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1(2 2;2)A H=-1pr +p r --
2m ep r 

(10.49) 

We see that polar angle does not enter the expression for the Hamiltonian function. Such 
coordinates (similarly to those in Lagrange equations) are called cyclic. Hamilton's equations for 
this case can be written as follows: 

dpr oH A 
2 

dr oH Pep Pr ---- -
dt or 2 3 ' dt opr m r mr 

(10.50) 

or, in a cyclic coordinate system: 

_ dpep = oH =O· de+> oH Pep 

dt oc+> ' dt opep 
1 

(10.51) 

The momentum corresponding to the cyclic coordinate (q>) does not change with time and is 
the first integral of the equation of motion. Using this property, it is possible to exclude p'P from 
the expression for the Hamiltonian function making the latter an explicit function of p, and r. The 
availability of cyclic coordinates thus simplifies the integration of equations of motion. 

The concept of the integral of motion is very important and is being used in the solution of 
many mechanical problems. The integral of motion can be any function that remains constant 
during the motion of a particle or of a system. The complete time derivative of such a function is 
zero: 

(10.52) 

Using the Hamilton equations (10.44) it can be transformed into: 

(10.53) 

The notation {f.H} used in (10.53) is called Poisson brackets. If a function does not explicitly 
depend on time then its partial time derivative is zero and: 

{c+>, H} = 0 ( 10.54) 

For conservative systems 8H/8t = 0, and using Hamilton's equations it can be found that 
dH/dt is also zero ( {H,H} is, of course, zero). Therefore the Hamiltonian function is an integral 
of motion. 

10.2 
Phase space 

Phase space is a useful tool in the description of the mechanical state of systems containing large 
numbers of particles. 1t is a multidimensional Euclidean space of generalised momenta (p) and 
coordinates (q), having axes q11, ... q3N, p 11, •...•. .p3N, where N is the number of particles. For 
particles having some number of rotational, vibrational or any other (electronic, nuclear spin, 
etc.) degrees of freedom the dimension of the phase space is correspondingly increased. 

The µ-space is the phase space corresponding to the momenta and coordinates of a given 
molecule or particle; µ-space is a subspace of r-space. The elementary volume of µ-phase space, 
dy is: 
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(10.55) 

in which f is the number of degrees of freedom (f = 3 in the absence of internal degrees of 
freedom). 

The f-space is the phase space corresponding to the system of N particles. An element of r 
space is the product of elementary volumes dy: 

(I 0.56) 

A micros/ate is the mechanical state of a system characterised by a given complete set of q, 
and p, for all particles. 

A macros/ate is the state of a system characterised by a given value of one or several 
macroscopic parameters (temperature, volume, density, etc.). A large number of microstates 
corresponds to the same macrostate. 

A representative point is a point in phase space (with coordinates q, p) representing the 
coordinates and momenta of all molecules in a system which define a microstate. 

A trajectory of a representative point in phase space describes the development of a 
microstate in time. For a system in equilibrium the phase trajectory does not imply any change in 
the macrostate. The trajectory representing the development of a part of system never crosses 
trajectories of other parts; neither does it cross with itself. Such an intersection would mean that 
in this point the development of a system is completely undetermined, the two directions being 
equally probable. Phase trajectories of conservative systems belong to a hypersurface (energy 
layer) described by: 

H(p,q) =canst. (10.57) 

10.2.1 
The phase space of a harmonic oscillator. 

A harmonic oscillator is a model system that is very useful in the description of many systems 
considered in statistical thermodynamics. A one-dimensional harmonic oscillator is a system in 
which the force F acting on a particle is proportional to the displacement q: 

F = -a2q = -au/aq (I 0.58) 

The potential energy of a harmonic oscillator is a quadratic function of a coordinate: 

(10.59) 

The kinetic energy or a harmonic oscillator is a quadratic function of velocity: 

T=mi//2 (I 0.60) 

The momentum of a harmonic oscillator is: 

aT . 
p = aq =mq (I 0.61) 

The Hamiltonian function (total energy) of a harmonic oscillator may then be written as: 

H(p,q)= p 2 /2m +a 2q 2 /2 (I 0.62) 
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a 

dq 

H=E+dE 

H=E 

q 

Fig. 10.1. 'Hypersurfaces' describing the states of a harmonic oscillator possessing energy E 

The angular frequency of oscillations performed by a harmonic oscillator is: 

{ 2; )1/2 CO= \U m (10.63) 

The 'hypersurface' containing representative points of all microstates of a one-dimensional 
conservative (H =cons/= E) harmonic oscillator is an ellipse (Fig. 10.1) described by: 

or: 

p 2 /2mE+a 2q 2 /2E =I 

p 2 /2mE + q 2 mco 2 /2E =I 

(10.64) 

(10.64a) 

The half-axes of this ellipse are a =(2mE) 112 and b = (2E/a2) 112 (orb= (2E/mo/) 112). The area 
of this ellipse (volume of the phase space) contains an infinite number of possible microstates 
corresponding to the values of the Hamiltonian function from H = 0 to H = E. This 'volume' is 
therefore a function of the energy of the oscillator: 

J pdq =nab= 2rcEI co (10.65) 

A microstate of the harmonic oscillator with its energy lying between E and (E + dE) is defined 
by specifying the volume dpdq in the vicinity of the point pq belonging to the layer between two 
ellipses (Fig. IO. I). 

The area between the ellipses (Fig. IO.I) contains all possible states of the harmonic oscillator 
with energy E to (E + dE). The probability of a micros/ate of such a harmonic oscillator is the 
ratio of dpdq to the area of the energy layer. 

