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PHYS550 - Module 1 - Photobiology

Interaction of Molecules with Light

1 Characterization of the radiation field and molecular field from

Maxwell equations

In this Section we want to describe how a quantum mechanical particle, e.g., an electron in a

hydrogen atom, is affected by electromagnetic fields. For this purpose we need to establish a suitable

description of this field, then state the Hamiltonian which describes the resulting interaction.

It turns out that the proper description of the electromagnetic field requires a little bit of effort.

We will describe the electromagnetic field classically. Such description should be sufficient for high

quantum numbers, i.e., for situations in which the photons absorbed or emitted by the quantum

system do not alter the energy content of the field. We will later introduce a simple rule which

allows one to account to some limited degree for the quantum nature of the electromagnetic field,

i.e., for the existence of discrete photons. More detailed derivations are provided in the Chapter 8

of the “Notes on Quantum Mechanics” textbook.

1.1 Description of the Classical Electromagnetic Field / Separation of Longi-

tudinal and Transverse Components

The aim of the following derivation is to provide a description of the electromagnetic field which is

most suitable for deriving later a perturbation expansion which yields the effect of electromagnetic

radiation on a bound charged particle, e.g., on an electron in a hydrogen atom. The problem is that

the latter electron, or other charged particles, are affected by the Coulomb interaction V (~r) which is

part of the forces which produce the bound state, and are affected by the external electromagnetic

field. However, both the Coulomb interaction due to charges contributing to binding the particle,

e.g., the attractive Coulomb force between proton and electron in case of the hydrogen atom,

and the external electromagnetic field are of electromagnetic origin and, hence, must be described

consistently. This is achieved in the following derivation.

The classical electromagnetic field is governed by the Maxwell equations. We assume that the

system considered is in vacuum in which charge and current sources described by the densities

ρ(~r, t) and ~J(~r, t) are present. These sources enter the two inhomogeneous Maxwell equations1

∇ · ~E(~r, t) = 4π ρ(~r, t) (1)

∇× ~B(~r, t) − ∂t ~E(~r, t) = 4π ~J(~r, t) . (2)

1We assume so-called Gaussian units. The reader is referred to the well-known textbook “Classical Electrody-
namics”, 2nd Edition, by J. D. Jackson (John Wiley & Sons, New York, 1975) for a discussion of these and other
conventional units.

1

NOT FOR DISTRIBUTION Klaus Schulten April 2015



Not 
for

 D
ist

rib
uti

on

In addition, the two homogeneous Maxwell equations hold

∇× ~E(~r, t) + ∂t ~B(~r, t) = 0 (3)

∇ · ~B(~r, t) = 0 . (4)

Scalar and Vector Potential

Setting
~B(~r, t) = ∇× ~A(~r, t) (5)

for some vector-valued function ~A(~r, t), called the vector potential, solves implicitly (4). Equation

(3) reads then

∇×
(
~E(~r, t) + ∂t ~A(~r, t)

)
= 0 (6)

which is solved by
~E(~r, t) + ∂t ~A(~r, t) = −∇V (~r, t) (7)

where V (~r, t) is a scalar function, called the scalar potential. From this follows

~E(~r, t) = −∇V (~r, t) − ∂t ~A(~r, t) . (8)

Gauge Transformations

We have expressed now the electric and magnetic fields ~E(~r, t) and ~B(~r, t) through the scalar and

vector potentials V (~r, t) and ~A(~r, t). As is well known, the relationship between fields and potentials

is not unique. The following substitutions, called gauge transformations, alter the potentials, but

leave the fields unaltered:

~A(~r, t) −→ ~A(~r, t) + ∇χ(~r, t) (9)

V (~r, t) −→ V (~r, t) − ∂tχ(~r, t) . (10)

This gauge freedom will be exploited now to introduce potentials which are most suitable for the

purpose of separating the electromagnetic field into a component arising from the Coulomb potential

connected with the charge distribution ρ(~r, t) and the current due to moving net charges, and a

component due to the remaining currents. In fact, the gauge freedom allows us to impose on the

vector potential ~A(~r, t) the condition

∇ · ~A(~r, t) = 0 . (11)

The corresponding gauge is referred to as the Coulomb gauge, a name which is due to the form of

the resulting scalar potential V (~r, t). In fact, this potential results from inserting (8) into (1)

∇ ·
(
−∇V (~r, t) − ∂t ~A(~r, t)

)
= 4π ρ(~r, t) . (12)
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Using ∇ · ∂t ~A(~r, t) = ∂t∇ · ~A(~r, t) together with (11) yields then the Poisson equation

∇2V (~r, t) = − 4π ρ(~r, t) . (13)

In case of the boundary condition

V (~r, t) = 0 for ~r ∈ ∂Ω∞ (14)

the solution is given by the Coulomb integral

V (~r, t) =

∫
Ω∞

d3r′
ρ(~r ′, t)

|~r − ~r ′|
(15)

This is the potential commonly employed in quantum mechanical calculations for the description

of Coulomb interactions between charged particles.

The vector potential ~A(~r, t) can be obtained employing (2), the second inhomogeneous Maxwell

equation. Using the expressions (5) and (8) for the fields results in

∇×
(
∇× ~A(~r, t)

)
+ ∂t

(
∇V (~r, t) + ∂t ~A(~r, t

)
= 4π ~J(~r, t) . (16)

The identity

∇×
(
∇× ~A(~r, t)

)
= ∇

(
∇ · ~A(~r, t)

)
− ∇2 ~A(~r, t) (17)

together with condition (11) leads us to

∇2 ~A(~r, t) − ∂2
t
~A(~r, t) − ∂t∇V (~r, t) = − 4π ~J(~r, t) . (18)

Unfortunately, equation (18) couples the vector potential ~A(~r, t) and V (~r, t). One would prefer

a description in which the Coulomb potential (15) and the vector potential are uncoupled, such

that the latter describes the electromagnetic radiation, and the former the Coulomb interactions

in the unperturbed bound particle system. Such description can, in fact, be achieved. For this

purpose we examine the offending term ∂t∇V (~r, t) in (18) and define

~J`(~r, t) =
1

4π
∂t∇V (~r, t) . (19)

For the curl of ~J` holds

∇× ~J`(~r, t) = 0 . (20)

For the divergence of ~J`(~r, t) holds, using ∂t∇ = ∇∂t and the Poisson equation (13),

∇ · ~J`(~r, t) =
1

4π
∂t∇2V (~r, t) = − ∂tρ(~r, t) (21)

or

∇ · ~J`(~r, t) + ∂tρ(~r, t) = 0 . (22)
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This continuity equation identifies ~J`(~r, t) as the current due to the time-dependence of the charge

distribution ρ(~r, t). Let ~J(~r, t) be the total current of the system under investigation and let
~Jt = ~J − ~J`. For ~J also holds the continuity equation

∇ · ~J(~r, t) + ∂tρ(~r, t) = 0 (23)

and from this follows

∇ · ~Jt(~r, t) = 0 . (24)

Because of properties (20) and (24) one refers to ~J` and ~Jt as the longitudinal and the transverse

currents, respectively.

The definitions of ~J` and ~Jt applied to (18) yield

∇2 ~A(~r, t) − ∂2
t
~A(~r, t) = − 4π ~Jt(~r, t) . (25)

This equation does not couple anymore scalar and vector potentials. The vector potential deter-

mined through (25) and (11) and the Coulomb potential (15) yield finally the electric and magnetic

fields. V (~r, t) contributes solely an electric field component

~E`(~r, t) = −∇V (~r, t) (26)

which is obviously curl-free (∇× ~E`(~r, t) = 0), hence, the name longitudinal electric field. ~A(~r, t)

contributes an electrical field component as well as the total magnetic field

~Et(~r, t) = − ∂t ~A(~r, t) (27)

~Bt(~r, t) = ∇× ~A(~r, t) . (28)

These fields are obviously divergence -free (e.g., ∇· ~Et(~r, t) = 0), hence, the name transverse fields.

