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CHAPTER 6 

Maxwell Equations, 
Macroscopic Electromagnetism, 
Conservation Laws 

In the preceding chapters we dealt mostly with steady-state problems in electric­
ity and in magnetism. Similar mathematical techniques were employed, but elec: 
tric and magnetic phenomena were treated as independent. The only link 
between them was that the currents that produce magnetic fields are basically 
electrical in character, being charges in motion. The almost independent nature 
of electric and magnetic phenomena disappears when we consider time­
dependent problems. Faraday's discovery of induction (Section 5.15) destroyed 
the independence. Time-varying magnetic fields give rise to electric fields and 
vice versa. We then must speak of electromagnetic fields, rather than electric or 
magnetic fields. The full import of the interconnection between electric and mag­
netic fields and their essential sameness becomes clear only within the framework 
of special relativity (Chapter 11). For the present we content ourselves with ex­
amining the basic phenomena and deducing the set of equations known as. the. 
Maxwell equations, which describe the behavior of electromagnetic fields. Vect9r 
and scalar potentials, gauge transformations, and Green functions for the wave' , 
equation are next discussed, including retarded solutions for the fields, as well as ';. , 
the potentials. There follows a derivation of the macroscopic equations of elec­
tromagnetism, Conservation laws for energy and momentum and transformation 
properties of electromagnetic quantities are trea~ed, as well as the interesting 
topic of magnetic monopoles. 

6.1 Maxwell's Displacement Cu"ent; Maxwell Equations 

The basic laws of electricity and magnetism we have discussed so far can be 
summarized in differential form by these four (not yet Maxwell) equations: 

COULOMB'S LAW 

AMPERE'S LAW (V. J = 0) 

FARADAY'S LAW 

ABSENCE OF FREE MAGNETIC POLES 

V· D = p 

V x H = J 

aB 
VxE+-=O at 

V· B = 0 

(6.1) 

Let us recall that all but Faraday's law were derived from steady-state observa­
tions. Consequently, from a logical point of view there is no a priori reason to 
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238 Chapter 6 Maxwell Equations, Macroscopic Electromagnetism, Conservation Laws-Sf 

expect that the static equations will hold unchanged for time-dependent fields. 
In fact, the equations in set (6.1) are inconsistent as they stand. 

It required the genius of J. C. Maxwell, spurred on by Faraday's observations, 
to see the inconsistency in equations (6.1) and to modify them in to a consistent 
set that implied new physical phenomena, at the time unknown but subsequently 
verified in all details by experiment. For this brilliant stroke in 1865, the modified 
set of equations is justly known as the Maxwell equations. 

The faulty equation is Ampere's law. It was derived for steady-state current 
phenomena with V • J O. This requirement on the divergence of J is contained 
right in Ampere's law, as can be seen by taking the divergence of both sides: 

V • J = V . (V x H) == 0 (6.2) 

While V . J = 0 is valid for steady-state problems, the general relation is given 
by the continuity equation for charge and current: 

ap 
V·J+-=O at (6.3) 

What Maxwell saw was that the continuity equation could be converted into a 
vanishing divergence by using Coulomb's law (6.1). Thus 

V·J+--V· J+- 0 ap _ ( aD) 
at at 

Then Maxwell replaced J in Ampere's law by its generalization 

aD 
J~J +-at 

for time-dependent fields. Thus Ampere's law became 

aD 
VxH=J+-at 

(6.4) 

(6.5) 

still the same, experimentally verified, law for steady-state phenomena, but now 
mathematically consistent with the continuity equation (6.3) for time-dependent 
fields. Maxwell called the added term in (6.5) the displacement current. Its pres­
ence means that a changing electric field causes a magnetic field, even without a 
current-the converse of Faraday's law. This necessary addition to Ampere's law 
is of crucial importance for rapidly fluctuating fields. Without it there would be 
no electromagnetic radiation, and the greatest part of the remainder of this book 
would have to be omitted. It was Maxwell's prediction that light was an electro­
magnetic wave phenomenon, and that electromagnetic waves of all frequencies 
could be produced, that drew the attention of all physicists and stimulated so 
much theoretical and experimental research into electromagnetism during the 
last part of the nineteenth century. 