10.2.2 
The phase space of an ideal gas 

An ideal gas is a collection of statistically independent particles moving freely within the volume 
of a vessel. In an ideal gas, statistical independence results from large distances between 
molecules and thus the potential energy of intermolecular interaction approaches zero. However, 
the potential energy of a given particle in an ideal gas can be non-zero due to interaction with an 
external field (for example a gravitational field). Statistical independence of the molecules of an 
ideal gas implies that they have zero size, i.e. they arc material points. Their particular property 
is that they are indistinguishable. 
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The total energy of ideal gas is the sum of the kinetic energies of the molecules (it is additive 
with respect to the kinetic energies of molecules): 

N N I 3 2 

H=2:>:1=2:-IP; 
j 1=l 2m, I 

( 10.66) 

The µ-space of an ideal gas is 6-dimensional (dy = dxdydzdp,dp;£fpz). The energy of a 
molecule in an ideal gas is independent of the coordinates and is a function of the magnitude of 
the momentum: 

I I f 2 2 2 )'i 2 
P = P = \Px +Py+ Pz ; E = p 2 /2m. (I0.67) 

In the phase space of momenta an energy layer of a molecule is a spherical layer of thickness 
dr; and radius: 

p = .J2mr. (I0.68) 

The volume of such a spherical layer is the product of surface by thickness: 

dy r = Sdp = 4rrp 2dp (10.69) 

The elementary volume of an energy layer in the µ-space is: 

t+d£ 

dy{r.)= Jffdxdydz fdyP =4nVp 2dp=4nVm(2mr.) 112 dr. (10.70) 

The energy density of the states of a molecule of an ideal gas is: 

(10.71) 

The momenta of the molecules of an ideal gas are independent of the coordinates and 
therefore an element of a volume of the phase space of an ideal gas containing N molecules can 
be represented as a product of the elementary volumes of the p and q subspaces: 

3N 

dr =IT dpidqi = drpdrq (10.72) 
i=l 

The phase volume containing phase points representing systems with energy varying from 
zero to H can also be represented as a product of the corresponding volumes in the phase space 
of momenta and coordinates or configurations (each point in r q-space represents the coordinates 
of all molecules, i.e. it is a configuration): 

1(£)= fdr= Jfdrrdrq =iriq (10.73) 

O<H <Ii 

The integration over coordinates (or configurations) yields the volume of a system to the N-th 
power: 

rq = f. .. f. .. f dV, ... dvN = vN (10.74) 

v 

The volume rl' in the space of momenta is the volume of a 3N-dimensional hypersphere of 



10.3 Derivation of the canonical distribution 313 

radius r = p = (2mE) 112 described by l.p,2 = r 2. For a hypersphere of a very large number of 
dimensions (n >> 1), the volume is given by the following asymptotic formula: 

:::::_ !!_In 2ner 2 
lnVn 

2 n 
(10.75) 

(10.76) 

The volume of an energy layer (H = E to E + dE) is the difference of the volumes of two 
hyperspheres with the radii p and p + dp: 

3N 3N 

dr(E)= 3N VN E2-'(4nme) 2 dE 
2 3N 

(I 0. 77) 

The energy density of states is: 
3N 

(E)= dr(E) = 3N VN E 3;-'(4nme.)2 
g dE 2 3N . 

(10.78) 

The volume of phase-space and the energy density of states are vc:ry sharply rising functions 
of the number of particles and of the energy of a system. 

10.3 
Derivation of the canonical distribution 

Let us consider a macroscopic system (system A) in a large heat reservoir (system B) with a very 
large (compared to system A) heat capacity. The state of system B remains unchanged 
irrespective of any changes occurring in system A. System B is therefore statistically independent 
of system A. When the heat reservoir is static (experiencing negligibly small fluctuations) the 
state of system A can be considered as independent of the state of the heat reservoir. 

The Hamiltonian function of a system of statistically independent parts is the sum of the 
Hamiltonian functions of its components: 

H(p, q) =HA (p, q )+ H s(p, q) (10.79) 

The combined system (A + B) is considered as isolated, i.e. H(p,q) =canst. When the systems 
A and B are in equilibrium within themselves and between themselves the combined system is 

also in equilibrium. The normalised probability densities ( p ,= N!hN p) of the quasi­

independent systems A and B constitute together a system of a microcanonical ensemble and are 
multiplicative and their logarithms are additive: 

p(H) = p A (HA )p B (H B) (10.80) 

In p(H) =In p A (HA)+ In p 8 (H s) (10.81) 

Differentiating the logarithmic form (10.81) yields: 
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(I 0.82) 

The differential dH of the Hamiltonian function of the combined system (which is 
conservative) is zero. On the other hand it constitutes the differentials of the Hamiltonian 
functions of the systems A and B: 

(10.83) 

and therefore: 

dHA =-dH8 (I 0.84) 

The condition dH = 0 implies that the sum in ( 10.82) is also zero because the derivative 
a In p I 8H can not be infinitely high. Taking into account (10.84) we get: 

( 10.85) 

The differential dHA being non-zero the condition (10.85) can be written as: 

o ]Op A = o Jn p B = p 
oHA oHB 

(I 0.86) 

in which p is a certain parameter common to both systems and independent of the microscopic 
variables. The state of the system B (the heat reservoir) was defined as approximately 
unchangeable therefore the parameter p is a constant. We are not interested in the details of the 
state of the system B and will now consider the effects of the heat reservoir exclusively as 
represented by the parameter p. Equation (10.86) can be directly integrated with respect to the 
Hamiltonian function of the system A (the indices A and B now become redundant). This 
integration yields the normalised probability density of the canonical distribution as: 

p(p, q) = AellH(p.q) (10.87) 

in which A is an integration constant. The probability of finding a representative point of a 
system of a canonical ensemble within dp ... dq around the point p,q is then: 

dW(p,q) = pdO. = AePH(p,q) dp ... dq 
N!hN 

( 10.88) 

This is the canonical distribution, which provides for the derivation of statistical formulae for 
thermodynamic functions in systems of interacting molecules. 

