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Two phenomenological forms proposed to take into account the generation-recombination phe-
nomenon of ions are investigated. The first form models the phenomenon as a chemical reaction, con-
taining two coefficients describing the dissociation of neutral particles in ions, and the recombination
of ions to give neutral particles. The second form is based on the assumption that in thermodynamical
equilibrium, a well-defined density of ions is stable. Any deviation from the equilibrium density gives
rise to a source term proportional to the deviation, whose phenomenological coefficient plays the role
of a life time. The analysis is performed by evaluating the electrical response of an electrolytic cell to
an external stimulus for both forms. For simplicity we assume that the electrodes are blocking, that
there is only a group of negative and positive ions, and that the negative ions are immobile. For the
second form, two cases are considered: (i) the generation-recombination phenomenon is due to an
intrinsic mechanism, and (ii) the production of ions is triggered by an external source of energy, as
in a solar cell. We show that the predictions of the two models are different at the impedance as well
as at the admittance level. In particular, the first model predicts the existence of two plateaux for the
real part of the impedance, whereas the second one predicts just one. It follows that impedance spec-
troscopy measurements could give information on the model valid for the generation-recombination
of ions. © 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4757020]

I. INTRODUCTION

The dielectric properties of electrolytic cells strongly de-
pend on the actual bulk density of ions, when probed by an ex-
ternal electric field in the low frequency region. The influence
of the ions on the electrical response of a cell can be described
using the equations of continuity for the anions and cations,
and the equation of Poisson for the actual potential across the
cell. This theoretical approach, known as the Poisson-Nernst-
Planck (PNP) model, has been discussed in details long ago
by Macdonald.1 The simple case where the impurities pro-
ducing the ions are completely dissociated is a good approxi-
mation of the real problem, only for low enough bulk density
of ions. In this framework, the recombination of ions of oppo-
site sign can be neglected since the probability of a collision
between ions is very small.2 When the bulk density of ions
is not negligible, a term taking into account the generation-
recombination (G-R) effect of ions has to be introduced in the
model.

In the first attempt,3, 4 devoted to the generalization of the
PNP model to account for the G-R effect, has been assumed
that the ions are generated by impurities dissolved in the di-
electric liquid according to a reaction of the form A = B+

+ C−, where A is the density of neutral particles, B+ and C−

are the actual density of positive and negative ions, respec-
tively. This reaction is characterized by two coefficients de-
scribing the generation (dissociation of A) and the recombina-

tion (association of B+ with C−) of ions (ABC-source). Later
on, the problem has been reconsidered by other researchers
for different reasons.5, 6

Recently, Bisquert proposed a theory for the ac
impedance of electron diffusion and recombination in re-
stricted geometry7 introducing the G-R effect by a source
term of the type S = −k(N − N0), where N0 is the bulk den-
sity of ions in thermodynamical equilibrium, and N is the
actual ionic concentration. According to this G-R term, when-
ever the local ionic concentration fluctuates from its equilib-
rium value, ionic recombination or generation increases to
establish the original equilibrium value. This type of source
term can further describe the generation of ions induced by
an external source of energy that interacts with some kind of
molecules dispersed in the liquid under consideration. From
this point of view, the source term to introduce in the conti-
nuity equation is of the type S = h − kN , where h is related
to the generation of ions and k to their recombination.8–12 At
thermodynamical equilibrium S = 0 and N0 = h/k. For small
variations of N due to the presence of an external electric field
or the confinement of the liquid, the term source S can be
rewritten as S = −k(N − N0), having the same form as the
term proposed in Ref. 7. Finally, note that, in the approach
of Macdonald (ABC-source) the probability of association is
quadratic in the concentration of the dissociated molecules,
i.e., the reaction rate is of second-order, while in the approach
proposed by Bisquert the reaction rate is linear (L-source).
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The latter assumption is the usual one in irreversible thermo-
dynamics.

