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Dear Editors, 

We hope you will help us choose the appropriate forum for the attached comments. We 
believe SIAM NEWS would be a good choice, because it is widely visible. An article in SIAM 
NEWS would help so many members of SIAM reach towards biology. We describe what we 
(immodestly enough) think is a productive application of mathematics to a central problem in 
biology and chemistry.  

The central problem is the mathematical description of the ionic mixtures (solutions) in 
which life occurs. The function of most of the proteins in a living system depends on the 
properties and composition of ionic solutions in a sensitive and specific way. Most of chemistry 
is done in aqueous solutions that contain ions and often mixtures of different types of ions. The 
ionic solutions of life are mixtures that involve calcium and do not resemble the ideal solutions 
of textbooks or the Poisson Boltzmann equation. Analysis of the Poisson Boltzmann equation is 
certainly an essential first step in applying mathematics to the role of ions in biology. But it is 
only a first step that is useful for developing methods and dealing with a few isolated biological 
situations. It does not deal with the main issues of biological importance. 

The mathematical treatment of ionic mixtures we think appropriate is that of the self-
consistent theory of complex fluids and its close cousin transport theory in semiconductors 
(and probably other theories of transport we do not know much about). The theory of complex 
fluids is designed to deal with fluids with interacting microelements that involve many types of 
physical forces and fields, that interact across all scales, ranging from atomic scale steric 
interactions of excluded volume to the macroscale interactions with charge ‘at infinity’ that 
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couples to ion channels (on the atomic scale) to produce the (macroscale) action potential of 
nerve and muscle [67, 65, 64, 62, 73, 74].  

The ‘plasmas of life’ and the solutions of chemistry can be viewed productively as 
complex fluids that need to be analyzed self-consistently with several fields across many scales. 
The (single atom) ions of these plasmas (like sodium and chloride ions) themselves are 
(relatively simple) microelements that perturb the electric field by their finite size, and 
introduce other steric constraints. Molecules in chemical solutions in general are multi-atom 
microelements that have complex shape, internal dynamics, and interactions with all elements 
and fields on several scales. And polymers, including DNA, proteins, and nylon, are macroscale 
molecules made of multi-atom monomers. Polymers have their special properties because they 
are both a micro and a macro-element that interacts dramatically with other ions, forces, and 
boundary conditions. 

We have included in this document many more references than would be appropriate 
for SIAM News so editors and referees can evaluate our statements of fact. The large existing 
literature of physical chemistry shows that a widely used simple mathematical model (Poisson 
Boltzmann theory) is not very useful. We can remove many of the references from a printed 
version of the paper, or make the full reference list available on the internet ourselves or 
through SIAM or through the arXiv, if the editors wish to accept the paper for publication. 

We are aware of the difficulties and challenges involved in attacking this long lasting 
problem, as well as its importance. After decades (approaching a century) of efforts by many of 
the most able physicists, including Lorentz, Debye, Onsager, Kirkwood, and so on, there is no 
satisfactory theory for salt water or the closely related ionic mixtures inside animals and plants 
even when flows are identically zero, at thermodynamic equilibrium. There are essentially no 
theories—satisfactory or not—that deal simultaneously and self-consistently with the 
convection, diffusion, and migration, along with volume regulation of cells, vital to the function 
of kidney, heart, lungs, etc. Such models must include single atom ions (like sodium, potassium, 
calcium, and chloride), complex organic molecules like ATP, sugars, carboxylic acids, and 
bioamines, all of which have essential roles. The tools of classical physical chemistry based on 
ideal solutions at thermodynamic equilibrium are unequal to the task.  

These are central problems in all of biology, unsolved, in our view, because of the lack of 
tools. Modern analytical methods (of the selfconsistent theory of complex fluids, for example) 
and modern numerical and computational methods (made possible fundamentally by 50 years 
of diligent exploitation of Moore’s law) can attack and probably solve these problems. But first 
the mathematicians who know these methods must learn of the problem. If they analyze the 
Poisson Boltzmann equations, they will miss the problems that matter most to living systems. 

