
THREE-DIMENSIONAL ELECTRICAL 
FIELD PROBLEMS IN PHYSIOLOGY 

by 
ROBERTS. EISENBERG AND EDWARD A. JOHNSON 

Reprinted from 

PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 

Volume 20 

Editors: J. A. V. Butler and D. Noble 

PERGAMON PRESS-OXFORD & NEW YORK 

1970 



PREFACE 

1 
THREE-DIMENSIONAL ELECTRICAL 
FIELD PROBLEMS IN PHYSIOLOGY 

RoBERTS. EISENBERGt and BowARD A. JoHNSON 

Department of Physiology and Pharmacology, 
Duke University Medical Center, 

Durham, North Carolina 

CONTENTS 

PART A. PHYSICAL INTERPRETATION AND 
MATHEMATICAL ANALYSIS 

3 

l. INTRODUCTION AND GENERAL OUTLINE OF THE PRESENTATION AND 

APPROACH 5 
1.1. Introduction 5 

II. THE ELECTRICAL FIELD AROUND CURRENT SOURCES AND ONE-
DIMENSIONAL CABLE THEORY 6 

II.l. The Electrical Field around Current Sources 6 
II.2. Steady-state One-dimensional Cable Theory 9 

III. SoLUTIONS oF THREE-DIMENSIONAL ELECTRICAL FIELD PROBLEMS 

FROM SOLUTIONS OF ANALOGOUS HEAT PROBLEMS 13 

III.l. General Discussion 13 
III.2. Conversion of the Solution of a Heat Problem to the Steady-state 

Solution of an Electrical Problem 16 

IV. THE CYLINDRICAL CELL 18 

IV.l. Solution of the Three-dimensional Cable Equation 18 
IV .2. Determination of a Convenient Expression for the Roots 21 
IV.3. Computation of the Spread of Potential 24 
IV.4. Plots of the Spread of Potential 25 

IV.4a. Both electrode tips just beneath the membrane 25 
IV .4b. Both electrodes deep in the cell 32 
IV.4c. One electrode just beneath the surface and the other deep 32 

IV.5. Universal Figure and Table 35 
IV.6. Appendix: Approximation to the Roots f3 37 

v. THE SPHERICAL CELL 38 

VJ. Solution of the Spherical Problem 38 
V .2. Approximations Used in the Spherical Problem 39 

V.2a. Approximations to the roots 40 
V.2b. Approximations in the infinite series 40 

t Present address: Department of Physiology, UCLA School of Medicine, Los Angeles, 
California 90024. Some of the later work, done at this address, was supported by U.S. Public 
Health Service Grant HE11351. The earlier main part was supported by USPH08620. 

1 



ROBERT S. EISENBERG AND EDWARD A. JOHNSON 

VI. THE THIN PLANE CELL 

VI.l. Solution of the Thin Plane Cell 

VII. THE THICK PLANE CELL 

PART B. QUALITATIVE DESCRIPTION AND PHYSIOLOGICAL 
IMPLICATIONS OF THE THREE-DIMENSIONAL SPREAD OF 

CURRENT IN CELLS 

41 

41 

45 

I. DISCUSSION APPLICABLE TO ALL CELL GEOMETRIES 46 

1.1. The Approximate Nature of One-dimensional Theory 46 
1.2. The Single Electrode Bridge and Double-Barreled Microelectrodes 49 
1.3. Voltage Gradients in Extracellular Space 54 
1.4. Voltage Clamp with Two Microelectrodes 55 

II. THE CYLINDRICAL CELL 56 

II. 1. The Optimum Electrode Separation within a Cylindrical Cell 56 

III. THE A. C. CASE 59 

111.1. A Brief Description and Derivation of the Generalized Frequency-
dependent Length Constant 59 

IV. THE SPHERICAL CELL 63 

REFERENCES 64 



PREFACE 

THIS article is concerned with the voltage gradients within a cell that are 
associated with the three-dimensional spread of electrical current. We have 
divided the material into two sections. The first, Part A, presents a discussion 
of the method of solving the mathematical problem of analysing the three
dimensional flow of current within a cell. Thereafter follow detailed descrip
tions of the solution for a number of simple geometries of cells: the cylindrical 
cell, the spherical cell, the thick and the thin plane cell. The second part, Part 
B, is intended for the general reader and gives a qualitative description in 
words of some of the results and conclusions to be drawn from the analyses 
presented in Part A. 
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PART A. PHYSICAL INTERPRETATION AND 

MATHEMATICAL ANALYSIS 

I. INTRODUCTION AND GENERAL OUTLINE OF THE 
PRESENTATION AND APPROACH 

I.l. Introduction 

The electrical properties of cells can be accounted for in large part by the 
electrical properties of the cell membrane and the cytoplasm which the cell 
membrane encloses. For most, if not all, cells, the electrical properties of the 
membrane can only be studied in situ. In other words, the properties of the 
membrane must be inferred from some observed electrical properties of 
the cell as a whole. Since the cell membrane defines the boundary of the cell, it 
can be shown that if the shape of the cell conforms to some simple geometry, 
the magnitude of current injected into the cell and the resultant displacement 
of transmembrane paten tial are related in some predictable way to the electrical 
properties of the cell membrane, namely its impedance to the passage of 
electrical current. How this observed relationship depends on the specific 
membrane resistance and resistivity of the cytoplasm has been examined 
theoretically for a number of shapes of cell. These shapes include the infinitely 
long cylinder or cable, the sphere, the thin plane cell and the thick plane cell. 
The theoretical treatment used for each of these geometries usually makes a 
number of assumptions and the necessary conditions these assumptions im
pose often cannot be realized experimentally. These conditions frequently 
involve the current source. For example, in the case of one-dimensional cable 
theory, the current source is ideally an infinite plane sheet, less ideally, a disc 
placed at right angles to the fiber axis and equal in diameter to the fiber. In 
practice, a microelectrode is often used and this approximates a point source 
of current. As we shall see, the use of such a source violates the essential 
assumption of one-dimensional cable theory, namely that the current flows 
in only one dimension, and this violation under certain circumstances causes 
serious deviations between the measured values of membrane potential and 
the values predicted by one-dimensional cable theory. 

We have already mentioned that in order to determine, theoretically, the 
spread of potential within the cell about some sources of current, the geometry 
of the cell is idealized as some simple, three-dimensional shape such as a 
sphere, a cylinder or disc, which may or may not closely approximate the 
actual geometry of the cell. Nevertheless, even if one of these shapes is a good 
approximation, in order to simplify the mathematics, further approximation 
is sometimes made in that the electric field in one or more of the three 
dimensions of the cell is neglected. That is to say, it is assumed that the 
potential is constant along the dimensions of the cell that are neglected. 

5 
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In the theory developed here we make no such assumptions and hence a 
comparison of the predictions of this theory with those of theory in which such 
an assumption is made shows decisively the circumstances which necessitate 
the use of three-dimensional field theory in solving electrophysiological field 
problems. 

Before we describe in detail the application of three-dimensional field 
theory to such problems we first show in section II.l that the electrical field 
near the source of electrical current depends on the geometry of the source. 
Secondly, in section II.2 we demonstrate, how, for example, one-dimensional 
cable theory cannot properly describe the spread of potential in a cylindrical 
cell about a point source of current. 

In section III we show why and how the steady-state solution of heat field 
problems can be used to obtain the steady-state solution of electrical field 
problems. The next four sections, IV, V, VI and VII, describe in detail the 
derivation of equations which describe the three-dimensional electrical field 
about a point source of current in a semi-infinitely long cylindrical cell 
(section IV), a sphere (section V), a thin infinite plane cell (section VI) and a 
thick (infinite) plane cell (section VII). In the introduction to each section the 
parts that are of more interest to the general reader are pointed out. 

II. THE ELECTRICAL FIELD AROUND CURRENT 
SOURCES AND ONE-DIMENSIONAL CABLE THEORY 

II.l The Electrical Field around Current Sources 

The shape of the electrical field sufficiently near a small source of electrical 
current depends primarily on the shape of the source and is independent of 
the shape of the cell. The shape of the source is determined by the number of 
dimensions in which the source is described. This follows directly from the 
definition of a source mathematically (Morse and Feshbach, 1953), but perhaps 
the above statement can be made more plausible to the general reader by 
discussing several examples which bear it out. 

We will calculate the field produced by simple sources in one, two, and 
three dimensions, namely the field about a point, line and plane source of 
current. Since we will only consider the effect of the geometry of the source 
in determining the electrical field we will consider the source and resultant 
field to be in a uniformly resistive material. 

Point source 

The illustration for the point source of current is given in Fig. II.l-1. 
Consider a point source of current in a homogeneous material of volume 

resistivity Ri. Imagine the point source to be at the center of a sphere of radius 
r so that the direction of current flow through the surface of the sphere will be 
»ormal to that surface and furthermore the current density, and hence the 
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potential there, will be uniform over that surface. Now consider a second, 
slightly larger, surrounding the first, with radius r + !lr. The potential, V, over 

FIG. II.l-1. Point of current in a three-dimensional conductor. 

the surface of the sphere with radius r, will be greater than that over the slightly 
larger surface of the sphere with radius r + !lr due to the voltage drop, 
- !l V across the resistance, !lR, of the thin shell of material of thickness !lr. 

(11.1-1) 

where A is the surface area of a sphere, radius r; i.e. 

(Il.l-2) 

where i0 is the total current. 
Dividing equation (II.l-2) through by !lr and taking the limit as !lr ~ 0 we 

get 

Hence, 

dV i0Ri 
- dr = 4nr 2 (Il.l-3) 

(II.l-4) 

where r is the nearer of two points distance r and r' from the point source of 
current. 

V= ioRi [~ _ ~] 
4n r r' 

(II.l-5) 

If the potential at distance r from the current source is measured with respect 
to a distant fixed point r', so that r' ~ r, then 

(II.l-6) 

that is to say the potential falls off inversely with distance from the point 
source. 



8 ROBERT S. EISENBERG AND EDWARD A. JOHNSON 

Line source of current. 

The potential close to a line source of current in a homogeneous material 
of resistivity of Ri can be calculated by considering the line source to 
lie along the longitudinal axis of two concentric cylinders of radius r and r' 
(see Fig. II.l-2). The current flows uniformly from the line in a direction at 

FIG. II.l-2. Line source of current in a three-dimensional conductor. 

right angles to the line, the circumference of either of the two cylinders there
fore delineates points which are equal distance from the line. The potential 
at the distance, r, normal to the line source can be calculated by considering a 
third cylinder concentric about the smaller of the other two but of radius 
r + 11r. The current, i0 , at a distance r will be associated with a potential V, 
and at a distance r + 11r with a potential V - 11 V. Thus there will be a voltage 
drop, -11. V, caused by the current flowing through the distance 11r, that is to 
say, through the resistance of the thin sheath of material thickness 11r, which 
surrounds the first cylinder. The resistance of unit length of this sheath will 
be Ri divided by the area of the sheath, 2nr, and multiplied by its thickness, 
11r.t The voltage drop -11. Vwill be equal to the product of this resistance and 
the current flowing through it. 

i0!1r 
-11V= -R. 

2nr ' 

Dividing through by 11r and taking the limit as 11r ~ 0 we get 

dV i0 Ri 

Hence Vis given by 

dr = 2nr 

r 

J
i 0R; dr 

V=- --
2n r 

r' 

which when integrated between the limits rand r' gives 

i0 Ri r' 
V= -1n-

2n r 
t Our calculation is for a unit length of the infinite cylinder. 

(II.l-7) 

(II.l-8) 

(II.l-9) 

(II.l-10) 
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That is to say, the potential falls off logarithmically with distance as opposed 
to inversely with distance for a point source. Furthermore, the potential 
approaches infinity as we approach the line and the point source. This is not 
surprising since we are forcing a finite current through a source which in each 
case has no area. 

Plane source of current 

Consider a circle of unit area on the surface of the plane source of current. 
Current leaving the plane sheet will be directed at right angles to the surface of 
the plane and will flow into a resistance, imagined as the resistance looking 
into the end of a slab of unit cross-sectional area. It is clear in this case that 
since this resistance increases linearly with the thickness of the slab, the poten
tial will fall off linearly with distance. Since the source has area the current 
density through it is finite and hence, at the source, there is no discontinuity 
in the potential and the potential does not go to infinity. 

II.2. Steady-state One-dimensional Cable Theory 

In one-dimensional cable theory the electrical potential is assumed to vary 
in only one dimension so that the direction of current flow in the cable is 
assumed to be in one direction only, namely, along the longitudinal axis of 
the cable. In other words, the potential in any one cross-section of the cable 
is considered constant. The theory treats the inner conductor as a line along 
which current is flowing, the resistance to the flow of current per unit length 
of this line, r i• being equal to the resistance of a unit length of the real conduc
tor of radius, a, and volume resistivity, Ri, i.e. ri = RJrra2

; Ri in [ohms] 
[em -l ]. 

The inner conductor is enveloped by a semi-insulating sheath and the resul
tant cylindrical cable is surrounded by an outer conducting sheath, the poten
tial of which does not change with time or distance. The specific resistance, 
Rm of the semi-insulating sheath is in [ohms][cm2 ] and the resistance of a 
unit length of this sheath is rm ([ohms][cm]). If the path length from inner to 
outer conductor through the sheath is of insignificant length, current can be 
considered to flow across the sheath only in one direction; namely radially. 
There are three ways in which the current can flow along the inner conductor 
from its site of injection to complete a circuit by reaching the outer conductor. 
It can flow (1) through the resistance of the semi-insulating sheath, (2) through 
the capacitance created by the separation of the inner and outer conductors 
by the sheath, and (3) through some load that may terminate the cable at a 
certain distance on either or both sides of the site of injection of current. 

