in a reaction series. The 
condition (8.51) is then transformed into: 

or 

at..S0 1 3M0 
--dxk ----dxk =0 

axk I;'° oxk 

d!1S0 - _l_ dM0 = 0 
T;.w 

(8.52) 

(8.53) 

which leads to a linear relationship between ~ and Aft, provided that none of 
the partial derivatives in (8.52) is zero. The isoequilibrium (isokinetic) 
temperature is then the ratio of the parametric sensitivities of Aft and~: 

aM0 ;at..S0 
T --- --

iso - axk axk 
(8.54) 

The isoequilibrium temperature is thus informative with respect to the 
relationships controlling tiS and Aft. Another possibility for an isoequilibrium 
(isokinetic) relationship is that several parameters in a reaction series vary in a 
concerted manner, so that a linear relationship exists between the variations of 
these parameters: 

(8.55) 

Such a possibility must be very common, at least when parameters are varied 
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over a narrow range6. In such a case (8.51) is transformed into: 

(8.56) 

This condition can be fulfilled provided none of the sums is zero. An 
intersection of van't Hoff plots at one point may then be observed but the 
isoequilibrium temperature does not reflect exclusively the parameters of a 
reaction mixture. It includes also the coefficients a; belonging to the experimental 
set-up: 

(8.57) 

It is even possible that for each parameter either a/1S1ax; or a!llf!1ax, is zero but 
the sums in (8.56, 57) will be non-zero. This case corresponds to a pseudo
correlation arising from the multidimensionality of variations discussed above. 
The relationship between l1S and !llfl in this case is also linear: by multiplying 
(8.56) by dxk, we transform sums into complete differentials of f1S and f.J!l, thus 
obtaining (8.53), which yields upon integration a linear relationship: 

0 1 0 
!iS = - !iE + Const 

T,.rn 
(8.58) 

This shows that the experimental set-up plays an important role in studies of 
IER and IKR (this apart from the problem of the statistical reliability of either the 
linearity of (8.58) or the intersection point). Unfortunately earlier theories of IKR 
(IER) paid little attention to the effects of experimental design and tried to find a 
formalism predicting an intersection of van't Hoff or Arrhenius plots irrespective 
of the mode in which experimental data are obtained. It was therefore assumed 
that an IKR can only be observed when one parameter alone is varied in a reaction 
series [14]. In fact, this requirement provides an easy physical interpretation of the 
isokinetic temperature. The necessary requirement for an IER (IKR) when only 
one parameter is varied is that atJ.S;ax and atiftl!ax are non- zero. This means that 
the standard entropy and energy of reaction must depend on the same parameter 
varied in the actual reaction series. When several linearly related parameters are 
varied (which, as we have seen, is a common occurrence) the IER (IKR) can be 
observed but its interpretation requires the knowledge of (i) the relationship 
between the varied parameters (coefficients a;) and (ii) the parametric sensitivities 
atis1ax, and a!llf!1ax,. 

6 A periodic variation of properties might be observed when we study objects through several 
rows of the Mendeleev Table (which is very rarely carried out). A random variation of some 
parameters while others are systematically varied might, in theory, be possible but difficult to 
imagine. 
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8.4.1 
Statistical-mechanical model of the IER in ideal systems 

An analysis of the IER or IKR must therefore start with the determination of what 
parameters are really important for the actual reaction and what are the parametric 
sensitivities of /\.!fl and ~- Statistical mechanics provides a detailed analysis of 
the possible results of variations of the parameters controlling /l.£l and /I.ff in a 
reaction series in ideal systems, i.e. when the state of a molecule is determined 
exclusively by intra-molecular parameters. For example, the equilibrium constant 
of a bimolecular reaction: 

A+B c (8.59) 
given by (3 .66): 

l 3 1 h2 m 2 1 M 
lnKn(V,T) =In (----c_· J - + lnQn1(T)--

2rtkT mAm8 Ve RT 
(8.60) 

indicates that, besides the simultaneous variations of l1E and the masses of the 
particles, the modification of internal degrees of freedom might contribute towards 
the IER. Indeed the standard entropy and internal energy of this reaction according 
to (3.71) and (3.72) are: 

/I.So = - ln[ev(2nkµABTo )%] _ i +In [Q. (T )]-_!_(8 In Qnt) (8.61) 
R h2 2 '"1 0 T0 aT-' r=7i, 

/l.Eo = 11£-iRr - R(alnQ'"1) 
2 ° ar' . 7 =Ti, 

(8.62) 

Note that T0, i.e. the mean temperature around which the equilibrium constant 
is determined, enters both expressions. Depending on whether T0 is kept constant 
or varied in a certain way, the isoequilibrium relationships can be observed or not 
observed. 

Besides T0, the internal degrees of freedom (including all rotations) contribute 
towards both~ and /\.!fl in the form of the derivative (llT0)dlnQ!dr'. Among 
the internal degrees of freedom, rotations and vibrations of low frequency 
(hv< k1) have partition functions of identical form, f= T/8, where 8 is the 
characteristic rotational (ah2/8n 2Jk) or vibrational (hv/k) temperature. The 
logarithm of such a partition function depends on temperature as In T and: 

_!_(8ln~;nt) = _ _!_[f To - f roJ =-!in 
To 8T 1·-1· To -1 -1 - 0 l- l-

(8.63) 

in which /l.n = p - r is the balance of the number of rotational (and the low-
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frequency vibrational) degrees of freedom in products and reactants. We have thus 
defined f'..n as one of the parameters which (when varied in a reaction series) may 
give rise to an IER. The corresponding parametric sensitivity of~ is R whereas 
that of Af!1 is RT0• 

The total contribution of rotational and low frequency vibrational degrees of 
freedom to the standard entropy of reaction, lnQ-(l/T0)dlnQ/dr1, can be written 
as: 

(8.64) 

Note that the term in brackets in (8.64) contributes towards the entropy alone 
and thus destroys any possible IER. It can be considered as a weighted difference 
between the logarithms of the harmonic means of the rotational temperatures of 
products and reactants, related to the standard temperature T0: 

l I lj pp err' 9-; ~8 = n - L In[-'-) - - L ln[-1 ) 
n i=I To n J=I To 

(8.65) 

in which n = p + r is the total number of rotational and low frequency vibrational 
degrees of freedom in products and reactants. The contribution towards the 
standard entropy (8.64) can then be considered as a function of two parameters, 
f'..n and f'..8, the latter characterising the differences in the rotational (low frequency 
vibrational) spectra of products and reactants. In fact, f'..8 is a complicated function 
of changes in the number of degrees of freedom and corresponding characteristic 
temperatures. 

On the other hand, vibrations of higher frequency (hv/2kT0 > 2) do not 
contribute towards the standard entropy of reaction. Over this range of 
frequencies, the vibrational contribution can be approximated as7: 

In Qvh1 =-(I In 2 sinh ~J Products =-(I ~i Products 

2Ta Reactants 2Ta Reactants 

(8.66) 

The derivative (l!T0)dlnQvh/dr1 approaches the same value: at x > 2 the 
hyperbolic cotangent representing dln[sinh(x)]/dx approaches the constant value 
coth(x) = 1 and: 

1 (a In Q . ) Products 8 . 8 Products 8 
- -~h1 =- L ~coth~=- L ~ 
To aT T=7(, Reactanls 2To 2To Reaclants 2To 

(8.67) 

7 The hyperbolic sine for large arguments (x > 2) approaches 0.5exp(x). 
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The two terms contributing towards the standard entropy thus compensate each 
other. The derivative (8.68) represents the contribution of the higher frequency 
vibrations to the standard internal energy of reaction. It reflects the difference in 
the amount of vibrational (higher frequency) energy in products and reactants: 

(8.68) 

Table 8.6 summarises the contributions towards standard entropy and internal 
energy from rotations and vibrations. The variation of the balance, tin, of the 
number of vibrational/rotational low frequency lines can produce correlated 
changes in tiS1 and flEl, and hence an IER. This type of IER corresponds to unit 
slope of the dependence l'!S1!R vs. flEllRT0. Indeed the slope of the regression line 
in Fig 8.4 is ca. 0.8, which is not far from 1. A variation in the distribution of 
vibrations of higher frequencies contributes to tilf1 alone and thus destroys such a 
correlation causing a deviation of the slope of the IER from 1. 

It must also be pointed out that tin,,10 and 8,,10 are usually not independent 
variables: it is mainly the changes in the frequencies that cause the changes in the 
number of low-frequency degrees of freedom of products and reactants. However, 
the value of tin,, might be controlled by the symmetry properties of molecules. For 
example, the temperature derivative of the vibrational contribution towards the 
internal energy of complexation of SbCl5 computed earlier (Table 8.5) exhibits a 
peak towards smaller values for acetonitrile (see Fig. 8.5). This peak has its origin 
in the higher symmetry of the molecule of acetonitrile. This molecule has 
practically an axial symmetry (C"') that brings about the lowest possible increase 
in the number of vibrational modes (by 1) upon complexation. 

Table 8.6. Contributions of rotations and vibrations towards the standard entropy and internal 
energy of reactions 

Rotations 
[ 

P, e 11, eJ 
!o,,n, - l:Jn_!!..- Itn-2.. 

1=1 Ta i=I Ta 

tin, 

Low-freq. vibrations 

High-freq. vibrations 0 
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Fig. 8.5. A correlation between computed values of the temperature derivative of In Q, and the 
total energy change in the reaction of complexation of SbCls with organic bases. 

Other molecules shown in Fig. 8.5 have C2v symmetry, which allows twisting 
modes in SbC/5-Base complexes, which, in tum, results in an increase in the total 
number of vibrations by 6. A slight correlation between !1E and a/T0 illustrates the 
connection between vibrational frequency and the strength of chemical bond and 
hence the change of the total potential energy l!..E. A high absolute value of aJT0 is 
apparently due to high-frequency vibrations (the last row in Table 8.6). 

8.4.2 
The IER in gas-phase reactions 

Moelwyn-Hughes pointed out [6] that for gas phase reactions no simple and 
reliable correlation between l!..F-f and l!..S° has been found. Large variations in the 
equilibrium constants of the dissociation of hydrogen halides are due to the 
differences in l!..F-f whilst l!..sD remains approximately constant. In fact, these data 
(see Table 8.7) show small variations in l!..S° in parallel to those of l!..F-f. These 
changes, as well as absolute values of l!..S°, can be explained in terms of 
translational, rotational and vibrational contributions. Vibrational and rotational 
contributions towards the equilibrium constant of the reaction of dissociation of 
hydrogen halides were calculated using available spectroscopic data [ 15]. The 
vibrational contribution (I1[2sinh(hmc/2k7)r1) proved to be temperature 
dependent and the corresponding derivative (aJT0) was calculated using a linear 
regression method. The results are shown in Table 8.8 and illustrated in Fig. 8.6A. 
Calculated standard entropies of reactions coincide with the experimental values 
(curves 3 and 2 in Fig. 8.6A) and both slightly increase with increasing!!..£°. This 
correlation is not, however, caused by the variation of one parameter in a reaction 
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series but is a result of simultaneous and sometimes compensating changes in all 
constituting terms (see curves I, 4, 5, 6 in Fig. 8.6A). 

Table 8.7 Thermodynamic parameters of the equilibria of dissociation of hydrogen halides in the 
gaseous phase at 298 K [6] 

Reaction K 

2HCI H2 + Cl2 5.50 x 10-34 -4.74 43.96 

2HBr H2 + Br2 1.05 x 10-19 -5.07 24.38 

2HI == H2 +12 5.01 x 10-4 -5.20 2.95 

Table 8.8 Thermodynamic parameters for the equilibrium of dissociation of hydrogen halides 
calculated according to (8.61) and (8.62) from the spectroscopic data 

HX EJ;, lnQ1r lnQ, lnQv -a/To lnK llE°IRTo tl.S°!R 
(kcal moi- 1) 

-----·~-----·-·--······-·-···-·-···-·----·--------··--------·--·----------·-·-----·-------.--------------· 

HCI 43.940 
HBr 24.370 

HI 2.300 
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Fig. 8.6. Correlation between llE° (computed) and other components of the standard free energy 
of dissociation of hydrogen halides in the gaseous phase (A): In Q,, (I), calculated tl.S°IR (2), 
experimental tlSJ/R (3), --(l/7)alnQvlar- 1 (4), lnQ, (5) and In Qv (6). The right-hand graph (8) 
shows the correlation between vibrational frequencies and dissociation energy in diatomic 
molecules (X2, HX and H2) 
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The overall effect is mainly due to the contributions towards the entropy from 
translational and vibrational partition functions whilst the temperature dependence 
of the vibrational partition function (- ajT0) causes the variation to be in the 
reverse order (see Fig. 8.6A). That the vibrational contribution follows the 
changes in the balance of dissociation energies (controlling t'1If1) is not a 
coincidence (which can be said about the translational contribution). For diatomic 
molecules the frequency of vibration is directly related to the square root of the 
ratio of the dissociation energy and reduced mass: 

V=!!_~Ejµ 
7t 

(8.69) 

in which a is an empirical constant entering the Morse potential and E is the 
dissociation energy. This is supported by experimental data (Fig. 8.6B) and results 
in: 

1 
lnQv =cons!+ lnEHx --lnEx 2 l 

(8.70) 

1 
M =cons!+ EHx - 2Ex2 (8.71) 

Both EHx and Ex2 are varied in the considered reaction series and these 
variations are concerted according to the principle of linear free energy 
relationships. In such a case an approximately linear relationship should exist 
between lnQv and !1E and is observed experimentally (curve 6 in Fig. 8.6A). A 
concerted variation of dissociation energies and masses of molecules also 
contributes towards the observed IER. The observed correlation is therefore not a 
completely 'genuine' isoequilibrium relationship but on the other hand is not a 
result of a completely 'coincidental' variation of masses of particles, vibrational 
frequencies and binding energies. A true IER (or !KR) connected with the 
variation of a single parameter is therefore not very probable for gas-phase 
equilibria. 