10.4 
Free volume associated with vibrations 

Translational motion and vibrations have many features in common. In fact, harmonic vibrations 
are translational motions in a force field characterised by a parabolic potential, i.e. under the 
action of a returning force linearly dependent on the deviation from the point of mechanical 
equilibrium: 

(10.89) 
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in which x is the coordinate of a particle with respect to its position of equilibrium and f is the 
quasi-elastic constant related to the frequency of oscillations as: 

v = (1/2n)JJ /m 
j = 4rt 2v 2m 

(10.90) 

(10.91) 

Under these conditions the integration over the spatial coordinates in (3.32) results not in the 
volume but in the free volume. The molecules being independent, we are able to perform this 
integration for a single molecule (atom) considered as an isotropic three-dimensional oscillator: 

(10.92) 

in which vr is the free volume associated with such a vibrator. Let us define: 

a= f /2kT = 2rt 2mv 2 /kT; u = kTax 2 (10.93) 

At high temperatures, the limits of integration in (10.92) can be set to be ±oo and the free 
volume can be written as: 

(10.94) 

The integral of exp(-ax2)from -oo to +oo is twice the integral from 0 to +oo. The latter is: 

Therefore: 

1 e -ax' dx = _I_ r{Yz) = ~ 
0 2../a 2../a 

This expression provides for several important conclusions: 

(10.95) 

(10.96) 

I. If we substitute, in the expression for the translational partition function, the volume v by 
the free volume (omitting the factor e as originating in migrations of molecules) we will get the 
high temperature approximation of the vibrational partition function: 

Eo Eo Eo 

z = (2nmkT/h 2 ) 312 ve -kT = (kT/hv)3 e -kT =0 zv16 e -kT (10.97) 

2. Extrapolating this result suggests that at low temperatures th•~ free volume can also be 
determined from the equality Z1mn,( vr) = Zvib (10.97): 

v 1 = zvib (2nmkT/ h2 t3 12 = [ 2 (2nmkT/ h2 )~ sinh(0/2T)r (10.98) 

3. We can also define the quasi-elastic constant/ and potential energy via the free volume: 

a= n/vY 3 ; u = akTx 2 = nkT x 2 /vY 3 (10.99) 
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4. The equation of state of a collection of independent 30 oscillators can then be obtained as 
p = - dU/dV where U = NJLkT< x2 > v1c213 • We may assume the mean square deflection from the 
point of equilibrium to be independent of volume (to a first approximation). The equation of state 
then becomes: 

( ) dv . ( ) d Inv 
P = 21t/ NkT x2 v-s13 __ f = 2rr.1 NkT x2 v-213 __ f_ 

13 f dV 13 f dV 
(IO. JOO) 

The ratio <:x2>!v/'3 can be obtained from the condition of equi-partition of energy 
<u> = 3kT/2. According to (I0.99): 

nkT(x 2)/v}1 3 =3/ikT 

The equation of state of a collection of 30 vibrators is then: 

dlnVl 
p=NkT-dV-

(IO.IOI) 

(I0.102) 

These relationships illustrate the interconnections between different forms of motion. 

10.5 
Rotational contribution to the equilibrium constant of the ionisation 

of water 

The moments of inertia of OH- and HiO+ ions can be estimated from quantum mechanical 
calculations using the HyperChem'" program. After optimising geometry, the vibrations are 
calculated, saving the results as a log. The moments of inertia obtained by MNOO calculations 
are shown in Table IO. I. The rotational partition function for OH- must be calculated using 
(2.78), whilst for H20 and HJO+, because they have three moments of inertia, (2.79) must be 
used: 

8rt 2 IkT rt 112 {8rt 2kT\l12 (1 I I :)1 12 
Z = (2.78); Z = v ) A B C (2.79) 

crh 2 crh3 

The calculations at 300 K yield the results shown in the last column of Table I 0.1. The 
contribution of the rotational partition function into the equilibrium constant of ionisation is 
therefore l'lSJR = ln(z,+z,_fz2,o) = ln0.364 = -1.009 

Table 10.1. Moments of inertia (in 10-40 g cm\ symmetry numbers, and rotational partition 
functions for molecules involved in the ionisation equilibrium 

Ix fy 

------~~-~---.--------

H10 0.94 1.92 
HiO+ 2.31 2.31 
Off 0 1.38 

fz 

2.86 
4.62 
1.38 

a 

2 
3 
I 

Zr (300 K) 

41 
59.5 
10.3 
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10.6 
Forms of the law of mass action employing the r function 

approximation of the factorial 

Some doubts might arise concerning the validity of the law of mass action (as well as of the 
Maxwell - Boltzmann distribution) for small systems on account of employing the Stirling 
approximation of the factorial function. In fact, there are no mathematical problems in 
approximating the factorial function of small numbers. 
Employing (3.42), we can write the free energy of the reaction mixture (3.93) as: 

_ .!._ = mlnq+q V 2 + (N -2m)lnq0V -2 In m!-ln(N -2m)! 
kT -

(10.103) 

Zero derivative of this function with respect to m will then define the law of mass action: 