In the present paper, our aim is to compare the influ-
ence of the two types of source term on the impedance of a
cell filled with a liquid that contains impurities dissociable to
ions. Therefore, we first solve the PNP model with a L-source
term to obtain the impedance of a cell. Once we evaluate
the spectra of the resistance, reactance, conductance, and sus-
ceptance, we compare the predictions of the L-source model
with those deduced with the ABC-source model discussed in
Refs. 1, 3, 5, and 6. We deduce that (i) the two models are
not equivalent, and (ii) the impedance spectroscopy can dis-
tinguish between the two models and give information on the
actual model for the generation-recombination phenomenon.
In our analysis we assume that: (a) the cell is in the shape
of a slab, in such a manner to reduce the problem to one-
dimensional problem, (b) the electrodes are perfectly block-
ing, and (c) only the positive ions are mobile. Third hy-
pothesis implies that we consider a medium which is like a
polymer, with the negative ions stuck on the polymer chains,
as in gels.13

As stated above, in our analysis we assume that the elec-
trodes are perfectly blocking, and hence the electrical current
in the external circuit is just a displacement current. Hence,
the proposed model works reasonably well for cell limited
by gold electrodes. In the case where the electrodes are not
blocking, the analysis is more complicated because the cur-
rent density of positive and negative ions do not vanish on
the electrode. In this framework, to solve the bulk equations
of the PNP model are necessary new boundary conditions for
the current density of ions on the electrode. The boundary
conditions proposed to take into account the partial blocking
character of the electrodes have been recently discussed in
Ref. 14, where it is shown that this property is responsible, in
the low frequency region of the spectrum of a new plateau in
the real part of the impedance of the cell. Since also the G-R
effect is responsible for a similar effect, to avoid confusion,
we limit the analysis to the case where the plateau in the dc
limit is just due to the G-R effect. For the same reason we
assume that only one group of ion is present, and only the
positive ions are moving. In fact, if the mobilities of the ions
are different,15 or if two or more groups of ions are present,16

in the low frequency limit a new plateaux appears.

II. ELECTRIC IMPEDANCE WITH AN L-SOURCE TERM

As discussed above, the PNP model is based on the dif-
ferential equations representing the conservation of the posi-
tive and negative ions (continuity equations), and the relation
between the electric field and the electrical charges (equation
of Poisson).17 The boundary conditions on the electrical po-
tential simply state that the actual potential on the electrodes
has to coincide with the one imposed by the external power
supply. On the contrary, the boundary conditions on the cur-
rent densities depend on the nature of the electrodes. If the
electrodes are perfectly blocking, as considered in our paper,
the current densities have to vanish on the electrodes. We
assume that there are only two groups of ions, one positive
and one negative. Let q indicate the modulus of the electrical

charge of the ions, ε the dielectric constant of the medium in
which are dispersed the ions, D is the diffusion coefficient of
the ions in the considered medium, and N0 is the actual bulk
density of ions in thermodynamical equilibrium. Finally, we
assume that the liquid is not dispersive in the considered fre-
quency region. Therefore, ε can be considered frequency in-
dependent. Any dispersion is due to the influence of the ions
on the response of the cell to the external stimulus.

The applied voltage is supposed harmonic, V (t)
= V0 exp(iωt), with a small enough amplitude, V0, for the
fundamental equations of the problem can be linearized.18 For
a cell in the shape of a slab of thickness d and electrode sur-
face area S, the electrical impedance in absence of any source
term is given by6

Z = dβ0
(−1 + �2β2

0

) + 2 tanh(βd/2)

iε�2ωβ3
0S

, (1)

where � =
√

εkBT /(N0q2) is the Debye length of the mobile
ions, and ω = 2π f is the angular frequency. The complex wave
vector β0 is given by

β0 = 1

�

√
1 + i

ω

ωD

, (2)

where ωD = D/�2 is the Debye relaxation frequency. By tak-
ing into account the expression of β0 given by Eq. (2), Eq. (1)
giving the impedance of the cell can be rewritten as

Z = −i
2

ωεβ2
0S

{
1

�2β0
tanh(β0d/2) + i

ωd

2D

}
. (3)

Introducing the L-source term discussed in Ref. 7, we obtain
for the impedance of the cell (see Appendix A for the detailed
derivation of the impedance) the following expression:

Z = dβ(−1 + �2β2) + 2 tanh(βd/2)

iε�2ωβ3S
, (4)

i.e., the impedance is still given by Eq. (1) but the complex
wave vector β0 is renormalized to