8.4.3 
lsokinetic relationships 

Historically, the compensation effect was mainly investigated as concerning 
kinetic data on reactions in solutions, so much so that the name IKR has often 
been applied to isoequilibrium relationships. A theoretical description of the !KR, 
employing the model of distribution of energy [ 16-19], provides a joint variation 
of activation energy and activation entropy when either the height of the potential 
barrier (£*) or the number of oscillators (s) is varied. In other words, the 
corresponding parametric sensitivities of !ii! and ~ in this model are non-zero. 
According to this model the reaction rate constant can be written as: 
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k = v e R7 """"" =v exp -----
_E., s.·-I (E*/ RTY (/)S# M#J 

0 f:t i! 0 R RT 
(8.72) 

in which v0 is the average frequency of the attempts of reactants to pass a potential 
barrier; E* is the height of the potential barrier and s is the number of oscillators. 
Experimental data on the temperature dependence of the activation energy of 
molecular rotation in ethylene glycol and water yields= 9 ands= 22, respectively 
[8]. This indicates that the oscillators involved are not the internal degrees of 
freedom but are apparently connected with molecular interactions, e.g. via 
hydrogen bonding. The parameter of a purely ideal model (s) thus reflects 
(indirectly) the non-ideality ofliquids. 

This model gave the first clear physical interpretation of the isokinetic 
temperature. According to (8.73), the activation energy and activation entropy 
(standard internal energy and standard entropy of activation) can be written as8: 

The variations of !:i..Jf and t!.S resulting from the variations of the potential 
barrier height E* (at constant s) and from the variations of the number of 
oscillators s (at constant E*) as predicted by (8.73) and (8.74) are shown in Figs. 
8.7A and 8.7B respectively. 
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Fig. 8.7. Correlation between t>S# and M! due to the variation of potential barrier height at 
constants (A) and due to the variation of sat constant£* (B) 

' Assuming, to a first approximation, that Vo is temperature independent. 
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According to these curves the variation of potential barrier height at constant s 
generally results in positive isokinetic temperatures (positive d!':.S!d!Vt). The 
variation of s at constant and small E* results in a relationship between t:.S and 
Mt with a maximum. At higher (and constant) E* the variation of s is connected 
with a decrease in t:.S on increasing l'!.F!, i.e. it corresponds to negative isokinetic 
tern peratures. 

The physical significance of the isokinetic temperature becomes clear when we 
consider the case of high potential barriers. For the potential barriers 
E*IRT» (s - 1), (8.73) and (8.74) can be considerably simplified by substituting 
the sums by their largest terms. The activation energy and entropy then become: 

M# = E * -(s -1 )RTo (8.75) 

-=(s-l)ln - -ln(s-1)!-(s-l) M# [ E*) 
R RTo 

(8.76) 

The case of variations of E* at constant s is relatively simple: The activation 
energy is a linear function of the potential barrier height E*. On the other hand, 
the dependence (8.76) can be linearised with respect to E over a narrow range of 
variations around the average value £ 0• as: 

-=(s-l)ln - 0 + • -ln(s-1)! M# [ E•) (s-l)E* 
R RT0 E0 

(8.77) 

Combining (8.75) and (8.77), we get: 

M# ( )[ [ E~ ) (s - 1 )RT l ( ) (s - 1) # --= s-1 In - + • -1 -In s-1 !+--M (8.78) 
R RT0 Ea Ea 

The inverse isokinetic temperature is then obtained as: 

RT;.'° 
(8.79) 

This means that the isokinetic temperature reflects the energy per oscillator 
E0.l(s - 1) required to pass over the average potential barrier (in the reaction 
series). 

A linear dependence of activation energy on temperature (8.75) can be 
compared to a similar relationship that follows from the Kirchhoff law: 

(8.80) 

in which 1'!..£0# is the standard internal energy of activation at absolute zero and 
l'!..C. is the difference in heat capacities (at constant volume) of the activated 
complex and the ground state of the reactants. According to (8. 76) and (8.81) the 
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potential barrier height, £*, equals the activation energy at absolute zero and the 
number of oscillators, s, is proportional to the difference in heat capacities of the 
reactants, i.e. to the number of degrees of freedom which disappear in the process 
of activation [ 16]: 

-(s-1)=+/J.Cv/R (8.81) 

In the case of variations of the number of oscillators the linearisation of the 
dependence (8.77) with respect to s is more difficult because the derivative of 
ln(s - I)! can not be obtained analytically. This derivative can, however, be 
approximated by ln(s - I) in the range of large s and by ln(s - 0.48) over the 
range of smalls= 2 - 10 (see Appendix 10.6). The derivative of !J.S with respect 
to sis then: 

o(M#J (E*J os R = In RTa -1- In x (8.82) 

in which x = s - I for s > I 0 and x = s - 0.48 for I 0 ~ s ~ 2. The activation entropy 
can then be represented (in a narrow range around s0) as a linear function of s: 

(8.83) 

Noticing that the variable s - I = (M!-E*)IRT0 , we get a linear relationship 
between the activation entropy and activation energy: 

--= 0 + In -- -1-lnx0 -----+l-s0 (8.84) M# M#(s) [ (E*J ](M# E* J 
R R R~ RTa R~ 

According to this result, the inverse isokinetic temperature equals the negative 
inverse mean experimental temperature less some contribution depending on the 
ratio of the average effective number of oscillators x0 and potential barrier height: 

1 1 ( E* J 
- T,,,·o = To 1- In XoRTo 

(8.85) 

The deviation of the magnitude of the isokinetic temperature from the mean 
experimental temperature is determined therefore by the logarithm of the energy 
(in units of RT1J per average effective oscillator required to pass the potential 
barrier of reaction. A number of experimental isokinetic relationships have been 
explained using this model [ 17-19]. 

Mathematical formalism of the description of the IKR using a non-equilibrium 
thermodynamic model [9] is very similar to that just discussed because of the 
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essential similarity of the initial equations for the kinetic rate constant (8.72) and 
(8.23a): 

k "1 ( nro J 2 -~1 (hsNrol hv} ( sNnroJ =_,-'Os -- L.J exp ---
1 N kT;,ath i=I i! kTbath 

(8.23a) 

However, the interpretation of the isokinetic temperature is quite different. First 
of all the potential barrier height in (8.23a) is directly related to the 'number of 
oscillators' sN (E* = sNhro). This simplifies the description but excludes the 
possibility of negative isokinetic temperatures (that are observed experimentally 
and predicted by (8.85) in the case of varyings and constant E*). 

According to (8.23a), the isokinetic temperature is determined by the energy 
spacing in the system of levels of the heat bath (hv ). This spacing was believed to 
be connected with a line in the vibrational spectrum of the solvent9• A large 
number of IKR and IER have been analysed according to this model [ 14]. It was 
suggested that when a statistically relevant IKR is observed the reactions involved 
must proceed by identical (or at least very similar) mechanisms [9]. Indeed, 
beyond a purely coincidental intersection of Arrhenius plots (which is not very 
probable) a linear interrelation between apparent f:S1 (!!S) and Aff (Aft) in a 
systematically modified series of reactions implies a single equation describing 
rate or equilibrium constants and hence a single mechanism. This assumption 
proved to be very fruitful allowing, as it does, the classification of reactions of 
unknown or doubtful mechanism [14]. 

8.4.4 
Non-ideality as a source of an IER 

Employing the dynamic interpretation of equilibrium, it is possible to derive 
isoequilibrium relationships from isokinetic relationships and apply theoretical 
formulae described in the preceding Section to the description of the IER [6, 20]. 
However, we are able to obtain an independent explanation of the equilibrium 
compensation effect by analysing the origin of the fact that both IER and IKR are 
mainly observed in the condensed state. This observation suggests that the effects 
of non-ideality play an important role in both IER and IKR. Indeed, the possibility 
of a correlation between Aff and f:S1 can be demonstrated straightforwardly by 
employing the equations of the law of mass action derived for non-ideal systems 
(Chapters 4 and 7). This approach allows one to obtain direct relationships 
between T;_,0 and parameters characterising non-ideality, whereas the models of 
IKR described above are essentially ideal and their parameters only indirectly 
reflect molecular interactions10• 

9 Molecular interactions are thus implicitly assumed to arise from interaction with the molecular 
electromagnetic field, thus excluding molecular collisions and optically inactive vibrations. 

10 In this aspect they resembled the Lewis approach in their description of non-ideal systems. 



8.4 lsoequilibrium and isokinetic relationships 283 

Solvation equilibria contribute directly to the standard entropy and energy of 
reaction and cannot cause an !ER except by a coincident correlation of 
parameters. On the other hand, the non-ideality terms arising from the dependence 
of free volume on composition as well as those based on the exchange energy 
result in correlations between Mf! and~ (as will be shown below). 

Let us consider a simple example of an isomolar reaction in a non-ideal system 
characterised by non-zero balances of molecular volume and vaporisation energy: 

A B (8.86) 

The law of mass action for such a reaction mixture can be written (see Chapter 4) 
as: 

in which In Q is the term arising from translational, rotational and vibrational 
partition functions and M is the difference in potential energies between isolated 
molecules of products and reactants (intramolecular potential energies); v are 
molecular volumes and u are the lattice energies per molecule. At first glance the 
non-ideality terms are temperature independent and must contribute towards the 
standard entropy alone. Their variations should not then cause an isoequilibrium 
relationship. In reality, the temperature dependence of xA = (1 + K)-1 (contained in 
the non-ideality terms) must be taken into account and the variations of non
ideality produce changes in both the entropy and enthalpy of reaction. 

For simplicity, let us consider a reaction series where the vaporisation energy 
alone is varied whilst molecular volume is not changed by the reaction (i1v = 0). 
The non-ideality of such a system can be characterised by the ratio 
a= (u8 - uA)/u8. Under these conditions, the law of mass action can be written as: 

<l> = In Q - t:.E - In K - Ja(l + K) == 0 
RT 1 + K -a 

(8.88) 

A systematic study of equilibrium constants in a series of reactions can be 
arranged in two different modes: keeping either the mean temperature of 
experiment T0 or the mean value of lnK constant. The latter mode usually provides 
for optimal precision of measurements adjusted to the limited dynamic range of 
the measuring device. Let us analyse the results of this mode of estimation of~ 
and i1E° in a reaction series: 

The equilibrium constant K then becomes an invariable parameter K = K(T0). 

Table 8.9 shows the estimates of 11£° and ~ obtained from the pseudo
experimental data simulated according to (8.88) for a system characterised by 
i1E = lkcal moi-1, lnQ = 5, and varying a. Only a narrow range of degrees of 
conversion (xA = 0.4 - 0.6, i.e. around K = 1) was used in the estimation of the 
standard internal energy and entropy of reaction. This resulted in a shift of the 
mean temperature of experiment (T0) with varying non-ideality (see Table 8.9). 
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Table 8.9 Estimates of t;,£J and ~ obtained from pseudo-experimental data on the binary non
ideal equilibrium characterised by AE = I kcal mor 1, In Q = 5 and varying negative a 

a 0 -0.5 -I -1.2 -1.4 -1.6 -1.7 -1.8 -1.9 
.. j.(i()(Jj·f~(Kcr)"······- ...................................... "" •••••••••••••••••mnnnon••••• •• 

9.90 12.28 13.87 14.37 14.81 15.20 15.38 15.55 15.71 

AE°(cal mor 1) 1000 1134 1494 1721 2019 2427 2688 3003 3387 

AS0(cal mor 1 K- 1) 9.90 13.94 20.73 24.72 29.92 36.90 41.31 46.70 53.22 
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Fig. 8.8. Correlation between ~ and t;,£J predicted by the non-ideal law of mass action (8.88) 
for a system characterised by !:i.E = I kcal mor1 and In Q = 5 and varying non-ideality term 
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Fig. 8.9. Van't Hoff plots over a narrow range of compositions around the transition point of the 
non-ideal system characterised by !:i.E = 1 kcal mor 1, In Q = 5 and negative a. Thin curves show 
the actual shapes of the van't Hoff plots 
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The estimates of ~ and t-.Ifl thus obtained show a pronounced correlation 
(Fig. 8.8) especially over the range of negative a (t-.u < 0, i.e. a weaker molecular 
interaction between products than between reactants). The corresponding van't 
Hoff plots (Fig. 8.9) also show an intersection over a narrow range of 
temperatures. For a limited number of equilibria in Fig. 8.9, the point of 
intersection is statistically relevant 11 and thus the question arises as to what is the 
physical significance of the isoequilibrium temperature obtained in this way 
(T,,.0 = 56.2 K according to the regression equation in Fig. 8.8B)? 

The relationship between ~ and ~ resulting from the law of mass action 
(8.88) can be found in the following way. The composition of the reaction mixture 
(8.86) is directly connected with the apparent equilibrium constant as 
xA = 1/(1 + K). Standard internal energy and entropy are calculated as 
t-.If!= -(RdlnK!dT1)r0 and ~= RlnK(T0) + ~IT0 respectively. For any given 
theoretical law of mass action <l>(lnK, T 1) = 0 the values of the apparent standard 
internal energy and entropy can then be determined according to (3.71) and (3.72) 
from the derivative dlnK!dT 1 = -8<1>/8T1/8<1>/8(lnK). 

Straightforward derivations according to this algorithm applied to (8.88) yield: 

M 0 _ !3.E [l + K - a ]2 
R R (1 + K - a )2 - 3a 2 K 

(8.89) 

11S 0 =lnQ-3a(l+K)+ !3.E 3a 2 K 
R 1 + K - a RT0 (1 + K - a )2 - 3a 2 K 

(8.90) 

Combining (8.89) and (8.90) we get the following relationship between ~ and 
/JS: 

118° = lnQ- 3a(l + K) + !1E 0 3a 2 K 
R 1 + K - a RT0 (1 + K - a )2 

(8.91) 

In the case considered here, the equilibrium constant is invariant whereas ~, 
T° and a are variables. It is convenient therefore to substitute the ratio a/(l + K-a) 
by a single parameter: 

a=a/(l+K-a) (8.92) 

This parameter reflects non-ideality (a) as well as experimental set-up (K). 
From (8.89), it follows that: 

M 2 -- =l-3Ka 
Mo (8.93) 

11 If the condition K(To) = I is not strictly obeyed, then the intersection region may be wider or 
narrower. By a 'careful adjustment' of the temperature range for each reaction, van't Hoff 
plots can be artificially made to intersect in one point. 
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Equation (8.91) then becomes: 

!-:.So !lEo 2 ( !lE)112 Mo-M 
-=lnQ-3(1+K)a+-3Ka =lnQ±b 1--0 +---

R RT0 !lE RT0 

(8.94) 

in which b = (1 + K)(3/K)) 112 • The ± sign in (8.94) results from the fact that a(a) 
can be both positive and negative. 