The set of four equations, 

V·D = p 

V·B=O 

aD 
VxH=J+­at 

aB 
VxE+ =0 at 

(6.6) 
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known as the Maxwell equations, forms the basis of all classical electromagnetic 
phenomena. When combined with the Lorentz force equation and Newton's sec­
ond law of motion, these equations provide a complete description of the classical 
dynamics of interacting charged particles and electromagnetic fields (see Section 
6.7 and Chapters 12 and 16). The range of validity of the Maxwell equations is 
discussed in the Introduction, as are questions of boundary conditions for the 
normal and tangential components of fields at interfaces between different me­
dia. Constitutive relations connecting E and B with D and H were touched on 
in the Introduction and treated for static phenomena in Chapters 4 and 5. More 
is said later in this chapter and in Chapter 7. 

The units employed in writing the Maxwell equations (6.6) are those of the 
preceding chapters, namely, SI. For the reader more at home in other units, such 
as Gaussian, Table 2 of the Appendix summarizes essential equations in the 
commoner systems. Table 3 of the Appendix allows the conversion of any equa­
tion from Gaussian to SI units or vice versa, while Table 4 gives the corresponding 
conversions for given amounts of any variable. 

6.2 Vector and Scalar Potentials 

The Maxwell equations consist of a set of coupled first-order partial differential 
equations relating the various components of electric and magnetic fields. They 
can be solved as they stand in simple situations. But it is often convenient to 
introduce potentials, obtaining a smaller number of second-order equations, 
while satisfying some of the Maxwell equations identically. We are already fa­
miliar with this concept in electrostatics and magnetostatics, where we used the 
scalar potential <I> and the vector potential A. 

Since V • B = 0 still holds, we can define B in terms of a vector potential: 

B=VxA (6.7) 

Then the other homogeneous equation in (6.6), Faraday's law, can be written 

V x ( E + a;) = 0 (6.8) 

This means that the quantity with vanishing curl in (6.8) can be written as the 
gradient of some scalar function, namely, a scalar potential <1>: 

or 

aA 
E + = -V<I> at 

aA 
E = -V<I> --at 

(6.9) 

The definition of Band E in terms of the potentials A and <I> according to (6.7) 
and (6.9) satisfies identically the two homogeneous Maxwell equations. The dy­
namic behavior of A and <I> will be determined by the two inhomogeneous equa­
tions in (6.6). 

At this stage it is convenient to restrict our considerations to the vacuum 
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shapes of the nuclei themselves. The energy levels or states of a nucleus are 
described by the quantum numbers of total angular momentum J and its projec­
tion M along the z axis, as well as others, which we will denote by a general index 
a. A given nuclear state has associated with it a quantum-mechanical charge 
density* PJMa(X), which depends on the quantum numbers (1, M, a) but is cylin­
drically symmetric about the z axis. Thus the only nonvanishing quadrupole mo­
ment is Q20 in (4.6), or Q33 in (4.9).t The quadrupole moment of a nuclear state 
is defined as the value of (lie) Q33 with the charge density PJMo,(X), where e is the 
protonic charge: 

-If 2 2 3 QJMa -; (3z - r )PJMa(X) d X (4.25) 

The dimensions of QJMa are consequently (length?, Unless the circumstances 
are exceptional (e.g., nuclei in atoms with completely closed electronic shells), 
nuclei are subjected to electric fields that possess field gradients in the neighbor­
hood of the nuclei. Consequently, according to (4.24), the energy of the nuclei 
will have a contribution from the quadrupole interaction. The states of different 
M value for the same J will have different quadrupole moments QJMa, and so a 
degeneracy in M value that may have existed will be removed by the quadrupole 
coupling to the "external" (crystal lattice, or molecular) electric field. Detection 
of these small energy differences by radiofrequency techniques allows the deter­
mination of the quadrupole moment of the nucleus.* 

The interaction energy between two dipoles PI and P2 can be obtained di­
rectly from (4.24) by using the dipole field (4.20). Thus, the mutual potential 
energy is 