1.2 Planar Electromagnetic Waves

The current density ~Jt describes ring-type currents in the space under consideration; such current

densities exist, for example, in a ring-shaped antenna which exhibits no net charge, yet a current.

Presently, we want to assume that no ring-type currents, i.e., no divergence-free currents, exist in

the space considered. In this case (25) turns into the well-known wave equation

∇2 ~A(~r, t) − ∂2
t
~A(~r, t) = 0 (29)

which describes electromagnetic fields in vacuum. A complete set of solutions is given by the

so-called plane waves
~A(~r, t) = Ao û exp

[
i(~k · ~r ∓ ωt)

]
(30)

where the dispersion relationship

|~k| = ω (31)
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holds. Note that in the units chosen the velocity of light is c = 1. Here the “-” sign corresponds

to so-called incoming waves and the “+” sign to outgoing waves2, the constant ~k is referred to as

the wave vector. The Coulomb gauge condition (11) yields

û · ~k = 0 . (32)

û is a unit vector (|û| = 1) which, obviously, is orthogonal to ~k; accordingly, there exist two linearly

independent orientations for û corresponding to two independent planes of polarization.

We want to characterize now the radiation field connected with the plane wave solutions (30).

The corresponding electric and magnetic fields, according to (27, 28), are

~Et(~r, t) = ±i ω ~A(~r, t) (33)

~Bt(~r, t) = i~k × ~A(~r, t) . (34)

The vector potential in (30) and the resulting fields (33, 34) are complex-valued quantities. In

applying the potential and fields to physical observables and processes we will only employ the real

parts.

Obviously, ~Et(~r, t) and ~Bt(~r, t) in (33, 34), at each point ~r and moment t, are orthogonal to

each other and are both orthogonal to the wave vector ~k. The latter vector describes the direction

of propagation of the energy flux connected with the plane wave electromagnetic radiation. This

flux is given by

~S(~r, t) =
1

4π
Re ~Et(~r, t)× Re ~B(~r, t) . (35)

Using the identity ~a× (~b× ~c) = ~b (~a · ~c) − ~c (~a ·~b) and (30, 31, 33, 34) one obtains

~S(~r, t) = ±ω
2

4π
A2
o k̂ sin2(~k · ~r ∓ ωt ) (36)

where k̂ is the unit vector k̂ = ~k/|~k|. Time average over one period 2π/ω yields

〈 ~S(~r, t) 〉 = ±ω
2

8π
A2
o k̂ . (37)

In this expression for the energy flux one can interprete k̂ as the propagation velocity (note c = 1)

and, hence,

〈ε〉 =
ω2

8π
A2
o (38)

as the energy density. The sign in (37) implies that for incoming waves, defined below Eqs. (30,31),

the energy of the plane wave is transported in the direction of −~k, whereas in the case of outgoing

waves the energy is transported in the direction of ~k.

A correct description of the electromagnetic field requires that the field be quantized. A ‘poor

man’s’ quantization of the field is possible at this point by expressing the energy density (38)

2The definition incoming waves and outgoing waves is rationalized below in the discussion following Eq. (77); see
also the comment below Eqs. (37, 38).
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through the density of photons connected with the planar waves (30). These photons each carry

the energy h̄ω. If we consider a volume V with a number of photons Nω the energy density is

obviously

〈ε〉 =
Nωh̄ω
V

. (39)

It should be pointed out that Nω represents the number of photons for a specific frequency ω,

a specific k̂ and a specific û. Comparision of (38) and (39) allows one to express then the field

amplitudes

Ao =

√
8πNωh̄
ωV

. (40)

Inserting this into (30) allows one finally to state for the planar wave vector potential

~A(~r, t) =

√
8πNωh̄
ωV

û exp
[
i(~k · ~r − ωt)

]
, |~k| = ω , û · ~k = 0 . (41)

2 Characterization of the interaction of the radiation field and

molecules

2.1 Hamilton Operator

The classical Hamiltonian for a particle of charge q in a scalar and vector potential V (~r) and ~A(~r, t),

respectively, is

H =

[
~p − q ~A(~r, t)

]2
2m

+ qV (~r)

+
1

8π

∫
Ω∞

d3r′E2
` +

1

16π

∫
Ω∞

d3r
(
|Et|2 + |Bt|2

)
. (42)

Here the fields are defined through Eqs. (26, 27, 28) together with the potentials (15, 30). The

integrals express the integration over the energy density of the fields. Note that ~E`(~r, t) is real and

that ~Et(~r, t), ~Bt(~r, t) are complex leading to the difference of a factor 1
2 in the energy densities of

the lontitudinal and transverse components of the fields.

We assume that the energy content of the fields is not altered significantly in the processes

described and, hence, we will neglect the respective terms in the Hamiltonian (42). We are left

with a classical Hamiltonian function which has an obvious quantum mechanical analogue

Ĥ =

[
~̂p − q ~A(~r, t)

]2
2m

+ qV (~r) . (43)

replacing the classical momentum ~p by the differential operator ~̂p = h̄
i∇. The wave function Ψ(~r, t)

of the particle is then described by the Schrödinger equation

i h̄ ∂t Ψ(~r, t) = Ĥ Ψ(~r, t) . (44)

6
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Gauge Transformations

It is interesting to note that in the quantum mechanical description of a charged particle the

potentials V (~r, t) and ~A(~r, t) enter whereas in the classical equations of motion

m~̈r = q ~E(~r, t) + q ~̇r × ~B(~r, t) (45)

the fields enter. This leads to the question in how far the gauge transformations (9, 10) affect

the quantum mechanical description. In the classical case such question is mute since the gauge

transformations do not alter the fields and, hence, have no effect on the motion of the particle

described by (45).

Applying the gauge transformations (9, 10) to (43, 44) leads to the Schrödinger equation

ih̄∂tΨ(~r, t) =


[
~̂p − q ~A − q((∇χ))

]2
2m

+ qV − q((∂tχ))

 Ψ(~r, t) (46)

where ((· · ·)) denotes derivatives in ((∇χ)) and ((∂tχ)) which are confined to the function χ(~r, t)

inside the double brackets. One can show that (46) is equivalent to

ih̄∂te
iqχ(~r,t)/h̄Ψ(~r, t) =


[
~̂p − q ~A

]2
2m

+ qV

 eiqχ(~r,t)/h̄Ψ(~r, t) . (47)

For this purpose one notes

ih̄∂t e
iqχ(~r,t)/h̄Ψ(~r, t) = eiqχ(~r,t)/h̄ [ ih̄∂t − q((∂tχ)) ] Ψ(~r, t) (48)

~̂p eiqχ(~r,t)/h̄Ψ(~r, t) = eiqχ(~r,t)/h̄
[
~̂p + q((∇χ))

]
Ψ(~r, t) . (49)

The equivalence of (46, 47) implies that the gauge transformation (9, 10) of the potentials is

equivalent to multiplying the wave function Ψ(~r, t) by a local and time-dependent phase factor

eiqχ(~r,t)/h̄. Obviously, such phase factor does not change the probability density |Ψ(~r, t)|2 and,

hence, does not change expectation values which contain the probability densities3.