The chosen mode of determination of !lE° and l1S (keeping K = K(T0 ) = 1) 
implies that the estimates of !lE°, l1S and fl are not independent variables but are 
connected via l1S = !lE°!T0 (one can easily check this by using the data in Table 
8.9). We can therefore substitute T0 in (8.94) by !l£°!11S and obtain a direct 
relationship between Mf and !lE° as a function of M (for negative a): 

flEo[ ~i !lS0 =R !lE lnQ+b~l-"AfiO (8.95) 

The isoequilibrium temperature is then obtained as: 

(8.96) 

The term RlnQIM equals the inverse transition temperature when the effects of 
non-ideality are zero. For the considered case (<a>= -1.233) it constitutes more 
than one half of the mean inverse isoequilibrium temperature: 

_I_= 0.0099 + [0.00451+0.00291]= 0.01732 
T;so 

(8.96a) 

The deviation (second term in 8.96) of the inverse isoequilibrium temperature 
from the ideal inverse transition temperature depends on both the experimenter's 
choice and non-ideality (the term in square brackets in (8.96)). A well-defined 
isoequilibrium point can be observed if T;w is a constant, i.e. if d(l!T,,0 )/dE° = 0. 
The analysis of (8.96) (derived for negative a) shows that the two parts of 
d(l!T;,0 )/dE° compensate each other and the remaining part is relatively small: 

d(I IT,·'°) bR (MI M 0 )2 
dMo 2 (Mo )2 0- M/ llEo )312 

(8.97) 

For a= -1,233, (8.97) yields d!l(llT,so)ld!lE° = 1.2 x 10-6 mol car' K- 1 which 
corresponds to the deviation of 1/T,.rn by a maximum of 0.0028 K- 1 at the level 
0.017 K- 1 thus explaining the good linearity observed for the isoequilibrium 
relationship. 
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When an experiment is arranged in a way providing for a constant mean 
temperature, then the mean value of lnK varies in a reaction series. Equation 
(8.94) can be written explicitly with respect to K: 

_f...S_o =In Q ± FJ(JK + _1_)~1 - _M_ + _M_o_-_M_ 
R JK M 0 RT0 

(8.98) 

and contains a product of two terms depending on the variable parameters K and 
Afil. Taking into account the fact that K = exp(-~/R7) means that (8.98) can be 
written as: 

-=lnQ±2F3cosh -- 1---+-·---f...So (M'o]f*° .Mo-M 
R 2RI'o f...E 0 RT0 

(8.99) 

Although an expression for the inverse isokinetic temperature can be obtained 
by an implicit differentiation of (8.99) as: 

(8.100) 

It can hardly be used for the analysis of the observed correlations! A 
considerable contribution towards l!T;.w arises from the mean temperature T0 that 
is seldom supplied with published data. The physically meaningful part (the 
second term on the right-hand side of (8.100) is a complicated function of Afil, 
AS1 and non-ideality represented by the ratio AE/Afil). 

The pseudo-experimental data discussed above, when arranged in such a way 
as to provide for a constant mean temperature T0 = 70 K, show a correlation 
between AS1 and Afil (Fig. 8.1 OA) with an isoequilibrium temperature of 59.5 K. 
It is below the experimental range as predicted by (8.100). The simple mode of 
observed correlation is only apparent: when arranged in the order of increasing 
non-ideality these data exhibit a peculiar loop of the actual dependence of AS1 on 
Afil (Fig. 8.1 OB). This shows that although the derived equation might predict 
correctly the value of Tiso it is practically impossible to use it in the physical 
interpretation of the origin of an observed compensation effect. 

Similar effects are predicted for the variations of the balance of molecular 
volume. Neglecting the effects oflattice energy, (8.87) can be written as: 

(8.101) 

in which the non-ideality is characterised by a= (Vs- vA)/IJs. 
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Fig. 8.10. An apparently linear relationship between Mi and AEi computed under the conditions 
of constant average temperature (A). Graph (8) shows the same data but connected in order of 
increasing non-ideality 

Non-zero coefficients a (both positive and negative) cause mainly a decrease in 
the apparent Af!> and !)$l, i.e. an IER with a positive isoequilibrium temperature. 
These effects (as might be expected) are in general smaller than in the case of 
variations of the balance of lattice energy !'J.u. 

We see that non-ideality connected with the free volume might cause an IER 
with an isoequilibrium temperature lying below the experimental range, but it 
cannot be responsible for the cases of intersection of van't Hoff plots within the 
experimental range. A wider scope of possibilities for an observation of an IER is 
predicted by the theory of regular solutions. 

8.4.5 
IER and exchange energy 

The formalism developed in Chapter 7 takes into account the effects of the 
molecular environment on molecular lattice energies. Under the assumption of 
additivity of these effects, this model can be reduced to the theory of regular 
solutions employing the concept of exchange energy. The law of mass action for 
the binary equilibrium (8.86) in such systems is given by (7.50) as: 

(I - 2x A) f'..Fex - f'..E - Tf'..S - In I - X A = 0 
NkT NkT XA 

(8.102) 

or: K-1 Mex_ f'..E-Tf'..S -lnK=O 
K +I NkT NkT 

(8.103) 

in which !'J.E and /'J.S are the 'ideal' parts of the standard internal energy and 
entropy controlled by intra-molecular parameters of products and reactants (total 
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energy AE1 and contributions from partition functions lnQ). 
Employing the algorithm described in the preceding section and denoting 

(K - l )/(K + I)= I - 2xA = K and 2K!(K + 1 )2 = 2xA(I - XA) = k the standard 
internal energy and standard entropy of reaction can be derived from (8.103) as: 

Mo =M(l-K~ )/(1-k~;) (8.104) 

~o = ~ +K~; + ~( k~; -K~ )/(1--k~;) (8.105) 

The actual relationship between !JSl and AE° depends on the way in which 
these parameters are determined. 

When equilibrium constants are measured in the vicinity of K = 1 
corresponding to xA = Yi, k = Yi, K = 0 the expressions (8. I 04 ), (8. 105) become 
very simple: 

M' ~M/(1- 2~;,:J 
M 0 M M 0 Mex 
--=-+-----

R R RTi 12 2RI'i 12 

(8.106) 

(8.107) 

These equations can be used to determine the isoequilibrium point when the 
exchange energy is constant and AE is varied. Noticing that at the transition point 
!JSl, fo...E and T112 are interrelated as AE° = T112t1S1, we get: 

M Mex _ M + tiS = O ( 0 J2 0 
R 2M0 R R 

(8.107a) 

The relationship between fo...E and !JSl is non-linear and the IER is not perfect. 
When AE is constant and AEex is varied, (8.106) and (8.107) can be combined to 
yield three variables !JSl, fo...E and T112 : 

M 0 M M 0 
( M ) R=R+ RTu 2 l- Mo 

Again, the third variable is not independent (AE° = T112!JSl) and we get: 

o tiE 
tis - M -- = O or Mo tis M 0 

tiE tiE 0 

(8.108) 

(8.109) 

But the ratio of fo...S and AE is actually the inverse transition temperature and we 
have just demonstrated a trivial fact that van't Hoff curves in a reaction series 
characterised by constant AE and varying AEex intersect at the transition point (see 
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Chapter 7). What is more important, the tangents at equal conversion of the van't 
Hoff curves based on (8.102) and corresponding to constant /:o.E and varying Mex 
intersect at one point, i.e. exhibit a perfect IER (see Fig. 8.11 ). 

The isoequilibrium temperature can be negative when this reaction is studied 
over a range of high degrees of conversion. It is positive when the range of low 
degrees of conversion is explored and an intersection of the van't Hoff plots can be 
observed within the experimental range when equilibrium constants are measured 
around K = 1. 

These results have been obtained for a non-diluted system. When a binary 
system (e.g. a spin crossover system) is studied in a regular solution containing an 
inert solvent, the law of mass action is given by (7 .109) in Chapter 7 (X being the 
degree of conversion): 

(1 2 ) /l,Fex f>,.F (l }( /l,F"' !1Fw/v) J [ XA ) _ 0 Y - X ---y-- -y --+-- + n -- -
A kT kT kT kT 1 - XA 

(8.110) 

Among the parameters entering this law of mass action /j.Frn till, jj.S 
characterise binary equilibrium in pure components; /j.£00 !1500 characterise this 
equilibrium at infinite dilution and /j.£"°'"' /j.S,01 v characterise the change in the 
state of solvent molecules. 
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Fig. 8.11. The intersection of tangents to van't Hoff plots calculated for a system described by 
(8.102) with M = 1000 cal mor 1, In Q = 5, &)., = 0 and varying 11£.,: 0 (I), 100 (2), 200 (3), 
300(4) and 400 (5) cal mor 1 
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Formally, two terms with the weighting factor (1 -y) must be combined and 
the effective free energy change at infinite dilution (AF1111 = AF"'+ AF'.rniv) will 
describe the combined effect of LS-HS transitions on the molecules of solute and 
solvent: 

( ) AFex (AE AS) ( )(AEinf ASinf l ( XA ) y l-2x ---y --- - 1-y ----- +In -- = o 
A kT kT k kT k 1 - XA 

(8.11 lA) 
Equation (8.111) predicts specific variations of the shapes of van 't Hoff plots 

upon dilution indicative of IER-s. Fig. 8.12 shows a series of patterns of van't 
Hoff plots that can be observed in a system characterised by a positive exchange 
energy. 
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Fig. 8.12. Van't Hoff plots obtained by dilution of the reaction mixture (8.86) characterised by 
positive exchange energy Mex= +0.4 kcal mor', !':..Sex= 0, !'lE = 1 kcal mol~ 1 , /':,S = 5R and 
varying !'1S1nf; /'i.E1nf' The plots corresponding to the highest dilution approach a straight line 
whilst the those of non-diluted systems are curvilinear 
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(Similar patterns can be derived for a system characterised by negative 
exchange energy without, however, taking into account possible ordering. The 
case of ordering in a three component system is complicated and will not be 
discussed here.) 

Depending on the ratios !1E/11Emf and !1S1!1Sm1; the intersection point can be 
shifted within the experimental range and (in the case of tangents) beyond it. The 
dilution (variation of y) effectively varies all parameters in (8.111) which results in 
peculiar shapes of the patterns of sets of van 't Hoff plots corresponding to diluted 
systems. One of these patterns in the middle row of Fig. 8.12 (!1S;nf> !1S, M;nf = 

!1E) exhibits apparently two points of intersection. 
It must be pointed out that a tendency of van't Hoff (Arrhenius) plots to 

intersect in one point does not necessarily mean an IER (IKR): this intersection 
must occur at finite temperatures (ether positive or negative). An intersection at 
infinite temperatures (zero abscissa on the van't Hoff plot) means that the energy 
(it can be !1E, M;nf or 11EeJ is varied in a reaction series whereas the entropy is 
constant. This is a result of the presence of the factor llkT in any energy term in 
the equation of the law of mass action (8.111 ). On the other hand, the variation of 
11Eex necessarily brings about an intersection at the transition point and hence 
curves with two points of intersection. Fig. 8.13 illustrates this situation with 
examples of van 't Hoff plots simulated for variations of exchange energy at 
constant dilution. 

In reaction series characterised by constant exchange energy and variable t1E 
and 11Em1; van't Hoff plots intersect at the infinite temperature alone (Fig. 8.14A 
and 8.14B). However, (due to non-zero 11Eex) such plots remain curvilinear and 
tangents to these curves might intersect at other temperatures, depending on the 
actual mode of collecting data (e.g. at constant mean temperature or constant mean 
K). The variation of the purely entropic part (!1S, !iS;nJ) causes a parallel horizontal 
shift of such curves (Fig. 8.14C). An intersection of tangents to these curves at 
constant temperature is not so obviously possible as in the case of variations of 
energy. 

1 ITIK-1 1/T/K-1 

llE;,1=1.0 kcal mo1·1 ~Ein 1 =1.2 kcal mor1 

Fig. 8.13. Van't Hoff plots of the reaction mixture (8.86) characterised by t...E= I kcal moi- 1, 

t...S = t...S;nr= 3R, t...Sex = 0, and varying t...E,,. Reacting species are diluted (y = 0.3) by the solvent 
characterised by t...Emrshown in graphs. Thick straight lines correspond to zero t...Eex 
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Fig. 8.14. Van't Hoff plots of the reaction mixture (8.86) characterised by !:o.Eex = 0.4 kcal mor 1, 

thlex = 0, y = 0.3 and varying !:o.E, !:o.Einr and tiSinf' Thick lines correspond to !:o.E = !:o.Einr and 
!:o.S = thl1n1 

Using the algorithms described above it is not difficult to obtain expressions for 
the coordinates of the isoequilibrium point for any actual example. The parameters 
of isokinetic relationships are thus useful in the analysis of non-ideality effects -
especially when the reaction can be studied over a narrow range of degrees of 
conversion (for example, in the liquid state where phase transitions limit the 
available range of temperatures). When the whole transition curve can be 
obtained, the data can be analysed directly according to the general equation of the 
law of mass action as has been done in the analysis of spin crossover in diluted 
systems (see Section 7 .11 ). 

8.5 
Conclusions 

The law of mass action derived on the basis of statistical mechanics allows one to 
analyse various empirical chemical correlations such as linear free energy 
relationships and the isokinetic and isoequilibrium relationships. Correlations 
between free energies exist in series of similar equilibria, i.e. those having the 
highest sensitivity to the same parameter (s). A reference reaction should be 
sensitive to one parameter alone or the reaction series must be arranged in a way 
providing for such conditions. One of these ways is to choose a reference 
substance possessing an exceptionally strong property such as the electron 
acceptor ability of SbC15. Theoretical analysis, howevt:r, shows that several 
parameters significantly changing reactivity are usually varied in almost all 
reaction series. Methods relying on a high precision of determination of a 
reference property (such as dissociation constants in the Hammett substituent 
scale) bring about a large contribution from the effects of non-ideality and 
solvation. 