This model cable is most closely simulated, biologically, by a nerve fiber 
where a long thin-walled cylinder of membrane imperfectly insulates an inner 
conductor of cytoplasm from an outer conductor of electrolyte in which the 
fiber is immersed. In this case, the fiber membrane is sufficiently thin to be 
able to neglect its thickness, so that current is considered to flow through it 
only in a direction at right angles to its surface. The condition that must be 
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satisfied for one dimensional cable theory to be applicable is that the current 
inside the cell flows in one direction only, namely down the longitudinal axis 
of the fiber. However, there are two situations where the direction of current 
flow obviously must have a radialt as well as a longitudinal component; 
one situation is in turning to leave the fiber through the membrane and the 
other is in entering the fiber from some kinds of current source, e.g. a point 
source. In both cases, deviation between the potential predicted by one-dimen
sional theory and measured values of the potential will occur, the magnitude 
of which will depend on the magnitude of the radial compared to the 
longitudinal component of current flow. Clearly, close to a point source, 
current will be flowing in all of three dimensions, that is to say, both radially 
and longitudinally and the deviation referred to above can be large. Voltage 
gradients develop about the point source of current which drive the current 
away from the source so that further down the fiber the entire cross-section of 
the fiber is filled with a uniform flow of current, of constant density in any 
cross-section. As we shall see, it is these radial voltage gradients near a point 
source of current which cause the measured potential within the fiber to 
deviate seriously from the potential predicted by one-dimensional theory. 
If one were to choose as a current source a disc placed at right angles to the 
long axis of the fiber and equal to its diameter (Taylor, 1963, pp. 244-6), then 
this kind of radial voltage gradient and the resulting errors are eliminated. 
In this case the current leaves the source (i.e. enters the fiber) in one direction, 
namely longitudinal to the fiber axis. Whether the current then maintains this 
direction while it leaves the cell depends only on the electrical properties of the 
membrane and the inner conductor and not on the source. For example, 
were rm so low and/or ri so high that most of the injected current left the fiber 
(via the membrane) within a distance comparable to the diameter of the fiber, 
then clearly the direction of current flow down the fiber at any point would 
have a considerable radial component. A consideration of one-dimensional 
cable theory allows us to assess under what circumstances the current would 
have to deviate significantly from its assumed one-dimensional pathway in 
order to leave the fiber. 

From one-dimensional cable theory we have 

V(x) = V(O)e-xf;. (II.2-1) 

where V is the steady displacement of membrane potential at a distance x 
from the site of injection of a steady current i0 into one end of a semi-infinitely 
long cable, and A. = (rmfrJt. The longitudinal current at any point in the 
inner conductor at distance x from the site of injection of current is given by 
Ohms law, i.e. 

1 dV 
i(x) = (II.2-2) 

t The direction of current flow in three dimensions in a cylinder is best expressed as three 
components of direction: one longitudinal, x, another an angle, 8, and a third a distance, r, 
in a plane oriented at right angles to the longitudinal axis of the fiber. Thus, current flow in a 
radial direction, in this case, means in any direction at right angles to the longitudinal axis 
of the fiber. 
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Using equations (II.2-1) and (II.2-2) 

v: v: ·c ) o -x;;. o -x/). z x = -e = --=e 
r). Jrmri 

(II.2-3) 

v: 
i(x) = - 0 

e-x/). 
2RP 

(II.2-4) 

where RP = ! (r mrJ!·. Therefore, equation (II.2-4) says that if i0 is the 
magnitude of the current injected (i.e. the value of i at x = 0), then at a 
distance x = ). down the fiber, i(x) will have a value of i(x)fe = 0·37i0 • That 
is to say, a considerable fraction of the current injected, almost two-thirds, 
will have escaped through the membrane as membrane current. 

This distance ). in which most of the longitudinal current has escaped must 
be large if one-dimensional cable theory is to be applicable, since the condi
tion required by one-dimensional cable theory is that current flows in one 
direction only, along the longitudinal axis of the fiber. Therefore it is necessary 
that the value of). be very much greater than the radius, a, of the fiber. How 
much greater ). must be than the fiber radius for the predictions of one-dimen
sional cable theory to be valid within a given error will be found by studying 
three-dimensional cable theory, which includes the effects of radial current 
flow. 

The analysis of three-dimensional cable theory given later in this paper 
shows that although the voltage gradients associated with the current turning 
to leave the fiber through the membrane can become significant, they are al
ways of secondary importance to those voltage gradients which are associated 
with driving the current away from a point source of current within the fiber. 
The reason for this is that the circumstance which causes the current to deviate 
from its predominantly one direction of flow in order to leave the fiber is the 
same condition which causes the voltage gradients about the current electrode 
to become comparable with the displacement in the potential gradient across 
the membrane. This circumstance occurs when the effective length constant 
becomes comparable with the diameter of the fiber, for instance when the 
membrane resistance or impedance is low. In this case much of the current 
leaves the fiber in a distance comparable with the diameter of the fiber, but, 
more importantly, more current must be injected to produce measurable 
displacements in the transmembrane potential. Although the magnitude of 
voltage gradients about the electrode tip is independent of the membrane 
resistance; they are, however, dependent on the magnitude of the current 
injected (and the resistivity of the cytoplasm). Thus as the membrane resistance 
is decreased, two interacting factors cause the voltage gradients about the 
electrode tip to contribute more and more to the total potential recorded by a 
voltage electrode situated close to the point of injection of current. The 
displacement in transmembrane potential caused by a given current flowing 
through the membrane is decreased and secondly, since more current has to be 
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injected (to obtain a given displacement of the membrane potential), the voltage 
gradients about the current electrode are increased. Thus, these voltage 
gradients around the current electrode become important when the membrane 
resistance (or impedance) is low, i.e. when the effective length constant is small. 

It must be remembered that the length constant is not really a constant 
since the effective resistance of the membrane (i.e. its impedance) is a function 
of the frequency of the injected current and indeed may depend on the value 
of the current. The surface membrane has both capacitive and resistive pro
perties and when arranged in the form of a simple smooth cylinder, the im
pedance it presents to the flow of current is that of a resistance in parallel 
with a capacitance. For the steady state case where the amount of the current 
injected is time invariant, that is to say the transmembrane potential at any 
point is constant, the membrane current is purely resistive and the effective 
length constant A is given by Crmfri)t, so provided that A is very much greater 
than the fiber radius, one-dimensional cable theory is applicable. However, if 
the membrane potential at any point is changing, the membrane current has 
two components, one capacitive and one resistive, and in this case the spread 
of potential is not regulated by (rmfrJt but by (zm/rJt, where zm is the mem
brane impedance given by a complex number. This question is discussed in 
more detail in Part B, section III, but here suffice it to say that if alternating 
currents are injected, there will be some high frequency of current where the 
membrane impedance, zm, is so low that the effective length constant at this 
frequency is comparable to the fiber radius a; and the measurable values of 
V(x) will deviate seriously from those predicted by one-dimensional cable 
theory. A similar situation occurs when the membrane potential is changing 
in response to a step of injected current. In this case the current and voltage 
waveforms are a complex mixture of a large spectrum of frequencies; the 
individual amplitudes and phases of the high-frequency components deter
mine the quickly changing parts of the waveforms and the low-frequency 
components determine the slowly changing parts of the waveform. Each fre
quency corresponds to an effective space constant and since the contribution to 
the waveform of the different frequency components is different at different 
times, the effective length constant itself is a complex function of time. Thus, 
at short times, which correspond to high frequencies, the effective length 
constant becomes comparable to the fiber diameter and deviations from one
dimensional theory are important. 

In the expressions for V(x,t) obtained from one-dimensional cable theory, 
zm (the a.c. generalization of r m) and ri are usually considered constant, 
though they need not be: these equations are of value even if zm and r i are 
functions of V, x or t, provided of course that these functions are known and 
that the essential assumption regarding one-dimensional flow of current is 
not violated. An example of the use of one-dimensional cable theory, where 
zm at any x is a function of voltage and time, is in the numerical solution of 
the Hodgkin-Huxley equations for a propagated action potential (Hodgkin 
and Huxley, 1952; Cooley and Dodge, 1966). The current source in this case 
would appear as a ring equal in radius to the fiber. One-dimensional cable 
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theory is not strictly applicable to this case since the effective length constant 
during much of the action potential is comparable with the fiber radius. 
Hence, the waveform of the action potential recorded with a microelectrode 
at a given point down the length of the axon will be found to be a function of 
the depth of the electrode within the fiber. We shall return to this question later 
(Part B). 

III. SOLUTIONS OF THREE-DIMENSIONAL ELECTRICAL 
FIELD PROBLEMS FROM SOLUTIONS OF ANALOGOUS 

HEAT PROBLEMS 

III.l. General Discussion 

An electrical field problem is one in which the electrical potential varies 
with position in space. The mathematical statement of the problem necessarily 
involves a partial differential equation since the quantity of interest, the poten
tial, is a function of more than one dimension and can also be a function of 
time. 

In general, a partial differential equation states the general physical laws 
relevant to the particular problem; the particular form of the partial differen
tial equation is determined by the coordinates which best take advantage of 
any symmetry inherent in the particular electrical field of interest. For 
example, the electric field in a spherical cell is best described by a partial 
differential equation written in spherical coordinates (radius and angles) 
whereas a cylindrical cell is described by a system of cylindrical coordinates (a 
radius, an angle about an axis and a length along the axis). The solution of 
such a partial differential equation always involves functions appropriate to 
the geometry. For example, solutions for partial differential equations for 
spherical coordinates are usually written in terms of "spherical" functions like 
Legendre polynomials, Pm and spherical Bessel functions, jm, and solutions of 
partial differential equations with cylindrical coordinates are usually written in 
terms of cylindrical Bessel functions, lw There is nothing mysterious about the 
presence of such higher transcendental functions since just as the sine, cosine, 
and exponential functions were invented to describe circular problems, so 
were these other functions invented to describe cylindrical and spherical pro
blems. 

One of the essential qualitative features of partial differential equations is 
that the solution of these equations depends very much on the facts of the 
particular problem, namely, in the case of electrical field problems, the way 
field is produced (i.e. its source) and the geometry of the boundary of the 
field and the laws the field must obey there. The partial differential equation 
describing an electrical field problem states, in essence, that there is conserva
tion of charge and that charge causes an electric field according to Coulomb's 
law. These are quite general statements, and must be specialized by the details 
which define the particular problem, i.e. the boundary conditions. Hence the 
solution of a partial differential equation depends decisively on the boundary 



14 ROBERT S. EISENBERG AND EDWARD A. JOHNSON 

conditions. Lists of solutions of a given partial differential equation are thus 
necessarily extensive, covering as they do all sorts of boundary conditions. 

An idea of the enormous number of possible solutions of a particular 
partial differential equation is given in Carslaw and Jaeger's book (Carslaw 
and Jaeger, 1959) which lists solutions of the partial differential heat equation. 
In fact, to our knowledge, this is the only equation for which such an exten
sive listing of analytical solutions has been compiled. It is indeed fortunate 
that the partial differential equations of the electrical field problems with 
which we are concerned are special cases of the heat equation. It is under
standable, therefore, that we must spend some time describing just how the 
solutions in Carslaw and Jaeger can be converted into solutions of analagous 
electrical problems. 

However the laws that are relevant to a heat field are basically different from 
those relevant to an electrical field. t The material in which the heat field exists 
has both capacity for heat and resistance to the flow of heat within it, whereas 
the electrical field exists in a space that merely resists the flow of electrical 
current. From this we should expect that the partial differential equation for 
heat field problems (equation III.l-1) differs from that for electrical field 
problems (equation III.1-2). 

oP 
KV 2P - Cp ot =rate of heat applied per unit volume (III.l-1) 

1 
R. V 2 V =current applied per unit volume 

I 

(III.l-2) 

In equation (III.l-1) Pis temperature, Kis the heat conductivity ([cal][cm - 1
] 

[°C - 1 ][sec -1]), pis the density of the material ([g] [em - 3 ]), Cis the specific 
heat ([call][g-1 ][°C-1]). In equation (III.l-2), Vis the electrical potential, 
Ri is the volume resistivity of the conductor ([ohms][cm]). 

These equations are statements that the formation of a heat field in matter 
is governed not only by the heat conductance, K, but also by the heat capacity 
of the matter, pC, whereas only one electrical property of the matter governs 
the formation of an electrical field, namely the electrical resistivity Ri. We can 
make the two equations identical by eliminating the term containing the heat 
capacitance, C, in equation (III.1-1). This is simply done by setting oPfot = 0. 
That is to say, the steady-state solutions of heat problems can be used to solve 
steady-state electrical problems. With perhaps only one exception (which we 
will discuss later), we cannot obtain solutions to non-steady-state electrical 
problems by using non-steady-state solutions of the heat equation. However, 
as we shall see (Part B), we can convert steady state solutions of electrical 
problems into non-steady-state solutions of electrical problems, and hence 
the steady-state solution of a heat problem is all that we need. 

From equations (III.l-1) and (III.l-2) we can see that the heat analog of 
electrical potential, V, is temperature, P; that of current, the flow of heat; 

t At times long compared to the relaxation time of the conductor the relaxation time of 
electrolyte solutions is much less than a microsecond. 
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and the analog of electrical resistivity of the conductor, Ri, is the reciprocal of 
heat conductivity, 1/K. In electrical problems the effects of membrane resis
tance and capacitance on the formation of the electrical field are described by 
the equations for the boundary conditions since these membrane elements form 
a boundary of the field. Hence, the heat analog of membrane resistance in 
the steady-state electrical problems will be found by comparing the equivalent 
boundary conditions for the heat and electrical problems. 