In q+q- _ 2 d lnm! + 2 d ln(N -2m)! = 0 
q~ dm d(N -2m) 

(10.104) 

The factorial in the last term in (10.103), involving large numbers, may be approximated by the 
Stirling formula, which thus yields: 

q+q- dlnm! ( ) ln-2--2--+21nN-2m =0 
q0 dm 

(10.105) 

For rational positive arguments the logarithmic derivative of a factorial is defined employing 
the I-function (e.g. Jahnke E, Emde F (1933) Funktionentafeln. B.G. Teubner, Lepzig.). For 
m > 5 it quite closely approaches ln(m) (Fig. 10.2A). For m = 0 - 5 this function can be 
approximated by In (n + 0.52) as shown in Fig. 10.2B. For a small number of particles involved 
in a chemical equilibrium the law of mass action may therefore be written in the following 
approximate form: 

In q+q- -In (m+0.52)2 =0 
2 N2 qo 

(10.106) 

2.00 

ln(n) 

-2 00 

Fig. 10.2. The logarithmic derivative of the factorial (crosses) and the logarithmic function (line) 
in the region of small values of the argument (left-hand graph). The right-hand graph shows the 
approximation of the function exp( din n!ldn) (crosses) by the linear relationship y = n + 0.52 
(line). 
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With decreasing equilibrium constant and/or size of the system, the law of mass action thus 
predicts a gradual decrease in the number of ions to zero at finite values of the 'equilibrium 
constant' q+q_fq02 = 0.270/N2. In other words, this law of mass action predicts that in some 
systems reactions can be irreversible: for KN2 < 0.270 the law of mass action does not have any 
solution. 

10.7 
Derivation of the van der Waals equation of state 

Let us suppose that the average potential energy of a molecule beyond the restricted area 
corresponding to a direct contact of molecules has a small negative value inversely proportional 
to the volume of the system: 

u=-a/NV (10.126) 

In other words the density of the energy of molecular interactions is assumed to be constant. 
Within this restricted volume, the potential energy is infinitely high and we may define the free 
volume per molecule as: 

vf =(V-b)/N (10.127) 

in which b represents the total restricted volume. The molecular partition function then becomes: 

3 3 

-(2nmkT)2 vfr -;;d -(2nmkT)2 -;; z- e V- v1e 
h2 h2 

0 

Substituting Vt and u according to their definitions, we get: 

3 

lnz=~ln( 2rt~kT)z +ln(V-b)+-a-
2 h VNkT 

(10.128) 

(10.129) 

For a gas of spherical particles (without internal and rotational degrees of freedom) the free 
energy can be written as: 

3 2nmkT 2 a 
F=-NkT 21n( h2 ) +In(V-b) -V 

[ 
3 l 

The pressure of such a gas containing N molecules in volume Vis: 

p = NkT(aln z) = NkT --;­
av 1 v-b v 

(10. 130) 

(10.131) 

This is one of the forms of the van der Waals equation, which can easily be transformed into: 

(10.132) 

We see that the condition of small density ( V >> b) was not imposed on this system, therefore 
the van der Waals equation can be applied to dense gases and liquids. 
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10.8 
Exchange energy 

As in many examples considered in the preceding Chapters, a hint as to how to transform an 
equation is given when we express the potential energy as a function of one variable (e.g. the 
mole fraction of the component A): 

(10.133) 

The term L'1<p = 2<pAB - (jJAA - <pee has a clear physical significance and therefore we can 
express the potential of hetero-interaction, (jJAB, in terms of this quantity. The energy of 
molecular interactions then becomes: 

(10.134) 

Returning to the potential energy as a function of two variables, XA and x8 , we get a useful 
formula separating the additive contributions of homo-molecular interactions: 

(10.135) 

This form provides a convenient representation of non-ideal systems as perturbed ideal systems. 

10.9 
Activity coefficients derived from the non-ideality resulting from 
triple interactions 

The equation of the law of mass action (7.47) can be written as: 

3 [ ( )2 J f;.(3) f;.(2) f;.(O) + f;.(2) + /:!,.(3) X 
- x~ + 1- x8 --+ (xA -x8 +1)-- - · - ln_l!._ = 0 (10.139) 
2 NkT NkT NkT XA 

Expanding ( 1 - XB) 2 and combining the terms with identical powers of x results in the 
polynomial part of(I0.139) becoming: 

2 1.5!.;. (3) f;. (2) + 1.5!.;. (3) 

+ x ---- x ------
B NkT B NkT 

f;.(O) + f;.(3) 

NkT 
(10.140) 

When 1'1<3l = 0, the polynomial part of (10.139) transforms into an expression symmetrical 
with respect to In (xBIXA): 

Ii (2) Ii (2) f;. (0) 

xA NkT -xB NkT - NkT -lnxB +lnxA = 0 (10.141) 

which, for small L'1<2l << NkT, can be transformed into the law of mass action with respect to 
activities: 
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11(0) [ [ 11(2) )] [ [ 11( 2
) )] - -- - In x 8 1 + x 3 -- + In x A 1 + x A -- = 0 

NkT NkT NkT 
(10.142) 

In the case of non-zero i'l.(J), the activity coefficients become asymmetric with respect to 
reactant and product: 

11<0) [ [ 11< 2) 2 1.511(J) )] [ [ 11<2) 2 1.511(J) )] ----In x 8 I+x3 ---x8 --- +In xA l+xA--+xA--- =0 
NkT NkT NkT NkT NkT 

(10.143) 

This shows that activities determined separately for reactant and product might be valid for 
the linear term alone. 