The latter two types of contributions towards the free energy of reaction must 
be distinguished because the solvation contribution is connected with the 
formation of molecule-like associates, whereas general molecular interactions just 
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increase/decrease the probability of finding molecules of given kinds close 
together. Solvation contributes directly towards the standard internal energy and 
entropy of reaction and its effect can be predicted on the basis of donor and 
acceptor numbers of solvent, reactants and products of reaction. An alternative 
method of taking into account interactions of the 'chemical' type is to include 
corresponding equilibria in the general reaction scheme. Molecular interactions of 
'non-chemical' type result in additional non-logarithmic terms in the law of mass 
action (indirectly contributing to the effective !1Jf and !1S1) and bring about a 
curvature ofvan't Hoff plots. 

The correlation between temperature dependent and temperature independent 
parts of standard free energy, i.e. standard internal energy (enthalpy) and standard 
entropy of reaction or activation may originate from two sources. Firstly, 
molecular parameters such as molecular mass, moments of inertia, electronic 
energy, and vibrational frequency can be varied in a reaction series in a correlated 
manner. This brings about an IER and IKR that can be analysed on the basis of 
statistical mechanical expressions for free energy in an ideal approximation. 

Another source of an IER and IKR is the non-ideality of equilibria in the 
condensed state and, connected with it, curvature of van 't Hoff (Arrhenius) plots. 
The analysis of the non-ideal law of mass action derived using lattice theory of the 
liquid state shows that all known types of IER can be explained by these effects. 
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9 Concluding Remarks 

In the preceding Chapters several approaches to the problem of the derivation of 
the law of mass action for ideal and non-ideal systems based on molecular theory 
of solutions have been described. The main conclusions following from this 
material are systematised below in the most general form. Relationships presented 
admit an easy reduction to practically applicable equations by employing methods 
described in the corresponding Chapters and illustrated by numerous examples. 

1. By the law of mass action we understand a theoretical relationship 
determining the amounts of reactants and products in equilibrium and obtained 
from the condition of the minimum of free energy with respect to the numbers of 
participating molecules. The law of mass action thus originates in the first and the 
second laws of thermodynamics. It may have different forms for systems differing 
by the mode of molecular interactions. 

Parameters of the law of mass action (equilibrium constant, standard free 
energy, balances of molecular volume and lattice energy, exchange free energy, 
etc., see below), on the one hand, characterise chemical reactivity whereas, on the 
other hand, they are directly connected with molecular parameters. This enables 
the formulation of 'structure - reactivity' relationships in terms of parameters 
having clear physical significance. 

The alternative method employing activities retains a unique mathematical 
form but this form can only be considered as an empirical relationship. 

2. Statistical mechanics provides for a physical interpretation of equilibrium 
constants and other parameters of the law of mass action at the molecular level 
(Chapters 1, 2 and 8). One of the most important links provided by statistical 
mechanics is the definition of ideal systems as systems of statistically independent 
molecules. It enables the formulation (Chapter 3) of the law of mass action for 
ideal gases and ideal crystals. The theoretical foundations of 
'structure - reactivity' relationships can therefore be firmly established for 
reactions in rarefied gases and crystals at low temperatures, in which the state of 
any one molecule is approximately independent of the state of all other molecules. 

The law of mass action for the chemical equilibrium of the most general type: 

(9.1) 

occurring in an ideal system can be written as: 
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or: 

Is; Inn,= Is, lnq; +Is; lnV 

Is; Inn,= Is; lnq, +Is, lnN 

(9.2) 

(9.3) 

in which the stoichiometric coefficients S; are positive for products and negative 
for reactants, V is the volume of the system and N is the total number of 
molecules. The partition functions, q;, are determined exclusively by the 'intra
molecular' parameters of the reacting species and temperature. Equations (9.2) 
and (9.3) readily yield an easy transformation to simple conventional forms that 
contain the products of concentrations to the corresponding powers. 

The main variables of the law of mass action are numbers of molecules. 
However, it is convenient to use concentrations in order to get equilibrium 
constants independent of the absolute amounts of reactants. The dependence of 
equilibrium constant on the amounts of reactants (volume of a system) is then 
substituted by the dependence on the chosen unit of concentration or pressure. 

In gas-phase reactions, both mole fractions (for reactions at constant pressure) 
and molar concentrations (for reactions at constant volume) may be used because 
the equation of state of ideal gas yields a linear relationship between V and N (see 
(9.2) and (9.3)). 

The law of mass action for a reaction in an ideal crystal can be 
straightforwardly derived in the form of (9.3). This makes mole fractions the 
natural variables in the law of mass action of solid-state reactions. 

In the liquid state the volume of a system is determined not by the number of 
molecules (as in the gas phase at constant pressure) but by the quantity of matter. 
The invariance of the volume of a reaction mixture in the liquid state favours the 
use of (9 .2) and molar concentrations as variables in the law of mass action. 

3. When molecular interactions are taken into account (Chapter 4) the volume 
of a system in the liquid state becomes dependent on composition and parameters 
of molecular interactions. Employing the model of the mean molecular field (i.e. 
the lattice theory of the liquid state) molecular interactions can be described in 
terms of free volume (Vt) and lattice energy ( U). In the framework of this model 
the law of mass action for an imperfect system can be written as: 

(9.4) 

The case of additive volume and lattice energy: 

V="nv. ~ 11 
(9.5) 

(in which v, and u; are independent of composition) is usually considered as 
approaching the state of the ideal solution. However, the dependence of V and U 
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on composition (9.5) brings about a certain non-ideality resulting in the term Q 
defined as: 

(9.6) 

The free volume Vl is connected with the volume of a system via an equation of 
state and can be approximated by: 

(9.7) 

in which a is a proportionality coefficient, t = NkTIU is the reduced temperature, 
a = 3 for the simplified Eyring equation of state and a = 1.5 for the Lennard-Jones 
and Devonshire equation of state. This relationship is strongly dependent on the 
shape of the intermolecular potential (Chapter 5). 

The last term in (9.6) can be represented via a complete derivative with respect 
to the number of molecules of any kind. Under the condition (9.5) this derivative 
is a function of the relative balances of v and u in the actual reaction: 

(9.8) 

in which: (9.9) 

Although a chemical reaction always changes the volume of a reaction mixture 
as well as the energy of molecular interactions (~v * O; ~u * 0), in many cases 
these changes are not large. The last term in (9.6) is then small compared to 1 and 
that facilitates a ready transformation of the non-ideality terms into activity 
coefficients (Chapters 4 and 6). 

4. Gaseous systems of low density with weak molecular interactions can be 
described in a comparatively simple way employing statistical mechanical 
formalism (Chapter 6). The equation of state of such a gas is identical with a 
simplified form of the van der Waals equation of state. The effects of non-ideality 
in such gas-phase reactions are generally small and can readily be taken into 
account in the form of activities. 

5. In the condensed state the balances of the energies of molecular interactions 
may be large because neutral reactants might result in highly polar or charged 
products and vice versa. Therefore considerable deviations from ideality can be 
expected, resulting in a curvature ofvan't Hoff plots and even critical phenomena, 
such as a separation of two condensed phases, similar (but not identical) to those 
originating in the effects of non-additivity of the lattice energy. 
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The non-additivity of the lattice energy (Chapter 7) is commonly taken into 
account by introducing a perturbation term. In a binary mixture of molecules of 
similar size this perturbation term is dependent on the product of mole fractions of 

components: 

(9.10) 

The parameter !'!.uex is known under different names such as 'cooperativity ', 
'excess energy of mixing' or 'interchange energy' reflecting different aspects of 
the existence of molecular interactions. Describing the non-ideality at the 
molecular level, it is convenient to interpret this parameter as the change in 
potential energy accompanying the formation of two hetero-molecular pairs from 
two homo-molecular species: 

/t;.uex =2uAB -uAA -UBB (9 .11) 

Jn this book it has, therefore, been termed exchange energy, emphasising its 
analogy to the well-known quantum mechanical parameter. Jn both cases this 
name refers not to any real physical process occurring in a system but to a 
versatile and illustrative model. Similar perturbed additivity rules are being 
applied to various properties of non-ideal systems and inter alia to volume. In the 
latter case the notation 'excess volume' is better applicable to the parameter !'!.Vex· 

6. Equation (9.10) originates in the model taking into account binary 
interactions alone. If higher order interactions are considered then higher order 
terms (with respect to mole fractions of components) appear in the expressions for 
the potential and free energy. In Chapter 7 a formalism taking into account 
triple interactions has been derived employing a novel method that considers 
molecular interactions as arising from the dependence of partition functions of 
molecules on the nature of their surroundings. Considering the effects of two 
neighbours along a coordinate the free energy ofa binary mixture is obtained as: 

F = -x(l -x2 )11C 3l -x(l -x)11C2l -x/t;.(O) + F888 + kTN[xlnx + (1-x)ln(l-x)] 
(9.12) 

in which x is the mole fraction of the component A and 11C0l = F 888 - FAAA is the 
standard free energy of the transformation A~ B. The coefficients 11<3l and 11<2l 
characterising non-ideality are combinations of binary differences of free energy 
corresponding to six possible configurations of molecules A and B in triple 
sequences. This formalism thus provides for an easy physical interpretation of the 
estimates of parameters of the law of mass action. For a mixture described by 
(9.12) the law of mass action can be written as: 

., 2 11<3l 11r 2l 11C0l + 11C 2l + 11<3l I - x 
.JX -- + 2x -- - = In --

kT kT kT x 
(9.13) 

Equation (9.11) shows that non-ideality directly contributes towards the 
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effective standard free energy of reaction (the third term in (9.13)) and also 
changes the shape of van't Hoff plots via the (composition dependent) first and 
second terms. The non-ideality parameters in (9.13) are related to kT and the 
corresponding terms can be quite large at low temperatures, resulting in critical 
phenomena actually observed experimentally. 

Under certain conditions (quite often adhered to) the coefficient !J. C3l vanishes 
and the developed formalism is reduced to that of the theory of regular solutions. 
The coefficient 1J.<2l then becomes identical with the exchange free energy. 
However, in special cases, triple interactions are important (as, for example, in 
two-step spin crossover) requiring for its explanation a non-zero !J.C3l and a certain 
degree of ordering (Chapter 7). 

7. A general form of the law of mass action for an imperfect liquid (based on 
the lattice model of the liquid state) must take into account the non-ideality terms 
originating in both the dependence of the free volume on composition and non
additivity of lattice energy. It can be written as: 

L:s, Inn,= L:s, Inq, + L:s, Inv 

" VI " " a In Vt " " a "nkuk (9.14) 
+ L...,S1 In-+ L...in1L...,S1 - L...in1L...,S1 --L...i--

' v I J an j i J an J k kT 

in which the derivative of the lattice energy is given by: 

~[L nkuk) = ~ <p 11 + ~(N -n1 L !!:..!£. tiu1k _LL nkn1 !J.uk1) (9.15) 
on1 k kT 2 kT 2 N k#J N kT k#f l#k,J N 2 kT 

The first line in (9 .14) is the ideal gas law of mass action that can be 
transformed into a form with respect to molar concentrations. The second line in 
this equation presents the effects ofnon-ideality. 

The first non-ideality term is proportional to the logarithm of reduced 
temperature and is therefore controlled by the shape of the average intermolecular 
potential. 

The second non-ideality term is connected with the dependence of free volume 
on composition. To a first approximation it can be represented via the relative 
balances of volume and lattice energy. A second approximation brings about the 
dependence of this term on exchange (excess) volume and exchange energy. 

The third non-ideality term is connected with the dependence of the lattice 
energy on composition. It can be derived in terms of exchange energy (see 
Chapter 7, Eq. (7.115)) but in some cases higher order approximation is required 
as in the description of the two-step spin crossover mentioned above. 

8. A general condition for non-ideality terms in the law of mass action to be 
small is that the reaction should not significantly change the character of 
molecular interactions in the reaction mixture. In such a case these terms can 
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easily be converted into activity coefficients that are polynomial functions of 
concentrations. 

When this condition does not hold, the non-ideality terms are large and such a 
transformation is, in general, not allowed. However, over a narrow range of 
degrees of conversion, the conventional form of the law of mass action can still be 
used: one can extract the (approximately) constant part of non-ideality terms and 
combine it with the equilibrium constant. This procedure is equivalent to the 
linearisation of an essentially curvilinear dependence (e.g. non-ideal van't Hoff 
plot) in the vicinity of a standard state. 

Such a linearisation is only allowed when non-ideality terms do not bring about 
critical phenomena. In the latter case a system can exhibit an exploding behaviour 
within a few kelvins, while at the same time showing quasi-normal van't Hoff 
plots beyond the narrow critical region. Any extrapolation of the dependencies 
obtained on the basis of the conventional law of mass action and activity 
coefficients are, therefore, dangerous in every sense of this word. 

9. The use of the non-ideal law of mass action is then strongly recommended -
especially for non-explored systems. Although the general expressions presented 
above are mainly illustrative, a practical law of mass action can be derived (see 
numerous examples in this book) for any special case. By taking into account all 
possible simplifications allowed for the actual system, such a law of mass action 
can be reduced to a comparatively simple expression admitting a reliable 
estimation of parameters from experimental data. 

Even the law of mass action taking into account both the composition 
dependence of free volume and non-additivity of volume and lattice energy (a 
version of the Eq. (9.14)) can be straightforwardly derived for a binary mixture 
(see Appendix 10.10). It contains seven parameters including the balances, b.U, 

b.V and exchange parameters b.Um b.Vex· The balances themselves do not 
considerably change the shape of the van't Hoff plots but they increase the 
sensitivity of this relationship towards the exchange parameters: the critical value 
of b.Uex above which phase separation can be observed is considerably lower when 
the balances are non-zero. 