Thank you for your help in this unusual request. We think you might want to consult 
experienced investigators in math and chemistry to evaluate our assertions. In math, we think 
of David Kinderlehrer and Robert Pego from Carnegie Mellon University, Weishi Liu from Kansas 
University, Martin Burger from University of Muenster, Joe Jerome from Northwestern 
University, or Charlie Peskin of the Courant. Wei Cai (UNC Charlotte) provoked this letter and 
document with his admirable paper in SIAM Review and should be consulted, in our opinion. 
Among the physical chemists, Stuart Rice and Douglas Henderson can provide a good choice of 
names, as well as review our work. Rich Saykally of UC Berkeley and Tony Watts of Oxford 
Biochemistry are experimental physical chemists quite familiar with these issues. Wolfgang 
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Nonner of the University of Miami Medical School can provide names of biophysicists and 
review the material himself as well, if you wish. 

The biological viewpoint is straightforward. We trust you understand that most 
mathematicians are applying their talents to relatively small problems in the world of biology, 
at least small in the perspective of experimental biologists. We here present an opportunity (we 
think) to help focus the skills of mathematicians on a central set of unsolved problems in both 
biology and chemistry. We think that variational methods long used for conservative systems, 
and sometimes for purely dissipative systems, can now be used to deal with ionic solutions. In 
essence, we propose that ionic solutions be treated with the self-consistent theory of complex 
fluids, and not with traditional chemical approximations based on the theory of (infinitely 
dilute, uncharged) ideal gases. The simplest version of this question grows out of the Poisson 
Boltzmann equations we directly address in the paper: How do charged spheres behave in a 
frictional dielectric in which everything interacts with everything else? Fortunately, a huge 
literature of physical chemistry shows that a simple model of hard spheres in a frictional 
dielectric is a suitable first (and often second!) approximation to the properties of the mixed 
single atom ionic solutions of living systems. Fortunately, the theory of complex fluids already 
has dealt with similar problems.  

We hope you agree that this question is a good one to bring to the attention of your 
readership. 

  We are  

   Ever yours 

Bob Eisenberg 

   RS Eisenberg 
   Bard Endowed Professor and Chairman 
   Department of Molecular Biophysics and Physiology 
   Rush University  
 

   Chun Liu (with permission) 

   Chun Liu 
   Professor 
   Department of Mathematics 
   Pennsylvania State University 
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It is hard to see big things from up close, in math and science, as in the world. Many 
mathematicians approach biology for interesting problems nowadays but sometimes the 
biggest problem, with the greatest potential, is too close to see. We are trying to see the big 
picture of ionic solutions, and thank Stuart Rice, Douglas Henderson, and Dirk Gillespie, and our 
collaborators Tai-Chia Lin, YunKyong Hyon, and Allen Hrong for the perspectives they have 
taught us and the many workers on Poisson Boltzmann equations who have set the stage on 
which we can now play out the moving dance of biology as it is actually lived. 

All of biology occurs in salt solutions evolved from the primitive oceans of the earth. 
Water without the ions of the ocean is lethal. Almost all cells burst when exposed to pure 
water. Most enzymes denature in distilled water. Ions in water are life’s plasma [36].  

Ionic solutions in biology are mixtures involving divalents like calcium ions. The selective 
flow of these ions are the signals of the nervous system. The selective flows of ions coordinate 
contraction of muscle. They allow the heart to function as a pump. Different ions have different 
specific biological functions just as signals in different wires in a computer have different 
specific functions. Indeed, the physical and chemical origin of specific properties can be viewed 
as the central question of life, as seen by Nobel prize winner Aaron Klug [127]. 

Ionic mixtures have been studied experimentally in some detail since around 1900. 
Onsager [60] spent much of his life studying mixtures [122, 121, 123]. Kraus [97] provides a nice 
summary of the classical literature for mathematicians. Fawcett [41] is a useful clear textbook 
of electrochemistry and Laidler [103] et al provides a good introduction to physical chemistry 
for mathematicians. The first pages of Fraenkel [44] summarize the present state of knowledge, 
as we see it too. After all this time, one would imagine that the specific properties of ionic 
mixtures of such significance to biology would be understood. But they are not. 