β = 1

�

√
1 + κ + i

ω

ωD

, (5)

where κ = k/ωD, as discussed in Appendix B.
As it is clear form Eqs. (4) and (5), the presence of

the L-source term modifies the frequency dependence of the
electrical impedance, mainly in the frequency range where
κ ∼ ω/ωD, i.e., ω � κωD. On the contrary, in the high fre-
quency range, when ω � κωD its effect is negligible. This
is consistent with the meaning of k that represents a kind of
lifetime of the free charges.7

We further investigate the behavior of the impedance by
proceeding to numerical calculations. The ions are assumed
monovalent, q = 1.6 × 10−19 A s, KBT/q = 25 mV, ε = 80
× ε0, D = 10−10 m2/s , N0 = 1022 m−3, as for ions in a water
solution weakly ionized.19 With these values � = 0.105 μm
and ωD ∼ 9 KHz. The geometrical parameters of the cell are
taken d = 0.5 × 10−3 m and S = 10−4 m2.

Figure 1 shows the spectra of the real (a), R = Re[Z], and
imaginary (b), X = Im[Z], part of the electrical impedance of
the cell, Z, for three values of κ = 0, 0.1, 1. The quantities
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FIG. 1. Spectra of the resistance R = Re[Z], (a), reactance X = Im[Z], (b),
and Nyquist plot, (c), for: full dissociation κ = 0, moderate recombination
κ = 0.1, and large recombination κ = 1. For the numerical calculations, we
assume that the ions are monovalent, q = 1.6 × 10−19 A s, KBT/q = 25 mV,
ε = 80 × ε0, D = 10−10 m2/s , N0 = 1022 m−3, and hence � = 0.105 μm
and ωD ∼ 9 KHz. The geometrical parameters of the cell are d = 0.5
× 10−3 m and S = 10−4 m2.

R and X represent the resistance and reactance, respectively,
in the series representation of the cell. The case κ = 0 cor-
responds to full dissociation, κ = 0.1 to moderate recom-
bination, and κ = 1 to large recombination. From Fig. 1(a)

it follows that by increasing κ the value of the plateau
decreases monotonically, while the relaxation frequency of
Debye seems almost fixed. Figure 1(b) shows that the in-
fluence of κ on the X(f) spectrum is restricted in a fre-
quency range close to ωD. As κ increases, the position of
the maximum of the reactance moves towards the high fre-
quency region and disappears when κ reaches a critical value.
Figure 1(c) is reported the parametric representation of X ver-
sus R (Nyquist diagram) with parameter the frequency of the
applied external voltage.

Figure 2 shows the real (a), G, and the imaginary (b) part,
B, of the admittance of the cell Y = 1/Z. They are related to the
conductance and susceptance of the cell in the parallel repre-
sentation. For the conductance G, the influence of κ is impor-
tant in the full frequency range. For the susceptance B on the
contrary, κ plays an important role only in the frequency range
close to ωD. Clearly, increasing κ , the maximum of B moves
first to higher frequencies and disappears above some critical
value of κ . Figure 2(c) represents the Nyquist diagram.

In the dc limit, by means of Eq. (4) we get that the resis-
tance R and capacitance C = −1/(ωX) tend to

R0 = d

εωDS

1

(1 + κ)2
, (6)

C0 = εS
(1 + κ)3/2

2� + dκ(1 + κ)1/2
. (7)

Equation (6) gives the κ dependence of the plateau of R0.
From Eqs. (6) and (7), we obtain in the κ → 0 limit

R0 = d

εωDS
and C0 = ε

S

2�
, (8)

whereas, in the opposite limit, κ → ∞, we get

R0 → d

εωDS
κ−2 and C0 = ε

S

d
. (9)

From Eqs. (8) and (9), one deduces that for small κ the capac-
itance of the cell is reduced to the series of two capacitances
related to the layers of Debye. In the opposite limit of large
κ , the cell behaves as a pure condenser without losses. The
0 ≤ κ ≤ 1 dependence of R0 and C0 is reported in Figs. 3(a)
and 3(b), respectively. Their behavior is monotonic with κ .