From the point of view of their physical significance the balances can be 
interpreted as the result of the non-additivity of the atomic interactions (within a 
molecule) whereas the exchange parameters reflect the non-additivity of the 
molecular interactions. 

I 0. Non-ideality terms contribute towards the equilibrium constant and are 
therefore important for chemical correlations such as the linear free energy 
relationships (LFER). In Chapter 8 it has been shown that molecular interactions 
play an important role in the scales of chemical reactivity such as that of 
Hammett. This narrows the scope of interpretations of such correlations as 
representing 'structure-reactivity' relationships: their parameters reflect not the 
intra-molecular properties alone but are also dependent on the mode of molecular 
interactions. 
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Non-ideality terms also bring about a certain curvature of van't Hoff and 
Arrhenius plots, which results in formal interdependence between standard 
enthalpy and standard entropy of reaction and activation known as isoequilibrium 
and isokinetic relationships (IER and IKR). In fact, all known types of !ER can be 
explained (see Chapter 8) on the basis of the law of mass action for systems with 
non-additive lattice energy (!'!.Vex -F 0). 

Parameters of isokinetic and isoequilibrium relationships are also considerably 
affected by the mode in which experimental data are collected. A simple analysis 
can be done in the cases of the invariant mean equilibrium (rate) constant or the 
invariant mean temperature of experiment. Unfortunately these conditions are 
rarely obeyed in experiments providing data for an IER or IKR analysis. Therefore 
quantitative values of IER (IKR) parameters are of a limited validity. On the other 
hand, qualitatively, an observation of IER (IKR) indicates certain type of non
ideality and this indication can be important for the interpretation of other results. 

A reliable estimation of the parameters of a non-ideal law of mass action is 
only possible when experimental data are available over a wide range of degrees 
of conversion. In such cases, a non-linear regression analysis according to the 
exact expression of the law of mass action provides a deep insight into the nature 
of the investigated reaction (as illustrated by the examples of two-step and steep 
spin crossover in the solid state given in Chapter 7). 

In the liquid state, however, such experimental data can rarely be obtained 
because of the limited temperature region for the existence of liquid systems. In 
such cases an IER (IKR) analysis might provide valuable information about non
ideality in the investigated system. 
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10 Appendices 

10.1 
Lagrange equations and Hamilton (canonical) equations 

The laws of mechanics formulated by Newton only implicitly contain the concept of energy, a 
concept by far more general than the velocity, momentum and coordinates of a moving body. 
The law of conservation energy is one of the most general laws, revealing itself not only in the 
dynamics of moving bodies but also in electrical and chemical processes and in the processes of 
transformation of heat. It must also be mentioned that mathematical equations employing the 
concept of energy were introduced by Lagrange ( 1788) and Hamilton ( 1834) long before the 
energy ceased to be called 'life force' and the law of conservation of energy was formulated 
quantitatively. One of the most general principles of classical mechanics is the principle of least 
action formulated by Hamilton. According to this principle, the trajectory of a moving body 
corresponds to the least value of the integral W called the action or fanction of action: 

1, 

W = JLdt ( 10.1) 

The function Lis the Lagrangian function or kinetic potential equal to the difference between 
kinetic and potential energies: 

mv2 
L=--V=T-U 

2 
(10.2) 

The problem of finding the functions corresponding to an extrernum of some quantity are 
found using the calculus of variations developed by Euler. The operation of variation is in many 
ways very similar to differentiation and does commute with differentiation. Furthermore, the 
variation of a function of many variables is calculated similarly to the complete differential. 
There are, of course, differences: variations only exist in the defined region of interest and at 
both ends of this region variations equal zero. The problem stated above is solved similarly to an 
ordinary search of extrema, i.e. by setting the variation equal o zero: 

I 

oW =o JLdt =0 (10.3) 

In the field of central forces, potential energy is a function of the coordinates alone, therefore: 

( 10.4) 

in which q, are coordinates and q, the corresponding velocities. The Lagrangian function may 

also explicitly depend on time. The variation of action (10.3) can be written as: 
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I 

8W = f8Ldt (I 0.5) 

For all coordinates: 

8L = """'. [ aL. 8 . + aL. 8 . ) L. a q, a· q1 

I q, qi 
(I 0.6) 

and: 

(10.7) 

The second part of the integral (10. 7) can be transformed as follows: 

(10.8) 

In addition, this integral can be integrated by parts: 

(10.9) 

The expression in square brackets is zero because the variations at the ends of the path are 
zero. Therefore: 

n I [ aL d aL) 8W =If ----. 8q;dt = 0 
i=l aqi dt aqi 

lo 

(IO.IO) 

The variation &j being non-zero within the integration range, (I 0.10) only holds if every term 
of the sum in (I 0.10) equals zero: 

aL _!!_ aL = 0 
aqi dt aq, 

( 10.11) 

This system of equations is called the 'Lagrange equations'. Lagrange equations are very 
useful when deriving equations of motion in various coordinate systems. For example Newton's 
first law can be derived from a Lagrange equation. In Cartesian coordinates the Lagrangian 
function is: 

L = T-U = m (x 2 + y2 + z2 )-u(x,y,z) 
2 

(10.12) 

The components of the Lagrange equations (the derivatives of L with respect to coordinates 
and velocities) are: 

au 
ax' 

d aL .. 
---=mx 
dt aq, 

For each coordinate (x, y, z) the Lagrange equations can then be written as: 

(10.13) 
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-au/ax-mx=O (I0.14) 

The derivatives of potential energy with respect to the coordinates are corresponding components 
of the force; therefore, the last equation formulates Newton's first law. 

Polar or spherical coordinates are very convenient for the derivation of equations of motion 
in central force fields, and Lagrange equations can be used advantageously for this purpose. 
Suppose we have a body (a particle) in a central force field moving on a plane. The potential and 
kinetic energies are: 

A 
U=--; 

r 
T m{.2 2·2) = -v- +r <p 

2 

The Lagrangian function then is: 

and the components of the Lagrange equation are: 

aL aL . 2 
-=-=mr<p 
aql ar 

A 
2 ' r 

The first and the second Lagrange equations are: 

aL aL . 
--=-=mr 
aq1 a-r 

8L _.:!__ 8L = mrcp2 -~-.:!__(mr)= 0 
ar dt a-r, r 2 dt 

8L d 8L d . - - - -- = - - mr' <p = 0 
acp dt acp, dt 

(10.15) 

(10.16) 

(10.17) 

(10.18) 

(10.19) 

The Lagrangian function in (10.16) is independent of the polar angle <p therefore the 
derivative 8L/8<p equals zero. This signifies that: 

mr'cp=const } 

mrcp 2 -A/r 2 =mr 
(10.20) 

Using the Lagrange equations we have thus directly obtained the integral of the equation of 

motion with respect to the angular momentum ( mr 2¢J ). This rule is, in fact, general - whenever 
L is independent of some coordinate q then the derivative of the Lagrangian function with respect 
to the corresponding velocity is constant: 

.:!__ 8L = O· 
dt aq ' 

8L 
-=canst 
aq 

(10.21) 

Such coordinates are called cyclic coordinates. The derivative ol I oq of the Lagrangian 
function with respect to the velocity corresponding to the cyclic coordinate is an integral of 
motion. 

We have thus found one of the integrals of motion: it is the angular momentum. There are 
seven integrals of motion: energy, three components of angular momentum (in Cartesian 
coordinates), and three components of momentum. This method is applicable to any number of 
material points. 

Suppose we have a system of material points the potential energy of which is proportional to 
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the square of displacement from the point of equilibrium: 

then the corresponding Lagrangian function is: 

1"( ·2 2 2) L=-~ mq; -a,q, 
2 

By differentiating (10.23) we get: 

3L 2 -a =-a;q;; 
qi 

and the Lagrange equation yields the following relationship: 

2 .. 0 a;q;+mq,= 

(10.22) 

(10.23) 

(10.24) 

(10.25) 

Solution of this differential equation (a2 is always positive) corresponds to harmonic 
oscillations. Any system for which the Lagrangian function is represented by a sum of quadratic 
terms with respect to coordinates and momenta (even containing cross products) is, in principle, 
a set of harmonic oscillators. 

The approach developed by Lagrange is indeed very useful, the only drawback being that 
equations were derived using velocities and not the fundamental variable of Newtonian 
mechanics - momentum. The formulation, in the most general form, of the laws of classical 
mechanics in terms of momenta (dynamic coordinate) and coordinates (geometrical coordinate) 
is due to Hamilton. The Lagrangian function is replaced by the Hamiltonian function, which is 
the sum of kinetic and potential energy expressed as a function of coordinates and momenta. The 
generalised momentum (in any coordinate system) is defined as the derivative of kinetic energy 
with respect to velocity: 

(10.26) 

A quantity similar to the momentum has been used in Lagrange equations: the derivative of 
the Lagrangian function with respect to velocity. The Hamiltonian function can be written in 
Cartesian coordinates as: 

H(p,q)= T + U = 2~ (p; + p~ + p; )+ U(x,y,z) (10.27) 

In polar coordinates the kinetic energy is expressed as: 

(10.28) 

There are two momenta for a motion in a plane: those corresponding to the polar coordinates 
rand rp: 

Pr= 3T/3r = mf; p'I' = aT/a<p = mr 2(p; (I 0.29) 

Expressing kinetic energy as a function of generalised momenta: 

(I 0.30) 

we find the Hamiltonian function to be: 
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H=-1-{P;+p~/r 2 )+u(r,cp) (10.31) 
2m 

Kinetic energy, as can be seen from (10.12), (10.28) and (10.30), is a homogeneous second 
order1 function of velocities or momenta and this is true for any system of material points 
obeying the laws of Newtonian mechanics. From the definitions of the Hamiltonian and 
Lagrangian functions it follows that: 

L + H = 2T; H = T + U; H - L = 2U ( 10.32) 

According to Euler's theorem on homogenous functions of then-th order: 

(10.33) 

Applying this rule to kinetic energy as a homogeneous function of the squares of velocities, 
we get: 

2T ='°'[BT.). ~a· q, q, 

Remembering the definition of momentum P; = aT /aq, , we find: 

Substituting in (I 0.32) yields: 

L+H= LP,q;; or L= LPA; -H 

From this relationship, we now derive the expression for the action function, W: 

I 

W = f{Lp;q; - H)dt 

(10.34) 

(10.35) 

(10.36) 

( 10.37) 

Applying a variation procedure, we obtain a new expression of the principle of least action: 

I 

8W= f(8Lp;q; -8H)dt=0 ( 10.38) 

The variation of the Hamiltonian function is here: 

8H(p,q)= L -8q, +-8p, [aH aH ) 
8q, 8p; 

( 10.39) 

and: (I 0.40) 

1 A function dependent exclusively on the squares of variables (in normal coordinates) or on the 
binary products of variables (in any coordinates). 
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If the variations of velocities in this expression are now removed by using the commutative 
properties of differentiation and variation procedures (similar transformations have been 
performed when deriving the Lagrange Equations): 

. dq; d ( ) p,8q,dt = 8-dt = p, - 8q, dt 
dt dt 

(10.41) 

Integrating then by parts: 

1
fp, !!._(8q;}dt = p 1Dq,t1 -

1
Jdp, Dq 1dt = -J1 

dp 1 Dq,dt 
dt 10 dt dt 

(10.42) 

to lo ~) 

Substituting this integral in (10.40) yields the variation of action: 

If"[[ dp, aH) [dq, aH) l 8W= L.. ---- 8q, + --- op; dt 
dt aq, dt ap, 

lo 

(10.43) 

The condition of extremum corresponds to 8W = 0, which holds if both coefficients of the 
variations 8q and 8p separately equal zero: 

or: 

dp, 8H 
p,. =--=---; 

dt aq, 

dq, _ 8H = O 
dt ap 1 

q, 
dq, 8H 

dt api 

These are the canonical equations of mechanics or Hamilton equations. 

(I 0.44) 

( 10.45) 

Similarly to the Lagrange equations, the canonical equations are very useful in the derivation 
of the equations of motion. The first law of Newton can be obtained from Hamilton's equations 
as readily as from the Lagrange equations. In Cartesian coordinates the Hamiltonian function can 
be written as: 

H(p,q)= T+U =-1-(p; + p~ + p; )+u(x,y,z) 
2m 

(I 0.46) 

Kinetic energy is independent of coordinates, therefore 3H/ax =au/ax. According to 

(10.45): 

dpx 

dt 

au 
ax 

(I 0.47) 

The time derivative of momentum being Px = mx, the last equation reflects the balance of 

dynamic and potential forces acting on a particle according to Newton's first law. In the polar 
coordinate system the Hamiltonian function can been written as: 

H = - 1-{p; + p~ /r 2 )+ U(r, <p) 
2m 

(I 0.48) 

In a field of central forces the potential energy is only a function of the distance and does not 
depend on the polar angle: 
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1(2 2;2)A H=-1pr +p r --
2m ep r 

(10.49) 

We see that polar angle does not enter the expression for the Hamiltonian function. Such 
coordinates (similarly to those in Lagrange equations) are called cyclic. Hamilton's equations for 
this case can be written as follows: 

dpr oH A 
2 

dr oH Pep Pr ---- -
dt or 2 3 ' dt opr m r mr 

(10.50) 

or, in a cyclic coordinate system: 

_ dpep = oH =O· de+> oH Pep 

dt oc+> ' dt opep 
1 

mr~ 

(10.51) 

The momentum corresponding to the cyclic coordinate (q>) does not change with time and is 
the first integral of the equation of motion. Using this property, it is possible to exclude p'P from 
the expression for the Hamiltonian function making the latter an explicit function of p, and r. The 
availability of cyclic coordinates thus simplifies the integration of equations of motion. 

The concept of the integral of motion is very important and is being used in the solution of 
many mechanical problems. The integral of motion can be any function that remains constant 
during the motion of a particle or of a system. The complete time derivative of such a function is 
zero: 

(10.52) 

Using the Hamilton equations (10.44) it can be transformed into: 

(10.53) 

The notation {f.H} used in (10.53) is called Poisson brackets. If a function does not explicitly 
depend on time then its partial time derivative is zero and: 

{c+>, H} = 0 ( 10.54) 

For conservative systems 8H/8t = 0, and using Hamilton's equations it can be found that 
dH/dt is also zero ( {H,H} is, of course, zero). Therefore the Hamiltonian function is an integral 
of motion. 