The activity of ions, like the height of a mass in a gravitational field, is the place to start. 
Amazingly enough, the activity of ions in mixtures remains a mystery. The behavior of ions is 
nothing like the behavior of infinitely dilute ideal solutions (of uncharged noninteracting 
particles) assumed in textbooks. The empirical formulations used by chemical engineers [95, 
164] are not derived from physical models. They include many parameters that need to be 
modified when the models are applied to new conditions.  

The empirical formulations of chemical engineers do not apply to very concentrated salt 
solutions. Biological solutions are very concentrated where they are most important, close to 
DNA, in and near active sites of enzymes and proteins, and in and near ion channels. There, 
number densities (i.e., concentrations) are often many molar, not so different from solid 
sodium chloride (37 molar).  

Only a few of the empirical formulations of chemical engineering apply to flow [85, 139]. 
Flow ceases in biology only with death. The properties of ionic solutions most important for life 
are not addressed by traditional approaches. Unaddressed, they cannot be solved.  

We are aware of the difficulties and challenges involved in attacking this long lasting 
problem, as well as its importance. After decades (approaching a century) of efforts by many of 
the most able physicists, including Lorentz, Debye, Onsager, Kirkwood, and so on, there is no 
satisfactory theory for salt water or the closely related ionic mixtures inside animals and plants 
even when flows are identically zero, at thermodynamic equilibrium. There are essentially no 
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theories—satisfactory or not—that deal simultaneously and self-consistently with convection, 
diffusion, and migration, along with volume regulation of cells, vital to the function of kidney, 
heart, lungs, etc. Such models must include single atom ions (like sodium, potassium, calcium, 
and chloride) complex organic molecules like ATP, sugars, carboxylic acids, and bioamines, all of 
which have essential roles. The tools of classical physical chemistry based on ideal solutions at 
thermodynamic equilibrium are unequal to the task.  

These are central problems in all of biology, unsolved, in our view, because of the lack of 
tools. Modern analytical methods (of the selfconsistent theory of complex fluids, for example) 
and modern numerical and computational methods (made possible fundamentally by 50 years 
of diligent exploitation of Moore’s law, reviewed in [162]) can attack and probably solve these 
problems.  

But first the mathematicians who know these methods must learn of the problem. If 
they limit themselves to the Poisson Boltzmann equations, they will miss the problems that 
matter most to living systems. Analysis of the Poisson Boltzmann equation is an essential first 
step in applying mathematics to the role of ions in biology. But it is only a first step that is useful 
for developing methods and dealing with a few isolated biological situations. It does not deal 
with the main issues of biological importance because the Poisson Boltzmann equation leaves 
out most of the nonideal properties of ionic mixtures, particularly those containing divalents, 
like sea water and the solutions inside animals. 

We view an ionic solution as a specific type of complex fluid that couples hydrodynamics 
to electrostatics and to the microstructure of charged particles, for example, their excluded 
volume and even their shape. Ionic solutions are complex fluids in which atoms interact with 
nearby confining structures through several types of forces. Ionic solutions are complex fluids in 
which the behavior of individual atoms and proteins (e.g., ion channels) is directly changed by 
charge on far distant boundaries. We believe that existing methods of the selfconsistent theory 
of complex fluids will allow rapid progress on previously intractable problems. 

The mathematical treatment of ionic mixtures we think appropriate is the self-
consistent approach that has had much success in several areas, for example, in the theory of 
complex fluids and the transport theory in semiconductors. As many mathematicians know very 
well, the theory of complex fluids is designed to deal with fluids with interacting microelements 
that involve many types of physical forces and fields, that interact across all scales. Classical 
treatments focus on liquid crystals [30, 104, 49, 50]. Doi’s wonderful review [29] uses 
variational methods that we have tried to generalize [29, 111, 110, 112, 152, 147, 148, 149] and 
extend to other systems [75, 39, 76, 77, 119, 145, 35, 36, 37, 31, 146, 147] that involve atomic 
scale repulsion (produced by excluded volume) and the macroscale fields of electrostatics, even 
involving boundary conditions ‘at infinity’ that couple to the atomic scale to produce the action 
potentials of nerves and muscle [67, 65, 64, 62, 73, 74].  