III. CHARACTERISTICS FREQUENCIES

As it follows from Fig. 1(b), the reactive part of the
impedance of the cell shows a non-monotonic behavior in the
frequency range ω < ωD when κ is lower than a critical value.
It is possible to obtain analytically the position of the maxi-
mum of the reactance X(ω) in an approximate manner as fol-
lows. By means of Eq. (4), in the limit of d � �, one obtains
for X(ω) the expression

X = X−1 + X1, (10)

where X−1 and X1 are the terms in (ω/ωD)−1 and in (ω/ωD)
obtained by expanding the imaginary part of Z in power series
of ω/ωD, valid for (ω/ωD) < 1. If we look for the extremum
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FIG. 2. Spectra of the real G = Re[Y], (a), and imaginary B = Im[Y], (b),
parts of the admittance of the cell Y = 1/Z for κ = 0, 0.1, 1. Nyquist plot
B = B(G), (c). Numerical values used for the calculations are the same as in
Fig. 1.

of X(ω) given by Eq. (10), from the condition dX/dω = 0 we
get

ωX = ωD (1 + κ)3/4
√

2(�/d) + κ (1 + κ). (11)

0 10.5
0.1

0.2

0.3

Κ

R
0

M

a

0.0 0.2 0.4 0.6 0.8 1.0

9.0

8.5

8.0

7.5

7.0

6.5

Κ

L
og

10
C

0
F

b

FIG. 3. Dependence of R0, (a), and of C0, (b), versus κ , when the ionic pro-
duction in the medium is due to an internal mechanism. Numerical values
used for the calculations are the same as in Fig. 1.

We observe that the same frequency is obtained by imposing
the condition X−1 = X1. From Eq. (11) in the limit of small κ ,
we obtain

ωX =
√

2
�

d
ωD + 1

4

√
2

d

�
ωDκ. (12)

The first contribution has been discussed recently for its prac-
tical importance to characterize a cell of electrolyte by means
of the impedance spectroscopy.20

The same type of calculation can be done at the admit-
tance level to derive the characteristic frequency of B = Im[Y].
In this case, we obtain

B = B1 + B3, (13)

where B1 and B3 are the terms in ω/ωD and in (ω/ωD)3, re-
spectively, obtained by expanding in power series of ω/ωD

the quantity B = Im[Y]. By looking for the extremum for B
given by Eq. (13), we obtain

ω∗ = 1√
3

{
2
�

d
+ κ

(
1 + κ

2

)}
ωD. (14)

On the contrary, by the condition B1 = B3 we get

ωB =
{

2
�

d
+ κ

(
1 + κ

2

)}
ωD, (15)

i.e., ωB = √
3ω∗. By expanding ωB in power series of κ , we

obtain

ωB = 2
�

d
ωD + κωD. (16)

In Fig. 4 we show, dashed lines, the characteris-
tics frequencies ωX and ωB versus κ , calculated from
the approximated analytical expressions derived above,
Eqs. (11) and (15), respectively. The continued lines represent
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FIG. 4. Characteristic frequencies related to the extrema of X and B: ωX

(upper dashed line) and ωB (lower dashed line), respectively, versus κ , calcu-
lated analytically. Vertical dashed line at the critical value κc = 0.1245. The
continuous lines represent the position of minima and maxima of X (upper
curve), and B (lower curve) calculated from numerical minimization of X and
B, respectively. The lower branch of each curve corresponds to the locus of
maxima for X and B. Numerical values used for the calculations are the same
as in Fig. 1.

the locus of the extrema of the reactance and the admittance
calculated by numerical minimization of the full expressions
deduced from Eq. (4). The vertical dashed line is their com-
mon tangent at the critical value of κc = 0.1245 above which
B and X become monotonic functions of the frequency. At κc

the relative maximum and minimum of each curve (X and B)
meet at an inflexion point above which they disappear. The
approximated expression for ωX (upper dashed line) and ωB

(lower dashed line) obtained analytically are valid only for
low enough values of κ . Therefore for κ � 0.05, the char-
acteristics frequencies can be calculated from the conditions
X−1 = X1 and B1 = B3.

In the model described above, τ = 1/k has the mean-
ing of characteristic recombination time, and the parameter
κ = k/ωD can be rewritten as κ = τD/τ , where τD = �2/D
is the diffusion time. It is related to the time necessary to dif-
fuse trough a layer whose thickness is of the order of the De-
bye length. It follows that in the case of small recombination
τ 	 τD. In the opposite case, τ can be comparable with τD.

Finally, because of recombination a second charac-
teristic length enters the model, the recombination length
�R = √

D/2πk that gives the average distance the ions dif-
fuse before recombining. As far as �R is similar or smaller
than � the minimum of X should be visible, while for larger
values it should be hidden from the created ions that diffuse
at larger distances than Debye’s length before recombining.
According to the numerical minimization, above the criti-
cal recombination rate kc = 1125.4 Hz no minimum appears.