10.2 
Phase space 

Phase space is a useful tool in the description of the mechanical state of systems containing large 
numbers of particles. 1t is a multidimensional Euclidean space of generalised momenta (p) and 
coordinates (q), having axes q11, ... q3N, p 11, •...•. .p3N, where N is the number of particles. For 
particles having some number of rotational, vibrational or any other (electronic, nuclear spin, 
etc.) degrees of freedom the dimension of the phase space is correspondingly increased. 

The µ-space is the phase space corresponding to the momenta and coordinates of a given 
molecule or particle; µ-space is a subspace of r-space. The elementary volume of µ-phase space, 
dy is: 
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(10.55) 

in which f is the number of degrees of freedom (f = 3 in the absence of internal degrees of 
freedom). 

The f-space is the phase space corresponding to the system of N particles. An element of r 
space is the product of elementary volumes dy: 

(I 0.56) 

A micros/ate is the mechanical state of a system characterised by a given complete set of q, 
and p, for all particles. 

A macros/ate is the state of a system characterised by a given value of one or several 
macroscopic parameters (temperature, volume, density, etc.). A large number of microstates 
corresponds to the same macrostate. 

A representative point is a point in phase space (with coordinates q, p) representing the 
coordinates and momenta of all molecules in a system which define a microstate. 

A trajectory of a representative point in phase space describes the development of a 
microstate in time. For a system in equilibrium the phase trajectory does not imply any change in 
the macrostate. The trajectory representing the development of a part of system never crosses 
trajectories of other parts; neither does it cross with itself. Such an intersection would mean that 
in this point the development of a system is completely undetermined, the two directions being 
equally probable. Phase trajectories of conservative systems belong to a hypersurface (energy 
layer) described by: 

H(p,q) =canst. (10.57) 

10.2.1 
The phase space of a harmonic oscillator. 

A harmonic oscillator is a model system that is very useful in the description of many systems 
considered in statistical thermodynamics. A one-dimensional harmonic oscillator is a system in 
which the force F acting on a particle is proportional to the displacement q: 

F = -a2q = -au/aq (I 0.58) 

The potential energy of a harmonic oscillator is a quadratic function of a coordinate: 

(10.59) 

The kinetic energy or a harmonic oscillator is a quadratic function of velocity: 

T=mi//2 (I 0.60) 

The momentum of a harmonic oscillator is: 

aT . 
p = aq =mq (I 0.61) 

The Hamiltonian function (total energy) of a harmonic oscillator may then be written as: 

H(p,q)= p 2 /2m +a 2q 2 /2 (I 0.62) 
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a 

dq 

H=E+dE 

H=E 

q 

Fig. 10.1. 'Hypersurfaces' describing the states of a harmonic oscillator possessing energy E 

The angular frequency of oscillations performed by a harmonic oscillator is: 

{ 2; )1/2 CO= \U m (10.63) 

The 'hypersurface' containing representative points of all microstates of a one-dimensional 
conservative (H =cons/= E) harmonic oscillator is an ellipse (Fig. 10.1) described by: 

or: 

p 2 /2mE+a 2q 2 /2E =I 

p 2 /2mE + q 2 mco 2 /2E =I 

(10.64) 

(10.64a) 

The half-axes of this ellipse are a =(2mE) 112 and b = (2E/a2) 112 (orb= (2E/mo/) 112). The area 
of this ellipse (volume of the phase space) contains an infinite number of possible microstates 
corresponding to the values of the Hamiltonian function from H = 0 to H = E. This 'volume' is 
therefore a function of the energy of the oscillator: 

J pdq =nab= 2rcEI co (10.65) 

A microstate of the harmonic oscillator with its energy lying between E and (E + dE) is defined 
by specifying the volume dpdq in the vicinity of the point pq belonging to the layer between two 
ellipses (Fig. IO. I). 

The area between the ellipses (Fig. IO.I) contains all possible states of the harmonic oscillator 
with energy E to (E + dE). The probability of a micros/ate of such a harmonic oscillator is the 
ratio of dpdq to the area of the energy layer. 

10.2.2 
The phase space of an ideal gas 

An ideal gas is a collection of statistically independent particles moving freely within the volume 
of a vessel. In an ideal gas, statistical independence results from large distances between 
molecules and thus the potential energy of intermolecular interaction approaches zero. However, 
the potential energy of a given particle in an ideal gas can be non-zero due to interaction with an 
external field (for example a gravitational field). Statistical independence of the molecules of an 
ideal gas implies that they have zero size, i.e. they arc material points. Their particular property 
is that they are indistinguishable. 
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The total energy of ideal gas is the sum of the kinetic energies of the molecules (it is additive 
with respect to the kinetic energies of molecules): 

N N I 3 2 

H=2:>:1=2:-IP; 
j 1=l 2m, I 

( 10.66) 

The µ-space of an ideal gas is 6-dimensional (dy = dxdydzdp,dp;£fpz). The energy of a 
molecule in an ideal gas is independent of the coordinates and is a function of the magnitude of 
the momentum: 

I I f 2 2 2 )'i 2 
P = P = \Px +Py+ Pz ; E = p 2 /2m. (I0.67) 

In the phase space of momenta an energy layer of a molecule is a spherical layer of thickness 
dr; and radius: 

p = .J2mr. (I0.68) 

The volume of such a spherical layer is the product of surface by thickness: 

dy r = Sdp = 4rrp 2dp (10.69) 

The elementary volume of an energy layer in the µ-space is: 

t+d£ 

dy{r.)= Jffdxdydz fdyP =4nVp 2dp=4nVm(2mr.) 112 dr. (10.70) 

The energy density of the states of a molecule of an ideal gas is: 

(10.71) 

The momenta of the molecules of an ideal gas are independent of the coordinates and 
therefore an element of a volume of the phase space of an ideal gas containing N molecules can 
be represented as a product of the elementary volumes of the p and q subspaces: 

3N 

dr =IT dpidqi = drpdrq (10.72) 
i=l 

The phase volume containing phase points representing systems with energy varying from 
zero to H can also be represented as a product of the corresponding volumes in the phase space 
of momenta and coordinates or configurations (each point in r q-space represents the coordinates 
of all molecules, i.e. it is a configuration): 

1(£)= fdr= Jfdrrdrq =iriq (10.73) 

O<H <Ii 

The integration over coordinates (or configurations) yields the volume of a system to the N-th 
power: 

rq = f. .. f. .. f dV, ... dvN = vN (10.74) 

v 

The volume rl' in the space of momenta is the volume of a 3N-dimensional hypersphere of 
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radius r = p = (2mE) 112 described by l.p,2 = r 2. For a hypersphere of a very large number of 
dimensions (n >> 1), the volume is given by the following asymptotic formula: 

:::::_ !!_In 2ner 2 
lnVn 

2 n 
(10.75) 

(10.76) 

The volume of an energy layer (H = E to E + dE) is the difference of the volumes of two 
hyperspheres with the radii p and p + dp: 

3N 3N 

dr(E)= 3N VN E2-'(4nme) 2 dE 
2 3N 

(I 0. 77) 

The energy density of states is: 
3N 

(E)= dr(E) = 3N VN E 3;-'(4nme.)2 
g dE 2 3N . 

(10.78) 

The volume of phase-space and the energy density of states are vc:ry sharply rising functions 
of the number of particles and of the energy of a system. 

10.3 
Derivation of the canonical distribution 

Let us consider a macroscopic system (system A) in a large heat reservoir (system B) with a very 
large (compared to system A) heat capacity. The state of system B remains unchanged 
irrespective of any changes occurring in system A. System B is therefore statistically independent 
of system A. When the heat reservoir is static (experiencing negligibly small fluctuations) the 
state of system A can be considered as independent of the state of the heat reservoir. 

The Hamiltonian function of a system of statistically independent parts is the sum of the 
Hamiltonian functions of its components: 

H(p, q) =HA (p, q )+ H s(p, q) (10.79) 

The combined system (A + B) is considered as isolated, i.e. H(p,q) =canst. When the systems 
A and B are in equilibrium within themselves and between themselves the combined system is 

also in equilibrium. The normalised probability densities ( p ,= N!hN p) of the quasi

independent systems A and B constitute together a system of a microcanonical ensemble and are 
multiplicative and their logarithms are additive: 

p(H) = p A (HA )p B (H B) (10.80) 

In p(H) =In p A (HA)+ In p 8 (H s) (10.81) 

Differentiating the logarithmic form (10.81) yields: 
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(I 0.82) 

The differential dH of the Hamiltonian function of the combined system (which is 
conservative) is zero. On the other hand it constitutes the differentials of the Hamiltonian 
functions of the systems A and B: 

(10.83) 

and therefore: 

dHA =-dH8 (I 0.84) 

The condition dH = 0 implies that the sum in ( 10.82) is also zero because the derivative 
a In p I 8H can not be infinitely high. Taking into account (10.84) we get: 

( 10.85) 

The differential dHA being non-zero the condition (10.85) can be written as: 

o ]Op A = o Jn p B = p 
oHA oHB 

(I 0.86) 

in which p is a certain parameter common to both systems and independent of the microscopic 
variables. The state of the system B (the heat reservoir) was defined as approximately 
unchangeable therefore the parameter p is a constant. We are not interested in the details of the 
state of the system B and will now consider the effects of the heat reservoir exclusively as 
represented by the parameter p. Equation (10.86) can be directly integrated with respect to the 
Hamiltonian function of the system A (the indices A and B now become redundant). This 
integration yields the normalised probability density of the canonical distribution as: 

p(p, q) = AellH(p.q) (10.87) 

in which A is an integration constant. The probability of finding a representative point of a 
system of a canonical ensemble within dp ... dq around the point p,q is then: 

dW(p,q) = pdO. = AePH(p,q) dp ... dq 
N!hN 

( 10.88) 

This is the canonical distribution, which provides for the derivation of statistical formulae for 
thermodynamic functions in systems of interacting molecules. 

10.4 
Free volume associated with vibrations 

Translational motion and vibrations have many features in common. In fact, harmonic vibrations 
are translational motions in a force field characterised by a parabolic potential, i.e. under the 
action of a returning force linearly dependent on the deviation from the point of mechanical 
equilibrium: 

(10.89) 
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in which x is the coordinate of a particle with respect to its position of equilibrium and f is the 
quasi-elastic constant related to the frequency of oscillations as: 

v = (1/2n)JJ /m 
j = 4rt 2v 2m 

(10.90) 

(10.91) 

Under these conditions the integration over the spatial coordinates in (3.32) results not in the 
volume but in the free volume. The molecules being independent, we are able to perform this 
integration for a single molecule (atom) considered as an isotropic three-dimensional oscillator: 

(10.92) 

in which vr is the free volume associated with such a vibrator. Let us define: 

a= f /2kT = 2rt 2mv 2 /kT; u = kTax 2 (10.93) 

At high temperatures, the limits of integration in (10.92) can be set to be ±oo and the free 
volume can be written as: 

(10.94) 

The integral of exp(-ax2)from -oo to +oo is twice the integral from 0 to +oo. The latter is: 

Therefore: 

1 e -ax' dx = _I_ r{Yz) = ~ 
0 2../a 2../a 

This expression provides for several important conclusions: 

(10.95) 

(10.96) 

I. If we substitute, in the expression for the translational partition function, the volume v by 
the free volume (omitting the factor e as originating in migrations of molecules) we will get the 
high temperature approximation of the vibrational partition function: 

Eo Eo Eo 

z = (2nmkT/h 2 ) 312 ve -kT = (kT/hv)3 e -kT =0 zv16 e -kT (10.97) 

2. Extrapolating this result suggests that at low temperatures th•~ free volume can also be 
determined from the equality Z1mn,( vr) = Zvib (10.97): 

v 1 = zvib (2nmkT/ h2 t3 12 = [ 2 (2nmkT/ h2 )~ sinh(0/2T)r (10.98) 

3. We can also define the quasi-elastic constant/ and potential energy via the free volume: 

a= n/vY 3 ; u = akTx 2 = nkT x 2 /vY 3 (10.99) 
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4. The equation of state of a collection of independent 30 oscillators can then be obtained as 
p = - dU/dV where U = NJLkT< x2 > v1c213 • We may assume the mean square deflection from the 
point of equilibrium to be independent of volume (to a first approximation). The equation of state 
then becomes: 

( ) dv . ( ) d Inv 
P = 21t/ NkT x2 v-s13 __ f = 2rr.1 NkT x2 v-213 __ f_ 

13 f dV 13 f dV 
(IO. JOO) 

The ratio <:x2>!v/'3 can be obtained from the condition of equi-partition of energy 
<u> = 3kT/2. According to (I0.99): 

nkT(x 2)/v}1 3 =3/ikT 

The equation of state of a collection of 30 vibrators is then: 

dlnVl 
p=NkT-dV-

(IO.IOI) 

(I0.102) 

These relationships illustrate the interconnections between different forms of motion. 