The ‘plasmas of life’ and the solutions of chemistry can be viewed productively as 
complex fluids. The single atom ions of biological plasmas (like sodium, potassium, calcium or 
chloride ions) themselves are (relatively simple) microelements that perturb the electric field by 
their finite size, and introduce other steric constraints. Molecules in solution in general are 
microelements that have complex shape, internal dynamics, and interactions with all elements 
and fields on several scales. And polymers, including proteins, are macromolecules that involve 
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atomic scales and macroscales. Polymers are both a micro and a macro-element that interacts 
dramatically with other ions through the electric field and steric constraints, as well as through 
their internal properties. 

Historically, the mathematics of dilute ionic solutions (concentration below 1 mM, if one 
adopts the stringent view of experimental physical chemists, p. 55 of [164], p. 125 of [7]) is 
often idealized by the family of Poisson Boltzmann equations, starting (as far as we know) with 
the Guoy Chapman and Debye Hückel theories of a century ago, more or less. Reincarnated as 
the Poisson Boltzmann or (in different form) as the Born model of ionic solutions, such 
equations have also received a great deal attention as beginning models of proteins in 
biological solutions. 

The mathematical properties of the family Poisson Boltzmann equation have been 
reviewed recently in SIAM Review [162], which can serve as an entry to this immense literature, 
as can [11, 40, 37]. It is gratifying to see that the power of modern computational mathematics 
is being focused on ionic solutions [162, 107, 108, 167, 24, 168, 20] and much more work no 
doubt that we do not know about. This is certainly an essential first step in applying 
mathematics to the role of ions in biology. 

We note that the Poisson Boltzmann models analyzed with powerful computational 
mathematics are only a beginning. These models have a severe limitation. The Poisson 
Boltzmann family of equations is too crude to deal with the concentrations of monovalent ions 
like sodium, potassium and chloride that occur in biology. These equations fail altogether for 
the divalent ions like calcium ions that play such an important role throughout biology. These 
equations do very poorly for the mixtures that are the plasma of life (and the sea water of our 
oceans). In fact, it is well known that Poisson Boltzmann is only valid for solutions of one type of 
monovalent (e.g., sodium chloride), in concentrations below say 10-3M (p. 125 of [7]; p. 55 of 
[164]).  

And of course the Poisson Boltzmann treatments do not deal with flow at all, not even 
with the stationary (tracer) unidirectional fluxes that define active and passive transport in 
biological systems [63, 66, 68, 3, 4, 13, 18] as reviewed in the useful historical collection [156] 
and analyzed by mathematician Ludwig Bass [8, 9, 115, 116]. 

The powerful mathematics reviewed in [162] needs to be applied to more realistic 
models of ionic solutions to be useful in dealing with biological function in general. Specific 
experimental situations certainly exist in which the Poisson Boltzmann approach is useful, 
sometimes very useful, but natural biological function almost always occurs in physiological 
solutions and conditions beyond the reach of the Poisson Boltzmann family of equations, 
because those conditions involve transport, flow, and divalent ions.  

A few figures are enough to tell the story of the limitations of the Poisson Boltzmann 
family of equations: a graph of activity vs. ionic strength shows how badly Poisson Boltzmann 
does (Fig. 7.22, p. 303 of Laidler’s textbook [103] or Facwcett’s, Fig 3.6 p. 128; or figures in the 
definitive reference [164] starting on p. 57). Or one can consult innumerable references, 
including [97, 59, 138, 47, 6, 135, 5, 132, 46, 155, 45, 69, 125, 154, 164, 106, 129, 99, 21, 124, 
25, 130, 34, 113, 7, 33, 100, 103, 41, 142, 58, 83, 91, 92, 90, 128, 55, 94, 96, 14, 22, 84, 105, 1, 
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28, 61, 79, 80, 95, 101, 102, 107, 108, 114, 159, 38, 44, 43, 71, 88, 89, 150, 163, 37, 35, 48, 72, 
118, 134, 133, 167, 51, 52, 53, 54, 158, 57, 120, 136, 139, 151, 27, 32, 153, 12]. 

The definitive electrochemistry monograph should be quoted at length. Barthel [7] says 
on p. 125, “The limiting laws of all solutions properties based on the expressions for point-
shaped ions … yield correct statistical thermodynamic equations for the properties of 
electrolyte solutions, but these are restricted to such low concentrations that their 
experimental verification often proves to be an unsolvable task.”  