An important conceptual step of modern physics has been to turn the derivation given around

and to state that introduction of a local phase factor eiqχ(~r,t)/h̄ should not affect a system and that,

accordingly, in the Schrödinger equation

ih̄∂tΨ(~r, t) =


[
~̂p − q ~A

]2
2m

+ qV

 Ψ(~r, t) . (50)

the potentials ~A(~r, t) and V (~r, t) are necessary to compensate terms which arise through the phase

factor. It should be noted, however, that this principle applies only to fundamental interactions,

not to phenomenological interactions like the molecular van der Waals interaction.

3The effect on other expectation values is not discussed here.
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The idea just stated can be generalized by noting that multiplication by a phase factor eiqχ(~r,t)/h̄

constitutes a unitary transformation of a scalar quantity, i.e., an element of the group U(1). Ele-

mentary constituents of matter which are governed by other symmetry groups, e.g., by the group

SU(2), likewise can demand the existence of fields which compensate local transformations de-

scribed by ei~σ·~χ(~r,t) where ~σ is the vector of Pauli matrices, the generators of SU(2). The resulting

fields are called Yang-Mills fields.

The Hamiltonian (43) can be expanded

H =
~̂p

2

2m
− q

2m

(
~̂p · ~A + ~A · ~̂p

)
+

q2

2m
A2 + qV (51)

For any function f(~r) holds

(
~̂p · ~A − ~A · ~̂p

)
f(~r) =

h̄

i

(
~A · ∇f + f ∇ · ~A − ~A · ∇f

)
=

h̄

i
f ∇ · ~A . (52)

This expression vanishes in the present case since since ∇ ·A = 0 [cf. (11)]. Accordingly, holds

~̂p ·Af = ~A · ~̂p f (53)

and, consequently,

H =
~̂p

2

2m
− q

m
~̂p · ~A +

q2

2m
A2 + qV . (54)

2.2 Time-Dependent Perturbation Theory

We want to consider now a quantum system involving a charged particle in a bound state perturbed

by an external radiation field described through the Hamiltonian (54). We assume that the scalar

potential V in (54) confines the particle to stationary bound states; an example is the Coulomb

potential V (~r, t) = 1/4πr confining an electron with energy E < 0 to move in the well known

orbitals of the hydrogen atom. The external radiation field is accounted for by the vector poten-

tial ~A(~r, t) introduced above. In the simplest case the radiation field consists of a single planar

electromagnetic wave described through the potential (30). Other radiation fields can be expanded

through Fourier analysis in terms of such plane waves. We will see below that the perturbation

resulting from a ‘pure’ plane wave radiation field will serve us to describe also the perturbation

resulting from a radiation field made up of a superposition of many planar waves.

The Hamiltonian of the particle in the radiation field is then described through the Hamiltonian

H = Ho + VS (55)

Ho =
~̂p

2

2m
+ q V (56)

VS = − q

m
~̂p · ~A(~r, t) +

q2

2m
A2(~r, t) (57)

where ~A(~r, t) is given by (41). Here the so-called unperturbed system is governed by the Hamilto-

8
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nian Ho with stationary states defined through the eigenvalue problem

Ho |n〉 = εn |n〉 , n = 0, 1, 2 . . . (58)

where we adopted the Dirac notation for the states of the quantum system. The states |n〉 are

thought to form a complete, orthonormal basis, i.e., we assume

〈n|m〉 = δnm (59)

and for the identity

1 =
∞∑
n=0

|n〉〈n| . (60)

We assume for the sake of simplicity that the eigenstates of Ho can be labeled through integers,

i.e., we discount the possibility of a continuum of eigenstates. However, this assumption can be

waved as our results below will not depend on it.

Estimate of the Magnitude of VS

We want to demonstrate now that the interaction VS(t), as given in (57) for the case of radiation-

induced transitions in atomic systems, can be considered a weak perturbation. In fact, one can

estimate that the perturbation, in this case, is much smaller than the eigenvalue differences near

typical atomic bound states, and that the first term in (57), i.e., the term ∼ ~̂p · ~A(~r, t), is much

larger than the second term, i.e., the term ∼ A2(~r, t). This result will allow us to neglect the

second term in (57) in further calculations and to expand the wave function in terms of powers of

VS(t) in a perturbation calculation.

For an electron charge q = −e and an electron mass m = me one can provide the estimate for

the first term of (57) as follows4. We first note, using (40)

∣∣∣∣ eme
~̂p · ~A

∣∣∣∣ ∼ e

me

∣∣∣∣∣2me
p2

2me

∣∣∣∣∣
1
2

√
8πNωh̄
ω V

. (61)

The virial theorem for the Coulomb problem provides the estimate for the case of a hydrogen atom∣∣∣∣∣ p2

2me

∣∣∣∣∣ ∼ 1

2

e2

ao
(62)

where ao is the Bohr radius. Assuming a single photon, i.e., Nω = 1, a volume V = λ3 where λ is

the wave length corresponding to a plane wave with frequency ω, i.e., λ = 2πc/λ, one obtains for

(61) using V = λ 4π2c2/ω2 ∣∣∣∣ eme
~̂p · ~A

∣∣∣∣ ∼ e2

4πao

∣∣∣∣ 2π ao
λ

h̄ω

mec2

∣∣∣∣ 12 (63)

For h̄ω = 3 eV and a corresponding λ = 4000 Å one obtains, with ao ≈ 0.5 Å, and mec
2 ≈

4The reader should note that the estimates are very crude since we are establishing an order of magnitude estimate
only.

9

NOT FOR DISTRIBUTION Klaus Schulten April 2015



Not 
for

 D
ist

rib
uti

on

500 keV ∣∣∣∣ 2π ao
λ

h̄ω

mec2

∣∣∣∣ ≈ 10−8 (64)

and with e2/ao ≈ 27 eV, altogether,∣∣∣∣ eme
~̂p · ~A

∣∣∣∣ ∼ 10 eV · 10−4 = 10−3 eV . (65)

This magnitude is much less than the differences of the typical eigenvalues of the lowest states of

the hydrogen atom which are of the order of 1 eV. Hence, the first term in (57) for radiation fields

can be considered a small perturbation.

We want to estimate now the second term in (57). Using again (40) one can state∣∣∣∣∣ e2

2me
A2

∣∣∣∣∣ ∼ e2

2me

1

ω2

8πNωh̄ω
V

(66)

For the same assumptions as above one obtains∣∣∣∣∣ e2

2me
A2

∣∣∣∣∣ ∼ e2

8πao
·
(
ao
λ

4h̄ω

mec2

)
. (67)

Employing for the second factor the estimate as stated in (64) yields∣∣∣∣∣ e2

2me
A2

∣∣∣∣∣ ∼ 10 eV · 10−8 = 10−7 eV . (68)

This term is obviously much smaller than the first term. Consequently, one can neglect this term as

long as the first term gives non-vanishing contributions, and as long as the photon densities Nω/V
are small. We can, hence, replace the perturbation (57) due to a radiation field by

VS = − q

m
~̂p · ~A(~r, t) . (69)

In case that such perturbation acts on an electron and is due to superpositions of planar waves

described through the vector potential (41) it holds

VS ≈
e

m

∑
~k,û

√
4πNkh̄
kV

α(~k, û) ~̂p · û exp
[
i(~k · ~r − ωt)

]
. (70)

where we have replaced ω in (41) through k = |~k| = ω. The sum runs over all possible ~k vectors

and might actually be an integral, the sum over û involves the two possible polarizations of planar

electromagnetic waves. A factor α(~k, û) has been added to describe eliptically or circularly polarized

waves. Equation (70) is the form of the perturbation which, under ordinary circumstances, describes

the effect of a radiation field on an electron system and which will be assumed below to describe

radiative transitions.
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2.3 Perturbations due to Electromagnetic Radiation

We had identified in Eq. (70) above that the effect of a radiation field on an electronic system is

accounted for by perturbations with a so-called harmonic time dependence ∼ exp(−iωt). A pertur-

bation expansion for the transition amplitude is derived on page 218 of Chapter 8 of qmbook.pdf.