The boundary conditions appropriate to any of our electrical problems is 
that the current flowing at right angles to the membrane, in the inner conduc
tor immediately beneath the membrane, is equal to the current leaving through 
the membrane. Thus the boundary condition is 

(III.l-3) 

where Ri ([ohm][ em]) is the volume resistivity of the inner conductor, Cm is 
the specific membrane capacitance ([F][cm -2

]), Rm is the specific membrane 
resistance ([ohms][cm2

]) and dVjdn is the spatial rate of change (that is, the 
gradient) of potential in the direction normal to the membrane surface. Vis the 
potential in the inner conductor and V 0 the potential just outside. When 
av;at is zero, this boundary condition is precisely analogous to the linear heat 
transfer boundary condition used by Carslaw and Jaeger (which for historical 
reasons, they call the "radiation" boundary condition). 

ap 
K on + H(P - P 0 ) = 0 (III.l-4) 

where His the surface conductivity. We can see from these two equations 
(III.l-3) and (III.l-4) that the heat analog of membrane conductivity, 
1/Rm is the surface conductivity, H. 

For mathematical convenience we define a constant, A, such that A = 
Rm/Ri. This constant, A, has units of [em] and can be considered as a genera
lized "space" constant independent of the particular geometry. t The heat 
equivalent of A -l is therefore H/K. In Carslaw and Jaeger H/K is often 
renamed, h. 

There is perhaps one outstanding exception to the rule that only steady
state solutions of electrical problems can be obtained from solutions of heat 
problems. 

This is the non-steady-state solution for a step of voltage applied to one 
end of a one-dimensional cable. The heat problem that has the same equation 
is the case where a step of temperature is applied at one end of a one-dimen
sional rod of heat conductor (linear flow of heat assumed) where the conduc
tor is losing heat from its surface. Although the mathematics of the two prob
lems are the same, the physics in the two cases is clearly not the same. The 
material which has the properties of a capacitor (i.e. stores charge) in the 

t Although the term "space" might imply that the constant has units of cm3
, we use the 

word merely to distinguish it from the length constant, A, of one-dimensional cable theory. 
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electrical problem (as applied to a nerve fiber) is the cell membrane, whereas 
in the heat problem it is the conductor itself which has the capacity to store 
heat. 

The identity of the two solutions is fortuitous. It comes about because, in 
the heat problem, the heat is lost through an infinitely thin surface which, 
because it has no mass, has therefore no capacity for heat. 

Heat entering any element of the conductor is then either stored in its own 
capacity or it flows out through the "radiation resistance" of the surface. 
Therefore, in this particular case, heat flows through a resistor (the heat 
conductivity of the conductor) into a capacitor and a resistance in parallel 
(heat capacitance of the conductor and the "radiation resistance" of the 
surface). The mathematical analogy is thus correct in this unusual case, but the 
physical analogy is incorrect. Although the heat capacity behaves as though 
it were in parallel with the radiation resistance it is in fact a physical property 
not of the surface but of the inner conductor, whereas the electrical capacity 
and resistance are both properties of the surface membrane. 

It is this inseparability of heat capacitance from heat conductivity that 
prevents us from, in general, using the heat capacity of heat problems as an 
analog of electrical capacity in electrical problems. A finite heat conductance 
is always associated with a finite mass of material and hence a finite heat 
capacitance. Furthermore, this capacitance must always be "charged" with 
heat through the conductance (resistance). We have therefore no isolatable 
heat analog of electrical capacity. And for the same reason there is no heat 
analog of an electrical conductance since the latter has no capacity but only 
resistance. The different location of the heat and electrical capacity is inherent 
in the equations that describe the respective fields. The heat capacity is only 
in the partial differential heat field equation whereas the electrical capacity 
only appears in the boundary conditions to the electrical field equation. 
Remembering that heat capacity is responsible for the time dependence of the 
solutions to the heat equation, we now see why transient solutions of heat 
problems do not correspond in general to transient solutions of electrical 
problems. 

III.2. Conversion of the Solution of a Heat Problem to the 
Steady-State Solution of an Electrical Problem 

As we have seen, only steady-state solutions of the heat equation, where the 
heat capacity plays no role, can be used in solving electrical problems. 
It is necessary, therefore, to convert the transient solutions of the heat equa
tion given in Carslaw and Jaeger (1959) to steady-state solutions. Many of the 
solutions in Carslaw and Jaeger give the temperature produced not by a step 
but by an impulset of heat. It is necessary to change this solution first into 
that for a step of heat and then determine the steady state. We shall illustrate 

tAn impulse of heat can be considered as a pulse of heat of very short duration (as short 
as we wish) but always of sufficient intensity that the total heat is of unit magnitude. The 
mathematical statement of such an impulse is the delta "function". 
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this conversion with an electrical problem involving the three-dimensional 
spread of current in a leaky electrical cable. In later sections dealing with other 
geometries we shall simply state the conversion. 

The physiological analog of the electrical case is that of a nerve fiber which 
is idealized as a circular cylinder, the interior of which is filled with a material 
of uniform resistivity and the exterior of which is assumed to be isopotential. 
The cylindrical fiber is of radius a; the electrodes are points and separated 
by the circumferential angle e and the axial distance X (Fig. IV. 1-1). 

We wish to calculate the steady displacement of membrane potential 
V(x,8,t) at any point caused by a steady current, i0 , applied by one electrode. 
This solution can be found from the solution of the corresponding heat 
conduction problem with the appropriate boundary condition referred to 
above. This heat problem is that of the distribution of temperature in a 
cylinder which is losing heat by "radiation" at the surface, heat being steadily 
applied at a point in the cylinder. The solution of the heat problem with the 
same geometry for an instantaneous, impulse, source of heat is presented in 
Carslaw and Jaeger (1959), p. 378, equation 7, and is reproduced in section 
IV. 

The first step in finding the solution to the electrical problem is thus to 
convert Carslaw and Jaeger's solution (here called p(x,8,t)) for an impulse 
source of heat applied at a point to the solution for a step function of heat 
applied at a point (the latter solution being called P(x,8,t). The solution for a 
steady source of heat is then found by computing the "final" steady-state 
temperature produced by a step function of heat applied at a point. The 
solution for a steady source of heat is given by P(x,8) == lim P(x, e, t). 

t-+ OCJ 

The transient solution to a step function of heat P(x, 8, t), giving the tem
perature P as a function of time from the beginning of a step of heat is found 
using the solution for an impulse of heat, by simulating a step of heat with a 
continuous series of impulses. The first calculation necessary consists of 
computing the temperature found at time, t, after an impulse of heat which 
had occurred previously at time, 1:. The second step is to sum the temperatures 
produced by a continuous sequence of such impulses, the first impulse being 
at time 1: = 0 and the last 1: = t. The temperature found at time t, after one 
impulse of heat had occurred previously at time 1:, is p(x,B,t-1:), and the sum 
(i.e. the integral) of the temperatures contributed by all these impulses gives 
the temperature P(x,8,t) resulting from a step function of heat. 

t 

P(x,O,t) ~I p(x,O,t - r)( -dr) (III.2--1) 

0 

The temperature produced by a steady source of heat is then 

OCJ 

P(x,8) =lim P(x,8,t) = Ip(x,e,t- 1:)( -d1:) 
t-+ OCJ 

(III.2-2) 

0 
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IV. THE CYLINDRICAL CELL 

In this section the equations describing the spread of potential in a cylin
drical nerve or muscle fiber are derived and a practical form of this solution is 
developed. Computations of the spread of potential for electrodes at different 
positions are presented in tabular and graphic form. The reader who is primarily 
interested in the results should go to the sub-section entitled Computations 
of the Spread of Potential and trust that we have made the derivation and 
computation correctly. 

The equation describing the displacement of membrane potential produced 
by a step of current injected at a point inside a cylindrical fiber has been 
stated by Falk and Fatt (1964) in conjunction with their analysis of the input 
impedance of muscle fibers at high frequencies. This solution will be derived 
here from the solution of a related problem of heat conduction. The solution is 
found to be impractical, however, since it involves the roots, which have not 
been tabulated, of an expression containing Bessel functions (see equation 
IV. 1-15). Nevertheless, if the length constant, A., is at least as large as the 
fiber diameter, these roots will be shown to be closely approximated by the 
well tabulated roots of the derivatives of Bessel functions. Expressions for the 
error in this approximation are given. With this approximation the com
putation of the displacement of the membrane potential as a function of 
position becomes much easier. This computation shows that the potential at 
any point can be written as the sum of two terms, the first is the familiar, 
one-dimensional, cable term and the second describes the steep rise of trans
membrane potential around a point source of current. The latter term is quite 
independent of the particular properties of the fiber membrane, that is to 
say, it only depends on the size of the fiber and the position of the electrodes. 
The first term, however, depends on the specific membrane resistance, so the 
relative importance of the second term depends on the membrane properties, 
and is greatest, as expected, when the length constant is small. 

IV. I. Solution of the Three-dimensional Cable Equation 

Figure IV.l-1 shows the geometry of the system of interest if the nerve is 
idealized as a circular cylinder, the interior of which is filled with material of 

••• -0 0 0 ••••••••••••• ····~ 

••••••••• 0 •••••••••••• 0 0 .... 0 ••••••••• ~-'· 

X 

FIG. IV.l-1. The cylindrical cell with microelectrodes. 
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uniform resistance and the exterior of which is assumed to be isopotential. 
The cylindrical fiber is of radius a; the points within the fiber at which the 
current is injected and the potential recorded are separated by the circumfe
rential angle G, and the axial distance x. The distance of these points from the 
axis of the fiber is r' and r. The equations describing the spread of potential 
in any linear symmetrical system are also symmetrical in r and r'. That is to 
say, it is irrelevant whether r orr' refers to the position of the point source of 
current or the position of the point of potential measurement. The volume 
resistivity of the interior of the fiber is Ri ([ohm][ em]), and hence the resis
tance (to longitudinal current flow) of a unit length of the interior of the fiber 
is ri = RJna2 ([ohms][cm -l ]). With regard to the resistive properties of the 
membrane, it would seem natural to describe them in terms of the volume 
resistivity of the membrane material. However, the effective thickness of the 
membrane is not known and hence it is both conventional and sensible to 
describe the resistive properties of the membrane in terms of a specific resis
tance, namely the resistance (to radial current flow) of 1 cm2 of membrane
Rm([ ohms][ em 2 ])-so that the resistance of the membrane of a unit length of 
fiber is rm = Rm/2na ([ohms][cm]). The d.c. length constant, A., [em] is given 
by -HrmrJ!·. 

We wish to calculate the displacement of potential V(x,8) at any point 
within the cell caused by a steady current, i0 , applied at another point within 
the cell. This solution can be found from the solution to the corresponding 
heat conduction problem in the way that we described in the previous section. 

The temperature produced by a steady source of heat was found to be 
given by 

•=t=oo 

P(x,8) = lim 
t-+ 00 

P(x,O,t) = f p(x,O,t - <)( -dr) (IV.1-1) 

1:=0 

Using the appropriate solution from Carslaw and Jaeger (equation 7, p. 378) 
for an impulse of heat, we have for P(x,8), where K = K/ pC 

n= +oo 

1 L L a
2 
Jn(ar)Jn(ar') 

P(x,8) = -2 2 cos n8 [ 2 ] na 2 2 n z 
n=-oo a a +h -----z JnCaa) 

a 
oo x2 

J '_e_-_-4-;K-(=·~--t=)=-=Ka=2(=r-~•> (- dr) 

0 
JnK(t- r) 

(IV.1-2) 

where aa is each positive number for which the following equation is true. 

aJ~ (aa) + hJn(aa) = 0 (IV.1-3) 

The above integration can be performed using a table of Laplace transforms 
to compute definite integrals. This trick is quite useful since extensive tables · 
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of Laplace transforms are available. This is illustrated by first recognizing 
that equation (IV.l-2) is of the form 

00 

P(x,O) = C(x,O,r,r') ff(T)e-•TJT (IV.1-4) 

0 

wheref(T) = [nKT]-texp [ -x2 /4KT] (IV.1-5) 
C is a constant, T = t - 't; (dT = - d't since t does not vary during this 
integration) and s = Ka 2

• By definition the integral in equation (IV.l-4) is 
the Laplace transform ofj(T), which for this particularf(T) is listed by Roberts 
and Kaufmann (1966) as equation 3.2.6. on p. 22 and is reproduced below in a 
slightly modified form. 

In terms of heat problem variables, and noting a = x2/K, 

00 

1 f 1 [ t -t J __ y-t -x2/4KT -(% 2KTdT _ __ t -1 -t -K IUK tt e e - tt na K e 
1tK 1CK 

0 

Substituting (IV.1-8) in (IV.1-2) we get 

Rearranging, 

1 
P(x (}) =-

' 2nK 
n=- oo « 

(IV.1-6) 

(IV.1-7) 

(IV.1-8) 

(IV.1-9) 

(IV.1-10) 

Now on exchanging heat variables for the equivalent electrical variables, 

K = Ri -1, h = RdR,. = af2J.2
, and letting f3 = aa, we gett 

n= + <n 

i 0 Ri \ \ f3e-Pxfa 111(/3rfa)JnCf3r'fa) 
V(x,(}) = 2na L cos ne L p2 - n 2 + !(afJ.) 4 J ?.C/3) 

n=- CX) P (IV.l-11) 

tThe variable i0 appears in equation (IV.l-11), whereas no equivalent variable appeared 
in the heat equation since for simplicity we assumed a heat source of unit strength. Further
more, because of the way Carslaw and Jaeger define their unit source (seep. 256, footnote), 
the heat solution has been divided by pC. 
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Substituting na 2ri for Ri, 

n= +CXJ 

V(x B) = ioria \ \ f3e-Pxfa Jn(f3r/a)Jn(f3r'ja) 
, 2 L cos ne L pz - n2 + t<aJ .. 1f J~(/3) 

n=-CXJ P (IV.1-12) 

Similarly in the root equation (IV.l-3) we substitute for the heat variable, 
h, the electrical equivalent, RJRm, and let f3 = aa. Then, equation (IV.l-3), 
rearranged, becomes 

(IV.1-13) 

but since 

we see that 

(IV.1-14) 

Substituting in equation (IV.1-13) we get the root equation 

J ~({3) - - ![~]2 
p Jn(/3) - 2 A (IV.1-15) 

Note equation (IV.l-15) defines f3 as all those positive numbers for which the 
equation is true, i.e. the f3's are the roots of the equation. 