A paraphrase in plainer American would be 

As recently stated by leading experimentalists, “It is still a fact that over the last decades, it 
was easier to fly to the moon than to describe the free energy of even the simplest salt 
solutions beyond a concentration of 0.1M or so.” This quotation states the common 
knowledge of the physical chemistry community for many decades, earlier stated, for example, 
by Torrie and Valleau [155], referring to the Poisson Boltzmann family of models: “It is 
immediately apparent that classical theory has broken down completely. It …. fails to show 
[the] qualitative behavior [and]  is seriously in error for quite low concentrations and charges”. 
Many review papers and textbooks have quotations of similar pungency (e.g., [7, 41, 44, 103, 
106, 105, 154]) and many physical chemists have used stronger language than we use here.  

It is unfortunate that the experimentally measured nonideal properties of ionic 
solutions are uncited in modern studies, perhaps unknown to modern workers, although 
accurate measurements were available nearly a century ago. The nonideal properties are 
particularly important in mixtures like sea water and the various ‘Ringer’ solutions outside and 
inside cells, where calcium ions always play an important role, and in the highly concentrated 
solutions in and near DNA, enzyme active sites, ion channels, and the electrodes of 
electrochemical systems.  

The most important reason for the failure of the Poisson Boltzmann theories is simple. 
Those theories treat ions as points, but in almost all solutions the size and shape of particles are 
important. Sometimes the internal dynamics of the molecules are important, as they are in the 
microelements of many complex fluids. In ionic solutions including organic molecules (that 
make up the biochemistry of life), microelements would describe each species of amino acid, 
hormone, metabolite and so on. Each chemical species has its own internal microdynamics that 
couple with the rest of the system. Mathematics is needed that will selfconsistently describe 
such complex systems. Different resolution models of the microdynamics will be needed for 
each chemical species (and type of molecule) because different features are important in some 
types of molecules (that bend but do not vibrate for example) and different chemical species 
couple to macroscopic fields in different ways, depending, for example, on how much electric 
charge they carry. 

 “Poisson Boltzmann expressions are only valid when ions are 
present in trace concentrations—often unmeasurable—typically, 

some 105× less than their concentrations in sea water or 
biological solutions. 
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In the simplest ionic solutions, ions are single atoms of sodium, potassium, calcium and 
chlorine (called chloride) resembling hard charged spheres. But most of the molecules in 
biological solutions are made of many atoms joined by covalent bonds and so have complex 
shapes and exceedingly complex movements and internal ‘vibrations’ as well. Think of ATP, or 
amino acids, or even the natural bicarbonate buffer found throughout life (unavoidable 
because the CO2 of the atmosphere dissolves into any solution exposed to air).  

Even the simplest ionic atomic solutions need a theory of complex fluids to deal with the 
microstructure of the ions, their spherical shape and (excluded) volume. The electric field of the 
ionic spheres depends on their diameter; the steric exclusion of the spheres involves large 
excess (free) energies because the number density of these spheres is very large where it 
matters. Even in solutions like sea water, the number density in the ionic atmosphere near each 
ion is large enough to make the finite size of ions important. The electric field near a dense 
mixture of spheres is quite different from the electric field of an infinitely dilute set of points. 
The steric repulsion of the crowded sphere is also important. The inner shell of the ionic 
atmosphere would be very different if ions were points.  

Physical chemists have known of the importance of finite diameter of ions ‘forever’. It 
was always apparent that one could not define a SINGLE effective diameter for an ion in a 
Debye Hückel theory of ionic mixtures like those in sea water or extra or intracellular solutions 
in living systems. The distance of closest approach would clearly be different for different ions 
(of different diameter) in a mixture. A single ‘distance of closest approach’ will not do justice to 
the complexity of the system. Multiple distances of closest approach can produce layering. 
Layers of opposite charge might be possible under some conditions; even layering that could 
act like PN or PNP junctions of semiconductors. (Think of electrolytic and modern 
electrochemical capacitors.) The electric field—even its shape—must depend on the number 
density of each type of ion. Crudely speaking, ‘everything depends on everything else’ in the 
inner shell of the ionic atmosphere.  