We want to apply now the perturbation expansion to such perturbations. For the sake of including

the effect of superpositions of plane waves we will assume, however, that two planar waves simula-

taneously interact with an electronic system, such that the combined radiation field is decribed by

the vector potential

~A(~r, t) = A1 û1 exp
[
i (~k1 · ~r − ω1 t)

]
incoming wave (71)

+ A2 û2 exp
[
i (~k2 · ~r ∓ ω2 t)

]
incoming or outgoing wave

combining an incoming and an incoming or outgoing wave. The coefficients A1, A2 are defined

through (40).

The resulting perturbation on an electron system, according to (70), is

VS =
[
V̂1 exp(−iω1t) + V̂2 exp(∓iω2t)

]
eλt , λ → 0+ , to → −∞ (72)

where V̂1 and V̂2 are time-independent operators defined as

V̂j =
e

m

√
8πNj h̄
ωjV︸ ︷︷ ︸

I

~̂p · ûj︸ ︷︷ ︸
II

ei
~k·~r

︸︷︷︸
III

. (73)

Here the factor I describes the strength of the radiation field (for the specified planar wave) as

determined through the photon density Nj/V and the factor II describes the polarization of the

planar wave; note that ûj , according to (33, 71), defines the direction of the ~E-field of the radiation.

The factor III in (73) describes the propagation of the planar wave, the direction of the propagation

being determined by k̂ = ~k/|~k|. We will demonstrate below that the the sign of ∓iωt determines

if the energy of the planar wave is absorbed (“-” sign) or emitted (“+” sign) by the quantum

system. In (73) ~r is the position of the electron and ~̂p = (h̄/i)∇ is the momentum operator of the

electron. A factor exp(λt), λ → 0+ has been introduced which describes that at time to → −∞
the perturbation is turned on gradually. This factor will serve mainly the purpose of keeping in

the following derivation all mathematical quantities properly behaved, i.e., non-singular.

The generic situation we attempt to describe entails a particle at time t = to in a state |0〉 and

a radiation field beginning to act at t = to on the particle promoting it into some of the other states

|n〉, n = 1, 2, . . .. The states |0〉, |n〉 are defined in (58–60) as the eigenstates of the unperturbed

Hamiltonian Ho. One seeks to predict the probability to observe the particle in one of the states

|n〉, n 6= 0 at some later time t ≥ to. For this purpose one needs to determine the state |ΨS(t)〉 of

11
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the particle. This state obeys the Schrödinger equation

ih̄ ∂t|ΨS(t)〉 = [Ho + VS(t) ] |ΨS(t)〉 (74)

subject to the initial condition

|ΨS(to)〉 = |0〉 . (75)

The probability to find the particle in the state |n〉 at time t is then

p0→n(t) = |〈n|ΨS(t)〉|2 . (76)

Using derivations in Eqs. (8.145-8.157) of Chapter 8, one can conclude for the average transition

rate

k = 〈 d
dt
p0→n(t) 〉t =

2π

h̄

[
|〈n|V̂1|0〉|2 δ(εn − εo − h̄ω1) (77)

+ |〈n|V̂2|0〉|2 δ(εn − εo ∓ h̄ω2)
]

Obviously, the two terms apearing on the rhs. of this expression describe the individual effects of

the two planar wave contributions of the perturbation (71–73). The δ-functions appearing in this

expression reflect energy conservation: the incoming plane wave contribution of (72, 73), due to

the vector potential

A1 û1 exp
[
i (~k1 · ~r − ω1 t)

]
, (78)

leads to final states |n〉 with energy εn = εo + h̄ω1. The second contribution to (77), describing

either an incoming or an outgoing plane wave due to the vector potential

A2 û2 exp
[
i (~k1 · ~r ∓ ω2 t)

]
, (79)

leads to final states |n〉 with energy εn = εo ± h̄ω2. The result supports our definition of incoming

and outgoing waves in (30) and (71)

The matrix elements 〈n|V̂1|0〉 and 〈n|V̂2|0〉 in (77) play an essential role for the transition rates

of radiative transitions. First, these matrix elements determine the so-called selection rules for the

transition: the matrix elements vanish for many states |n〉 and |0〉 on the ground of symmetry and

geometrical properties. In case the matrix elements are non-zero, the matrix elements can vary

strongly for different states |n〉 of the system, a property, which is observed through the so-called

spectral intensities of transitions |0〉 → |n〉.

2.4 One-Photon Absorption and Emission in Atoms

We finally can apply the results derived to describe transition processes which involve the absorption

or emission of a single photon. For this purpose we will employ the transition rate as given in

Eq. (77) which accounts for such transitions.

12
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Absorption of a Plane Polarized Wave

We consider first the case of absorption of a monochromatic, plane polarized wave described through

the complex vector potential

~A(~r, t) =

√
8πN h̄
ωV

û exp

[
ı

h̄
(~k · ~r − ωt)

]
. (80)

We will employ only the real part of this potential, i.e., the vector potential actually assumed is

~A(~r, t) =

√
2πN h̄
ωV

û exp

[
ı

h̄
(~k · ~r − ωt)

]
+

√
2πN h̄
ωV

û exp

[
ı

h̄
(−~k · ~r + ωt)

]
. (81)

The perturbation on an atomic electron system is then according to (72, 73)

VS =
[
V̂1 exp(−iωt) + V̂2 exp(+iωt)

]
eλt , λ → 0+ , to → −∞ (82)

where

V̂1,2 =
e

m

√
2πN h̄
ωV

~̂p · û e±i~k·~r . (83)

Only the first term of (72) will contribute to the absorption process, the second term can be

discounted in case of absorption. The absorption rate, according to (77), is then

kabs =
2π

h̄

e2

m2
e

2πN h̄
ωV

∣∣∣ û · 〈n| ~̂p ei~k·~r |0〉 ∣∣∣2 δ(εn − εo − h̄ω) (84)

Dipole Approximation

We seek to evaluate the matrix element

~M = 〈n| ~̂p ei~k·~r |0〉 . (85)

The matrix element involves a spatial integral over the electronic wave functions associated with

states |n〉 and |0〉. For example, in case of a radiative transition from the 1s state of hydrogen to

one of its three 2p states, the wave functions are (n, `,m denote the relevant quantum numbers)

ψn=1,`=0,m=0(r, θ, φ) = 2

√
1

a3
o

e−r/ao Y00(θ, φ) 1s (86)

ψn=2,`=1,m(r, θ, φ) = −1

2

√
6

a3
o

r

ao
e−r/2ao Y1m(θ, φ) 2p (87)

and the integral is

~M =
h̄
√

6

ia4
o

∫ ∞
0

r2dr

∫ 1

−1
dcosθ

∫ 2π

0
dφ r e−r/2ao Y ∗1m(θ, φ) ×

×∇ei~k·~re−r/ao Y00(θ, φ) (88)
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These wave functions make significant contributions to this integral only for r-values in the range

r < 10 ao. However, in this range one can expand

ei
~k·~r ≈ 1 + i~k · ~r + . . . (89)

One can estimate that the absolute magnitude of the second term in (89) and other terms are never

larger than 20π ao/λ. Using |~k| = 2π/λ, the value of the wave length for the 1s → 2p transition

λ =
2πh̄c

∆E2p−1s
= 1216 Å (90)

and ao = 0.529 Å one concludes that in the significant integration range in (88) holds ei
~k·~r ≈

1 + O( 1
50) such that one can approximate

ei
~k·~r ≈ 1 . (91)

One refers to this approximation as the dipole approximation.