10.10 
The law of mass action for a binary equilibrium in a system with non­

additive volume and lattice energy. 

According to the model of molecular interactions represented as arising from the dependence of 
the partition function on surroundings, the lattice energies u and the molecular volumes v in a 
binary mixture can be separated into four classes corresponding to homo-molecular and hetero­
molecular clusters: 

in which: 

u = nAuAAA + nBuBBB + nAxB!iuex 

v = nAV AAA+ nBVBBB + nAxB!ivex 

fiuex = U AAA - U BAB + U BBB - U AHA 

/i Vex = V AAA - V BAB + V BBB - V ABA 

(10.144) 

(10.145) 

(10.146) 

(10.147) 

We can combine two types of non-ideality viz. those arising from free volume and lattice 
energy. Free volume and lattice energy are not independent variables but are interrelated via an 
equation of state. According to a simplified version of the Eyring equation of state, free volume 
is proportional to the third power of the reduced temperature and for a binary mixture it can be 
written as: 

2NKkT 
1: = ------------ (10.148) 

nAuAAA +nBuBBB +nAxB!-iuex 

in which Vis defined by ( 10.145). 
The free energy of a binary system in the liquid state can be written as: 

_ _f__=n llnz _£A+uAAA -ln!!_.A_]+n llnz _£H+uHHH 
kT A A kT v H H kT 

f 

I nH] 11uex n- -nx --
V A H kT 

f 
(10.149) 

in which Vr is a function of composition as defined above. It must be mentioned that the energies 
£A, £H are very large quantities comprising the total potential energy of an isolated molecule. 
Their difference (constituting the major part of the standard internal energy of reaction) is 
considerably smaller but still might reach the values of tens and hundreds of kilocalories per 
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mole. The lattice energies UAAA and URBB, as well as their differences !J.u, are much smaller - the 
latter reaching perhaps the level of tens of kilocalories per mole. Much smaller values can be 
expected for the exchange energies reflecting the difference of lattice energy of molecules in 
(slightly) different molecular environments. It is only in special cases such as spin crossover that 
the exchange energy is comparable to the difference in potential energies of products and 
reactants. What is more important, the exchange energy in spin crossover is higher than kT112 that 
results in the steep spin crossover. 

The law of mass action obtained from (I 0.149) can be written with respect to the numbers of 
molecules of the species Bas: 

(10.150) 

The derivative of free volume with respect to the number of molecules involves the balances 
and exchange parameters: 

dlnV1 = ~v+(l-2xB)~vex _ 3 ~u+(l-2xB)~uex 
~ v u 

(10.151) 

The balances, !J. v and !J.u are due to the reaction seemly occurring in completely homo­
molecular surroundings: 

~U = U BBB - U AAA; ~V = VBBB -VAAA (10.152) 

The exchange parameters, on the other hand, characterise the difference of volume and lattice 
energy (per molecule) in homo- and hetero-molecular surroundings ((I 0.146) and (I 0.147)). 

The law of mass action for a binary reaction without a solvent and written explicitly with 
respect to molar parameters illustrates this situation: 

ln-x-=- ~E+~U + ~S -(1-2x)~Uex 
1-x RT R RT 

+ ~V+(1-2x)~Vex _ 3 ~u+(1-2x)~uex 
VA+ x~V + x(l-x)~Vex UA + x~U + x(l-x)~Uex 

(10.153) 

in which the parameters !J.S and !J.£ are determined exclusively by the molecular properties of 
products and reactants. 

There are seven parameters in total, determining the shape of the transition curves obeying 
this law of mass action, namely !J.S, !J.E, !J.U, !l.Um !J.V, !J.V,x and UA. The volume VA can be 
cancelled out, whereas the absolute value of UA is important because !J.Uex enters two different 
terms in ( 10.153). Simulations following (10.153) show that the introduction of exchange energy 
into the expression for free volume has increased the sensitivity of van't Hoff plots to the effects 
of non-ideality. For example the critical value of !J.Uex above which phase separation can be 
observed is considerably lower than that obtained for the law of mass action (7.50). For 
UA = 5RT the vertical tangent to the transition curve is achieved at !J.Uex = \ .28RT vs. 2RT 
obtained for (7 .50). 

Small non-zero balances !J.U and !J. V do not produce of themselves considerable curvature of 
the van't Hoff plots when !J.Uex is zero. However they increase/decrease significantly the 
curvature caused by a non-zero !J.Uex· 

The effects of non-zero exchange volume are formally similar to those of exchange energy: it 
produces varying curvature of van't Hoff plots that intersect at the transition point. Its effect on 
the shape of a van't Hoff plot when !J.U,x is also non-zero and is more pronounced than that 
arising from the balance of volume. Non-zero balances make the van't Hoff plots curvilinear (or 
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increase the curvature caused by non-zero exchange parameters) and shift them horizontally 
without an intersection. Non-zero exchange parameters, on the other hand, besides making van't 
Hoff plots curvilinear, cause them to intersect at the transition point 

10.11 
Physico-chemical constants and units of energy 

Table 10.2. Physico-chemical constants 

Velocity of light 

Mass of electron 

Mass of proton 

Charge of electron 

Planck constant 

Planck constant 

Boltzmann constant 

Gas constant 

Avogadro number 

Table 10.3. Energy units. 

erg 

N1hcco(lcm-') = 2.86 cal mor' 

erg 5.0348x I 015 

l.602x 10- 12 

c = 2.99793x10 10 cm sec- 1 

me= 9.1083xl0-28 g 

mp= l.6723x 10-24 g 

e = 4.80286x I 0- 1° CGSE 

h = 6.625x 10-27 erg sec 

k = I .38044x I 0- 16 erg K- 1 

N1=6.0249xI023 atom mor 1 

MHz 

l.43kTequals I cm-' (hcco) 

