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 Biology and chemistry occur in ionic solutions for the most part. Water without ions is 
lethal for cells and most proteins. Chemistry is often done in ionic solutions. There seems no 
need here to repeat the extensive documentation in (Eisenberg 2012; Eisenberg 2011a; 
Eisenberg 2011b; Eisenberg 2011c, 2010) and the historical references to PNP in (Bazant et al. 
2004; Coalson and Kurnikova 2005; Damocles 2007; Eisenberg and Chen 1993; Eisenberg 
1996b, a; Jerome 1995; Selberherr 1984; Zheng and Wei 2011) . 

 Ions in water like Na+, K+ and Cl−  move approximately as hard spheres in a frictional 
dielectric as described by the implicit solvent (so-called) primitive (or implicit solvent) model of 
electrolyte solutions. A good representation of this primitive model is given by the Poisson 
Nernst Planck equations once it is modified to deal with finite size ions. 

 Partial differential equations of this sort couple diffusion, migration, and the electric 
field and form a system that must be mathematically well defined if they are to be solved. The 
formulation of a well posed version of these equations, starting at time zero, progressing to 
time infinity, including multiple species is addressed here. I am unaware of previous treatments 
of this problem that produce well posed mathematical problems for all mixtures of ions on this 
complete time scale, although such treatments may well exist beyond the horizon, of my 
knowledge and experience. 

 The fundamental difficulty is that the equations have usually been viewed as typical 
flow, conservation of mass, etc. equations, in the tradition of the fluid mechanics of (mostly 
uncharged) systems. But the ions flowing are charged, the experiments are designed to deal 
with electrical current and potential first, and the flux of the ions is not dealt with directly in 
most experiments. The flux of electrical charge (i.e., the electrical current density) is not at all 
the same as the flux of ions or the flux of mass.  

Plan of Attack 

It is my view that the equations of PNP must be written and solved so that the electrical 
properties are dealt with first, and as accurately as possible, and residual difficulties, if any, 
appear in the flux and concentration of the least important ions. Because electrical forces and 
flows are on a different scale from diffusion forces and flows, this can make a very large 

difference numerically. In particular, the net charge 
1

N

i i
i

z Fcρ
=

=∑  must never be computed 

explicitly. The difference in concentrations of positive and negative charge is well within the 
round-off error of even double precision computer arithmetic because most of the system is 
nearly electrically neutral with 0.ρ → Errors in computing ρ  can dominate the problem 
creating dreadful artifacts.  

Shunt Capacitance. Electrical forces and flows are very large, and act on a very fast time scale 
(sometimes faster than microseconds). That is one of the issues we deal with here. We include 
the shunt capacitance always present in the real world, so charge can flow in the equations 
proportional to ,V t∂ ∂  as it does in the real world, when voltages change rapidly.  
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The capacitive shunt path (typically 100 pF) allows tiny imbalances in ρ  to dissipate 
very quickly on the capacitive time scale (typically microseconds or faster) without grave effects 
on the processes that we are interested in, that occur on the time scale of milliseconds. Tiny 
imbalances in ρ  are hard to avoid, no matter how we try, somewhere in the model, modeling, 
and computational process. They are likely to be present if initial conditions are set only for the 

concentrations ( ) ( )0 1ic t i N= =   because ( 0)tρ =  is so badly determined by ( )
1

0 .
N

i i
i

z Fc t
=

=∑  

Even if an initial condition is provided for ( 0)tρ = , and for only N − 1 concentrations, even if 
( 0) 0tρ = = , all sorts of irrelevant charging transients are likely to occur. (Consider what 

happens between 0t −=  and 0t +=  when a voltage step is applied at 0.t =  Equivalent 
problems occur whenever the voltage is stepped, as it is in a typical voltage clamp experiment, 
or ramped rapidly, as is done in many single channel experiments, or if problems arise because 
of other physical effects, like series resistance in the bathing solutions.)  