The latter value of kc corresponds to the recombination length
�Rc

= 0.119 μm, while the Debye length is � = 0.105 μm.

IV. ELECTRIC IMPEDANCE WITH
AN ABC-SOURCE TERM

The case where the G-R effect is described by a reac-
tion of the type A = B+ + C−, being B+ and C− the posi-
tive and negative ions resulting from the decomposition of the
neutral impurity A, has been extensively studied in the frame
of the PNP model.4–6 For convenience, in the following we
briefly recall the main results reported in Ref. 6, relevant for
the present analysis.

Let Nd , Nn, and N indicate the bulk densities of disso-
ciable, of neutral, and of charged particles. In the thermody-
namical equilibrium state, we have

N + Nn = Nd and kdNn = kaN 2, (17)

where kd and ka are the dissociation and association coeffi-
cients, respectively. For a cell in the shape of a slab of thick-
ness d, surface area S, and with perfectly blocking electrodes,
the electrical impedance is given by

Z = −2
i

ωεSξ 2
ϒ

{
1

ξλ
2 tanh

(
ξd

2

)
+ i

ωd

2D

}
, (18)

where

ϒ = iω + kd + 2kaN
iω + kd + kaN

, (19)

ξ 2 = ϒ

λ
2

(
1 + iω

λ
2

D

)
, (20)

λ
2 = εkBT

Nq2
. (21)

Expression (18) generalizes Eq. (3) when the generation-
recombination phenomenon is present, by simply rescaling
Eq. (3) with the complex factor ϒ .

To numerically investigate the frequency dependence of
the impedance, we use the same values for the constants en-
tering the impedance expression as before, and ka = 10−22

m3/s, kd = 1 s−1, Nd = 1024 m−3, as in Refs. 6 and 20.
In Figs. 5 and 6, we compare the predictions of the PNP

model with G-R effect that is modeled by (i) an L-source
term, with (ii) an ABC-source term. We assume that in ther-
modynamical equilibrium the number of ions is the same for
the two cases. Since with the values of ka, kd, and Nd re-
ported above, the bulk density of ions in thermodynamical
equilibrium calculated from Eq. (17) is 0.95 × 1023 m−3,6

we assume, when considering the L-source term, N0 = 0.95
× 1023 m−3. Figure 5(a) shows that the R = R(f) for the L-
source type (dashed line) has just one plateau, whose value
depends on κ , whereas the ABC-source model predicts two
plateaux, as discussed in details in Ref. 6. On the contrary,
the reactance X = X(f) has the same behavior for both models,
although the position of the minimum is located at different
positions, as shown in Fig. 5(b). Similar conclusions can be
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FIG. 5. Comparison of the predictions of the PNP model with an L-source
term (dashed lines), and an ABC-source term (continuous lines). R(f), (a),
X(f), (b). For the L-model the numerical values are the same considered in
Fig. 1 with N0 = 0.95 × 1023 m−3. For the ABC-model ka = 10−22 m3/s,
kd = 1 s−1, Nd = 1024 m−3 in such a manner that the bulk density of ions in
thermodynamical equilibrium is the same for the two cases.

derived at the admittance Y level, as shown in Fig. 6, for its
real G(f), (a), and imaginary B(f), (b), parts.

V. INTERACTION WITH AN EXTERNAL SOURCE
OF ENERGY

In Secs. II–III, we have considered the generation-
recombination term in the form proposed by Bisquert.7 As
mentioned in the Introduction, a possible physical interpreta-
tion of this term could be the following: all the time the ther-
mal density of ions is changed, recombination or dissociation
takes place towards equilibrium. In a way, there is an optimum
distance between the ions. If this distance is changed, the ions
interact, via recombination or neutral particle dissociation to
re-establish their optimum distance. From this point of view,
the optimum distance is an internal property of the system. We
consider now another situation. Let us assume that the density
of particles that can give rise to ions, in condition of equilib-
rium, is N0. If we supply energy to the sample, for instance
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FIG. 6. Comparison of the predictions of the PNP model with an L-source
term (dashed lines), and an ABC-source term (continuous lines). G(f), (a),
B(f), (b). Numerical values used for the calculations are the same as in Fig. 5.