1.4388 29.979x103 

6.242xl0 11 7.244x10 15 l.5094x 1020 

I. 11605 2.4181xl08 

l.3805x 10-16 8.6 I 69x I 0-5 2.0837x 104 

One MHz (hv) equals 6.6252x 10-21 erg lea!= 4.184 J = 4.184x107 erg 
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Acceptor numbers, 260, 267, 269, 293, 294 

Action, 

function of, 303, 304, 307, 314 

the principle ofleast action 4, 303, 307 

Activation equilibrium, 139, 142, 255 

Activation energy, 140, 249, 250, 255, 
257, 259, 261, 294, 278 - 281 

Activity(ies), 109, 115, 129, 130, 189, 191, 
193, 194, 217, 248, 319 

Activity coefficients, 

in condensed state reactions, 109, 115, 
117, 128, 132, 133, 134, 143,217,297, 
300,319,320 

in gas-phase reactions, 189, 190, 191, 
193, 194, 200 

Binary potential, 147, 157, 164,175, 177, 
182,204,205,246 

Black-body radiation, 28 

Planck and Stefan - Boltzmann laws 
derived from the Bose - Einstein 
distribution, 35 

Boltzmann - Planck theorem, 5 

Bose - Einstein statistics, 26, 27, 34, 35 

Canonical (Hamilton) equations, 4, 14, 26, 
50 

derived from the principle of least 
action 308 

Canonical distribution, 13, 52 

derivation of, 313 

width of, 54 

thermodynamic functions derived from, 
55-57 

Caratheodori, principle of, 3 

Chemical coordinate 2, 

Chemical correlations 249, 293, 300 

Chemical equilibrium 

dynamic interpretation of, 72, 135 

Chemical potential, 

definition, 2, 73 

derivation of, 

from Maxwell - Boltzmann distri­
bution, 11, 16 

from Bose - Einstein distribution 27 

from Fermi - Dirac distribution 29 

from canonical distribution 57 

in binary liquid mixtures, 213, 214 

in binary solid mixtures, 231, 241, 242, 
247 

its dependence on the numbers of 
molecules 74, 75 

law of mass action expressed 
employing, 74 

of an assembly of photons, 34 

of a gas with weak binary interactions, 
189 

of an ideal gas, 11, 16, 31 

Compensation effect, 88, 270, 278, 282, 
287 

(see also 'IER' and 'IKR') 

Configurational (mixing) entropy, 81, 207-
209, 227-229, 233 

Configurational integral, 77, 78, 79, 117, 
119, 180-183,201 

Cooperativity (excess energy of mixing) 
204,300 
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Degeneracy (of an energy level), 28, 35 58, 
63, 

Degeneracy factor 58, 59, 61, 63, 64, 80, 
240 

Degenerate ideal gas, 31 

Dilution, effects of, 129, 140, 142, 240-
244, 290-292 

Displacement energy, 149, 150, 158, 159, 
161 

Distribution of energy, the model of non­
Arrhenius kinetics, 255, 257, 278 

Donor numbers, 260, 268, 269 

Energy, the concept, of, 303 

Energy distribution function, 48, 51, 53, 54 

Ensemble 30, 33-35, 44 

grand canonical 46, 65, 102 

canonical 46, 52, 65 

microcanonical 46, 51, 52, 65 

mean over 48 

cooperative, 204 

regular, 205 

Entropy, 

as a thermodynamic coordinate, 3, 13 

calculation of, Gibbs paradox in 
relation to, 21, 22, 23 

of fusion, 245 

statistical, 4, 7 

its identity with thermodynamic 
entropy, 10, 50 

Equation of state 

see also 'van der Waals e.o.s' and 
'Lennard-Jones and Devonshire e.o.s.' 

employed in formal derivation of the 
law of mass action, 74, 75 

free energy derived from 179 

of a collection of 3D oscillators, 316 

of a gas with weak binary interactions 
185, 187 

of an ideal gas, derived from Maxwell -
Boltzmann distribution, 12, 16 

of an ideal gas, derived from the virial 
theorem 174 

of an ideal gas containing dimerisation 
equilibrium 199 

of a system of attracting hard spheres, 
120, 121, 130, 131, 297, 320 

Equation of motion, 147, 155, 304, 305, 
308,309 

the first integral of (integral of motion), 
50,305,309 

Equipartition of energy, principle of, 21 

Ergodic hypothesis 45 

Exchange (free) energy 

defined via the potential energy of 
binary interactions, 203, 229, 319 

defined through a dependence of 
partition function on composition, 209-
212 

in liquid mixtures critical phenomena 
connected with-, 213-215 

large positive, steep spin crossover in 
relation to, 219 -

phase transition connected with, 226 

heat capacity peaks connected with 
223, 

large negative, ordering and two-step 
spin crossover in relation to 226 - 240 

effective, in diluted systems 245 

IER arising from, 252, 283, 288-292 

employed in description of 
multicomponent mixtures 246 

Exchange entropy (excess entropy of 
mixing}, 213, 220, 233 

Exchange (excess) volume 298, 299, 321 

Fermi - Dirac statistics, 26, 29, 30, 31, 32 

Fluctuations 58, 64, 99, 106 

Free energy 3 

see also 'Helmholtz free energy' 

minimum of, with respect to 
composition, 82, 295 

minimum of, with respect to 
composition and degree of ordering, 
234,235 

of ideal gas, 81, 82 



of imperfect liquids with additive 
volume and lattice energy 113, 123, 
130 

of non-ideal systems 88 (see also 'non­
ideality terms') 

of systems exhibiting steep spin 
crossover, two minima in its 
dependence on composition 220, 221 