10.5 
Rotational contribution to the equilibrium constant of the ionisation 

of water 

The moments of inertia of OH- and HiO+ ions can be estimated from quantum mechanical 
calculations using the HyperChem'" program. After optimising geometry, the vibrations are 
calculated, saving the results as a log. The moments of inertia obtained by MNOO calculations 
are shown in Table IO. I. The rotational partition function for OH- must be calculated using 
(2.78), whilst for H20 and HJO+, because they have three moments of inertia, (2.79) must be 
used: 

8rt 2 IkT rt 112 {8rt 2kT\l12 (1 I I :)1 12 
Z = (2.78); Z = v ) A B C (2.79) 

crh 2 crh3 

The calculations at 300 K yield the results shown in the last column of Table I 0.1. The 
contribution of the rotational partition function into the equilibrium constant of ionisation is 
therefore l'lSJR = ln(z,+z,_fz2,o) = ln0.364 = -1.009 

Table 10.1. Moments of inertia (in 10-40 g cm\ symmetry numbers, and rotational partition 
functions for molecules involved in the ionisation equilibrium 

Ix fy 

------~~-~---.--------

H10 0.94 1.92 
HiO+ 2.31 2.31 
Off 0 1.38 

fz 

2.86 
4.62 
1.38 

a 

2 
3 
I 

Zr (300 K) 

41 
59.5 
10.3 



10.6 Forms of the law of mass action employing the I-function... 317 

10.6 
Forms of the law of mass action employing the r function 

approximation of the factorial 

Some doubts might arise concerning the validity of the law of mass action (as well as of the 
Maxwell - Boltzmann distribution) for small systems on account of employing the Stirling 
approximation of the factorial function. In fact, there are no mathematical problems in 
approximating the factorial function of small numbers. 
Employing (3.42), we can write the free energy of the reaction mixture (3.93) as: 

_ .!._ = mlnq+q V 2 + (N -2m)lnq0V -2 In m!-ln(N -2m)! 
kT -

(10.103) 

Zero derivative of this function with respect to m will then define the law of mass action: 

In q+q- _ 2 d lnm! + 2 d ln(N -2m)! = 0 
q~ dm d(N -2m) 

(10.104) 

The factorial in the last term in (10.103), involving large numbers, may be approximated by the 
Stirling formula, which thus yields: 

q+q- dlnm! ( ) ln-2--2--+21nN-2m =0 
q0 dm 

(10.105) 

For rational positive arguments the logarithmic derivative of a factorial is defined employing 
the I-function (e.g. Jahnke E, Emde F (1933) Funktionentafeln. B.G. Teubner, Lepzig.). For 
m > 5 it quite closely approaches ln(m) (Fig. 10.2A). For m = 0 - 5 this function can be 
approximated by In (n + 0.52) as shown in Fig. 10.2B. For a small number of particles involved 
in a chemical equilibrium the law of mass action may therefore be written in the following 
approximate form: 

In q+q- -In (m+0.52)2 =0 
2 N2 qo 

(10.106) 

2.00 

ln(n) 

-2 00 

Fig. 10.2. The logarithmic derivative of the factorial (crosses) and the logarithmic function (line) 
in the region of small values of the argument (left-hand graph). The right-hand graph shows the 
approximation of the function exp( din n!ldn) (crosses) by the linear relationship y = n + 0.52 
(line). 
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With decreasing equilibrium constant and/or size of the system, the law of mass action thus 
predicts a gradual decrease in the number of ions to zero at finite values of the 'equilibrium 
constant' q+q_fq02 = 0.270/N2. In other words, this law of mass action predicts that in some 
systems reactions can be irreversible: for KN2 < 0.270 the law of mass action does not have any 
solution. 

10.7 
Derivation of the van der Waals equation of state 

Let us suppose that the average potential energy of a molecule beyond the restricted area 
corresponding to a direct contact of molecules has a small negative value inversely proportional 
to the volume of the system: 

u=-a/NV (10.126) 

In other words the density of the energy of molecular interactions is assumed to be constant. 
Within this restricted volume, the potential energy is infinitely high and we may define the free 
volume per molecule as: 

vf =(V-b)/N (10.127) 

in which b represents the total restricted volume. The molecular partition function then becomes: 

3 3 

-(2nmkT)2 vfr -;;d -(2nmkT)2 -;; z- e V- v1e 
h2 h2 

0 

Substituting Vt and u according to their definitions, we get: 

3 

lnz=~ln( 2rt~kT)z +ln(V-b)+-a-
2 h VNkT 

(10.128) 

(10.129) 

For a gas of spherical particles (without internal and rotational degrees of freedom) the free 
energy can be written as: 

3 2nmkT 2 a 
F=-NkT 21n( h2 ) +In(V-b) -V 

[ 
3 l 

The pressure of such a gas containing N molecules in volume Vis: 

p = NkT(aln z) = NkT --;
av 1 v-b v 

(10. 130) 

(10.131) 

This is one of the forms of the van der Waals equation, which can easily be transformed into: 

(10.132) 

We see that the condition of small density ( V >> b) was not imposed on this system, therefore 
the van der Waals equation can be applied to dense gases and liquids. 
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10.8 
Exchange energy 

As in many examples considered in the preceding Chapters, a hint as to how to transform an 
equation is given when we express the potential energy as a function of one variable (e.g. the 
mole fraction of the component A): 

(10.133) 

The term L'1<p = 2<pAB - (jJAA - <pee has a clear physical significance and therefore we can 
express the potential of hetero-interaction, (jJAB, in terms of this quantity. The energy of 
molecular interactions then becomes: 

(10.134) 

Returning to the potential energy as a function of two variables, XA and x8 , we get a useful 
formula separating the additive contributions of homo-molecular interactions: 

(10.135) 

This form provides a convenient representation of non-ideal systems as perturbed ideal systems. 

10.9 
Activity coefficients derived from the non-ideality resulting from 
triple interactions 

The equation of the law of mass action (7.47) can be written as: 

3 [ ( )2 J f;.(3) f;.(2) f;.(O) + f;.(2) + /:!,.(3) X 
- x~ + 1- x8 --+ (xA -x8 +1)-- - · - ln_l!._ = 0 (10.139) 
2 NkT NkT NkT XA 

Expanding ( 1 - XB) 2 and combining the terms with identical powers of x results in the 
polynomial part of(I0.139) becoming: 

2 1.5!.;. (3) f;. (2) + 1.5!.;. (3) 

+ x ---- x ------
B NkT B NkT 

f;.(O) + f;.(3) 

NkT 
(10.140) 

When 1'1<3l = 0, the polynomial part of (10.139) transforms into an expression symmetrical 
with respect to In (xBIXA): 

Ii (2) Ii (2) f;. (0) 

xA NkT -xB NkT - NkT -lnxB +lnxA = 0 (10.141) 

which, for small L'1<2l << NkT, can be transformed into the law of mass action with respect to 
activities: 
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11(0) [ [ 11(2) )] [ [ 11( 2
) )] - -- - In x 8 1 + x 3 -- + In x A 1 + x A -- = 0 

NkT NkT NkT 
(10.142) 

In the case of non-zero i'l.(J), the activity coefficients become asymmetric with respect to 
reactant and product: 

11<0) [ [ 11< 2) 2 1.511(J) )] [ [ 11<2) 2 1.511(J) )] ----In x 8 I+x3 ---x8 --- +In xA l+xA--+xA--- =0 
NkT NkT NkT NkT NkT 

(10.143) 

This shows that activities determined separately for reactant and product might be valid for 
the linear term alone. 

10.10 
The law of mass action for a binary equilibrium in a system with non

additive volume and lattice energy. 

According to the model of molecular interactions represented as arising from the dependence of 
the partition function on surroundings, the lattice energies u and the molecular volumes v in a 
binary mixture can be separated into four classes corresponding to homo-molecular and hetero
molecular clusters: 

in which: 

u = nAuAAA + nBuBBB + nAxB!iuex 

v = nAV AAA+ nBVBBB + nAxB!ivex 

fiuex = U AAA - U BAB + U BBB - U AHA 

/i Vex = V AAA - V BAB + V BBB - V ABA 

(10.144) 

(10.145) 

(10.146) 

(10.147) 

We can combine two types of non-ideality viz. those arising from free volume and lattice 
energy. Free volume and lattice energy are not independent variables but are interrelated via an 
equation of state. According to a simplified version of the Eyring equation of state, free volume 
is proportional to the third power of the reduced temperature and for a binary mixture it can be 
written as: 

2NKkT 
1: = ------------ (10.148) 

nAuAAA +nBuBBB +nAxB!-iuex 

in which Vis defined by ( 10.145). 
The free energy of a binary system in the liquid state can be written as: 

_ _f__=n llnz _£A+uAAA -ln!!_.A_]+n llnz _£H+uHHH 
kT A A kT v H H kT 

f 

I nH] 11uex n- -nx --
V A H kT 

f 
(10.149) 

in which Vr is a function of composition as defined above. It must be mentioned that the energies 
£A, £H are very large quantities comprising the total potential energy of an isolated molecule. 
Their difference (constituting the major part of the standard internal energy of reaction) is 
considerably smaller but still might reach the values of tens and hundreds of kilocalories per 
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mole. The lattice energies UAAA and URBB, as well as their differences !J.u, are much smaller - the 
latter reaching perhaps the level of tens of kilocalories per mole. Much smaller values can be 
expected for the exchange energies reflecting the difference of lattice energy of molecules in 
(slightly) different molecular environments. It is only in special cases such as spin crossover that 
the exchange energy is comparable to the difference in potential energies of products and 
reactants. What is more important, the exchange energy in spin crossover is higher than kT112 that 
results in the steep spin crossover. 

The law of mass action obtained from (I 0.149) can be written with respect to the numbers of 
molecules of the species Bas: 

(10.150) 

The derivative of free volume with respect to the number of molecules involves the balances 
and exchange parameters: 

dlnV1 = ~v+(l-2xB)~vex _ 3 ~u+(l-2xB)~uex 
~ v u 

(10.151) 

The balances, !J. v and !J.u are due to the reaction seemly occurring in completely homo
molecular surroundings: 

~U = U BBB - U AAA; ~V = VBBB -VAAA (10.152) 

The exchange parameters, on the other hand, characterise the difference of volume and lattice 
energy (per molecule) in homo- and hetero-molecular surroundings ((I 0.146) and (I 0.147)). 

The law of mass action for a binary reaction without a solvent and written explicitly with 
respect to molar parameters illustrates this situation: 

ln-x-=- ~E+~U + ~S -(1-2x)~Uex 
1-x RT R RT 

+ ~V+(1-2x)~Vex _ 3 ~u+(1-2x)~uex 
VA+ x~V + x(l-x)~Vex UA + x~U + x(l-x)~Uex 

(10.153) 

in which the parameters !J.S and !J.£ are determined exclusively by the molecular properties of 
products and reactants. 

There are seven parameters in total, determining the shape of the transition curves obeying 
this law of mass action, namely !J.S, !J.E, !J.U, !l.Um !J.V, !J.V,x and UA. The volume VA can be 
cancelled out, whereas the absolute value of UA is important because !J.Uex enters two different 
terms in ( 10.153). Simulations following (10.153) show that the introduction of exchange energy 
into the expression for free volume has increased the sensitivity of van't Hoff plots to the effects 
of non-ideality. For example the critical value of !J.Uex above which phase separation can be 
observed is considerably lower than that obtained for the law of mass action (7.50). For 
UA = 5RT the vertical tangent to the transition curve is achieved at !J.Uex = \ .28RT vs. 2RT 
obtained for (7 .50). 

Small non-zero balances !J.U and !J. V do not produce of themselves considerable curvature of 
the van't Hoff plots when !J.Uex is zero. However they increase/decrease significantly the 
curvature caused by a non-zero !J.Uex· 

The effects of non-zero exchange volume are formally similar to those of exchange energy: it 
produces varying curvature of van't Hoff plots that intersect at the transition point. Its effect on 
the shape of a van't Hoff plot when !J.U,x is also non-zero and is more pronounced than that 
arising from the balance of volume. Non-zero balances make the van't Hoff plots curvilinear (or 
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increase the curvature caused by non-zero exchange parameters) and shift them horizontally 
without an intersection. Non-zero exchange parameters, on the other hand, besides making van't 
Hoff plots curvilinear, cause them to intersect at the transition point 

10.11 
Physico-chemical constants and units of energy 

Table 10.2. Physico-chemical constants 

Velocity of light 

Mass of electron 

Mass of proton 

Charge of electron 

Planck constant 

Planck constant 

Boltzmann constant 

Gas constant 

Avogadro number 

Table 10.3. Energy units. 

erg 

N1hcco(lcm-') = 2.86 cal mor' 

erg 5.0348x I 015 

l.602x 10- 12 

c = 2.99793x10 10 cm sec- 1 

me= 9.1083xl0-28 g 

mp= l.6723x 10-24 g 

e = 4.80286x I 0- 1° CGSE 

h = 6.625x 10-27 erg sec 

k = I .38044x I 0- 16 erg K- 1 

N1=6.0249xI023 atom mor 1 

MHz 

l.43kTequals I cm-' (hcco) 

1.4388 29.979x103 

6.242xl0 11 7.244x10 15 l.5094x 1020 

I. 11605 2.4181xl08 

l.3805x 10-16 8.6 I 69x I 0-5 2.0837x 104 

One MHz (hv) equals 6.6252x 10-21 erg lea!= 4.184 J = 4.184x107 erg 



11 Index 

Acceptor numbers, 260, 267, 269, 293, 294 

Action, 

function of, 303, 304, 307, 314 

the principle ofleast action 4, 303, 307 

Activation equilibrium, 139, 142, 255 

Activation energy, 140, 249, 250, 255, 
257, 259, 261, 294, 278 - 281 

Activity(ies), 109, 115, 129, 130, 189, 191, 
193, 194, 217, 248, 319 

Activity coefficients, 

in condensed state reactions, 109, 115, 
117, 128, 132, 133, 134, 143,217,297, 
300,319,320 

in gas-phase reactions, 189, 190, 191, 
193, 194, 200 

Binary potential, 147, 157, 164,175, 177, 
182,204,205,246 

Black-body radiation, 28 

Planck and Stefan - Boltzmann laws 
derived from the Bose - Einstein 
distribution, 35 

Boltzmann - Planck theorem, 5 

Bose - Einstein statistics, 26, 27, 34, 35 

Canonical (Hamilton) equations, 4, 14, 26, 
50 

derived from the principle of least 
action 308 

Canonical distribution, 13, 52 

derivation of, 313 

width of, 54 

thermodynamic functions derived from, 
55-57 

Caratheodori, principle of, 3 

Chemical coordinate 2, 

Chemical correlations 249, 293, 300 

Chemical equilibrium 

dynamic interpretation of, 72, 135 

Chemical potential, 

definition, 2, 73 

derivation of, 

from Maxwell - Boltzmann distri
bution, 11, 16 

from Bose - Einstein distribution 27 

from Fermi - Dirac distribution 29 

from canonical distribution 57 

in binary liquid mixtures, 213, 214 

in binary solid mixtures, 231, 241, 242, 
247 

its dependence on the numbers of 
molecules 74, 75 

law of mass action expressed 
employing, 74 

of an assembly of photons, 34 

of a gas with weak binary interactions, 
189 

of an ideal gas, 11, 16, 31 

Compensation effect, 88, 270, 278, 282, 
287 

(see also 'IER' and 'IKR') 