W 
- PI • P2 - 3(0· Pl)(O • P2) 

12 -
47T€oIXl - x213 (4.26) 

where 0 is a unit vector in the direction (XI - X2) and it is assumed that XI * X2' 
The dipole-dipole interaction is attractive or repulsive, depending on the orien­
tation of the dipoles. For fixed orientation and separation of the dipoles, the 
value of the interaction, averaged over the relative positions of the dipoles, is 
zero. If the moments are generally parallel, attraction (repulsion) occurs when 
the moments are oriented more or less parallel (perpendicular) to the line joining 
their centers. For antiparallel moments the reverse is true. The extreme values 
of the potential energy are equal in magnitude. 

4.3 Elementary Treatment of Electrostatics with Ponderable Media 

In Chapters 1, 2, and 3 we considered electrostatic potentials and fields in the 
presence of charges and conductors, but no other ponderable media. We there-

*See Blatt and Weisskopf (pp. 23 ff.) for an elementary discussion of the quantum aspects of the 
problem. 

tActually Q11 and Q22 are different from zero, but are not independent of Q33, being given by 
QI1 = Q22 = -tQ33' 

'''The quadrupole moment of a nucleus," denoted by Q, is defined as the value of QJMu in the state 
M = J. See Blatt and Weisskopf, loco cit. 
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fore made no distinction between microscopic fields and macroscopic fields, al­
though our treatment of conductors in an idealized fashion with surface charge 
densities implied a macroscopic description. Air is sufficiently tenuous that the 
neglect of its dielectric properties causes no great error; our results so far are 
applicable there. But much of electrostatics concerns itself with charges and fields 
in ponderable media whose respective electric responses must be taken into ac­
count. In the Introduction we indicated the need for averaging over macroscop­
ically small, but microscopically large, regions to obtain the Maxwell equations 
appropriate for macroscopic phenomena. This is done in a careful fashion in 
Chapter 6, after the Maxwell equations with time variation have been discussed. 
For the present we merely remind the reader of the outlines of the elementary 
discussion of polarization in a fashion that glosses over difficult and sometimes 
subtle aspects of the averaging procedure and the introduction of the macroscopic 
quantities. 

The first observation is that when an averaging is made of the homogeneous 
equation, V x Emicro = 0, the same equation, namely, 

VxE=O ( 4.27) 

holds for the averaged, that is, the macroscopic, electric field E. This means that 
the electric field is still derivable from a potential <I>(x) in electrostatics. 

If an electric field is applied to a medium made up of a large number of 
atoms or molecules, the charges bound in each molecule will respond to the 
applied field and will execute perturbed motions. The molecular charge density 
will be distorted. The multipole moments of each molecule will be different from 
what they were in the absence of the field. In simple substances, when there is 
no applied field the multi pole moments are all zero, at least when averaged over 
many molecules. The dominant molecular multipole with the applied fields is the 
dipole. There is thus produced in the medium an electric polarization P (dipole 
moment per unit volume) given by 

(4.28) 

where Pi is the dipole moment of the ith type of molecule in the medium, the 
average is taken over a small volume centered at x and Ni is the average number 
per unit volume of the ith type of molecule at the point x. If the molecules have 
a net charge ei and, in addition, there is macroscopic excess or free charge, the 
charge density at the macroscopic level will be 

p(x) = 2: Ni(e) + Pcxcess (4.29) 

Usually the average molecular charge is zero. Then the charge density is the 
excess or free charge (suitably averaged). 