Free volume, 117, 118 

its dependence on composition, the law 
of mass action for imperfect liquid in 
relation to 123, 126, 127, 130- 132, 
134, 143,203,247,296,299,300 

of a collection of hard spheres 121 

of gaseous systems, 183, 184, 187, 188, 
191, 194, 197 

of a collection of 3D oscillators, 315 

of a Lennard-Jones and Devonshire 
liquid 160, 161, 162, 297 

Frequency of vibrations, 137 

in condensed state, 155 

in spin crossover complexes, 63 

Gibbs approach to statistical description of 
systems of interacting molecules 44, 46 

Gibbs free energy (Gibbs function) 2, 12, 
73, 108, 219 

defined via partition function of 
canonical distribution 57 

Gibbs paradox 21, 74, 75, 76 

Hammet scale of chemical reactivity, 260, 
261,263,265,266, 300 

Heat capacity (specific heat) 

and fluctuations, 64, 67, 68 

of solids, Einstein, Debye and Tarasov 
theories, 35 - 41 

changes in spin crossover, Debye and 
Tarasov theories in relation to 222-226 

changes in activation process, 280 

Helmholtz free energy (Helmholtz 
function), 2, 12, 

defined via partition function of 
canonical distribution 56 

statistical formulae for, 12, 16, 77 
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formulae for ideal systems, 79 

of an ideal gas 81 

as a thermodynamic potential for 
liquids instead of the Gibbs free energy, 
73, 108 

Hysteresis (in spin crossover) 220, 222, 
223,225,231 

Ideal crystal, 79, 80, 89, 90, 92-94, 168, 
205,208,295 

Ideal gas, 12, 15, 16, 21, 75, 79, 80, 295 

fluctuations, in 67 

phase space of, 311 

'Ideal liquid' 97, 99, 107, 117 

Ideal systems, 

definition, 15, 79, 295 

IER and IKR in 273, 279 

IER (iso-equilibrium relationships) 

(see also 'compensation effect') 

in gas-phase reactions 276 

non-ideality as a source of 282 -293 

the role of terms arising from free 
volume, 283 -288 

the role of non-additivity of lattice 
energy (exchange energy) 288 -
293 

phenomenology of, 88, 270, 271, 301 

possible forms of, caused by dilution in 
systems with non-additive lattice 
energy 292 

role of low frequency vibrations in 273 

statistical model for ideal systems 272 -
278 

IKR (isokinetic relationships) 

(see also 'compensation effect') 

in ideal systems, the models of 
distribution of energy and non­
equilibrium thermodynamics, 278-282 

Internal (total) energy, 1-4, 6, 12, 13, 56, 
57, 66, 165 - 167 

Internal pressure 107, 118, 121, 123, 128, 
131, 138, 162, 145 

Indistinguishable molecules (particles) 
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Gibbs paradox in relation to, 21 

number of quantum states in relation to, 
25, 60, 43, 118, 119, 120 

Kinetic law of mass action 71, 135, 137 

non-ideal, critical phenomena expected 
for systems with large balances of 
lattice energy, 137-142 

Kopp rule 114 

Lagrange equation 303 - 309 

Lagrangian function 303 - 306 

Lagrange method of undetermined 
multipliers, 8, 27 

Lattice energy, 117, 171, 240, 203, 

additive, critical phenomena connected 
with 123 - 129, 138, 142, 296 

additive, IER in relation to, 252, 253 

non-additive, a description employing 
exchange energy, 203, 205 

non-additive, a description based on the 
dependence of molecular lattice 
energies on surroundings, 207, 297, 
300 

balances of (in chemical reactions) 124-
126, 129, 132, 134, 135, 139, 140, 143, 
247,270, 295 

internal pressure derived from, 120 

its connection with free volume, 121 

Lattice theories of the liquid state, 117, 
294,296 

Law of mass action, 

breakdown, of 99 - 105 

definitions, 72-7 4, 295 

for ideal gas, formal thermodynamic 
derivation, 73-75 

for ideal gas, forms employing molar 
concentrations and mole fractions, 83-
85, 296 

for ideal crystal, 89-95 

for 'ideal liquid' 97 

for imperfect liquids and gases, 
reduction to the ideal form 114, 124, 
127, 189, 191, 193-195 

for equilibria in liquids with repulsive 
interactions I 08, 111-116 

for equilibria in Lennard-Jones and 
Devonshire liquid 122-128 

for gaseous systems with weak binary 
interactions, 189, 192, 196 

history of formulation, 71 

non-ideal, for condensed systems with 
additive volume and lattice energy 129-
135, 

LFER in relation to 252-255 

!ER in relation to 282-288 

non-ideal, for condensed systems with 
non-additive lattice energy, 

!ER in relation to 288 - 293 

taking into account ordering, 235 

taking into account triple 
interactions, 216 

quantitative description of the two­
step spin crossover by, 237-240 

non-ideal, for condensed systems with 
non-additive volume and lattice energy 
299,320 

Lennard-Jones and Devonshire, 

theory of the liquid state, 157, 162, 163 

equation of state, 151, 152, 155, 156, 
158, 160, 162, 297 

Lennard-Jones potential 148, 178, 179 

determination of its parameters 
employing: 