In these equations J" is a Bessel function of the first kind, order n (Abramo
witz and Stegun, 1967), and the prime denotes differentiation with respect to 
the entire argument of the Bessel function, here fl. For the case where the 
electrodes are situated just below the membrane, i.e. r = r' = a, equation (IV. 
1-12) simplifies 

(IV.1-16) 

IV.2. Determination of a Convenient Expression for the Roots 

The solution, equation (IV.1-12), cannot be used unless the roots of equa
tion (IV.1-15) can be evaluated. Since these roots are inadequately tabulated 
(Carslaw and Jaeger, 1959, p. 493) they must be evaluated by some numerical 
method, such as Newton's method or by inverse interpolation from tables 
(Onoe, 1958, can be used if the roots are real), or approximated by known 
functions. Furthermore, since the roots depend on the properties of the fiber, 
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i.e. on aj)., the numerical process would have to be repeated for each ajA of 
interest. We will see that only one root, the "dominant" root (the smallest 
root for n = 0) can be approximated by a simple function. However, it is 
possible to show for the case where aj). is smaller than 0·5; the other roots of 
equation (IV.1-15) become quite independent of aj). and can be closely 
approximated by well-tabulated roots, so that it becomes easy to use the 
solution (IV.1-12) in a variety of cases of interest. 

Recently, numerical evaluations of the roots f3 have been performed 
(Adrian, Costantin, and Peachey, 1969). We have been able to check our 
approximations and to correct several errors thanks to the generosity of L. D. 
Peachey, who has made the results of his computations available to us. 

The development of this approximation begins with a consideration of 
equation (IV.1-15). When aj). is small, the R.H.S of this equation becomes 
small and hence the roots, {3, of this equation approach those of this equation 
with the right-hand member zero. That is to say, the roots {3, of equation 
(IV.1-15) when ajA-+ 0, approach the roots, z0 , of the equation Fn(z) = 0, 
where Fn(z) is defined as 

(IV.2-1) 

The roots, z0 , are defined then by the expression: 

J~(zo) 
Fn(zo) = Zo Jn(zo) = 0 (IV.2-2) 

Now Fn(z) = 0 when either J~(z) = 0 or Jn(z) = oo. Since Jn(z) is never 
infinite (for z > 0), Fn(z) is 0 only when J~ = O.t That is the roots of the 
equation Fn(z) = 0 are the roots of the equation J~(z) = 0. These roots z0 , are 
of course independent of the particular value of a/ A, for they are the roots of 
the equation Fn(z) = 0, which equation does not include any membrane pro
perties. 

In order to examine how well the roots z0 approximate the roots f3 used in the 
solution of equation (IV.1-15), the distinction between these roots must be 
kept clearly in mind. The roots z 0 are those numbers that satisfy the equation 
Fn(z) = 0 and would be identical to the roots of equation (IV.l-15) were the 
right-hand member of that equation zero. However, the roots {3, are the roots 
of equation (IV.1-15) in which the right-hand member is not zero, in fact 
the roots f3 are the positive numbers which satisfy the equation Fn(/3) = 

-0·5(aj).) 2 • The two sets of roots clearly coincide if aj). = 0. Moreover, if 
the right-hand side of equation (IV.1-15) is sufficiently small, the numbers z0 

become a good approximation to the roots of equation (IV.l-15).t 
We must now determine just how small aj). must be to make this approxi

mation satisfactory. For this purpose, it is convenient to develop an expres
sion which gives the value of Fn(z) when z is close to z0 ; Fn(z) is therefore 

t The factor z in the numerator of equation (IV.2-1) has not been ignored; z = 0 is also 
a root of J~(z). 

t Since Fn(z) is a continuous function for the range of z of interest. 
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close to zero. This expression can then be substituted into equation (IV.2-1) 
to show just how much z must be adjusted from z0 to make Fn(z) = -0·5 
(afJ..) 2

• If z must be adjusted less than 2% to satisfy this equation (for a certain 
ajJ..), the roots z0 are considered to be a sufficiently accurate approximation to 
the root /3, for that and smaller values of afJ... 

If the difference between the root z0 and f3 is called h (i.e., h = f3 - z0 ) the 
required expression is given with sufficient accuracy by the first term of the 
Taylor expansion of Fn(z) around its root z0 • 

(IV.2-3) 

Substitution of the explicit expression for F~(z0) (see section IV.6) into equa
tion (IV.2-3) and then into (IV.l-15) gives an expression for how far f3 is 
from z0 

f3 - Z 0 h 0.5(afJ..)2 

z 0 = z 0 = z~ - n2 (IV.2-4 

The fractional difference between the two roots f3 and z0 , hfz0 , depends on the 
properties of the fiber (i.e. ajJ..), the order, n, ofthe function, and the value of 
the root z0 • The fractional error is largest (for given fiber properties) when z0 ' 

is the smallest root of J~(z) with n = 1, i.e. when z0 = 1·841. This root is 
named j { ,1 in the standard nomenclature for the roots of Bessel functions 
(Olver, 1960). Under these conditions when the length constant is greater 
than two fiber diameters (aj). < 0·25), the fractional difference between f3 and 
z0 is less than 2%. Even when the length constant equals one diameter 
(a/J.. = 0·5) the error is less than 6%. Higher order roots (i.e. larger roots) of 
equation (IV .1-15) are much better approximated by the corresponding 
roots, z0 • 

The above discussion shows the closeness of the roots f3 and z0 for all condi
tions under which the Taylor expansion (IV.2-3) is valid. However, the 
expansion fails to approximate the "dominant" root of equation (IV.l-15), 
namely the smallest root when n = 0, since it fails to describe the function 
Fn(z) if z is very small when n = 0. A suitable expansion for F0 (z) in this region 
can be developed from a similar expression in Onoe (1958) (equation 3.16). 
For small z 

F 0(z) = -----
2 8 

(IV.2-5) 

Neglecting all but the first term of equation (IV.2-5) and substituting that 
term into equation (IV.1-15), gives the expression for the dominant root; 

a 
/3=). (IV.2-6) 

This expression is accurate within 2% as long as the length constant, J.., is 
greater than one fiber diameter. 

B 
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The dominant root (given by equation IV.2-6) clearly has a different 
physical significance from the other roots, since it alone depends on the 
properties of the fiber (to the accuracy implicit in the approximations). 
Substitution of this root f3 = aj A into the appropriate term (n = 0) of the 
solution (IV.l-12) and neglecting the term 0·25 (a/A)4 in the denominator 
enables the "dominant" term of the solution to be calculated. 

(IV.2-7) 

The second factor, Q, in this "dominant" term is given by equation (IV.2-8) 
and approximates unity as we shall see below. Since the dominant root is 
equal to a I A, 

J o(f3rla)J 0({3r' fa) J 0([ a/A][r/a])J 0 [(a/A][r'/a ]) . 
Q = J 6(/3) = J 6(a/A) (lV.2-8) 

Because rIa < 1, r' I a < 1 and a I A < 0· 25, the argument of the Bessel func
tions is sufficiently small that a Taylor expansion can be used 

(IV.2-9) 

This expression is very close to unity for the range of r, r' and A of interest 
(within 1 %). Thus, the "dominant" term described in equation IV. 2-7 is 
simply the classical expression which describes the one dimensional spread 
of current. 

The other roots determine the correction of the classical expression neces
sary to describe the steep rise of potential near a point source of current. 

IV.3 Computation of the Spread of Potential 

The solution, (equation IV.l-12), can now be rewritten using the approxi
mation of the roots described above 

V(x,8) = 0.5rii 0 a[L(x) + S(x,8)] (IV.3-l) 

where LandS represent the spatial decrement of potential caused, respectively, 
by one-dimensional and three-dimensional spread of current and are given by 

A. 
L(x) = - e-xf). 

a 
(IV.3-2) 

(IV.3-3) 
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A = . j~.s 
n,s - ;·t2 - n2 

n,s 

25 

(IV.3-4) 

(IV.3-5) 

The roots z0 have been renamed here in order to place them in a systematic 
array in the conventional manner. The symbol j~.s represents the sth root 
(in order of increasing magnitude) of the functionl~(z). These roots are exten
sively tabulated in Olver (1960). Some of the roots jn:s and the coefficients, 
An,s are given in Table 1 ; this table greatly facilitates the calculation of poten
tial as a function of position. In each box in this table there are two numbers, 
the lower is j~.s the upper is An,s· The value of n and s for each box is indi
cated across the top of the table and down the side respectively. 

Some discussion of the accuracy of equations (IV.3-l, 2, 3, 4, 5) is necessary. 
The term 0·25 (a/A)4 does not appear in the denominator of equation (IV.3-5) 
since for (a/A) < 0·25 the term is negligible. For finite electrode separation 
(i.e. x # 0), the error in the solution caused by the approximate nature of the 
roots is hardly larger than the largest error in any root, since the sum con
verges rapidly. Thus this solution is thought to be quite accurate whenever 
the length constant is greater than two fiber radii, and is considered reasonably 
accurate when the length constant is greater than one fiber radius. 

IV.4. Plots of the Spread of Potential 

We will first discuss the case where the tips of the microelectrodes are just 
beneath the membrane since all of the qualitative effects of the three dimen
sional spread of current are illustrated by this case. Moreover, at least with 
larger fibers (frog skeletal muscle and invertebrate nerve), this is the most likely 
position of the electrode tips since it seems unlikely that the electrode could 
penetrate more than a small fraction of the fiber radius without causing a 
large leakage. For this case, equations (IV.3-1, 2, 3, 4, 5) are applicable, the 
equations being simplified by setting r = r' = a. 

IV.4a Both electrode tips just beneath the membrane. 

Computations of the value of V for various values of x, {), and Aja using 
equations (IV.3-1, 2, 3, 4, 5) have been made. The general reader would be 
most interested in the size of the correction term for the three-dimensional 
spread of current, S, relative to the size of the one-dimensional term, L, in 
equation (IV.3-1). If). ~ a then the correction term, S, will be small relative 
to that of the one-dimensional term L. However, it must be remembered in 



TABLE I. R90TS U~ .• ) AND COEFFICIENTS A;,,, FOR CYLINDRICA.L CELL 

Part 1 

~· . 
0 1 2 3 4 ' 5 6 7 

s 
I 

1 Ao,o = 0 0·7704 0·5732 0·4857 0·4332 0·3970 0·~701 0·3490 
jo,o = 0 1·8412 3·0542 4·2012 5·3175 6r4156 7·5013 8·5778 

2 0·2610 0·1944 0·1637 0·1451 0·1323 0·1228 0·1154 0·1094 
3·8317 5·.3314 6·7061 '8·0152 9·2824 10·5199 11·7349 12·9324 

3 0·1425 0·1188 0·1045 I 0·0948 0·0876 I 0·0820 0·0775 0·0737 
7·0156 8·53{)3 9·9695 11·3459 12·6'819 13·9872 15·2682 16·5294 

4 0·0983 0·0861 0·0777 0·0716 0·0668 0·0630 0·0599 0·0572 
10·1735 11·7060 13·1704 14·5858 15·9641 17·3128 18·6374 19·9419 

5 0·0751 0·0676 0·0621 0·0579 0·0545 0·0517 0·0493 0·0473 
13·3237 14·8636 16·3475 I 17·7887 19·1960 20·5755 21·9317 23·2681 

I• 

6 0·0607 0·0557 0·0518 0·0487 0·0461 0·0439 0·0421 0·0405 
16·4706 18·0155 19·5129 20·9725 22·4010 23·8036 25 ·1839 26·5450 

7 0·0510 0·0474 0·0445 0·0421 0·0401 0·0383 
19·6159 21:1644 22·6716 24·1449 25·5898 27·0103 

8 0·0439 0·0412 0·0390 

I 
22·7601 24·3113 I 25·8260 

8 9 

0·3318 0·3175 
9·6474 10·7114 

0.'1044 0·1001 
14·1155 15 ·2867 

0·0706 0·0678 
17·7740 19·0046 

0·0549 0·0529 
21·2291 22·5014 

. 0·0455 0·0439 
24·5872 25·8913 
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0·3053 
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this connection that the effective space constant (see Part B: the a.c. case) 
varies not only with Rm but with the rate of change of potential as well. 