These irrelevant charging transients are taken care of in experiments (i.e., forced to a 
rapid uninteresting time scale) as much as possible, by the combination of the shunt 
capacitance and the mechanism maintaining the Dirichlet boundary condition on voltage (i.e., 
the voltage clamp). The equations should deal with the irrelevant charging transients the same 
way they are dealt with in experiments, both to be realistic, and also so we can recognize and 
deal with the artifacts using the wisdom of 60 years of experimentation on voltage clamp (since 
(Hodgkin 1992; Huxley 1992; Huxley 2002; Hodgkin et al. 1952) and on single channels 
(Sakmann and Neher 1995; Sigworth and Neher 1980; Hamill et al. 1981; Sigworth 1986; 
Sigworth 1995; Rae et al. 1988; Levis and Rae 1992; Rae and Levis 1992b, a; Levis and Rae 1993; 
Levis and Rae 1995; Tang et al. 1995; Levis and Rae 1998; Cherny et al. 2003; Rae and Levis 
2004)).  

Shunt Conductance. The mathematical system must also be well posed, as it is in experiments, 
on the long time scale. The problems here come from diffusion forces and flows are very much 
weaker and act typically on a time scale of minutes or longer. Of course, integrated to time 
infinity, the diffusion forces and flows can produce concentration changes of great (even 
unlimited) importance. That is another of the issues we deal with here. Introducing the shunt 
conductance (or shunt resistance, typically 1011 ohm, i.e., 100 Gohm,  or 10-11 Siemens, i.e., 10 
pS), sometimes called the leakage conductance or the ‘membrane’ conductance (referring to 
the specific origin of the conductance when a lipid membrane is used to support an ion 
channel).  

Capacitance to ground, a physical low pass filter. Finally, I introduce a new idea, that 
undoubtedly will have unforeseen consequences and ‘errors’ in application, because I have not 
had a chance to discuss it with colleagues, unlike the issues just discussed.  

I suggest that we also include explicitly the capacitance to ground between bathing 
solutions (and channel, although that is not important) and the ground plane always placed just 
under the baths in real experiments. This capacitance to ground acts as a ‘low pass filter’; it 
dampens voltage changes by providing a path for capacitive current (proportional to )V t∂ ∂  to 
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leave the system. This damping decreases noise and transients in experiments making 
recordings much ‘cleaner’. I suspect — but do not know for sure – that including this 
capacitance to ground will make numerical problems easier. We will not know for sure until we 
implement the idea. 

Theoretical Model. The equations we consider are just the PNP equations themselves, with 
ions treated as points, since as far as I can tell the issues of well posedness are the same in PNP 
as in more realistic models like the primitive model mentioned above. 

 The central theme is that electrical variables always take precedence. Equations should 
always integrate electrical variables explicitly, dealing with chemical variables secondarily. Net 

charge should never be computed from 
1

.
N

i i
i

z Fcρ
=

=∑  Indeed, the only use of that equation that 

I can justify is to compute the concentration of a species needed to make the solution 
electrically neutral, with 0,ρ = to chemical precision. Chemical precision here means that ,ρ  in 
chemical units is much smaller than any .ic  0,ρ = to chemical precision, does not mean that 
the charge term on right hand side of the Poisson equation is zero!  

This them implies a change in the numerical procedure and computer codes as usually 
written. I believe one should explicitly write and integrate explicitly the flow equation for 
electrical current. 

Historically, the PNP equations as nearly always written to specify the flux of ions, not 
the flux of electrical charge. The current is the sum of the (weighted) fluxes of the PNP 
equation, plus the capacity current. The numerical implementation of PNP done this way is 
always on the edge of disaster. It is very easy somewhere to try to estimate NET charge 

1

N

i i
i

z Fcρ
=

=∑ , or flux of current, or charge on the boundary etc by summing the concentrations, 

flux of ions, or concentrations on the boundary.  

Any attempt to estimate electrical variables by summing ‘chemical’ variables is likely 
to produce disaster.  