Born - Lande method 165 

BB Koudriavtsev method 166 

Rayleigh - Chapman method 170 

Lennard-Jones method 177 

LFER (linear free energy relationships), 
252,261,263,264,267,269,278, 293 

Liouville theorem 14, 50 

Local equilibrium 49, 50 

Localised states 25, 60 

Macrostates and microstates, 7, 14, 44, 45, 
49, 52, 54-56, 310 

Mass (material) balance equations, 76, 
105, 115, 134, 191, 195, 240, 243, 253 

Maxwell relations, 166 



Maxwell - Boltzmann distribution, 

derived using the cell method of 
Boltzmann, 9 

continuous, 14 

mean and most probable values of 
molecular parameters calculated using 
it, 17 

applied to the ionisation equilibrium of 
water, 104 

its applicability, in relation to quantum 
statistics 30 - 33 

its inapplicability to systems of 
interacting molecules, 43 

Microcanonical distribution 51, 54 

Molecular complexes 111, 198, 249, 253, 
254,260,267,268,270,275 

Molecular partition functions 57 - 63 

Nemst theorem, as originating in quantum 
statistics, 33 

Non-ideality (terms), 

affecting chemical affinity 251-254, 
265,266,270 

and IKR, 279, 301 

and IER, 282 - 294, 301 

in description of condensed systems 
with additive volume and lattice energy 
109, 122, 128, 130, 132-134 

in description of gaseous systems with 
weak binary interactions, 191, 194, 200 

in description of non-ideal kinetics 139-
142 

in description of systems with non­
additive lattice energy, 203, 217, 234, 
246 - 248, 

Non-equilibrium thermodynamic model of 
IKR, 254 - 256, 281 

Number of quantum states, 24, 25, 55 

Ordered systems 

Bragg - Williams approximation of, 
226, 227, 233 

chemical equilibrium in, 234 

Ordering 

degree of, definition 227 
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free energy of~ 231 

description of, taking into account triple 
molecular interactions 232 - 234 

two-step spin crossover originating in 
234 - 240, 299 

Partition function 

electronic 58, 69, 78, 123, 207, 250, 
258 

introduced in the cell method of 
Boltzmann 9 

of canonical distribution 53, 56, 57 

of continuous Maxwell - Boltzmann 
distribution 16 

of a Lennard-Jones and Devonshire 
liquid 161 

of modified Maxwell- Boltzmann 
statistics 23, 25 

of a spin crossover compound, 90-91 

rotational 61, 62, 100, 316, 273 

translational 59, 60, 77, 88, 123, 255 

vibrational, 62, 63, 80, 91, 278, 155, 
273,283,316 

total 57, 58, 69 

Phase separations (transitions) in liquid 
mixtures 143, 213 

Phase space 309 

of con figurations 312 

of ideal gas 311, 

of harmonic oscillator 310 

Probability density 46, 47 

of microcanonucal distribution, 51 

of canonical distribution, 52, 314 

Pseudo-correlations 261, 272 

Quantum statistics 26 

Quasi-thermodynamic model of kinetics 
254 

Reduced free volume, 162 

Reduced temperature 131, 132, 143, 161-
163, 1 79, 186,, 187 

Relaxation time 49 
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Representative points, 4 7, 54-56, 310 

density of 48 

Rayleigh equation 176, 177, 179 

Reference compounds 260, 262, 263, 267 

Reference reactions 250, 257, 259, 261-
263, 266, 267, 293 

Regular solutions 205, 212, 246 

Regular solution model of steep spin 
crossover, 219 

Spin-degeneracy 58, 63, 64, 68, 240 

Spin crossover, 64, 89-95, 108, 110, 126, 
211, 218 - 236, 256, 290, 233, 

steep, regular solution theory of 219-

in magnetically diluted systems 240 -?? 

Standard state, 84, 85, 86, 88, 129, 133-
135, 300 

Standard entropy 

of reactions in ideal crystal, 90, 91, 94 

of reaction in imperfect liquids and 
solids, 109, 110, 116, 224 

in relation to !ER and !KR, 267, 272-
275, 279, 283,285,289,294, 301 

statistical formulae for ideal gas 87, 88, 

Standard free energy, 85, 86, 295, 298 

statistical mechanical calculation of, 
249-251, 258, 

and donor numbers, 267- 269, 

of gas phase equilibria, !ER in relation 
to, 277, 

variations of in reaction series, 254, 
262, 263,265,267, 

Standard internal energy, 87, 88, 90, 109, 
110, 126, 203, 247 

in relation to !ER and !KR, 275, 279, 
280,285,288,289 

computed using quantum chemical 
calculations 267-269 

Solvation, 252-254, 265, 269, 270, 283, 
293,294 

Surface tension, lattice energy estimated 
from, 154, 168, 169 

Thermodynamic functions, defined via the 
partition function of canonical 
distribution 57 

Thermodynamic probability 6, 7, 12, 23, 
46 

Transition state model, 137, 254-257, 263 

Triple molecular interactions 206, 212, 
217, 232, 234, 241, 246, 299, 

Two-step spin crossover 

double peak of heat capacity in relation 
to 225 

ordering in relation to 226, 235 

role of triple interactions in 236 - ?? 

van der Waals equation of state, 164, 297 

applied to a rarefied gas 185 

derived from the condition of constant 
density of energy of molecular 
interactions 318 

Vaporisation energy, lattice energy 
estimated from, 122, 129, 13 I, 134, 
142, 143, 145, 154, 155, 168, 169, 252, 
254,283 

Vi rial 

theorem 173, 184 

coefficients 177 

expansion 177, 187 