If we now look at the medium from a macroscopic point of view, we can 
build up the potential or field by linear superposition of the contributions from 
each macroscopically small volume element Ll V at the variable point x I. Thus 
the charge of Ll V is p(X') Ll V and the dipole moment of Ll V is P(x ' ) Ll V. If there 
are no higher macroscopic multipole moment densities, the potential Ll<l>(x, x') 
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caused by the configuration of moments in AV can be seen from (4.10) to be 
given without approximation by 

A<I>(x x') = _1_ [ p(x') AV + P(x') • (x - x') AV] (4.30) 
, 47TEo Ix-x'i Ix-x'13 

provided x is outside AV. We now treat AV as (macroscopically) infinitesimal, 
put it equal to d3 x', and integrate over all space to obtain the potential 

<I>(x) = _1_ f d3X'[ p(x') + P(x') • V'( 1)] (4.31) 
47TEo Ix - x'i Ix - x'i 

The second term is analogous to the dipole layer potential (1.25), but is for a 
volume distribution of dipoles. An integration by parts transforms the potential 
into 

1 f 1 <I>(x) = 47TEo d
3x' Ix _ x'i [p(x') - V' • P(x')] (4.32) 

This is just the customary expression for the potential caused by a charge distri­
bution (p - V • P). With E = - V<I>, the first Maxwell equation therefore reads 

1 
V • E = - [p - V • P] 

Eo 
(4.33) 

The presence of the divergence of P in the effective charge density can be un­
derstood qualitatively. If the polarization is nonuniform there can be a net in­
crease or decrease of charge within any small volume, as indicated schematically 
in Fig. 4.2. 

With the definition of the electric displacement D, 

D=EOE+P (4.34) 

(4.33) becomes the familiar 

V·D = p (4.35) 

Equations (4.27) and (4.35) are the macroscopic counterparts of (1.13) and (1.14) 
of Chapter 1. 

As discussed in the Introduction, a constitutive relation connecting D and E 
is necessary before a solution for the electrostatic potential or fields can be ob­
tained. In the subsequent sections of this chapter we assume that the response 
of the system to an applied field is linear. This excludes ferroelectricity from 
discussion, but otherwise is no real restriction provided the field strengths do not 

Figure 4.2 Origin of polarization-charge density. 
Because of spatial variation of polarization, more 
molecular charge may leave a given small volume 
than enters it. Only molecules near the boundary are 
shown. 
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become extremely large. As a further simplification we suppose that the medium 
is isotropic. Then the induced polarization P is parallel to E with a coefficient of 
proportionality that is independent of direction: 

(4.36) 

The constant Xl' is called the electric susceptibility of the medium. The displace­
ment D is therefore proportional to E, 

D = EE (4.37) 

where 

E = Eo(1 + Xl') (4.38) 

is the electric permittivity; E/Eo = 1 + Xl' is called the dielectric constant or relative 
electric permittivity. 

If the dielectric is not only isotropic, but also uniform, then E is independent 
of position. The divergence equations (4.35) can then be written 

V· E = piE (4.39) 

All problems in that medium are reduced to those of preceding chapters, except 
that the electric fields produced by given charges are reduced by a factor EolE. 
The reduction can be understood in terms of a polarization of the atoms that 
produce fields in opposition to that of the given charge. One immediate conse­
quence is that the capacitance of a capacitor is increased by a factor of EI Eo if the 
empty space between the electrodes is filled with a dielectric with dielectric con­
stant E/Eo (true only to the extent that fringing fields can be neglected). 

If the uniform medium does not fill all of the space where there are electric 
fields or, more generally, if there are different media juxtaposed, not necessarily 
linear in their responses, we must consider the question of boundary conditions 
on D and E at the interfaces between media. These boundary conditions are 
derived from the full set of Maxwell equations in Section 1.5. The results are that 
the normal components of D and the tangential components of E on either side 
of an interface satisfy the boundary conditions, valid for time-varying as well as 
static fields, 

(D2 - D 1) • 821 = u} 
(E2 - E 1) X 821 = 0 

(4.40) 

where 821 is a unit normal to the surface, directed from region 1 to region 2, and 
u is the macroscopic surface-charge density on the boundary surface (not includ­
ing the polarization charge). 

4.4 Boundary- Value Problems with Dielectrics 

The methods of earlier chapters for the solution of electrostatic boundary-value 
problems can readily be extended to handle the presence of dielectrics. In this 
section we treat a few examples of the various techniques applied to dielectric 
media. 

To illustrate the method of images for dielectrics we consider a point charge 
q embedded in a semi-infinite dielectric El a distance d away from a plane inter-