We shall see that more is involved than simple algebra. There is a tension between the 
electrical boundary conditions I advocate and usual formulation for PNP, which specify all of the 
concentrations jc  corresponding to the fluxes iJ , and not the current .J  Specifically, the usual 

boundary conditions specify the jc  as constants imposed at either 0t =  or .t = −∞  They specify 
a potential applied across the system of V imposed at 0t =  and switched in a schedule to other 
potentials at other times. (These are the pulse patterns introduced to such useful effect by 
(Hodgkin and Huxley 1952c, a) that form the basic paradigm of electrophysiology, ever since 
(Bezanilla et al. 1982). 
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Now, to Equations  
 
Here is a version of PNP in which Maxwell’s version of the continuity equation for charge is 
always used so the resulting flux equation for the flux J  of charge (i.e., flux of total electric 
current) is always explicitly displayed and integrated. 

 

Everything starts with Poisson 

 ( ) ( )
1

i N

Protein i i Protein
i

P F z c FPε φ ρ
=

=

−∇ ⋅ ∇ = + = +∑  (1) 
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N

i i
i

z Fcρ
=

=∑  (2) 

It is vital to remember that eq. (2) can NOT be used to compute 
1

N
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z Fcρ
=

=∑  because roughly speaking 
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ρ −=

=

= <
∑

∑
 depending on location and conditions, always very small (3) 

The enormous strength of the electric field forces the net charge to be very small. If the 
net charge is not small, large gradients of potential exist which destroy biological systems. As a 
rule of thumb, membranes, proteins and ion channels are destroyed if potentials of 200 mV are 
applied to a system or fields are larger than 200 mV/(thickness of a lipid membrane = 2 nm)= 
2x106 volts/cm. When ρ  is this small, it cannot be computed by executing the sum shown in 
eq.(2). Indeed, eq.(2) can be used to determine a particular concentration mc  from the other 
concentrations, if for some reason mc  is not known, but it can never be used to determine ρ . 
Round off and other errors make eq.(2) useless for computation. Rather, the Poisson equation 
(1) itself must be used to compute ρ .  

 The flow equation for the total charge in the system without shunt capacitance is 

 0
t t
ρ∂ ∂ ∇ ⋅ + = ∇ ⋅ + = ∂ ∂ 

DJ J  (4) 

or if we suppress Maxwell’s dreadful displacement field D  (introduced before the electron was 
discovered and so before permanent charge was known to exist) and use more modern notation 

 
( ) 0

t t
ερ ∂ ∂

∇ ⋅ + = ∇ ⋅ + = ∂ ∂ 

E
J J  (5) 

This is eq. 6.4 of Jackson, p. 238, expanded, 
see p. 154. I follow Jackson’s notation exactly 
and use ε  for the permittivity (that has units. 
It is not the dielectric ‘constant’).  
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 Now we introduce the Nernst Planck equations for the flux of individual ions (NOT the 
flux of ionic current J , rather the flux of the number of ions).  

 ; 1,i i i i i
FD c z c i N

RT
φ = − ∇ − ∇ = 

 
J   (6) 

I use the diffusion coefficient and not mobility to avoid 
the confusion between the two definitions of mobility 
(absolute and electrical) in the literature. Obviously if the 
Einstein approximation fails and enough information is 
available to distinguish mobility from diffusion coefficient, 
the mobility should be used explicitly, and the choice of 
definition should be made explicitly.  

 
It is important to remember that ions of different charge (i.e., valence) zi are very important in 
biology (calcium ions Ca2+ have charge +2; chloride Cl− ions have charge −1; sodium Na+ and 
potassium K+ ions have charge +1). They all have significantly different diffusion coefficients. It 
is NEVER permissible to treat all ions as having the same diffusion coefficient or the same 
(magnitude let alone sign) of charge if one wants to deal with biology. 

Next, we relate eq. (6) and (5) by explicitly summing over all the ions to get total flux of 
charge  

 
1 1

N N

i i i i i
i i

FD c z c
RT

φ
= =

 = = − ∇ − ∇ 
 

∑ ∑J J  (7) 

Maxwell Continuity eq. (5) gives the equation for continuity of electric charge, i.e., current 

 
( ) ( ) ( )2

1

N

i i i i
i

FD c z c
RT t t t

ε φε ε φ
φ

=

∂ ∇∂ ∂ ∇     ∇ ⋅ = ∇ ⋅ − ∇ − ∇ = −∇⋅ = −∇ ⋅ =      ∂ ∂ ∂      
∑

E
J  (8) 

I leave the permittivity inside the brackets so we never forget the assumption that is involved in 
moving it outside! And then we have the classical continuity equation for the flux of charge J  
(remember J  is the flux of charge, not the flux of ions). 