in the form of electromagnetic waves that interact with the
dissociable particles, it is possible to generate ions.8–12 If we
assume that in the absence of external energy, the dissociable
particles are stable, then the formation of ions is related to the
external energy. In a first approximation the mechanism can
be described by the equation

dN

dt
= h − kN, (22)

where h is related to the rate of ion creation per unit volume
induced by the external energy supplied to the sample, k to
the recombination rate of the ions, and N is the bulk density
of ions. Equation (22) holds in the case where the diffusion
of particles is negligible, i.e., for an infinite sample, and in
absence of an external electric field, responsible for the drift
of the ions. The solution of Eq. (22) is simply

N (t) = N0(1 − e−kt ), (23)

where N0 = h/k ≤ N0, and we have assumed that the energy
has been sent on the sample at t = 0. From Eq. (23), it is clear
that the meaning of τ = 1/k is a characteristic recombination
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time. For t � τ , N reaches the steady state value τh. In terms
of N0 Eq. (22) can be rewritten as

dN

dt
= −k(N − N0) (24)

as suggested in Ref. 7. Of course, in this case the meaning of
k is different from the previous case. In fact, if the mechanism
of production of ions is an internal mechanism, k just stabi-
lizes the initial bulk density of ions, related, for instance, to
thermal activated process. In this framework, for k → 0, the
recombination time tends to infinite, and we are in the situ-
ation of fully dissociated impurities. In the opposite limit of
k → ∞, the recombination time tends to zero, and we have
no ions in the medium under consideration. These results are
in agreement with the spectra presented in Figs. 1 and 3.

On the contrary, when Eq. (24) is related to the interac-
tion with the external source of energy the role of k is dif-
ferent. In fact, in this case, as it is evident from Eq. (23), for
k → 0 the number of ions is increasing linearly with t, up to
N0. In the opposite case where k → ∞, N0 = h/k → 0, and we
have no ions in the medium. In this limit the medium behaves
as a pure insulator.

The analysis of this new point of view is of some impor-
tance, mainly in connection with the solar cells. To investigate
the predictions of the model in the case where the ions are cre-
ated from the interaction with the external source of energy, it
is necessary to take into account that the bulk density of ions
depends on k. Let us assume that the parameter h related to the
production of ions from the external energy can be considered
constant, and analyze the influence of k on the impedance of
the sample. The equations reported above remain valid, but it
is necessary to take into consideration that from N0 = h/k it
follows that ωD = D/�2 depends also on k according to the
relation

ωD = α

k
, where α = Dq2h

εkBT
, (25)

i.e., h changes the number N0 of dissociated particles in
the thermodynamical state equilibrium. The quantity κ intro-
duced above is now given by κ = k2/α.

The frequency dependence of the impedance is investi-
gate numerically, keeping the same values for the constants
as before, and by assuming for k ∼ 104 s−1, as reported in
Ref. 12, we get h = 1026 (s m3)−1. In Fig. 7, we show the real,
(a), and imaginary, (b), parts of the electrical impedance of
the cell for three values of k, and the Nyquist diagram, (c),
deduced by means of Eq. (4). As it is apparent from Fig. 7(a),
the dependence of R versus the frequency of the external field
is not monotonic with k. It is also clear from Fig. 7 that ωD de-
creases with k as predicted by Eq. (25). In Fig. 8, we show the
dependence of R0, (a), and of C0, (b), versus k. As discussed
above, R0 depends on k in non-monotonic manner. By means
of Eq. (6), and taking into account Eq. (25), R0 can be written
as

R0(k) = α

εS

k

(α2 + k2)2
. (26)
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FIG. 7. Frequency dependence of the real, (a), and imaginary, (b), parts of
the electrical impedance of the cell for three values of k, and Nyquist plot, (c),
when the ions production in the medium is triggered by an external source of
energy. For the numerical calculations, we assume that the ions are monova-
lent, q = 1.6 × 10−19 A s, KBT/q = 25 mV, ε = 80 × ε0, D = 10−10 m2/s,
h = 1026 (s m3)−1, and k = 102/s, k = 103/s, k = 104/s. The geometrical
parameters of the cell are d = 0.5 × 10−3 m and S = 10−4 m2.
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FIG. 8. Dependence of R0, (a), and C0, (b), versus k, when the ions produc-
tion in the medium is controlled by an external source of energy. Numerical
values used for the calculations are the same as in Fig. 7.
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FIG. 9. The position of the extrema of X calculated numerically (continuous
line) versus k, when the ions production in the medium is controlled by an
external source of energy. The dashed line gives the approximated analytical
prediction for the maxima position. Numerical values used for the calcula-
tions are the same as in Fig. 7.