Transition Dipole Moment

A further simplification of the matrix element (85) can then be achieved and the differential operator

~̂p = h̄
i∇ replaced by by the simpler multiplicative operator ~r. This simplification results from the

identity

~̂p =
m

ih̄
[~r, Ho ] (92)

where Ho is the Hamiltonian given by (56) and, in case of the hydrogen atom, is

Ho =
(~̂p)2

2me
+ V (~r) , V (~r) = − e2

r
. (93)

For the commutator in (92) one finds

[~r, Ho ] = [~r,
~̂p

2

2me
] + [~r, V (~r) ]︸ ︷︷ ︸

= 0

=
1

2me

3∑
k=1

p̂k [~r, p̂k ] +
1

2me

3∑
k=1

[~r, p̂k ] pk (94)

Using ~r =
∑3
j=1 xj êj and the commutation property [xk, p̂j ] = ih̄ δkj one obtains

[~r, Ho ] =
ih̄

m

3∑
j,k=1

pk êj δjk =
ih̄

m

3∑
j,k=1

pk êk =
ih̄

m
~̂p (95)

from which follows (92).

We are now in a position to obtain an alternative expression for the matrix element (85). Using
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(91) and (92) one obtains

~M ≈ m

ih̄
〈n| [~r, Ho] |0〉 =

m (εo − εn)

ih̄
〈n|~r |0〉 . (96)

Insertion into (84) yields

kabs =
4π2 e2N ω

V

∣∣∣ û · 〈n| ~̂r |0〉 ∣∣∣2 δ(εn − εo − h̄ω) (97)

where we used the fact that due to the δ-function factor in (84) one can replace εn − εo by h̄ω.

The δ-function appearing in this expression, in practical situations, will actually be replaced by a

distribution function which reflects (1) the finite life time of the states |n〉, |0〉, and (2) the fact

that strictly monochromatic radiation cannot be prepared such that any radiation source provides

radiation with a frequency distribution.

2.5 Absorption of Thermal Radiation

We want to assume now that the hydrogen atom is placed in an evironment which is sufficiently hot,

i.e., a very hot oven, such that the thermal radiation present supplies a continuum of frequencies,

directions, and all polarizations of the radiation. We have demonstrated in our derivation of the

rate of one-photon processes that in first order the contributions of all components of the radiation

field add. We can, hence, obtain the transition rate in the present case by adding the individual

transition rates of all planar waves present in the oven. Instead of adding the components of all

possible ~k values we integrate over all ~k using the following rule

∑
~k

∑
û

=⇒ V
∫ +∞

−∞

k2 dk

(2π)3

∫
dk̂

∑
û

(98)

Here
∫
dk̂ is the integral over all orientations of ~k. Integrating and summing accordingly over all

contributions as given by

kabs =
4π2 e2N ω

V

∣∣∣ û · 〈n| ~̂r |0〉 ∣∣∣2 δ(εn − εo − h̄ω) (99)

and using k c = ω results in the total absorption rate

k
(tot)
abs =

e2Nω ω3

2π c3h̄

∫
dk̂

∑
û

∣∣∣ û · 〈n| ~̂r |0〉 ∣∣∣2 (100)

where the factor 1/h̄ arose from the integral over the δ-function.

In order to carry out the integral
∫
dk̂ we note that û describes the possible polarizations of the

planar waves as defined in Eqs. 30-34 of previous lecture notes (Section 1.2 Planar Electromagnetic

Waves). k̂ and û, according to Eq. 32 (in section 1.2) are orthogonal to each other. As a result, there

are ony two linearly independent directions of û possible, say û1 and û2. The unit vectors û1, û2 and

k̂ can be chosen to point along the x1, x2, x3-axes of a right-handed cartesian coordinate system.
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Let us assume that the wave functions describing states |n〉 and |0〉 have been chosen real such that

~ρ = 〈n|~r|0〉 is a real, three-dimensional vector. The direction of this vector in the û1, û2, k̂ frame

is described by the angles ϑ, ϕ, the direction of û1 is described by the angles ϑ1 = π/2, ϕ1 = 0 and

of û2 by ϑ2 = π/2, ϕ2 = π/2. For the two angles α = 6 (û1, ~ρ) and β = 6 (û2, ~ρ) holds then

cosα = cosϑ1 cosϑ + sinϑ1 sinϑ cos(ϕ1 − ϕ) = sinϑcosϕ (101)

and

cosβ = cosϑ2 cosϑ + sinϑ2 sinϑ cos(ϕ2 − ϕ) = sinϑsinϕ . (102)

Accordingly, one can express

∑
û

| û · 〈n|~r |0〉 |2 = |ρ|2 ( cos2α + cos2β ) = sin2θ . (103)

and obtain ∫
dk̂
∑
û

∣∣∣ û · 〈n| ~̂r |0〉 ∣∣∣2 = |~ρ|2
∫ 2π

0

∫ 1

−1
dcosϑ (1 − cos2ϑ) =

8π

3
(104)

This geometrical average, finally, can be inserted into (100) to yield the total absorption rate

k
(tot)
abs = Nω

4 e2 ω3

3 c3h̄
| 〈n|~r|0〉 |2 , Nω photons before absorption. (105)

For absorption processes involving the electronic degrees of freedom of atoms and molecules this

radiation rate is typicaly of the order of 109 s−1. For practical evaluations we provide an expression

which eliminates the physical constants and allows one to determine numerical values readily. For

this purpose we use ω/c = 2π/λ and obtain

4 e2 ω3

3 c3h̄
=

32π3

3

e2

aoh̄

ao
λ3

= 1.37× 1019 1

s
× ao
λ3

(106)

and

k
(tot)
abs = Nω 1.37× 1019 1

s
× ao
λ

| 〈n|~r|0〉 |2

λ2
, (107)

where

λ =
2π c h̄

εn − εo
(108)

The last two factors in (105) combined are typically somewhat smaller than (1 Å/1000 Å)3 = 10−9.

Accordingly, the absorption rate is of the order of 109 s−1 or 1/nanosecond.

Transition Dipole Moment

The expression (105) for the absorption rate shows that the essential property of a molecule which

determines the absorption rate is the so-called transition dipole moment |〈n|~r |0〉|. The transition

dipole moment can vanish for many transitions between stationary states of a quantum system, in

particular, for atoms or symmetric molecules. The value of |〈n|~r |0〉| determines the strength of an
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optical transition. The most intensely absorbing molecules are long, linear molecules.

2.6 Emission of Radiation

We now consider the rate of emission of a photon. The radiation field is described, as for the

absorption process, by planar waves with vector potential

~A(~r, t) =

√
2πN h̄
ωV

û exp

[
ı

h̄
(~k · ~r − ωt)

]
+

√
2πN h̄
ωV

û exp

[
ı

h̄
(−~k · ~r + ωt)

]
. (109)

and perturbation

VS =
[
V̂1 exp(−iωt) + V̂2 exp(+iωt)

]
eλt , λ → 0+ , to → −∞ (110)

where

V̂1,2 =
e

m

√
2πN h̄
ωV

~̂p · û e±i~k·~r . (111)

In case of emission only the second term V̂2 exp(+iωt) in (111) contributes. Otherwise, the calcula-

tion of the emission rate proceeds as in the case of absorption. However, the resulting total rate of

emission bears a different dependence on the number of photons present in the environment. This

difference between emission and absorption is due to the quantum nature of the radiation field.