In real ionic solutions, the free energy of one type of ion depends on the number density 
of ALL other types of ions. This is an experimental fact apparent in the tables of measurements 
from innumerable laboratories [12, 26, 59, 69, 72, 95, 101, 132, 138, 164] and nowadays best 
from databanks on the web. For example, the Department of Chemical and Biochemical 
Engineering, CERE Technical University of Denmark, has 139,175 experimental data [sic] at 
http://www.cere.dtu.dk/Expertise/Data_Bank.aspx on February 10, 2012.. Many attempts to 
model and simulate such systems come to the same conclusion [59, 138, 131, 132, 137, 69, 125, 
164, 106, 129, 99, 21, 124, 98, 34, 7, 33, 57, 41, 19, 128, 55, 94, 22, 42, 56, 81, 84, 93, 105, 1, 
28, 61, 79, 86, 95, 101, 102, 114, 159, 38, 44, 43, 71, 88, 87, 89, 126, 158, 163, 165, 35, 48, 72, 
12]. Many important attempts and measurements undoubtedly exist that regrettably we do not 
know about. 

In the idealized solutions of textbooks, solutes are totally isolated and solutions exist 
without containers or boundaries. Nothing interacts with anything in these idealized solutions 
but ‘everything interacts with everything’ in the reality of ionic mixtures of living solutions. 
Nothing interacts by repulsion in dilute solutions and in the family of Poisson Boltzmann 
theories that describes dilute solutions (of a single monovalent salt like sodium chloride, 
without divalents or other types of salts), although of course everything interacts 

http://www.cere.dtu.dk/Expertise/Data_Bank.aspx%20on%20February%2010
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electrostatically as points would. Geometric shapes and interactions between ionic particles do 
not exist in Poisson Boltzmann, so spherical (and of course other) shapes cannot ‘distort’ the 
electric field or have excluded volume. Molecules cannot have internal motions in Poisson 
Boltzmann, if they can be said to exist at all.  

These difficulties all acquire startling importance near electrodes in electrochemical cells 
or near DNA, ion channels or enzymes, where ions are crowded together sometimes to the 
exclusion of water. Indeed, Poisson Boltzmann theories fail most dramatically to describe ions 
in just those places where ions are most important, near and in the structures that use ions to 
control or perform macroscopic functions. 

Recently, these problems have been noticed by mathematicians and a number of 
approaches have been tried in papers we know of [107, 23, 24, 167, 168, 10, 77, 76, 39, 141, 
140, 52, 144, 54, 51, 143]. (No doubt many papers have, to our regret, escaped our attention.) 
Simulations [158] and analysis [117, 139] give a feel for how far one can go with simple models 
of hard spheres in a dielectric in physical systems. Gillespie’s work on ion channels [51] shows 
how far one can progress in dealing with biological channels that use flow (see his 
Supplementary Material), along with [16, 15, 17] reviewed in [35].  

These approaches differ in many ways and it is far too early to choose among them. In 
our opinion, the correct model and the correct mathematics to implement that model are both 
unknown. All the models and methods must be tested against actual experimental data before 
scientists and mathematicians can choose intelligently among them. Fortunately, a great deal of 
experimental data has been available for a very long time, and new techniques are providing 
new data all the time. 

We write to emphasize the importance of this problem and to try to motivate 
mathematical work in this field. One can hardly hope to understand living systems if one cannot 
deal with the simplest properties of the solutions in which they exist. One can hardly hope to 
understand DNA, proteins, and ion channels if one cannot deal with the simplest properties of 
the ions they use to perform their functions. 

Simulations of molecular dynamics have made amazing progress in the last decades 
thanks to the efforts of numerical analysts and computational scientists exploiting many 
iterations of Moore’s law. But simulations by themselves so far have not been able to describe 
even qualitatively most of the properties of ionic solutions probably because the electric field 
couples all scales so strongly even in simple solutions like sodium chloride at solutions more 
concentrated than a few millimolar. Indeed, interactions are so strong, variable, and subtle that 
the definition of the properties of single ions (hypothetically non-interacting) is a daunting task 
taking 664 pages and 2406 references [72].  