 
1

N

i i i i
i

FD c z c
RT t

ρφ
=

  ∂ ∇ ⋅ = ∇ ⋅ − ∇ − ∇ = −   ∂  
∑J  (9) 

 
1 1

N N
i

i i i
i i

cz F z Fc
t t= =

∂ ∂
∇ ⋅ = =

∂ ∂∑ ∑J  (10) 

It is very important that no attempt be made to compute the sum on the right hand sides of 

eq. (10) from the concentrations ic . The sum 
1

N

i i
i

z Fc
=
∑  is ill posed, and must be nearly equal to 

zero, because of the enormous strength of electrical forces, summarized by the (approximate) 

physical principle of electroneutrality. One must never compute the sum 
1

N

i i
i

z Fc
=
∑  or its 

equivalent. Rather, one must compute ρ  the net charge and its time derivative directly, for 
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example, from the Poisson equation (1), without summing concentrations or even their rate of 
change.  
 

In fact, the numerical properties of ρ  are so different, 
depending on how it is computed, that it would be wise to 
use separate symbols in computer programs for the ρ  of 
eq. (9) and the ρ  of eq. (1), on the right hand side of the 
Poisson equation. That way they will not be inadvertently 
interchanged 

 
Note the form of the continuity of mass for each species 

 0i
i

c
t

∂
∇ ⋅ + =

∂
J  (11) 

and the form for the continuity equation of total ‘mass’.  

 ( )
1 1 1

N N N
i

i i
i i i

c c
t t= = =

∂ ∂
∇ ⋅ = − = −

∂ ∂∑ ∑ ∑J  (12) 

The mass continuity equations are not equivalent to the Maxwell continuity equation. They do 
not involve the charge ,iz F  at all For example, the sum 

1

N

i
i

c
t =

∂
∂ ∑

 is well posed and easy to 

compute because all its terms are positive while the corresponding terms in the sum for net 
charge ρ  in eq. (10) can be positive or negative. In order to avoid confusion we do not even 
have a symbol for the flux of total mass 1

N

i i=∑ J . 

Boundary Conditions. 

We need to set boundary conditions on the electrical potential and charge, and write 
equations defining how we measure current J  to correspond with experiment. Here is where 
we will introduce the shunt conductance and the shunt capacitance discussed in the beginning 
of this paper. The basic plan is to relax our boundary conditions on concentration and charge
ρ . We must allow one of the concentrations mc  (for example) to ‘float’, i.e., to be determined 
by the rest of the problem. We also must allow the charge ρ  to float, to be determined by 
the rest of the system. We do this by including additional pathways for flux and current. 
These additional pathways always exist in experiments. The pathway for shunt electrical 
current is the shunt capacitance .capacitanceJ . The pathway for individual ionic flux current is the 

leak or shunt conductance .shuntJ   

The shunt capacitance drives a current capacitance shunt
VC
t

∂
=

∂
J  that adds to the current J  

of eq. (7) once units are sorted out. The units of capacitanceJ  are amps. The units of shuntC  are 

farads, i.e., Coulombs volt-1. The units of J  in eq. (7) are not the same as the units of capacitanceJ . 
The current J  in eq. (7) must be scaled to be a new variable to deal with the geometry of the 
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system. The units of the new (unnamed) scaled variable is amps, so it can be added to capacitanceJ  
in amps. The exact formulas depend on the geometry and so have to be worked out separately 
for each application, easily enough. 

Shunt Conductance. The usual formulation of PNP sets boundary conditions on all N of the 
ionic species and ignores the experimental reality that J  is measured, not .iJ  It is obviously 
impossible to specify N concentrations and deal with their fluxes as if they are independent, 
and also place conditions on the total current .J  

This apparent paradoxical situation is resolved when we realize that to make the system 
well posed (i.e., to reach steady state when concentrations and potentials on the boundaries 
are constants independent of time), we must introduce a shunt path that allows one of the 
concentrations to ‘float’, i.e., to take on any value as a function of time. The floating 
concentration is specified at 0t =  but not at later times. 

