
Significance and History of the Name PNP 
Bob Eisenberg 

December 26 2012 
 
 
FETs contain channels in which the flow of quasi-particles follow the drift diffusion 

equations [18, 26, 27, 32, 35, 36] with forces calculated from all the charges present, using 
Poisson’s equation of the electric field. These equations are called PNP in biophysics to 
emphasize the importance of computing the variable spatial distribution of potential from the 
much less variable distribution fixed charge, using the Poisson equation with boundary 
conditions (for bath concentration and potential), as extensively discussed in [3, 5, 8-12, 14, 
16, 22, 28].  

The name PNP for Poisson Nernst Planck [4] was introduced deliberately in a 
Biophysical Society workshop [13] as a pun to emphasize the importance of computing  the 
electric field (as opposed to assuming it was constant [17, 19, 29], and the analogy with 
transistors. As in transistors, the electric field of PNP, like the electric field in transistors is 
not constant as conditions change. Electric forces must be computed as a consistent 
mathematical solution of the relevant model. Previous work (for example, [1, 6, 7, 21, 24, 25, 
31]: references [1, 14, 20] describe much of the earlier work on Nernst-Planck equations but 
do not cite the relevant astrophysical literature) on Nernst-Planck equations in biology and 
chemistry did not mention the analogy with transistors; the importance of permanent charge 
(i.e., ‘doping’); and most importantly the crucial role of the variable shape (i.e., 
‘conformation’) of the electric field and its large changes when bath concentrations or 
potential is changed (note the title of [14]).  

Transistors function by changing the conformation of the electric field produced by 
doping and boundary conditions. The change in shape of the electric field is crucial for the 
function of transistors. Drift diffusion without doping, Poisson, or variable shapes of electric 
fields has a limited range of behaviors. With doping, Poisson, and variable shapes of fields, 
PNP can do everything a transistor and thus everything a computer can do. For example, 
elementary texts show how a single FET can be an amplifier, limiter, switch, multiplier, 
logarithm or exponentiator [30, 33, 34, 36]. Arrays of FETs provide all the logic, memory, 
and display functions of a computer.  

Evolution needs devices as much as engineers do. It seems unlikely that evolution would 
entirely ignore the devices that (ionic) PNP equations allow. It seems likely that evolution 
uses fields that change shape to help with the function of proteins, channels, transporters, and 
enzymes [15]. 

Transistors function by changing the conformation of their electric field without 
changing the conformation of their masses. It seemed [14, 15]—and seems [23]—possible 



that some functions of proteins customarily attributed to changes in the conformation of mass 
might actually be produced by changes in the conformation of their electric (and steric) 
fields. 

Transistors are the main active devices in digital technology that make modern 
technology possible. They use depletion layers to switch currents on and off. Today, we know 
that depletion zones control some kinds of selectivity (Na+ vs. K+ in the DEKA channel: Fig. 
6-7 of [2]). Someday, we may find that depletion layers switch biological functions. 
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