The quantum nature of radiation manifests itself in that the number of photons Nω msut be

an integer, i.e., Nω = 0, 1, 2 , . . .. This poses, however, a problem in case of emission by quantum

systems in complete darkness, i.e., for Nω = 0. In case of a classical radiation field one would

expect that emission cannot occur. However, a quantum mechanical treatment of the radiation field

leads to a total emission rate which is proportional to Nω + 1 where Nω is the number of photons

before emission. This dependence predicts, in agreement with observations, that emission occurs

even if no photon is present in the environment. The corresponding process is termed spontaneous

emission. However, there is also a contribution to the emission rate which is proportional to Nω
which is termed induced emission since it can be induced through radiation provided, e.g., in lasers.

The total rate of emission, accordingly, is

k(tot)
em =

4 e2 ω3

3 c3h̄
| 〈n|~r|0〉 |2 (spontaneous emission)

+ Nω
4 e2 ω3

3 c3h̄
| 〈n|~r|0〉 |2 (induced emission)

= (Nω + 1 )
4 e2 ω3

3 c3h̄
| 〈n|~r|0〉 |2 (112)

Nω photons before emission. (113)

2.7 Planck’s Radiation Law

The postulate of the Nω + 1 dependence of the rate of emission as given in (112) is consistent

with Planck’s radiation law which reflects the (boson) quantum nature of the radiation field. To

demonstrate this property we apply the transition rates (106) and (112) to determine the stationary
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distribution of photons h̄ω in an oven of temperature T . Let No and Nn denote the number of

atoms in state |0〉 and |n〉, respectively. For these numbers holds

Nn /No = exp[−(εn − εo)/kBT ] (114)

where kB is the Boltzmann constant. We assume εn − εo = h̄ω. Under stationary conditions

the number of hydrogen atoms undergoing an absorption process |0〉 → |n〉 must be the same as

the number of atoms undergoing an emission process |n〉 → |0〉. Defining the rate of spontaneous

emission

ksp =
4 e2 ω3

3 c3h̄
| 〈n|~r|0〉 |2 (115)

the rates of absorption and emission are Nωksp and (Nω+1)ksp, respectively. The number of atoms

undergoing absorption in unit time areNωkspNo and undergoing emission are (Nω+1)kspNn. Hence,

it must hold

Nω ksp N0 = (Nω + 1) ksp Nn (116)

It follows, using (114),

exp[−h̄ω/kBT ] =
Nω

Nω + 1
. (117)

This equation yields

Nω =
1

exp[h̄ω/kBT ] − 1
, (118)

i.e., the well-known Planck radiation formula.

In many important processes induced by interactions between radiation and matter two or

more photons participate. Examples are radiative transitions in which two photons are absorbed

or emitted or scattering of radiation by matter in which a photon is aborbed and another re-emitted.

In the following we discuss several examples.

2.8 Two-Photon Absorption

The interaction of electrons with radiation, under ordinary circumstances, induce single photon

absorption processes as described by the transition rate Eq. 97 of Section 2.4. The transition

requires that the transition dipole moment 〈n|~r |0〉 does not vanish for two states |0〉 and |n〉.
However, a transition between the states |0〉 and |n〉 may be possible, even if 〈n|~r |0〉 vanishes, but

then requires the absorption of two photons. In this case one needs to choose the energy of the

photons to obey

εn = εo + 2 h̄ω . (119)

The respective radiative transition is of 2nd order. The resulting rate of the transition depends on

N 2
ω . The intense radiation fields of lasers allow one to increase transition rates to levels which can

readily be observed in the laboratory.

The perturbation which accounts for the coupling of the electronic system and the radiation

field is the same as in case of 1st order absorption processes and given by (Eqs. 82-83 ; however,

in case of absorption only V̂1 contributes. One obtains, dropping the index 1 characterizing the
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radiation,

k =
2π

h̄

(
e2

m2
e

2πNωh̄
ωV

)2 ∣∣∣∣∣
∞∑
m=0

〈n|û · ~̂p ei~k·~r |m〉 〈m|û · ~̂p ei~k·~r |0〉
εm − εo − h̄ω1 − ih̄λ

∣∣∣∣∣
2

×

× δ(εm − εo − 2h̄ω) . (120)

Employing the dipole approximation (91) and using (92) from Section 2.4 yields, finally,

k =

(Nω
V

)2 8π3e4

h̄

∣∣∣∣∣
∞∑
m=0

(εn − εm) û · 〈n|~̂r |m〉 (εm − εo) û · 〈m|~̂r |0〉
h̄ω ( εm − εo − h̄ω − ih̄λ )

∣∣∣∣∣
2

× δ(εm − εo − 2h̄ω) . (121)

Expression (121) for the rate of 2-photon transitions shows that the transition |0〉 → |n〉 be-

comes possible through intermediate states |m〉 which become virtually excited through absorption

of a single photon. In applying (121) one is, however, faced with the dilemma of having to sum

over all intermediate states |m〉 of the system. If the sum in (121) does not converge rapidly, which

is not necessarily the case, then expression (121) does not provide a suitable avenue of computing

the rates of 2-photon transitions.

2.9 Rayleigh Scattering

We turn first to an example of so-called elastic scattering, i.e., a process in which the electronic

state remains unaltered after the scattering. Rayleigh scattering is defined as the limit in which the

wave length of the scattered radiation is so long that none of the quantum states of the electronic

system can be excited; in fact, one assumes the even stronger condition

h̄ω1 << |εo − εm| , for all states |m〉 of the electronic system (122)

Using |n〉 = |0〉 and, consequently, ω1 = ω2, it follows

dσ = r2
o (N2 + 1) dΩ2 |û1 · û2 − S(h̄ω) |2 (123)

where

S(h̄ω) =
1

me

∑
m

( 〈0|û1 ·~̂p |m〉〈m|û2 ·~̂p |0〉
εm − εo + h̄ω

+
〈0|û2 ·~̂p |m〉〈m|û1 ·~̂p |0〉

εm − εo − h̄ω

)
. (124)

Condition (122) suggests to expand S(h̄ω)

S(h̄ω) = S(0) + S′(0) h̄ω +
1

2
S′′(0)(h̄ω)2 + . . . (125)

Using
1

εm − εo ± h̄ω
=

1

εm − εo
∓ h̄ω

(εm − εo)2
+

(h̄ω)2

(εm − εo)3
+ . . . (126)
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one can readily determine

S(0) =
∑
m

( 〈0|û1 ·~̂p |m〉〈m|û2 ·~̂p |0〉
me (εm − εo)

+
〈0|û2 ·~̂p |m〉〈m|û1 ·~̂p |0〉

me (εm − εo)

)
(127)

S′(0) =
∑
m

( 〈0|û2 ·~̂p |m〉〈m|û1 ·~̂p |0〉
me (εm − εo)2

− 〈0|û1 ·~̂p |m〉〈m|û2 ·~̂p |0〉
me (εm − εo)2

)
(128)

S′′(0) = 2
∑
m

( 〈0|û1 ·~̂p |m〉〈m|û2 ·~̂p |0〉
me (εm − εo)3

+
〈0|û2 ·~̂p |m〉〈m|û1 ·~̂p |0〉

me (εm − εo)3

)
(129)

These three expressions can be simplified using the expression (92) for ~̂p and the expression (60)

for the identity operator from Section.2.2 and 2.4 respectively.