L+S 
L 

TABLE 2. FACTOR BY WHICH VOLTAGE PREDICTED BY ONE-DIMEN

SIONAL THEORY MUST BE MULTIPLIED TO GIVE VOLTAGE PREDICTED 

BY THREE-DIMENSIONAL THEORY 

A/a X 0·25 0·5 0·75 1 2 
0 

0 2·81 1·78 1·44 1·27 1·06 
5·6 2·67 1·76 1·43 - -

11·3 2·36 1·70 1·41 1·26 -
2·0 22·5 1·79 1·53 1·35 1·23 -

45 1·22 1·22 1·18 1·14 1·04 
90 0·83 0·89 0·94 0·96 1·00 

135 0·70 0·76 0·82 0·87 0·96 
180 0·66 0·73 0·79 0·84 0·95 

0 1·85 1·34 1·18 1·11 1·02 
5·6 1·79 1·33 1·18 - -

11·3 1·64 1·31 1·17 1·10 -
4·0 22·5 1·37 1·23 1·14 1·09 -

45 1·10 1·10 1·07 1·05 1·01 
90 0·92 0·95 0·97 0·99 1·00 

135 0·86 0·90 0·93 0·95 0·99 
180 0·84 0·88 0·91 0·94 0·99 

0 1·33 1·13 1·06 1·04 1·01 
5·6 1·30 1·12 1·06 - -

11·3 1·25 1·11 1·06 1·03 -
10·0 22·5 1·14 1·09 1·05 1·03 -

45 1·04 1·04 1·03 1·02 1·00 
90 0·97 0·98 0·99 1·00 1·00 

135 0·95 0·96 0·97 0·98 1·00 
180 0·94 0·96 0·97 0·98 1·00 

Voltage predicted by one-dimensional theory, V*(x), is given by: 

Voltage predicted by three-dimensional theory, V(x, 0), both elec
trodes just beneath the membrane, is given by: 

V(x,O) = factor listed x V*(x) 

Table 2lists numbers for certain values of x, 8, and A./a which are correction 
factors by which the potential calculated from one-dimensional cable theory 
must be multiplied to give the potential calculated from three-dimensional 
cable theory. It will be seen that correction factors for short length constants 
(e.g. A. fa = 2 ·0) are enormous, especially with small electrode separation and 
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FIG. IV.4-1. Plots of the circumferential displacement of transmembrane poten
tial at various distances, x/a, along the longitudinal axis away from the current 
electrode. In each drawing in this figure, the inner circle represents the fiber in 
cross-section at a given distance, x/a, indicated in each drawing. The radial 
distance from the circumference of the inner circle to the dashed circle represents 
the displacement in transmembrane potential calculated from one-dimensional 
cable theory. The radial distance from a point on the circumference of the inner 
circle to the outer dotted curve represents the displacement in the true trans
membrane potential as calculated from three-dimensional cable theory. Both 

electrodes just beneath the surface, r = r' = a; Aja = 2.0. 

29 
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are by no means insignificant even when .A/a = 10 if the electrode separation 
is small. Some of the data from Table 2 is used in Fig. IV.4-l. In each draw
ing in this figure, the inner circle represents the fiber in cross-section at a 
given distance (indicated in each drawing) away from the point of injection of 
current. The radial distance from the circumference of the inner circle to the 
outer dashed circle represents the membrane potential as calculated from 
one-dimensional cable theory. The radial distance from the inner circle to the 
outer dotted line represents the transmembrane potential as calculated from 
three-dimensional theory. Only the points indicated on this line are calculated 
values of membrane potential; the continuous line between the points was 
drawn free hand. 

The following discussion considers the three-dimensional term S, of 
equation (IV.3-l), in more detail. Figure IV.4-2 shows how the three-dimen
sional termS, varies with xja, for different angular separation, e, of the elec
trodes. In other words this figure shows how the magnitude of the three
dimensional term varies along the length of the cable. The three-dimensional 

e ~ o· 

+ 3. 

+2.0 

22.5" 

+1.0 

s 

CYLINDRICAL CELL 
X s vs. a 

for various values of 8 

r = r'= a 

0 ~::------------_...._ __ ~-~---~--~--~--~-~--~--~--~--~--~--~--~--~-~--~--~-~~~~-

-1.0 

0 

1350 
teo• 

0.25 0.5 0.75 1.0 .!. 
a 

1.5 2.0 

FIG. IV.4-2. The value of the three dimensional correction term, S(x,O), in 
equation (IV.3-1) plotted as a function of distance, xja. Each of the six curves is 
for a different angular separation (indicated on the curve), 0, of the tips of the two 

electrodes both just beneath the membrane. 

term gets very large and depends steeply on x fore = 0. For greater angular 
separations, the effect is both smaller and less variable. Figure IV.4-3 shows 
the same data but in a different form. Here the magnitude of the three-dimen
sional term is plotted as a function of angular separation e, at different 



THREE-DIMENSIONAL ELECTRICAL FIELD PROBLEMS 31 

positions along the fiber. It is of interest to note that for an angular separation 
of about 70°, the three-dimensional term is very small for all electrode separa
tion~ considered here. 

+3.0 

+2.0 

+1.0 

s 

-1.0 

o· 45° 

CYLINDRICAL CELL 
s vs. 8 
. f X for varIOUS values 0 O 

r r' a= a= Lo 

~:g.=;·~~ 
~~-.75 

---.50 --------------.25 

90" 135" ,ISO• 

8 degrees 

FIG. IV.4-3. The value of the three-dimensional correction term, S(x,8) in 
equation (IV.3-1) plotted as a function of the angular separation, 8, of the tips 
of the two electrodes. Each curve is for a particular value (indicated on the curve), 

of xfa. Both electrodes just beneath the surface, r = r' = a. 

+2.0 o· 

22.5° 

+ 1.0 

s 

0 ____ '?_Q~ 
135° 
180" 

CYLINDRICAL CELL 
X s vs. a 

for various values of 8 
r'= r = 0. 75a 

-1.0'---.---...--r---r---.---.-----r----. 
0.25 0.5 0.75 1.0 1.5 2.0 

X 
a 

FIG. IV.4-4. The value of the three-dimensional correction term, S(x,8), in 
equation (IV.3-1) plotted as a function of distance, xja. Each of the six curves is 
for a different angular separation (indicated on the curve), 8, of the tips of the two 

electrodes. Both electrodes deep (r = r' = 0·75a). 
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IV.4b. Both electrodes deep in the cell (i.e. r = r' = 0·75a). 

This case is perhaps more applicable to fibers of small radius, but would 
apply to big fibers if the electrodes are inserted deep into the cell. Figures 
IV.4-4 and 5 show the same qualitative behaviour as seen in Fig. IV.4-2 and 
IV.4-3 where the electrodes are just beneath the surface, except that in the 
plot of S vs. xfa in Fig. IV.4-4 there is a maximum in the magnitude of S 
for large angles. 

+ 1. 

s 

-1.0 

CYLINDRICAL CELL 
S vs.B 

for various values of ~ 
r r' · 
0 =0 =o.7s 

go• 
8 degrees 

FIG. IV.4-5. The value of the three-dimensional correction term, S(x,O), in 
equation (IV.3-1) plotted as a function of the angular separation, 8, of the tips of the 
two electrodes. Each curve is for a particular value (indicated on the curve), of 

xfa. Both electrodes deep (r = r' = 0·75a). 

lV .4c. One electrode just beneath the surface and the other deep. 

These calculations are relevant to the questions, what is the transmembrane 
potential when the current electrode is deep and the converse, what is the 
potential deep in the fiber when the current is injected just beneath the mem
brane. Remember that r' can be the position of the voltage or current elec
trode, conversely for r. Figures IV.4-6 and IV.4-7 give plots of S as a function 
of xfa and as a function of 8, respectively, for the case of one electrode just 
beneath the surface and the other electrode positioned at a depth 0.5a in 
the fiber. Figures IV.4-8 and IV.4-9 give similar plots for one of the elec
trodes at a depth of0·75a in the fiber. 
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FIG. IV.4-6. The value of the three-dimensional correction term, S(x,D), in 
equation (IV.3-1) plotted as a function of distance, xfa. Each of the six curves is 
for a different angular separation (indicated on the curve), 8, of the tips of the two 

+2.0 

+tO 

s 

-1.0 

electrodes. One electrode deep (r = a, r' = 0·5a). 

2 2-5° 45" 

CYLINDRICAL CELL 
s vs. e 
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90" 

8 degrees 

FIG. IV.4-7. The value of the three-dimensional correction term, S(x,8), in equa
tion (IV.3-1) plotted as a function of the angular separation, 8, of the tips of the 
two electrodes. Each curve is for a particular value (indicated on the curve), of 

xfa. One electrode deep (r = a, r' = 0·5a). 
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FIG. IV.4-8. The value of the three-dimensional correction term, S(x,8), in 
equation (IV.3-1) plotted as a function of distance. xja. Each of the six curves is 
for a different separation (indicated_ on the curve), 8, Qf tP,e ~ips of the ty.r~ ele~-

s 

trodes. One electrode deep (r = a, r' ~ 0·75a), -
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FIG. IV.4-9. The value of the three-dimensional correction term, S(x,8), in equa
tion (IV.3-1) plotted as a function of the angular separation, 9, of the tips of the 
two electrodes. Each curve is for a particular value, (indicated on the curve), of 

xfa. One electrode deep (r = a, r' = 0·75a). 
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IV.5. Universal Figure and Table 

Figure IV.5-1 shows a graphical representation of the values of the one
dimensional term, L, and the three-dimensional term, S, of equation (IV.3-l) 
for the electrodes just beneath the membrane. Table 3 lists the various 
values of the three-dimensional term S for various values of x, 8, rand r'. 

TABLE 3. VALUES OF S: THE THREE-DIMENSIONAL CORRECTION TERM 

r r' ~ 0 
0·25 0·5 0·75 1 2 

a a 0 3·202 1·212 0·598 0·327 0·042 
2·81 3·136 1·204 - - -
5·63 2·954 1·179 0·589 - -

11·25 2·395 1·092 0·563 0·315 -
22·5 1·396 0·827 0·475 0·278 -
45 0·381 0·337 0·245 0·165 0·027 
90 -0·304 -0·169 -0·089 -0·045 -0·003 

135 -0·536 -0·367 -0·246 -0·161 -0·027 
180 -0·596 -0·422 -0·292 -0·197 -0·036 

a 0·75a 0 1·89 0·97 0·52 0·29 0·04 
2·81 1·87 0·96 - - -
5·63 1·81 0·95 0·51 0·29 -

11·25 1·60 0·89 0-49 0·28 -
22·5 1·11 0·71 0·42 0·25 -
45 0·37 0·32 0·23 0·15 0·03 
90 -0·031 -0·16 -0·08 -0·04 -0·00 

135 -0·50 -0·35 -0·24 -0·15 -0·03 
180 -0·59 -0·41 -0·28 -0·19 -0·03 

0·15a 0·75a 0 1·92 0·85 0·45 0·26 0·03 
2·81 1·89 - - - -
5·63 1·83 0·83 0·45 - -

11·25 1·61 0·79 0·43 - -
22·5 1·07 0·64 0·38 0·22 -
45 0·35 0·30 0·21 0·14 0·02 
90 -0·23 -0·15 -0·08 -0·04 -0·00 

135 -0·49 -0·33 -0·21 -0·14 -0·02 
180 -0·55 -0·37 -0·26 -0·17 -0·03· 

a 0·5a 0 0·75 0·52 0·31 0·19 0·03· 
5·63 0·73 - - - -

11·25 0·70 0·48 0·30 - -
22·5 0·56 0-42 0·26 - -
45 0·20 0·22 0·15 0·11 0·02 
90 -0·24 -0·07 -0·07 -0·03 -0·00 

135 -0·45 -0·29 -0·20 -0·12 -0·02 

I 
180 -0·50 -0·34 -0·24 -0·15 -0·03 
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FIG. IV .5-1. The value of S, computed from equation (IV.3-3) and (4) for various 
values of xfa and 0, are shown in the diagram of the cylinder. Current can be 
considered to be injected just beneath the membrane at x = 0, i.e. at xfa = 0, and 
the potential recorded just beneath the membrane at points of intersection of the 
longitudinal lines indicating radial position, 8, and the circumferential lines, 
indicating the longitudinal position, xfa. The numbers at these points are the 
value of S appropriate to that point. 

It can be seen from equation (IV.3-3 and 4) that these values are independent of, 
.\, and hence Rm, but the relative importance of the term, S, is dependent on .\since 
the length constant determines the absolute value of the one dimensional term, L, 
in equation (IV.3-1). The value of this term can be evaluated using a table of expo
nentials but for convenience it can be assessed from the plot of (a/ .\)Las a function 
xfa which is given above the diagram of the cylinder (note the log scale). Knowing 
the value of,\ and hence ,\fa, the appropriate curve is chosen and for a given value 
of xfa on the abscissa, the value of (af>.)L can be read from the ordinate; this 
multiplied by >..fa then gives the value of L, which can then be compared with S. 
For example, consider >.fa= 2.0, and xja = 0·75 and 8 = 0. Thus (af>.)L = 0·7, 
and S for that position (xfa = 0·75, 8 = 0) is read off from the drawing of the 
cylinder as 0·598. Thus V(xfa,8) = V(0·75,0) = 0·5r1i 0 a(0·7 + 0·598). 
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IV.6. Appendix: Approximation to the Roots fJ 

F,.(/J) = F,.(z0 + h) = F,.(z0 ) + hF~(z0) + ... 
where FnCz 0 ) = 0 

J' 
FnCz) = z / 

n 

J' [J J" - J'2] 
'( n n n n 

F,. z) = y + z 
1

2 
n n 

. F,.(z) J~' 1 
F (z) = - + z- - - F 2(z) 

n Z J,. Z II 

(IV.6-1) 

(IV.6-2) 

(IV.6-3) 

(IV.6-4) 

In order to use this expression we must find an explicit expression for J;. 
This could be found by tedious but straightforward application of recurrence 
relations. However, there is an easier way. 