The quantity R0 presents a maximum for k = α/
√

3, where
its value is

R0(α/
√

3) = 3
√

3

16α2εS
. (27)

Of course for k → 0, the system behaves as a pure conduct-
ing system, and in the dc limit R0 → 0 and C0 → ∞. In the
opposite limit where k → ∞, the medium is a true insulator,
and R0 → 0 and C0 = εS/d. Finally, Fig. 9 shows the posi-
tion of the minimum and the maximum of X as function of k.
The continuous line is calculated by numerical minimization
of X. The dashed line represents the locus of the maxima of X
given by the approximate analytical solution Eq. (12), taking
into account Eq. (25).

VI. CONCLUSIONS

We have considered the influence of the generation-
recombination phenomenon on the spectra of the real and
imaginary parts of the electrical impedance of an electrolytic
cell. In the framework of the Poisson-Nernst-Planck model,
we have compared two different sources that account for the
G-R phenomenon: (i) the L-source model and (ii) the ABC-
source model. The comparison has been performed between
our results for the L-source model and the main predictions
of the ABC-source model reported in Refs. 5 and 6. Our anal-
ysis has been performed for a cell in the shape of a slab with
perfectly blocking electrodes, with the assumption that only
the cations are mobile. Therefore, our predictions apply to a
medium such as a polymer with anions stuck on the poly-
mer chains. We have shown that the two model sources are
not equivalent, and that the impedance spectroscopy mea-
surements can give information on the actual model for the
generation-recombination phenomenon. We have also inves-
tigated the case where the generation of ions is triggered by
an external source of energy, and shown that one can control
the number of dissociable particles at equilibrium. Finally,
we introduced the characteristic length of recombination and
shown its utility for the interpretation of the reactance and
susceptance spectra.

APPENDIX A: DERIVATION OF THE IMPEDANCE

The fundamental equations of the problem are the equa-
tion of continuity for the mobile ions

∂N

∂t
= −D

∂

∂z

{
∂N

∂z
+ qN

KBT

∂V

∂z

}
− k(N − N0), (A1)

and the equation of Poisson for the actual electric potential in
the cell

∂2V

∂z2
= −q

ε
(N − N0). (A2)

Equation (A2) is valid under the hypothesis that the effec-
tive dielectric constant of the medium is position indepen-
dent. This assumption is reasonable. In fact, since the density
of ions is negligible with respect to that of the neutral parti-
cles of the liquid, their contribution to the effective dielectric
constant can be neglected.2 Consequently, there is not spatial
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variation of ε due to the confinement of the ions close to the
electrodes due to the applied potential.

We assume that the external potential is so small that
n = N − N0 	 N0 and rewrite Eqs. (A1) and (A2) in the
form

∂n

∂t
= −D

∂

∂z

{
∂n

∂z
+ qN0

KBT

∂V

∂z

}
− kn (A3)

and

∂2V

∂z2
= −q

ε
n, (A4)

that have to be solved with the boundary conditions

∂n

∂z
+ qN0

KBT

∂V

∂z
= 0 (A5)

for z = ±d/2, related to the hypotheses of blocking electrodes,
and V (±d/2, t) = ±(V0/2) exp(iωt), for the presence of the
external power supply. Due to the linear character of the par-
tial differential equations (A3) and (A4), the solutions we
are looking for are of the type n(z, t) = η(z) exp (iωt) and
V (z, t) = φ(z) exp(iωt), where for the symmetry of the prob-
lem under consideration, η(z) = −η(−z) and φ(z) = −φ(−z).
By substituting these expressions for n(z, t) and V (z, t) into
Eqs. (A3) and (A4) and Eq. (A5) we get

iω + k

D
η(z) = η′′(z) + qN0

KBT
φ′′(z), (A6)

and φ′′(z) = −(q/ε)η(z), for the bulk equations, and

η′(z) + qN0

KBT
φ′(z) = 0, (A7)

and φ(z) = ±V0/2, for the boundary conditions at z = ±d/2.
In Eqs. (A6) and (A7), the prime means derivative with re-
spect to z. By substituting φ′′(z) = −(q/ε)η(z) into Eq. (A6),
we get