In experiments, the leak flux shuntJ  arises in many places. It can be flux through the lipid 
membrane, or through the seal between membrane and the plastic of the bath. Or it can be 
leakage through inadvertent unspecified pathways (i.e., dirt) that can easily arise in systems 
where resistances are of the order of 1011 ohms. (The resistance of most insulators is much less 
than 1011 ohms and so very special methods are necessary to record single channel currents 
(Sakmann and Neher 1995; Sigworth and Neher 1980; Hamill et al. 1981; Sigworth 1986; 
Sigworth 1995; Rae et al. 1988; Levis and Rae 1992; Rae and Levis 1992b, a; Levis and Rae 1993; 
Levis and Rae 1995; Tang et al. 1995; Levis and Rae 1998; Cherny et al. 2003; Rae and Levis 
2004). So we do not have a unique way to describe shuntJ . 

I suggest that we describe it in the same ‘space’ of physics that we have been using., 
which, by the way, is the approach Hodgkin and Huxley used in their treatment of their leakage 
conductance (Hodgkin and Huxley 1952e, b; Hodgkin and Huxley 1952d, c, a; Hodgkin et al. 
1952). 

I suggest we define the shuntJ  by the conductance of the ion m of least interest, that 
changes the concentration in the bath most slowly. We add an additional shunt path for just 
this ion giving us now N + 1 fluxes iJ  where we only had N before. (I do not count the 
capacitive flux because its equation is so different in form and behavior.) 

 ; 1, 1shunt m m m m
FD c z c i N

RT
φ = − ∇ − ∇ = + 

 
J   (13) 

We choose values of mD  so the flux shuntJ  has no significant effect on the properties of interest. 

shuntJ  exists so that the concentration mc  can float (after it starts at an initial specified value). 
That way, we have N total flux equations. N − 1 of these are equations for individual ion fluxes, 
with Dirichlet boundary conditions at all times. One of these equations is the equation for total 
current J , see eq. (7). The system is well posed.  

 We now have two flux equations for the same ionic specie mc , one the real one and the 
other the leak. This does not cause trouble in the cases of interest because we can choose 
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parameters for the leak path so the system is not perturbed in the time domain we study. The 
leak ensures that at infinite time the system will be stable.  

 There is quite legitimate concern that not every system can be handled this way. For 
example, this approach will work if the flux of species mc  through shuntJ  is not of interest, is 
small compared to the fluxes through the membrane, perhaps including mJ , etc. It will work 
best if the baths are so large that the flux of mc  through shuntJ  does not change concentrations 
we care about in the times of interest. A looser way to choose the properties of the leak is to 
choose parameters so the leak flux is 0.001 times the flux of the rest of the system. Typical values in 
experiments would be 1011 ohms (converting to strictly electrical units, for the entire system).  

 In general, this approach will fail when experiments cannot be done. Such cases exist 
mathematically, and in thought experiments, but obviously not in the lab very often, so they 
have not been studied very much!! 

Shunt Capacitance. Now, we introduce the shunt capacitance. We also must allow the charge 
ρ  to float, to be determined by the rest of the system. We do this by including additional 
pathways for current. The additional pathway always exist in experiments. The pathway for 
shunt electrical current is the shunt capacitance  

The shunt capacitance drives a current capacitance shunt
VC
t

∂
=

∂
J  that adds to the current J  

of eq. (7), once units are sorted out. The units of capacitanceJ  are amps. The units of shuntC  are 
farads, i.e., Coulombs volt-1. The units of J  in eq. (7) are not the same as the units of capacitanceJ . 
The current J  in eq. (7) must be scaled to be a new variable to deal with the geometry of the 
system. The units of the new (unnamed) scaled variable is amps, so it can be added to capacitanceJ  
in amps. The exact formulas depend on the geometry and so have to be worked out separately 
for each application, easily enough. 

  

 

 



PNP well-posed 

February 18, 2012  10 

The capacitance to ground remains. It is not dealt with explicitly in this document. Keep tuned! 
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