From the differential equation that defines Bessel functions 

1 1 
J" = - - J' - - (z2 - n2)J 

II Z II 2 2 II 
(IV.6-5) 

Substituting this expression for 1; into equation (IV. 6-4) and simplifying we 
get 

-F;(z) 
F~(z) = --

z 

Substituting this expression for F~ (z0) into equation (IV.6-1) 

h(z~ - n2
) 

F,.(fJ) = F,.(z0 + h) = - ---
Zo 

but F,.([J) = - 0.5(aj).) 2 

0.5(a/A)2 z0 
so that h = 2 ? 

z0 - n-

(IV.6-6) 

(IV.6-7) 

(IV.6-8) 

(IV.6-9) 

(IV.6-10) 

and the fractional difference between the value of P and z0 is given by 

Zo 

h 0.5( aj ).) 2 

(IV.6-11) 
f3 - Zo 
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V. THE SPHERICAL CELL 

V.I. Solution of the Spherical Problem 

Another geometry of interest to the physiologist is the spherical cell since 
this geometry crudely approximates the shape of many cells. The current 
source that we shall consider is, again, a point source, which is of interest 
not only because a microelectrode is often used to inject current into such 
cells, but also, because a single synaptic bouton or small cluster of boutons 
might well be approximated by a small source of current. Figure V.l-1 shows 

FIG. V.l-1. The spherical cell with microelectrodes. 

the geometry of interest: r [em] is the distance from the center of the sphere 
to the point at which potential is measured (the radial coordinate of that point); 
r' [em] is the radial coordinate of the point at which current is injected; 
() [degrees] is the angle between the current source and the point at which 
potential is measured (i.e. ()is the angular coordinate); a [em] is the radius of 
the cell; Rl[ohm][cm]) is the volume resistivity of the material inside the 
cell; Rm ([ohm][cm2 ]) is the specific membrane resistance. 

The equation describing the spread of potential within the cell can be 
found in a manner precisely analogous to that used in solving the cylindrical 
problem. The solution of the corresponding transient heat problem is found 
in Carslaw and Jaeger. This solution is first converted into the solution of a 
steady-state heat problem and then into the solution of the analogous steady
state electrical problem. The solution to the heat problem is given in Carslaw 
and Jaeger (p. 382, equation 11). The steady-state solution to the electrical 
problem ist 

m=oo 

i0 R· \ 
v = 2n~ G (2m + 1)P mCcos ()) 

m=O 

\ jm(firfa)jm(fir'fa) 1 
~ j ;(p) -/i-::;-2 ---m--::-2 -_-m_+_( a-f-A-:::-2 )---a-/ A- (V ·1-1) 
p 

where P m(cos ()) is a Legendre polynomial of degree m (Abramowitz and 
Stegun, 1967) of argument cos (); and jm is a spherical Bessel function of the 

tWe have written this solution in terms of spherical Bessel functions,jm, whereas Carslaw 
and Jaeger's solution is written in terms of cylindrical Bessel functions. The notation that 
we have used is in accordance with the modern convention given irt Abramowitz and Stegun. 
These functions jm and their derivatives j~ should not be confused with the roots j~ •• of 
cylindrical Bessel functions. 
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first kind, of order m, and p are the roots of the following equation 

(V.l-2) 

where A is the generalized space constant Rm/Ri, given by the ratio of specific 
membrane resistance to the volume resistivity of the core. 

An analysis of these roots along precisely the same lines as in the cylindrical 
case shows that all but one of the roots are well approximated by the roots of 
the equationj~(z) = 0, these latter roots being well tabulated (they are called 
a~ ,sin Olver (1960)). The order of the spherical Bessel function ism, and sis 
the number of the root, in order of increasing size. The one root not well 
approximated is the dominant root, i.e. the smallest root when m = 0. This 
latter root is given by (3a/A)-t and has special significance as we shall see. 
The development of these approximations and an analysis of the error 
involved can be found in section V.2. 

Substitution of these expressions for the roots shows that the solution of 
the three-dimensional problem for a spherical cell has two terms, one that 
depends on membrane properties (i.e. one which would be correct if there 
were no potential drops in the conducting core) and one that describes the 
potential drops in the core and which does not depend on the membrane 
properties. 

(V.l-3) 

This solution is unfortunately not as useful as the corresponding solution for 
the cylindrical fiber. The double infinite series converges very slowly and, 
for instance, our computation for r = r' = O·Sa did not converge adequately 
even after 800 terms. Because of this slow convergence we cannot compute 
the universal curves as we did in the case of the cylinder and secondly, we 
cannot be certain of the accuracy of the approximation used in equation 
(V.l-3). Since the error in each term of equation (V.l-3) is small for ajA less 
than ! (see section V.2) and since this error decreases markedly with in
creasing m andjor s it seems safe to conclude that the error in the overall 
equation is reasonable. This conclusion is of considerable qualitative impor
tance since it enables one to determine that the qualitative effects of the three
dimensional spread of current are similar both in the sphere and the cylinder. 

Recently it has been possible to put equation V. 1-3 into much more simple 
form and thus determine numerical values (personal communication, E. 
Engel and R. S. Eisenberg). 

V.2. Approximations Used in the Spherical Problem 

The approximations used in the spherical problem are precisely analogous 
to those used in the cylindrical problem and fall into two classes: approxima
tions to the roots, p, and approximations in the infinite series. 
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V.2a. Approximations to the roots. 

A function, F m is defined, 

j~(x) j~(ft) 
Fm(x) = x -:--( ); Fm(/3) = f3. ra)· = 

Jm X lmVJ 

a 

A 
(V.2-l) 

the roots of which are the well tabulated roots a~.~ of the derivative of the 
spherical Bessel function j~. In other words, when x = a~,l' Fm(x) = 0. 
Since we wish to find how far x must be moved from a~.s in order to make 
Fm = -a/A, we expand Fm in a Taylor series about its roots (called x0 for 
convenience). The missing mathematical steps in the derivation of equation 
(V.2-3) are similar to those described for the cylindrical cell. 

h2 
Fm(/3) = Fm(Xo + h) = hF~(xo) + 2F,;:(xo) + ... (V.2-2) 

Since the second term is not important for afA < 0·25, 

[m(m + 1) -x~] 
F mCxo) == h ::..__ ___ __;;; 

Xo 
(V.2-3) 

Substitution of this last expression into equation (V.2-1) enables one to 
determine the error in the approximation that the roots are identical with the 
roots a~.s· When a/A = 0·25 this error is less than 5% for the worst case. 

The above discussion fails to approximate the "dominant" root, i.e. the 
smallest root of equation (V.2-1). This root, f3*, can be determined by writing 
the explicit expression (Olver, 1960) for j 0 (x) and j~(x) into the equation 
defining the roots 

j~(x) -a 
x jo(x) = x cot x - 1 =A (V.2-4) 

The dominant root can then be found to be given by .J3afA. This latter 
expression is about 6% too big if a fA = 0·25. 

V.2b. Approximations in the infinite series. 

First, we will substitute the expression for the dominant root, f3* into the 
equation (V.l-1). The resulting "dominant" term is developed by approxi
mating the factor containing the ratio of spherical Bessel functions, which 
appears in equation (V.1-1), using the first terms of the appropriate Taylor 
expansions. 

(V.2-5) 
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If the above approximation, as well as the approximation to the roots is 
substituted into the infinite series, the resulting term is 

(V.2-6) 

The error in the above expression is about 3% for r = r' = a/2, a fA = 0·25. 
In many cases the correction term is negligible, and the leading term of the 
infinite series takes on the simple form Rmf4na2

• For afA < 0·25 all the other 
terms involving afA in the infinite series are negligible, the worst error in a 
single term being less than 9 %. The full solution then takes the form of 
equation (V.I-3). This approximate solution shows the same qualitative 
features as that for the cylinder. It divides into two terms, the conventional 
term (here what one would find if the interior of the sphere were isopotential) 
and a correction term, essentially independent of membrane properties. Thus 
qualitiative discussion of these two cases is similar. 

VI. THE THIN PLANE CELL 

VI. I. Solution of the Thin Plane Cell 

The solution for the potential anywhere in a two sided slab, can be found 
by methods precisely analogous to those used for the cylinder and the sphere. 
The analogous heat solution is found again in Carslaw and Jaeger, p. 373, 
equation (17). The corresponding solution to the steady state electrical 
problem is 

00 

Ri \ {3' 2 K 0(2[3'R/L) · f(z,z 1
) 

V(R,z) = 2nL L [3' 2 + 0.5(L/A) + 0·25(L/A)2 (VI.l-1) 

n= 1 

where [3~ are all the roots of both expressions: 

[3 1 tan /3 1 
= Lf2A (VI.l-2) 

[3 I cot [3 1 = - L/2A (VI.l-3) 
and 

, _ [ 2zf3.' Lsin (2zf3'/L)][ 2z
1

[3
1 

Lsin (2z
1

{3
1/L)J 

f(z,z) - cos L + 2Af3' cos L + 2A[31 

(VI.l-4) 

This solution has been written in terms of the roots [3', whereas the roots 
ct.~ are used in Carslaw and Jaeger. The relation between the roots is [3' = 
ct.~L/2. Furthermore, the equation defining the roots has been rewritten using 
the techniques suggested by Carslaw and Jaeger on p. 120. 

The coordinates used here are shown in Fig. VI.l-1. The membranes 
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bounding the solid are at z = 0 and z = L, the source of current is at depth 
z' and radial position zero. The point at which potential is measured is at 
depth z and radial position R. K 0 is a modified Bessel function of the second 
kind (Abramowitz and Stegun, 1967) and Ri is, as usual, the volume resisti
vity ([ohm][cm]) of the core material. A is the generalized space constant, 
given by Rm/Ri where Rm is the specific membrane resistance ([ohm][cm2

]). 

FIG. VI.l-1. The thin plane cell with microelectrodes. 

Equation (VI.1-1) is of practical use as it stands since the roots of equations 
(VI.1-2) and (VI.1-3) are well tabulated (Carslaw and Jaeger, 1959; Abramo
witz and Stegun, 1967). However, it is worthwhile searching for approxima
tions to these roots, since only so can we determine whether the solution 
separates into two components; a radial term and a three-dimensional cor
rection term. Again, .the smallest root will produce the largest term in the 
infinite series and so is called the dominant root. Since only equation (VI.1-2) can 
have a root close to zero, an expression approximating this dominant root can be 
found byexpandingequation(VI.1-2)ina Taylorseriesforsmallx, neglecting all 
but the first term. The resulting expression for the dominant root is 

P' = !fi (VI.1-5) 

Direct comparison with tables shows that the error in this expression is less 
than 4% for L/A = 0·4, and less than 2% for L/A = 0·2. The remaining 
roots, for sufficiently small L/A, are given by n, 2n, 3n, ... for equation 
(VI.1-2) and for equation (VI.1-3) are given by n/2, 3nj2, ... Thus, all the 
roots are given by n/2, n, 3n/2 ... ; i.e. nn/2 (where n = 1, 2, 3, ... ) provided 
that L/A is sufficiently small. Direct comparison with the tables shows that the 
error in the above approximation is less than 8% for L/A less than 0·4 and 
less than 4% for L/A less than 0·2. 

The next step in our development of this solution is the substitution of the 
expressions for the roots into the solution (VI.1-1). Subsitution of the domi
nant root gives the dominant term 

(VI.l-6) 

where neglect of the second term in the denominator causes an error 5% or 
less for L/A less than 0.2. The other terms of the expression (VI.1-4) simplify 
if L/A is sufficiently small so that the total expression for the potential is 
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i0 Ri [ (RJ2L) ~ J V = 2n:L K 0 L A + 2 L K 0(nn:RfL)f(z,z') (YI.l-7) 

or n=l 

i0 R. [ J V=-' P+Q 
2n:L 

(VI.l-8) 

The error caused by the neglect of the extra terms in the denominator of the 
infinite series in equation (Vl.l-1) is less than 4% for L/A less than 0·2. 
It should be pointed out here that the functionf(z, z') defined above (equa
tion VI.l-4) has the value unity if both electrodes are just under the surface 
membrane. 

It is interesting to note that once again our solution consists of two terms, 
a term depending on the membrane properties and a term independent of 
the membrane properties. From the analysis of the other geometries we would 
expect that the first term of the solution would be identical to the solution of a 
simplified problem, that is to say, when current is assumed to flow in a radial 
direction parallel to the surface of the plane cell. Woodbury and Crill (1961) 
and Noble (1962) have obtained such a solution but it differs from the first 

term in equation (VI.I-7) by a factor of the .j2 in the argument of the Bessel 
functions.t The cause of this discrepancy is somewhat obscure but perhaps 
Woodbury and Crill and Noble failed to consider the presence of two mem
branes across which current might flow out of the solid. 

TABLE 4. THIN PLANE CELL 

Tables of values of correction term, Q, of equation (XI.l-7) for various 
values of R/L. 