Simulations have not been attempted of most biological plasmas, like sea water, which 
are mixtures of monovalent salts (sodium chloride, potassium chloride, and bicarbonates) in 
which divalents (like calcium and magnesium chloride) are always important, let alone 
simulations of extracellular solutions in which trace concentrations (10-10 M) of (ionic) 
hormones and (ionic) messengers (10-7M) are vitally important as bearers of specific biological 
signals. Simulations do not account for the activity—let alone flows—of mixtures of ions in 
biological solutions where calcium is always important. It is hard to know how one could even 
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write force fields—of the type used in classical or polarizable molecular dynamics depending on 
only the distance between two locations, independent of boundary conditions and the 
locations of other particles—that would work in the concentrated environments near and in 
DNA, enzyme active sites, or ionic channels.[157, 109, 70] 

Simulations may someday be able to deal with such issues, one by one, if verification 
and validation become professionally required career goals as important as speed and size of 
calculations. But it seems that simulations can by themselves never solve these problems all at 
once as they must. Simulations must deal at once with all the scales that life uses at once. All 
these scales occur at once as life moves along. Interactions of so many types across so many 
scales are just too much [38, 35] to deal with numerically. Rather, one will need an approach 
that combines the resolution of atomic scale molecular dynamics with the range of macroscopic 
theories (that sometimes have to reach to infinity, when they deal with action potentials for 
example [67, 65, 64, 62, 73, 74]). 

We remind our colleagues that such force fields and simulations must actually calculate 
the activities of ionic solutions and mixtures correctly in the solutions that actually exist in 
animals and plants. These are the solutions used by our experimental colleagues and they must 
be calculated correctly if the simulations of molecular dynamics are to deal with experiments as 
they are actually done.  

Biological experiments are designed the way they are for a reason. Indeed, the history 
of physiology, which extends recognizably to Aristotle and Harvey, well before biochemistry or 
engineering existed as sciences, was devoted to the design of such solutions. Biology has first 
concerned itself with the structures (the discipline of anatomy) and function (physiology) and 
drug sensitivity (pharmacology) of its systems, so the enormous complexity and diversity of 
biological systems could be handled first reproducibly, and then intelligently (with the advent of 
biochemistry in the 19th century and then molecular biology in the 1940’s).  

Biology has learned how to safely simplify its systems, using the squid giant axon to 
understand mammalian nerve fibers, for example. Biology has learned which chemical 
components of biological solutions are essential to maintain function. Biology has learned to 
create ‘preparations’ on all scales, whether they are the macroscopic nerve-muscle 
preparations that taught us how synapses of the nervous system work, or the molecular scale 
paper/metal models of bacterial DNA [161, 160, 82] that discovered the chemical identity of 
mammalian genes, or the atomic scale ion currents that carry biological signals through single 
protein molecules called ion channels. 

Some details matter in biological systems and some do not. Even the name of ionic 
channels depends on details of the calculation of the chemical potential of ions. The 
identification of a channel depends on the accurate estimate of the ‘reversal’ potential’ of a 
channel current and its comparison with the gradient of chemical potential of a particular ion. 
Simulations must calculate the chemical potential of ions correctly in the bulk if ion channels 
are to be named correctly. Accuracy of ±5 mV is needed because the thermal energy of 
biological diffusion is 25mV.Bk T e =  Simulations must calculate the chemical potential of ions 
correctly in and near enzyme active sites, ion channels, and binding proteins if the function of 
these biological systems are to be understood. One step would be to show that molecular 
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dynamics simulations correctly calculate the chemical potential of ionic mixtures near 
boundaries of physical systems [71].  

Biological reality must determine the choice of mathematical treatment.  

Certainly, the mathematical treatment of ionic solutions in biology must deal with 
mixtures of different ions of widely different concentrations. Biologists typically deal with 
concentrations from molar to nanomolar, or even smaller, in their daily experiments. So 
theories and simulations must do the same. 

Certainly, the mathematical treatment of ionic solutions must deal with flows [18]. 
Gradients and flows are used in biology to create the devices and machines of life, rather as 
they are in engineering. Engineering devices are hardly worth studying when their power 
supplies are turned off and their simple device laws no longer hold true. Living systems are 
much less interesting when they are dead, whether those systems are corpses or crystallized 
proteins.  

One cannot expect living systems to be the same devices when dead as they are when 
alive.  