We want to simplify first (127). For this purpose we replace ~̂p using (92)

〈0|û1 ·~̂p |m〉
me (εm − εo)

=
1

ih̄
〈0|û1 ·~r |m〉 ,

〈m|û1 ·~̂p |0〉
me (εm − εo)

= − 1

ih̄
〈m|û1 ·~r |0〉 (130)

This transforms (127) into

S(0) =
1

ih̄

∑
m

( 〈0|û1 ·~r |m〉〈m|û2 ·~̂p |0〉 − 〈0|û2 ·~̂p |m〉〈m|û1 ·~r |0〉 ) (131)

According to (60) this is

S(0) =
1

ih̄
〈0|û1 ·~r û2 ·~̂p − û2 ·~̂p û1 ·~r |0〉 . (132)

The commutator property [xj , p̂k] = ih̄ δjk yields finally

S(0) =
1

ih̄

3∑
j,k=1

(û1)j (û2)k 〈0|[xj , p̂k]|0〉 =
3∑

j,k=1

(û1)j(û2)k δjk = û1 ·û2 (133)

Obviously, this term cancels the û1 ·û2 term in (123).

We want to prove now that expression (128) vanishes. For this purpose we apply (130) both to

û1 · ~̂p and to û2 · ~̂p which results in

S′(0) =
me

h̄2

∑
m

( 〈0|û2 ·~r |m〉〈m|û1 ·~r |0〉 − 〈0|û1 ·~r |m〉〈m|û2 ·~r |0〉 ) . (134)

Employing again (60) yields

S′(0) =
me

h̄2 〈0| [û2 ·~r, û1 ·~r ] |0〉 = 0 (135)

where we used for the second identity the fact that û1 ·~r and û2 ·~r commute.
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S′′(0) given in (129) provides then the first non-vanishing contribution to the scattering cross

section (123). Using again (130) both for the û1 · ~̂p and the to û2 · ~̂p terms in (129) we obtain

S′′(0) =
2me

h̄2

∑
m

( 〈0|û1 ·~r |m〉〈m|û2 ·~r |0〉
εm − εo

+
〈0|û2 ·~r |m〉〈m|û1 ·~r |0〉

εm − εo

)
(136)

We can now combine eqs. (125, 133, 135, 136) and obtain the leading contribution to the

expression (123) of the cross section for Rayleigh scattering

dσ = r2
om

2
e ω

4 (N2 + 1) dΩ2 × (137)

×
∣∣∣∣∣∑
m

( 〈0|û∗1 ·~r |m〉〈m|û2 ·~r |0〉
εm − εo

+
〈0|û∗2 ·~r |m〉〈m|û1 ·~r |0〉

εm − εo

) ∣∣∣∣∣
2

We have applied here a modification which arises in case of complex polarization vectors û which

describe circular and elliptical polarizaed light.

Expression (137) is of great practical importance. It explains, for example, the blue color of

the sky and the polarization pattern in the sky which serves many animals, i.e., honey bees, as a

compass.

2.10 Raman Scattering and Brillouin Scattering

We now consider ineleastic scattering described by the Kramers-Heisenberg formula. In the case

of such scattering an electron system absorbs and re-emits radiation without ending up in the

initial state. The energy deficit is used to excite the system. The excitation can be electronic,

but most often involves other degrees of freedom. For electronic systems in molecules or crystals

the degrees of freedom excited are nuclear motions, i.e., molecular vibrations or crystal vibrational

modes. Such scattering is called Raman scattering. If energy is absorbed by the system, one speaks

of Stokes scattering, if energy is released, one speaks of anti-Stokes scattering. In case that the

nuclear degrees of freedom excited absorb very little energy, as in the case of excitations of accustical

modes of crystals, or in case of translational motion of molecules in liquids, the scattering is termed

Brillouin scattering.

In the case that the scattering excites other than electronic degrees of freedom, the states |n〉
etc. defined below in (153) represent actually electronic as well as nuclear motions, e.g., in case of

a diatomic molecule |n〉 = |φ(elect.)n, φ(vibr.)n〉. Since the scattering is inelastic, the first term in

(153) vanishes and one obtains in case of Raman scattering

dσ = r2
o (N2 + 1)

ω2

ω1
dΩ2 | û2 ·R · û1 |2 (138)

where R represents a 3× 3-matrix with elements

Rjk =
1

me

∑
m

( 〈n| p̂j |m〉〈m| p̂k |0〉
εm − εo + h̄ω2

+
〈n| p̂k |m〉〈m| p̂j |0〉
εm − εo − h̄ω1

)
(139)

ω2 = ω1 − (εn − εo)/h̄ (140)
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We define ~x ·R · ~y =
∑
j,k xjRjk yk.

In case that the incoming photon energy h̄ω1 is chosen to match one of the electronic excitations,

e.g., h̄ω1 ≈ εm − εo for a particular state |m〉, the Raman scattering cross section will be much

enhanced, a case called resonant Raman scattering. Of course, no singlularity developes in such

case due to the finite life time of the state |m〉. Nevertheless, the cross section for resonant Raman

scattering can be several orders of magnitude larger than that of ordinary Raman scattering, a

property which can be exploited to selectively probe suitable molecules of low concentration in

bulk matter.

Scattering of Photons at Electrons – Kramers-Heisenberg Cross Section

We consider in the following the scattering of a photon at an electron governed by the Hamiltonian

Ho as given in (56) with stationary states |n〉 defined through (58). We assume that a planar wave

with wave vector ~k1 and polarization û1, as described through the vector potential

~A(~r, t) = Ao1 û1 cos(~k1 · ~r − ω1t) , (141)

has been prepared. The electron absorbs the radiation and emits immediately a second photon.

We wish to describe an observation in which a detector is placed at a solid angle element dΩ2 =

sinθ2 dθ2 dφ2 with respect to the origin of the coordinate system in which the electron is described.

We assume that the experimental set-up also includes a polarizer which selects only radiation with

a certain polarization û2. Let us assume for the present that the emitted photon has a wave vector
~k2 with cartesian components

~k2 = k2


sinθ2 cosφ2

sinθ2 sinφ2

cosθ2

 (142)

where the value of k2 has been fixed; however, later we will allow the quantum system to select

appropriate values. The vector potential describing the emitted plane wave is then

~A(~r, t) = Ao2 û2 cos(~k2 · ~r − ω2t) . (143)

The vector potential which describes both incoming wave and outgoing wave is a superposition

of the potentials in (141, 143). We know already from our description in Section 2.3 above that

the absorption of the radiation in (141) and the emission of the radiation in (143) is accounted for

by the following contributions of (141, 143)

~A(~r, t) = A+
o1 û1 exp[ i (~k1 · ~r − ω1t) ] + A−o2 û2 exp[ i (~k2 · ~r − ω2t) ] . (144)

The first term describes the absorption of a photon and, hence, the amplitude A+
o1 is given by

A+
o1 =

√
8πN1h̄

ω1V
(145)
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where N1/V is the density of photons for the wave described by (141), i.e., the wave characterized

through ~k1, û1. The second term in (144) accounts for the emitted wave and, according to the

description of emission processes on page 3 of the Emission of Radiation, the amplititude A−o2
defined in (144) is

A−o2 =

√
8π (N2 + 1) h̄

ω1V
(146)

where N2/V is the density of photons characterized through ~k2, û2.