R/L 0·1 0·15 0·2 0·25 0·3 0·4 0·5 0·75 1·00 
------------------

Q 6·84 3·92 2·52 1·78 1·32 0·72 0·46 0·07 0·03 

Figure VI.l-2 gives the plot of the displacement in transmembrane poten
tial as a function of the radial distance from the current electrode (both elec
trode tips just beneath one membrane). In Fig. Vl.l-3 the second term,the 
correction term, Q, of equation (VI.l-8) is plotted as a function of RfL. 

t The reader should be aware that both Woodbury and Crill and Noble use a different 
set of units from those used here. While our Rm ([ohm][cm2

]) andL[cm] correspond directly 
with their Rm ([ohm][cm2 ]) and o [em] respectively, our R 1 ([ohm][cm]) corresponds to 
Woodbury's, P~o ([ohm][cm]) and not his r1 ([ohms]). It seems likely that Noble's Rt 
(units, unspecified) corresponds directly to Woodbury's r 1 since such a correspondence 
would mean that the differential equations that they consider are identical and that the 
length constants they define are also identical. The length constant",\" defined by Woodbury 
and Crill and Noble is given by 

"A"= JRmL 
R, 

(our definition of R,, R~o L, but not our definition of ,\) 
The relationsip between their length constant "A" and our generalized space constant A is 

"A"= J LA 
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FIG. VI.l-2. The thin plane cell. Plot of the displacement in transmembrane 
potential as calculated from two-dimensional and three-dimensional theory 
(proportional toP and (P + Q) respectively) as a function of distance, R/L from a 
point source of current. Both electrodes just beneath the surface of one membrane. 
L/A=0.2 
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FIG. VI.l-3. The thin plane cell. Plot of the three-dimensional correction term, 
Q, of equation (VI.l-7, 8) as a function of distance R/L, from the point source of 

current. 
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VII .. THE THICK PLANE CELL 

Although the solution presented above for the sheet is applicable to sheets of 
arbitrary thickness, the roots are difficult to approximate when the cell is 
thick and the physical interpretation of the solution becomes obscure. The 
solution for the thick solid can be found in the usual manner from Carslaw 
and Jaeger (1959) p. 371, equation (4), although in this case the necessary 
integration is rather awkward. The solution is also presented directly in 
Gray, Mathews and MacRobert (1922) p. 150, equation (38) for the case 

Fro. VII.l-1. The thick plane cell with microelectrodes. 

where both electrodes are just under the membrane at separation r. Their 
solutiont can be rewritten in terms of our usual variables as 

(VII.1-l) 

and can be transformed into a tabulated form if the integral is recognized as 
the Laplace transform of (a2 + T 2

) -t (Roberts and Kaufman, 1966, number 
13, p. 13) with s = 1. Then, the solution can be written as 

~~[M J V = 4A nr - {H0(r/A) - Y0(r/A)} (VII.l-2) 

where H 0 is a Struve functiont (Abramowitz and Stegun, 1967) of order zero 
and Y0 is a Bessel function of the second kind also of order zero. A universal 
plot of this solution is given in Fig. VII. 1-2. It is interesting to note that this 
solution does not break into two terms, one term that depends on membrane 
properties and another that depends only on position. This separation does 
not occur because the symmetry implicit in this problem is very different 

tWhich fortunately agrees with that derived from Carslaw and Jaeger. 
tThe reader should be warned that the symbol H 0 is also used to represent a Hankel 

function. The Struve function is recognizable since the symbol used is in bold face type. 
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from that of the other problems. In this case, since the slab is of infinite 
thickness, the lines of current flow never approach a symmetrical form as they 
did in the other geometries we have considered. 

5.0 

THICK PLANE CELL 

4.0 

3. 

20 

0 0.2 0.4. 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 

FIG. VII.l-2. The thick plane cell. 
Plot of 

riA 

!~ - { H 0 (r/ A) - Y0 (r/ A)} 

, as a function of rf A. If the ordinate values are multiplied by i;~' , the product is V. 

Note that A= RmfR,. 

PART B. QUALITATIVE DESCRIPTION, AND PHYSIOLOGICAL 
IMPLICATIONS OF THE THREE-DIMENSIONAL SPREAD OF 

CURRENT IN C;ELLS, 

I. DISCUSSION APPLICABLE TO ALL CELL GEOMETRIES 

I.l. The Approximate Nature of One-dimensional Theory 

.If a microelectrode is inserted into a cell, and for the present discussion 
we shall consider it to be a long cylindrical cell like an unmyelinated nerve 
:fiber or a muscle fiber, we can inject current into the cell. This current will 
flow down the cytoplasm (filling the interior of the fiber) and eventually leak 
out through the fiber membrane and thence through the extra-cellular fluid 
to some reference or ground electrode. Associated with this flow of current 
are potential gradients both within the cytoplasm and across the cell membrane 
and these can be measured by inserting a second microelectrode at various 
distances along the fiber, away from the current electrode. For example, a 
known quantity of current, fl./, can be injected and the displacement in 
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potential) Li V, produced at a point in the fiber close to the site of injection of 
current can be measured with the second microelectrode. The ratio, t1Vjl1!, 
is called the input resistance, Rr 

It is clear that the potential at any point within the fiber (with respect to 
the extracellular reference or ground electrode) must depend, in some way, 
on the resistivity of the cytoplasm and the resistance of the membrane. If 
the resistance presented by a given length of fiber membrane to current flow 
through it were relatively low, compared with the resistance presented by the 
cylinder of cytoplasm which the membrane enveloped, then current injected 
into the end of that length would leak out through the membrane rather than 
continue to flow along the cylinder of cytoplasm. Conversely, were the re
verse the case, then current would continue to flow along the cylinder of 
cytoplasm rather than leak through the fiber membrane. 

Thus, at any distance down the length of the fiber, current is flowing in 
two directions, (1) out through the membrane and (2) further down the cyto
plasmic core of the fiber. The most commonly used theory which relates the 
input resistance, RP as defined above, to the resistance of the membrane in 
one unit length of the fiber and the resistance of the cytoplasm of one unit 
length of the fiber is called one-dimensional cable theory. In this theory, the 
assumption is made that the current flows in one direction only, namely, 
down the longitudinal axis of the fiber. That is to say, in any given small 
segment of length of the cytoplasm, the current which turns to leave the fiber 
through the membrane is negligibly small compared to the remainder of the 
current which continues to flow down the fiber. This assumes, therefore, that 
since neglible current is turning to leave the fiber in any small segment, the 
voltage gradients required to drive the current towards the membrane must be 
negligible. The only voltage gradients worth considering, then, are those 
associated with the major direction of current flow, the longitudinal voltage 
gradients. This means that the potential recorded by a microelectrode at 
any given distance down the fiber would not vary with the depth of the elec
trode tip within the fiber. In which case, one can therefore consider the 
cylinder of cytoplasm down which the current flows as a line, having a 
resistance per unit length equal to that of a unit length of a cylinder of cyto
plasm. In many cases this is a reasonable assumption if we can show that 
little of the injected current leaves the fiber within a length which is large 
compared to, say, the diameter of the fiber. For example, if all the current 
left the fiber within a length equal to its diameter, then the direction of 
current flow would necessarily have to deviate considerably from its assumed 
one-directional flow. Whereas, if a distance equal to, say, twenty times the 
diameter of the fiber were required for the majority of the current to leave, 
then clearly one could say that the direction of current deviated only slightly 
from its assumed one-directional pathway. 

There is thus, this one situation, at least, where the current must deviate, 
but perhaps not significantly, from its assumed one-directional pathway. 
However, there is one other, more important situation, where the current 
must flow in more than one direction. This is when the current leaves its. 
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source which, more often than not, approximates a point source-the tip of 
a microelectrode. Whatever values the absolute resistances of the fiber mem
brane and cytoplasm have, the current must flow from the tip of the micro
electrode in a variety of directions, at least for a short distance, before the 
current assumes its predominantly longitudinal path further down the fiber. 

Clearly, these various directions of flow about the electrode tip will be 
associated with voltage gradients in these directions. It is these voltage gra
dients which drive the current away from a small source where the current 
density is high to fill the entire cross-section of the fiber and form a uniform 
flow of current of relatively low density further down the core of cytoplasm. 
These voltage gradients about the current source are, of course, neglected by 
one-dimensional cable theory. 

There are two effects associated with these voltage gradients. One is that 
near the current source the potential recorded by a microelectrode at a given 
distance along the longitudinal dimension of the fiber will vary with the posi
tion of the electrode tip in the plane of cross-section of the fiber. Thus the true 
transmembrane potential can only be measured by placing the tip of the vol
tage electrode just beneath the fiber membrane. Secondly, close to the site of 
injection of current, the current density through the membrane is higher than 
would be predicted from one-dimensional cable theory. The same voltage 
gradients that are driving the current away from the point source cause the 
potential, just beneath the membrane, to be greater than one would expect if 
the current flowing down the fiber at that distance was uniformly filling the 
entire cross-section of the fiber. The longitudinal current density is, in fact, 
not uniform within any cross-section of the fiber sufficiently close to the cur
rent electrode. 

One way of illustrating these two effects is to consider the fiber membrane 
to be almost a perfect insulator and, in order to allow some current to flow, 
we can imagine that we have a grounded microelectrode inside the fiber some 
considerable distance away through which the current can complete· its 
circuit. Voltage gradients will occur about the current source, in all of the 
three dimensions within the fiber, which drive the current away from the source 
to eventually assume a uniform single, longitudinal direction of current 
flow further down the fiber. For example, if the tip of the current electrode 
were just beneath the membrane, the potential a sufficiently short longitudi
nal distance away on the same side of the fiber would be higher than it would 
be at a point the same longitudinal distance away but on the opposite side 
of the fiber (see Part A, Fig. IV.4-l). Similarly, equivalent voltage gradients 
develop about the distant grounded electrode as the current is squeezed into 
its tip. If we make the membrane leaky and replace the internal ground 
electrode with an external one, the situation is still qualitatively the same 
(with regard to the transmembrane potential), except that the higher poten
tials just beneath the membrane close to the tip of the current electrode, will 
now be associated there with the higher currents through the membrane 
compared with those at a point directly beneath the membrane on the other 
side of the fiber. 
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We therefore record potentials within the cytoplasm, immediately about 
the current source, which deviate in two ways from those predicted by one
dimensional cable theory. One is that the true transmembrane potential 
(i.e. that recorded by an electrode just beneath the fiber membrane) differs 
from that predicted by one-dimensional cable theory. Contrary to this theory, 
the true transmembrane potential varies with the circumferential position of 
the electrode tip relative to the current electrode. Secondly, the potential 
recorded by the voltage electrode when inserted deeper into the fiber differs 
from the true transmembrane potential because of voltage gradients in the 
cross-sectional plane of the fiber. 

These effects of the three-dimensional spread of current away from the 
current source and the associated three-dimensional voltage gradients are 
qualitatively the same for any cell geometry. Indeed, for a point source of 
current, these gradients are always more important than those gradients 
which drive the current that is to leave the cell towards the cell membrane. 
For example, in a cylindrical cell, if we would replace the point source of 
current with a disc source, oriented in, and equal in area to, the plane of 
cross section of the fiber, the three-dimensional voltage gradients about the 
current source would become relatively insignificant and would be those 
associated with current turning to leave the fiber through the membrane 
(Taylor, 1963). 

A quantitative assessment of the magnitude of the voltage gradients about 
a point source of current in a cell requires the solution of a mathematical 
problem which specifies the particular geometry of the cell. Because the 
solution of the problem becomes increasingly difficult (and eventually imprac
tical) the more complex the geometry of the cell, solutions are available only 
for relatively simple geometries such as the cylindrical, spherical and the 
thick and thin plane cell. Nevertheless, it is clear that if the membrane resis
tance or impedance is sufficiently low, the current required to produce signi
ficant changes in the transmembrane potential close to the current source can 
be quite large. So large, that the potential differences in the cytoplasm asso
ciated with this flow of current from its source to the membrane become com
parable with the displacement in transmembrane potential. Furthermore, in 
the same circumstance the displacement in true transmembrane potential 
close to the source depends on the position of the source relative to the mem
brane. 

The reader is advised here to read section II (particularly II. I) of Part A, 
where we present a more extensive, but still qualitative, discussion of the 
errors in one-dimensional theory. 

I.2. The Single Electrode Bridge and 
Double-barreled Microelectrodes 

In this technique one microelectrode is inserted into the cell both to record 
potential and to inject current. The equivalent electrical circuit, with the micro
electrode outside the cell, is shown in Fig. !.2-IA. The blunt end of the elec-
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trode is connected to a current generator, S, and to a voltmeter, A. Re repre
sents the resistance of the microelectrode through which a constant current, I, 
flows from the generator, S. Rs (in series with Re) represents the resistance to 
current flow from the tip of the microelectrode, through the extracellular 
fluid to a distant ground or reference electrode. We shall assume here ideal 
characteristics for the voltmeter, in that no current flows into or out of its 
input. 

(A) 
OUTSIDE THE CELL 

INSIDE THE CELL 

= 

FIG. 1.2-1, (A and B). Equivalent circuits of a system using one microelectrode to 
record potential and to inject current. 
(A) Outside the cell. (B) Inside the cell. In (A) RJ represents the resistance of the 
microelectrode when it is outside the cell; Rs, represents the effective resistance 
presented to the flow of current from the tip of the microelectrode to the distant 
ground or reference electrode. In (B), R; represents the resistance of the micro
electrode when inside the cell; R. represents the effective resistance presented to 
the flow of current from the tip of the microelectrode to the membrane in the 
immediate vicinity of the microelectrode (R: is zero when the electrode is just 
beneath the membrane). The series combination of Rm and the distributed one 
dimensional transmission line below it is a symbolic representation of the effects of 
three-dimensional spread of current on the true transmembrane potential. In 
both figures, S represents a current generator and A an ideal voltmeter. 