It is interesting that devices are also easier to study when they are energized, and follow 
a simple device law than when their power supplies are turned off and they follow no particular 
law at all. Physical scientists (especially chemists and biochemists) can make their tasks much 
more difficult when they try to simplify biological or engineering systems by studying them at 
(thermodynamic) equilibrium, without flows, when biological and engineering systems no 
longer are devices at all! 

Mathematics must describe biological reality and experiments in the complexity in 
which actually occurs. Some complex systems can be described by variational methods [78, 20, 
29]. Self-consistent energetic variational methods allow one to derive the differential equations 
that describe the system. It is difficult to write down such equations when many fields and 
components are involved without a derivation from a variational principle. It is all too easy to 
leave something out, including effects from different physics, described as a different field, 
often on different scales, or to invent many parameters that are hard to determine. It is difficult 
to know how to add components or fields without disturbing the other parts of a system of 
partial differential equations. A great deal of experimentation consists of simplifying systems 
and then adding back components or fields one by one. It is difficult to describe such situations 
self-consistently if one combines partial differential equations.   

Mathematicians are well aware that variational methods [2] allow components and 
fields to be added or subtracted in functionals, from which differential equations are derived by 
the Euler Lagrange process. They know that energy variational methods [111, 152, 166, 29, 112, 
39, 78, 76, 168, 167] allow one to describe systems with energy and dissipation functionals 
from which partial differential equations are derived.  

Variational methods produce partial differential equations that are always self-
consistent, if the algebra is done correctly and this is an enormous advantage in focusing 
attention, and decreasing distracting discord, in areas of science that must deal with the 
complexities of ions of many types interacting on multiple scales while driven in movements by 
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many types of forces in structures of some complexity and fluids containing microelements 
such as organic molecules.  

The mathematics of variational methods is consistent with itself, but it may not be 
consistent with the real world. Energy variational methods are not magic. The rich variety of 
biological systems will require a range of methods. Self-consistent methods are necessary when 
ionic solutions are involved in the biological function of interest. Ionic solutions must be 
studied, in our opinion, with methods that allow atomic components (e.g., other ions like Mg2+), 
microelements (e.g., ATP), forces (e.g., bulk transport of blood driven by pressure gradients), 
and structures (e.g., of constraining proteins like blood vessels) to be added with minimal free 
parameters. In this way, field equations for the flows and forces are always consistent with all 
forces in the systems.  

The variational methods we have in mind for ionic solutions are not arbitrary 
mathematical structures. They arise from fundamental physical laws. For example, the 
variational methods we have in mind include a force balance equation [2] derived from the 
variation of the energy functional (i.e., the action) with respect to the trajectory (or flow map, 
as it is often called by mathematicians).  

If the underlying models of ionic solutions are incorrect or incomplete, the results of a 
variational analysis will be incorrect or incomplete, of course, even if the mathematics arises 
from physical laws, and is correct, complete and self-consistent. Variational methods are 
helpful even when the underlying models of the ionic solution are incomplete. They allow 
incorrect or incomplete models to be improved efficiently. Unproductive disputes among 
theories that include different subsets of the interaction terms, or that have many adjustable 
parameters, are minimized when mathematical tools force field equations to include all 
interaction terms, with minimal parameters, because the mathematical tools are unavoidably 
selfconsistent. 

We challenge mathematics to deal with biological reality. The mathematical analysis of 
ionic solutions is a topic of profound importance and opportunities. It looms almost too close to 
see. Work on idealized models like Poisson Boltzmann can provide useful tools and training to 
deal with the big problem. Such work provides the initial iterates for numerical procedures. But 
eventually the big problem must itself be addressed. We think eventually is now. It can be 
done. 

Mathematicians can use methods like the energy variational approach to deal with the 
reality of charged spheres in a frictional dielectric model of water. They can then move to 
describe the water more and more realistically, as experiments dictate. Variational methods 
(and others) allow the systematic analysis and improvement of models of the mixed ionic 
solutions of life. These methods (and others) allow molecules in solutions to be microelements 
in a self-consistent theory of complex fluids. Classical problems of chemistry and biology can be 
attacked with the computational power of modern mathematics when a self-consistent 
variational theory is used to describe the energy and dissipation of these systems. 
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