The perturbation which arises due to the vector potential (144) is stated in Eq.(57). In the

present case we consider only scattering processes which absorb radiation corresponding to the

vector potential (141) and emit radiation corresponding to the vector potential (143). The relevant

terms of the perturbation (57) using the vector potantial (144) are given by

VS(t) =
e

2me
~̂p ·
{
A+
o1û1exp[i(~k1 · ~r − ω1t)] + A−o2û2exp[−i(~k2 · ~r − ω2t)]

}
︸ ︷︷ ︸

contributes in 2nd order

+
e2

4me
A+
o1A

−
o2 û1 · û2 exp{i[(~k1 − ~k2) · ~r − (ω1 − ω2) t]}︸ ︷︷ ︸

contributes in 1st order

(147)

This expansion yields, in the present case, for the components of the wave function accounting

for absorption and re-emission of a photon

〈n|ΨD(t)〉 = 〈n|0〉 + (148)

+
1

ih̄

e2

4me
A+
o1A

−
o2 û1 · û2 〈n|0〉

∫ t

to
dt′ ei(εn−εo−h̄ω1+h̄ω2+ih̄λ)t′

+
∞∑
m=0

(
1

ih̄

)2 e2

4m2
e

A+
o1A

−
o2 ×

×
{
û1 · 〈n| ~̂p |m〉 û2 · 〈m| ~̂p |0〉 ×

×
∫ t

to
dt′
∫ t′

to
dt′′ei(εn−εm−h̄ω1+ih̄λ)t′ei(εm−εo+h̄ω2+ih̄λ)t′′

+ û2 · 〈n| ~̂p |m〉 û1 · 〈m| ~̂p |0〉 ×

×
∫ t

to
dt′
∫ t′

to
dt′′ei(εn−εm+h̄ω2+ih̄λ)t′ei(εm−εo−h̄ω1+ih̄λ)t′′

}
We have adopted the dipole approximation (91) in stating this result.

Only the second (1st order) and the third (2nd order) terms in (148) correspond to scattering

processes in which the radiation field ‘looses’ a photon h̄ω1 and ‘gains’ a photon h̄ω2. Hence, only

these two terms contribute to the scattering amplitude. Following closely the procedures adopted

in evaluating the rates of 1st order and 2nd order radiative transitions, i.e., evaluating the time
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integrals in (148) and taking the limits limto→−∞ and limλ→0+ yields the transition rate

k =
2π

h̄
δ(εn − εo − h̄ω1 + h̄ω2)

∣∣∣∣∣ e2

4m2
e

A+
o1A

−
o2 û1 · û2 〈n|0〉 (149)

−
∑
m

e2

4me
A+
o1A

−
o2

(
〈n|û1 ·~̂p |m〉〈m|û2 ·~̂p |0〉

εm − εo + h̄ω2
+
〈n|û2 ·~̂p |m〉〈m|û1 ·~̂p |0〉

εm − εo − h̄ω1

) ∣∣∣∣∣
2

We now note that the quantum system has the freedom to interact with any component of the

radiation field to produce the emitted photon h̄ω2. Accordingly, one needs to integrate the rate

as given by (149) over all available modes of the field, i.e., one needs to carry out the integration

V(2π)−3
∫
k2

2dk2 · · ·. Inserting also the values (145, 146) for the amplitudes A+
o1 and A−o2 results in

the Kramers-Heisenberg formula for the scattering rate

k =
N1c

V
r2
o

ω2

ω1
(N2 + 1) dΩ2

∣∣∣∣û1 · û2 〈n|0〉 (150)

− 1

me

∑
m

( 〈n|û1 ·~̂p |m〉〈m|û2 ·~̂p |0〉
εm − εo + h̄ω2

+
〈n|û2 ·~̂p |m〉〈m|û1 ·~̂p |0〉

εm − εo − h̄ω1

) ∣∣∣∣2
Here ro denotes the classical electron radius

ro =
e2

mec2
= 2.8 · 10−15 m . (151)

The factor N1c/V can be interpreted as the flux of incoming photons. Accordingly, one can relate

(150) to the scattering cross section defined through

dσ =
rate of photons arriving in the the solid angle element dΩ2

flux of incoming photons
(152)

It holds then

dσ = r2
o

ω2

ω1
(N2 + 1) dΩ2

∣∣∣∣û1 · û2 〈n|0〉 (153)

− 1

me

∑
m

( 〈n|û1 ·~̂p |m〉〈m|û2 ·~̂p |0〉
εm − εo + h̄ω2

+
〈n|û2 ·~̂p |m〉〈m|û1 ·~̂p |0〉

εm − εo − h̄ω1

) ∣∣∣∣2
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3 A first look at electronic excitation: Polyene molecules

Figure 1: Polyene molecule model. Carbon nuclei form the planar frame of the molecule. The shown orbitals are
perpendicular to the plane of the molecule. N marks the number of double bonds in the molecule.

In Fig. 1, we show a model polyene molecule. We assume that electrons occupying the orbitals

shown in Fig. 1 are non-interacting (independent) particles. Then, the wavefunction of each electron

can be written as a linear combination of basis functions Φj

Ψn =
2N∑
j=1

CnjΦj (154)

where n labels the electronic state, and j labels the atom index (site).

Next, we can define the Hamiltonian for the polyene system as

H =



ε0 β 0

β ε0 β

0 β ε0

...

ε0


where ε0 is the energy of the electron at site j and β is the energy associated with the electron

jumping from site j to the neighboring site j ± 1. We neglect the other off-diagonal terms, since

we assume that energy associated with electron jumping to non-neighboring atoms is much larger

than β. The energy ε0 is the energy of the electron in the 2pz orbital of carbon atom

ε0 = − h̄2

2mea2
0

Z2

n2
, n = 2, Z = 6 (155)

where me is mass of the electron, a0 is Bohr radius, n is the principal quantum number for hydrogen-

like atoms (n = 2 for p orbitals), and Z is the atomic number (Z = 6 for carbon atom). In

subsequent calculations we assume that β = −2.5 eV.

To obtain stationary states of individual electrons, one needs to solve:

HΨn = EnΨn (156)
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The solutions of Eq. 156 are

Ψn =
2N∑
j=1

An sin
jπn

2N + 1
Φj (157)

For each electron, Eq. 156 can be written as

An

(
β sin

(j − 1)πn

2N + 1
+ ε0 sin

jπn

2N + 1
+ β sin

(j + 1)πn

2N + 1

)
= EnAn sin

jπn

2N + 1
(158)

Using the identity sin(A±B) = sinA cosB ± cosA sinB, we can write

sin
(j ± 1)πn

2N + 1
= sin

jπn

2N + 1
cos

πn

2N + 1
± cos

jπn

2N + 1
sin

πn

2N + 1
. (159)

Since the second term in Eq. 159 cancels, Eq. 158 reduces to

2β cos
πn

2N + 1
+ ε0 = En (160)

and the solution for En is

En = ε0 + 2β sin
πn

2N + 1
(161)

The energy difference between subsequent electronic states, i.e. the energy of the absorbed

photon is:

∆E = 2β

(
cos

(n+ 1)π

2N + 1
− cos

nπ

2N + 1

)
= β

4π

2N + 1
(162)

Therefore, for molecules with N = 5 − 10 double bonds, and assuming that β = −2.5 eV,

∆E ≈ 1.5− 3 eV.

Now, to calculate the absorption rate

k
(tot)
abs = Nω 1.37× 1019 1

s
× ao
λ

| 〈n|~r|0〉 |2

λ2
, (163)

one needs to determine 〈n|~r|0〉

〈n|~r|0〉 = 〈n|∆~r|0〉+ 〈n|~rcenter|0〉 (164)

Since the second term in Eq. 164 vanishes, one can write

〈n|~r|0〉 =
∑
j,j′

CbjCaj′〈j|∆~r|j′〉 ≈
∑
j

CbjCaj∆~rjδjj′ . (165)

Finally, for the transition dipole moment, 〈n|~r|0〉, to be nonzero, the product CbjCaj∆~rj needs

to be of even symmetry. ∆~rj has odd symmetry, therefore (b, a) pair needs to have (even, odd)

or (odd, even) symmetry, for the product to be of even symmetry. The requirement leads to the

selection rules for electronic transitions.
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Figure 2: Solution of the polyene model described in the text for 2N = 6.
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