η′′(z) − β2η(z) = 0, (A8)

where

β = 1

�

√
1 + κ + i

ω

ωD

, (A9)

where κ = k/ωD is a dimensionless parameter related to the
recombination phenomenon. Solution of Eq. (A8), with the
symmetry η(z) = −η(−z) is η(z) = Asinh (βz), where A is an
integration constant. By substituting η(z) = Asinh (βz) into
φ′′(z) = −(q/ε)η(z) and integrating we obtain

φ(z) = − q

εβ2
A sinh(βz) + Bz, (A10)

where B is another integration constant. The integration con-
stants A and B are determined by the boundary conditions
Eq. (A7) and φ(±d/2) = ±V0/2. A simple calculation gives

A = − εβ2

q[βd(−1 + β2�2) cosh(βd/2) + 2 sinh(βd/2)]
V0,

B = β(−1 + β2�2) cosh(βd/2)

βd(−1 + β2�2) cosh(βd/2) + 2 sinh(βd/2)
V0.

To evaluate the electric impedance of the cell, the calcula-
tion is now the usual one. The electric field in the cell is

given by E(z, t) = −∂V/∂z = −φ(z)′ exp(iωt), and the elec-
tric displacement by D(z, t) = εE(z, t). It follows that the elec-
tric current across the blocking electrode is I(t) = −SdD(d/2,
t)/dt, where S is the surface area of the electrode. By taking
into account Eq. (A10) a simple calculation gives

I (t) = −iωS

(
q

β
A cosh(βd/2) − εB

)
exp(iωt).

(A11)
The impedance we are looking for, defined by Z

= V0 exp(iωt)/I (t), is found to be

Z = V0

−iωS[(q/β)A cosh(βd/2) − εB]
. (A12)

By substituting in Eq. (A12), the expressions for A and B re-
ported above we get

Z = dβ(−1 + �2β2) + 2 tanh(βd/2)

iε�2ωβ3S
, (A13)

that is the expression used for our numerical calculations.

APPENDIX B: RENORMALIZED WAVE-VECTOR
INVESTIGATION

Note that the presence of the G-R effect renormalizes the
complex wave-vector β. It is possible to rewrite β as follows:

β = M[cos(ψ/2) + i sin(ψ/2)], (B1)

where

M(ω) = 1

�
{(1 + κ)2 + (ω/ωD)2}1/4 (B2)

and

tan ψ(ω) = ω/ωD

1 + κ
. (B3)

From Eq. (B2), we get that M is a monotonic increasing func-
tion of ω, such that

lim
ω→0

M = 1

�

√
1 + κ (B4)

and for ω → ∞,

lim
ω→∞ M = 1

�

√
ω

ωD

. (B5)

From Eq. (B3), it follows that ψ is monotonically increas-
ing from 0 to π /2. The real part of β, βR, is such that βR(0)
= M(0), whereas the imaginary part, βI, is such that βI(0)
= 0. In the high frequency region, ω � ωD,

lim
ω→∞ βR = lim

ω→∞ βI = 1

�

√
ω

2ωD

. (B6)

As it is evident from the discussion reported above, the pres-
ence of the L-source renormalizes β0 in β. In all the equa-
tions important for the analysis of the impedance of the cell,
this means that the effect of the L-source is contained in the
complex parameter defined by β = αβ0, by means of which
the standard formulas have to be rewritten. By taking into
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account Eqs. (B1)–(B3) the real and imaginary parts of α can
be easily evaluated. In the limit of small κ , they are given by

αR = Re[β/β0] = 1 + κ

1 + (ω/ωD)2
+ O(κ2), (B7)

αI = Im[β/β0] = − ω/ωD

2[1 + (ω/ωD)2]
κ + O(κ3). (B8)

From Eq. (B7), it follows that αR(ω) is a monotonic decreas-
ing function, whereas from Eq. (B8) that αI(ω) presents a
minimum for ω = ωD. For ω = ωD, we get

αR(ωD) = 1 + κ

2
and αI (ωD) = −κ

4
. (B9)
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