Configurational (mixing) entropy, 81, 207-
209, 227-229, 233 

Configurational integral, 77, 78, 79, 117, 
119, 180-183,201 

Cooperativity (excess energy of mixing) 
204,300 
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Degeneracy (of an energy level), 28, 35 58, 
63, 

Degeneracy factor 58, 59, 61, 63, 64, 80, 
240 

Degenerate ideal gas, 31 

Dilution, effects of, 129, 140, 142, 240-
244, 290-292 

Displacement energy, 149, 150, 158, 159, 
161 

Distribution of energy, the model of non
Arrhenius kinetics, 255, 257, 278 

Donor numbers, 260, 268, 269 

Energy, the concept, of, 303 

Energy distribution function, 48, 51, 53, 54 

Ensemble 30, 33-35, 44 

grand canonical 46, 65, 102 

canonical 46, 52, 65 

microcanonical 46, 51, 52, 65 

mean over 48 

cooperative, 204 

regular, 205 

Entropy, 

as a thermodynamic coordinate, 3, 13 

calculation of, Gibbs paradox in 
relation to, 21, 22, 23 

of fusion, 245 

statistical, 4, 7 

its identity with thermodynamic 
entropy, 10, 50 

Equation of state 

see also 'van der Waals e.o.s' and 
'Lennard-Jones and Devonshire e.o.s.' 

employed in formal derivation of the 
law of mass action, 74, 75 

free energy derived from 179 

of a collection of 3D oscillators, 316 

of a gas with weak binary interactions 
185, 187 

of an ideal gas, derived from Maxwell -
Boltzmann distribution, 12, 16 

of an ideal gas, derived from the virial 
theorem 174 

of an ideal gas containing dimerisation 
equilibrium 199 

of a system of attracting hard spheres, 
120, 121, 130, 131, 297, 320 

Equation of motion, 147, 155, 304, 305, 
308,309 

the first integral of (integral of motion), 
50,305,309 

Equipartition of energy, principle of, 21 

Ergodic hypothesis 45 

Exchange (free) energy 

defined via the potential energy of 
binary interactions, 203, 229, 319 

defined through a dependence of 
partition function on composition, 209-
212 

in liquid mixtures critical phenomena 
connected with-, 213-215 

large positive, steep spin crossover in 
relation to, 219 -

phase transition connected with, 226 

heat capacity peaks connected with 
223, 

large negative, ordering and two-step 
spin crossover in relation to 226 - 240 

effective, in diluted systems 245 

IER arising from, 252, 283, 288-292 

employed in description of 
multicomponent mixtures 246 

Exchange entropy (excess entropy of 
mixing}, 213, 220, 233 

Exchange (excess) volume 298, 299, 321 

Fermi - Dirac statistics, 26, 29, 30, 31, 32 

Fluctuations 58, 64, 99, 106 

Free energy 3 

see also 'Helmholtz free energy' 

minimum of, with respect to 
composition, 82, 295 

minimum of, with respect to 
composition and degree of ordering, 
234,235 

of ideal gas, 81, 82 



of imperfect liquids with additive 
volume and lattice energy 113, 123, 
130 

of non-ideal systems 88 (see also 'non
ideality terms') 

of systems exhibiting steep spin 
crossover, two minima in its 
dependence on composition 220, 221 

Free volume, 117, 118 

its dependence on composition, the law 
of mass action for imperfect liquid in 
relation to 123, 126, 127, 130- 132, 
134, 143,203,247,296,299,300 

of a collection of hard spheres 121 

of gaseous systems, 183, 184, 187, 188, 
191, 194, 197 

of a collection of 3D oscillators, 315 

of a Lennard-Jones and Devonshire 
liquid 160, 161, 162, 297 

Frequency of vibrations, 137 

in condensed state, 155 

in spin crossover complexes, 63 

Gibbs approach to statistical description of 
systems of interacting molecules 44, 46 

Gibbs free energy (Gibbs function) 2, 12, 
73, 108, 219 

defined via partition function of 
canonical distribution 57 

Gibbs paradox 21, 74, 75, 76 

Hammet scale of chemical reactivity, 260, 
261,263,265,266, 300 

Heat capacity (specific heat) 

and fluctuations, 64, 67, 68 

of solids, Einstein, Debye and Tarasov 
theories, 35 - 41 

changes in spin crossover, Debye and 
Tarasov theories in relation to 222-226 

changes in activation process, 280 

Helmholtz free energy (Helmholtz 
function), 2, 12, 

defined via partition function of 
canonical distribution 56 

statistical formulae for, 12, 16, 77 
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formulae for ideal systems, 79 

of an ideal gas 81 

as a thermodynamic potential for 
liquids instead of the Gibbs free energy, 
73, 108 

Hysteresis (in spin crossover) 220, 222, 
223,225,231 

Ideal crystal, 79, 80, 89, 90, 92-94, 168, 
205,208,295 

Ideal gas, 12, 15, 16, 21, 75, 79, 80, 295 

fluctuations, in 67 

phase space of, 311 

'Ideal liquid' 97, 99, 107, 117 

Ideal systems, 

definition, 15, 79, 295 

IER and IKR in 273, 279 

IER (iso-equilibrium relationships) 

(see also 'compensation effect') 

in gas-phase reactions 276 

non-ideality as a source of 282 -293 

the role of terms arising from free 
volume, 283 -288 

the role of non-additivity of lattice 
energy (exchange energy) 288 -
293 

phenomenology of, 88, 270, 271, 301 

possible forms of, caused by dilution in 
systems with non-additive lattice 
energy 292 

role of low frequency vibrations in 273 

statistical model for ideal systems 272 -
278 

IKR (isokinetic relationships) 

(see also 'compensation effect') 

in ideal systems, the models of 
distribution of energy and non
equilibrium thermodynamics, 278-282 

Internal (total) energy, 1-4, 6, 12, 13, 56, 
57, 66, 165 - 167 

Internal pressure 107, 118, 121, 123, 128, 
131, 138, 162, 145 

Indistinguishable molecules (particles) 
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Gibbs paradox in relation to, 21 

number of quantum states in relation to, 
25, 60, 43, 118, 119, 120 

Kinetic law of mass action 71, 135, 137 

non-ideal, critical phenomena expected 
for systems with large balances of 
lattice energy, 137-142 

Kopp rule 114 

Lagrange equation 303 - 309 

Lagrangian function 303 - 306 

Lagrange method of undetermined 
multipliers, 8, 27 

Lattice energy, 117, 171, 240, 203, 

additive, critical phenomena connected 
with 123 - 129, 138, 142, 296 

additive, IER in relation to, 252, 253 

non-additive, a description employing 
exchange energy, 203, 205 

non-additive, a description based on the 
dependence of molecular lattice 
energies on surroundings, 207, 297, 
300 

balances of (in chemical reactions) 124-
126, 129, 132, 134, 135, 139, 140, 143, 
247,270, 295 

internal pressure derived from, 120 

its connection with free volume, 121 

Lattice theories of the liquid state, 117, 
294,296 

Law of mass action, 

breakdown, of 99 - 105 

definitions, 72-7 4, 295 

for ideal gas, formal thermodynamic 
derivation, 73-75 

for ideal gas, forms employing molar 
concentrations and mole fractions, 83-
85, 296 

for ideal crystal, 89-95 

for 'ideal liquid' 97 

for imperfect liquids and gases, 
reduction to the ideal form 114, 124, 
127, 189, 191, 193-195 

for equilibria in liquids with repulsive 
interactions I 08, 111-116 

for equilibria in Lennard-Jones and 
Devonshire liquid 122-128 

for gaseous systems with weak binary 
interactions, 189, 192, 196 

history of formulation, 71 

non-ideal, for condensed systems with 
additive volume and lattice energy 129-
135, 

LFER in relation to 252-255 

!ER in relation to 282-288 

non-ideal, for condensed systems with 
non-additive lattice energy, 

!ER in relation to 288 - 293 

taking into account ordering, 235 

taking into account triple 
interactions, 216 

quantitative description of the two
step spin crossover by, 237-240 

non-ideal, for condensed systems with 
non-additive volume and lattice energy 
299,320 

Lennard-Jones and Devonshire, 

theory of the liquid state, 157, 162, 163 

equation of state, 151, 152, 155, 156, 
158, 160, 162, 297 

Lennard-Jones potential 148, 178, 179 

determination of its parameters 
employing: 

Born - Lande method 165 

BB Koudriavtsev method 166 

Rayleigh - Chapman method 170 

Lennard-Jones method 177 

LFER (linear free energy relationships), 
252,261,263,264,267,269,278, 293 

Liouville theorem 14, 50 

Local equilibrium 49, 50 

Localised states 25, 60 

Macrostates and microstates, 7, 14, 44, 45, 
49, 52, 54-56, 310 

Mass (material) balance equations, 76, 
105, 115, 134, 191, 195, 240, 243, 253 

Maxwell relations, 166 



Maxwell - Boltzmann distribution, 

derived using the cell method of 
Boltzmann, 9 

continuous, 14 

mean and most probable values of 
molecular parameters calculated using 
it, 17 

applied to the ionisation equilibrium of 
water, 104 

its applicability, in relation to quantum 
statistics 30 - 33 

its inapplicability to systems of 
interacting molecules, 43 

Microcanonical distribution 51, 54 

Molecular complexes 111, 198, 249, 253, 
254,260,267,268,270,275 

Molecular partition functions 57 - 63 

Nemst theorem, as originating in quantum 
statistics, 33 

Non-ideality (terms), 

affecting chemical affinity 251-254, 
265,266,270 

and IKR, 279, 301 

and IER, 282 - 294, 301 

in description of condensed systems 
with additive volume and lattice energy 
109, 122, 128, 130, 132-134 

in description of gaseous systems with 
weak binary interactions, 191, 194, 200 

in description of non-ideal kinetics 139-
142 

in description of systems with non
additive lattice energy, 203, 217, 234, 
246 - 248, 

Non-equilibrium thermodynamic model of 
IKR, 254 - 256, 281 

Number of quantum states, 24, 25, 55 

Ordered systems 

Bragg - Williams approximation of, 
226, 227, 233 

chemical equilibrium in, 234 

Ordering 

degree of, definition 227 
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free energy of~ 231 

description of, taking into account triple 
molecular interactions 232 - 234 

two-step spin crossover originating in 
234 - 240, 299 

Partition function 

electronic 58, 69, 78, 123, 207, 250, 
258 

introduced in the cell method of 
Boltzmann 9 

of canonical distribution 53, 56, 57 

of continuous Maxwell - Boltzmann 
distribution 16 

of a Lennard-Jones and Devonshire 
liquid 161 

of modified Maxwell- Boltzmann 
statistics 23, 25 

of a spin crossover compound, 90-91 

rotational 61, 62, 100, 316, 273 

translational 59, 60, 77, 88, 123, 255 

vibrational, 62, 63, 80, 91, 278, 155, 
273,283,316 

total 57, 58, 69 

Phase separations (transitions) in liquid 
mixtures 143, 213 

Phase space 309 

of con figurations 312 

of ideal gas 311, 

of harmonic oscillator 310 

Probability density 46, 47 

of microcanonucal distribution, 51 

of canonical distribution, 52, 314 

Pseudo-correlations 261, 272 

Quantum statistics 26 

Quasi-thermodynamic model of kinetics 
254 

Reduced free volume, 162 

Reduced temperature 131, 132, 143, 161-
163, 1 79, 186,, 187 

Relaxation time 49 
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Representative points, 4 7, 54-56, 310 

density of 48 

Rayleigh equation 176, 177, 179 

Reference compounds 260, 262, 263, 267 

Reference reactions 250, 257, 259, 261-
263, 266, 267, 293 

Regular solutions 205, 212, 246 

Regular solution model of steep spin 
crossover, 219 

Spin-degeneracy 58, 63, 64, 68, 240 

Spin crossover, 64, 89-95, 108, 110, 126, 
211, 218 - 236, 256, 290, 233, 

steep, regular solution theory of 219-

in magnetically diluted systems 240 -?? 

Standard state, 84, 85, 86, 88, 129, 133-
135, 300 

Standard entropy 

of reactions in ideal crystal, 90, 91, 94 

of reaction in imperfect liquids and 
solids, 109, 110, 116, 224 

in relation to !ER and !KR, 267, 272-
275, 279, 283,285,289,294, 301 

statistical formulae for ideal gas 87, 88, 

Standard free energy, 85, 86, 295, 298 

statistical mechanical calculation of, 
249-251, 258, 

and donor numbers, 267- 269, 

of gas phase equilibria, !ER in relation 
to, 277, 

variations of in reaction series, 254, 
262, 263,265,267, 

Standard internal energy, 87, 88, 90, 109, 
110, 126, 203, 247 

in relation to !ER and !KR, 275, 279, 
280,285,288,289 

computed using quantum chemical 
calculations 267-269 

Solvation, 252-254, 265, 269, 270, 283, 
293,294 

Surface tension, lattice energy estimated 
from, 154, 168, 169 

Thermodynamic functions, defined via the 
partition function of canonical 
distribution 57 

Thermodynamic probability 6, 7, 12, 23, 
46 

Transition state model, 137, 254-257, 263 

Triple molecular interactions 206, 212, 
217, 232, 234, 241, 246, 299, 

Two-step spin crossover 

double peak of heat capacity in relation 
to 225 

ordering in relation to 226, 235 

role of triple interactions in 236 - ?? 

van der Waals equation of state, 164, 297 

applied to a rarefied gas 185 

derived from the condition of constant 
density of energy of molecular 
interactions 318 

Vaporisation energy, lattice energy 
estimated from, 122, 129, 13 I, 134, 
142, 143, 145, 154, 155, 168, 169, 252, 
254,283 

Vi rial 

theorem 173, 184 

coefficients 177 

expansion 177, 187 