The potential at the top or blunt end of the electrode, V, is simply given by 
I(Re + R5). This voltage can be eliminated from the final recording either by 
the use of some bridge circuitry before the input to the voltmeter, or if the 
voltmeter can withstand the relative large voltage that will develop at the 
top of the electrode without changing its characteristics from the ideal 
(Murray, 1958), the voltage can be eliminated by the injection of a voltage of 
equal magnitude but of effectively opposite sign at a later stage in the recor
ding circuitry. This accomplished, then presumably if Re and Rs remain con
stant and an additional resistance were added in series with Re and Rs, then 
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the voltage now recorded would be only the voltage drop produced by the 
current flowing through this additional resistance. Thus it has been argued 
that if the voltage V was eliminated (in either of the two ways described above) 
with the microelectrode outside the cell, and the microelectrode were then 
inserted into the cell, any voltage that was now recorded must be due solely 
to the insertion of an additional resistance, the input resistance of the cell, 
in series with the two resistances, Re and R3 • 

This argument assumes that R 11 and Rs do not change when the electrode is 
inserted into the cell. However, at least Rs must change as we shall see below. 
Furthermore, in practice Re usually changes for the following reasons. The 
major portion of the resistance of the micoelectrode is located at its tip. 
Although the electrode is filled with a highly concentrated solution of 
electrolyte, usually with 3M KCl, the electrolytic composition of the liquid 
just within the tip, and hence its resistivity, quite probably depends on the 
composition of the medium in which the tip is immersed. One might expect 
therefore that the resistance of the microelectrode will change when the tip is 
moved from the extracellular fluid into the cytoplasm. Furthermore, the 
resistance of the electrode can be a bizarre and unpredictable function of the 
current flowing through the electrode and of time. 

However, if in practice it were fortunately true that Re remained constant 
as we moved the tip into the cell and when current was passed, there still 
remains the question whether we can assume that Rs remains constant. We 
cannot, since there are two factors that cause Rs to change. The value of 
Rs depends on the resistivity of the medium in which the electrode is 
immersed, so that as we move the electrode from the extracellular fluid which 
has a volume resistivity of approximately 50[ohm][cm], to the cytoplasm, 
which for muscle has a resistivity of around 300[ohm][cm], Rs will increase 
correspondingly (Schanne et al., 1966). Secondly, when the electrode was 
outside the cell, current could flow in all directions away from the tip 
whereas within the cell the pathway of the current is constrained by the pre
sence of the neighboring cell membrane. This restriction appears as an 
increase in the value of R3 over and above that expected from a simple change 
in the resistivity of the medium in which the tip is immersed. t A new equivalent 
circuit can be drawn for the situation where the microelectrode is in a cell 
(see Fig. I.2-1B). In this circuit the possible change in Re is indicated by the 
prime, R~, and the change in R3 brought about by the two factors discussed 
above is indicated by the prime on Rs, R~. 

In addition to the change in Rs toR; because of the change in the resistivity 
of the medium in which it is immersed and of the restriction in the pathway of 
current flow produced by the geometry of nearby cell membrane, another 
series resistance, R!, appears, which represents the steep rise in true trans
membrane potential immediately about the current source. + Although 

tThis further change in R. may well explain the discrepancy found by Schanne et a/. 
(1966) between values of input resistance measured by different techniques. 

t This resistance R; is the electrical equivalent of the mathematical termS (for r = r' = a) 
discussed in section IV. 3 of Part A. 
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physically, no such resistor exists, we can say, for qualitative description, that 
the membrane about the electrode tip behaves as though such a resistor were 
present as part of the membrane resistance and as such contributes to the true 
input resistance of the fiber. That is to say the voltage drop produced by 
current flowing through this resistance, R!, is part of the true trans-membrane 
potential and ideally it should be preserved in any procedure that is devised to 
eliminate the voltage drops across the other resistances, R~ and R~, in series 
with the membrane. 

The results of our three-dimensional analysis in Part A show that the 
magnitude of R! and R~ in Fig. I.2-1B will, in effect, vary with the position 
of the current electrode and its relation to the tip of the voltage electrode. 
The single electrode bridge is the special case where the site of injection of 
current is also the site at which the potential is measured. t 

Our previous analysis shows that R~ will be zero when the tip of the 
electrode is just beneath the membrane. On the other hand R! in this circum
stance is not zero, in fact it never is whatever the position of the electrode 
within the cell. In practice, there are two methods for separating the voltage 
drops across R;, R; and R! from that across the membrane resistance, Rm, 
but unfortunately they do not allow the preservation of that across R!. The 
methods are based on measuring the voltage, V, either (a) when the membrane 
resistance is negligibly small compared to R', R~ and R! or (b) when the 
membrane impedance is, similarly, negligibly small (e.g. when the frequency of 
the applied current is sufficiently high). 

If a step of current is passed through the microelectrode the frequency 
components within the waveform which are important at its start are suffi
ciently high that the membrane impedance represented by the parallel com
bination, Rm and Cm, of Fig. 1.2-1 B is sufficiently low that the entire potential, 
V, at the top of the electrode at this time can be ascribed to the voltage drop 
across R~, R~ and R!. Physically, at this time, the membrane current density 
close to the current electrode is much greater than at later times since the 
rate of change of potential across the membrane capacitance is initially much 
greater than at later times. At the start of the current pulse, therefore, not 
only is there a voltage step caused by the current flowing through R; and R~ 
but the true transmembrane potential undergoes an initial fast rising 
step simulated in Fig. 1.2-IB by the voltage drop across R!. This initial step 
then inflects with a slower component that has the familiar erf-like form of 
the response of a one-dimensional cable. 

Eliminating the voltage at the start of the pulse thus removes all compo
nents of resistance in series with the membrane including that which repre
sents a true change in transmembrane potential at that time~ In effect we 
measure the displacement in potential predicted by one-dimensional cable 
theory. 

t In addition the source of current at this site in this case is not a point but a small disc 
the diameter of which is equal to the diameter of the tip of the microelectrode. We assume 
that our analysis, of the two electrode case, correctly describes the qualitative properties of 
the one electrode case. 
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If one eliminated the voltage "artefacts" in this way, one might think that 
one could study the membrane properties, Rm and Cm. In fact if R,,. remained 
high and constant everywhere, then after the initial jump in potential the 
subsequent slower, erf-like, change in potential does represent the simple 
membrane properties of a one dimensional cable. However, part of the initial 
jump in potential recorded by a single or double barrelled electn~de system is 
a true displacement in transmembrane potential. This initial displacement can 
be quite large, enough to drive the membrane near the electrode into a non
linear region of its current-voltage relationship, and thus making linear 
analysis impossible. 

The second method of eliminating the voltage drops in series with the 
membrane is to assume that at some time during the action potential the 
membrane resistance is insignificantly small compared with the membrane re
sistance at some other time at which one wishes to measure it. At this time 
when the membrane resistance is low, any potential that is measured is solely 
due to voltage drops across resistances (R~, R~, and R;) in series with Rm, 
at which time these voltage drops can be eliminated. Providing that these 
resistances remain constant, any additional voltage which develops at earlier 
or later times can be assumed to be the displacement in membrane potential 
at that time. The procedure is to apply a steady, small hyperpolarizing current 
some time before the initiation or appearance of an action potential and to 
continue the application throughout and beyond the duration of the action 
potential. The bridge is balanced or a sufficient voltage injected at an appro
priate point in the recording circuitry, such that there is no voltage displace
ment at, say, the crest of the action potential. A discussion of how to choose 
the time during the action potential at which the input and hence membrane 
resistance is least is described elsewhere (Johnson and Tille, 1960, 1961). 

The case of double-barreled microelectrodes is similar to the single elec
trode except that the voltage artefact to be eliminated is much less for a 
given current and microelectrode resistance since the tip of the electrode 
barrel which is used to record potential is a small, but significant, distance 
from the tip of the barrel used to inject current. However, although smaller, 
the same difficulties and uncertainties arise with regard to the separation of 
the voltage drop across the membrane from that across the outer resistances 
in series with it. 

A further word of caution is required in regard to the elimination of the 
voltage "artefact". If the methods described above are applied indiscrimi
nately to cells of more complicated geometry one may lose important 
features of the electrical properties of the system. For example, part or all 
of the membrane may be in series with a discrete lumped resistance, as in the 
case of crab muscle fibers (Eisenberg, 1967), or a distributed resistance as in 
frog skeletal muscle fibers (Falk and Fatt, 1964). Furthermore, if the cell 
geometry approximates the case where current is injected into a cylindrical 
cable that is terminated a short distance away by a bunch of similar but long 
cables, then the system will tend to behave as though a discrete resistance 
additional to those already discussed were in series with the membrane 
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(Johnson and Sommer, 1967). In each case, important properties would thus 
be lost in carrying out the procedures described above for eliminating the 
voltage artefact. 

Out of the preceding discussion arises a convincing explanation of the 
finding that a cell can withstand the injection of a large current into it, pro
vided that the current is increased slowly to its final large value. On the other 
hand, if the same current is injected suddenly in the form of a large step the 
cell is irreversibly damaged: there is a sudden diminution of the resting 
potential and amplitude of the action potential. The most likely reason for 
this is that at the start of the step, the membrane "impedance" is very low, 
the effective length constant short, and thus three-dimensional effects are 
important. The current density through the membrane about the current 
electrode becomes so large that the resulting steep rise in transmembrane 
potential is enough to exceed the dielectric strength of the membrane with 
consequent breakdown of the membrane dielectric. 

1.3. Voltage Gradients in Extracellular Space 

In our analysis of the three dimensional flow of current within the cell we 
made a very important assumption, namely, that the potential at any point 
in extracellular space with respect to any other point in that space remained 
constant. That is, no voltage gradients existed in that space. This is obviously 
impossible, physically, since if there are no voltage gradients there can be no 
current flow. During the propagation of an action potential or when current is 
injected into the cell, the extracellular space forms part of the path taken by 
the current and there must therefore be potential differences in this space. 

The exact analysis of these external potential differences have been per
formed for a few simple geometries by Carslaw and Jaeger (1959), but the 
solutions are considerably more unwieldy than those for the internal potential 
differences which are considered here (see Part A). t 

Because we cannot obtain an exact analysis, we are restricted to a qualita
tive discussion, and for this purpose we shall consider a cylindrical cell in a 
large volume of electrolyte. If that current which is injected into the cell flows 
for a distance many times greater than the diameter of the fiber, before most 
of it leaks out through the fiber membrane, then the fiber will behave like the 
classical one-dimensional cable. In other words, the length constant is many 
times greater than the fiber diameter and the current within the fiber is 
almost flowing in just one direction, longitudinally down the fiber. In which 
case, the potential gradients in the external medium are small, whereas if 
this is not the case and there are significant radial components in the direction 
of flow of cytoplasmic currents, then the potential gradients in the extracellu
lar space may not be negligible. 

Some insight can be gained into how this comes about by considering the 

tWe have recently acme across a full three-dimensional solution including external 
potential drops in Weber (1873), reproduced by Weinberg (1942), pp. 112-13. The solution 
is indeed formidable. 
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fiber as a current source with respect to the external reference or ground 
electrode. For instance, if the length constant is very much bigger than the 
fiber diameter, the current leaves the :fiber over a relatively long length. In 
this case, as a rough approximation, the fiber looks like a cylindrical current 
source of a constant current density and of a length equal to a length constant. 
On the other hand, when there is a significant radial component of current 
flow within the fiber, the length constant is necessarily short, comparable 
or smaller than the diameter of the fiber. The current source in this case 
appears much smaller, in the extreme it looks like a ring. In the external 
medium, the current density is thus much higher and the potential gradients 
become much greater about this smaller source and can become significant. 

1.4. Voltage Clamp with Two Microelectrodes 

The purpose of the voltage clamp technique is to measure the current that 
is required to hold the potential across a prescribed area of cell membrane 
uniform, both with respect to distance and to time. This current need not 
necessarily be equal to that injected into the whole system. In the relatively 
ideal system where a central axial wire assures the spatial uniformity of 
potential within the axoplasm, e.g. the experiments of Hodgkin, Huxley and 
Katz (1952) on the squid giant axon, the current injected into the axon was 
not measured. Rather a guard system was used which isolated that area of 
membrane where spatial uniformity of potential was assured and the current 
flowing through this guarded area of membrane was that measured. 

When two microelectrodes are inserted into a cell, one to record potential 
and the other to inject current, we cannot assume spatial uniformity of poten
tial near the current electrode. Now this non-uniformity, as we have pointed 
out before, is qualitatively independent of the geometry and is a consequence 
of the small size of the current source. It is clear, at least in principle, that 
spatial uniformity of potential cannot exist when the current source is a 
microelectrode. 

It is a truism to say that in the two microelectrode voltage clamp, the voltage 
that is being controlled is the voltage at the tip of the voltage electrode and 
this voltage cannot be assumed to be the same as the true transmembrane 
potential. Indeed, when large currents are required to control the membrane 
potential during periods of high membrane conductance, the problem is not 
simply one of losing spatial uniformity in the true transmembrane potential in 
the area of interest, but one of measuring the true transmembrane potential 
correctly even at one point in this area. During such periods there are large 
voltage gradients within the cytoplasm which cause the potential recorded by 
the voltage electrode to depend on the depth of the electrode within the cell 
and the angular position of the electrode relative to the current electrode. 

If the spatial non-uniformity in true transmembrane potential about the 
current electrode is such that the membrane there is not driven into a non
linear region of its current-voltage characteristic then the potential can be 
calculated, for the case of cylindrical cell, by use of the appropriate tables and 

c 
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equations in Part A, section IV, where the three-dimensional spread of current 
within a cylindrical cell is analysed. 

However, it would seem that in most cases of interest, sufficient current is 
being injected into the cell to make the steep rise in true transmembrane po
tential about the current electrode quite marked, and such as to make the 
assumption of linearity of the membrane current-voltage characteristic near 
the current electrode untenable. In this case, regenerative conductance changes 
could come about near the current electrode, greatly complicating the interpre
tation of the current voltage relationship, if not causing, (in conjunction with the 
electronic feedback system), uncontrolled oscillations in membrane potential. 

II. THE CYLINDRICAL CELL 

II. I. The Optimum Electrode 
Separation within a Cylindrical Cell 

From our analysis of the three dimensional spread of current within the 
cylindrical cell it became clear that at small electrode separations, as is re
quired when the experimenter wishes to measure the input resistance of such 
a cell, the potential that will be recorded, particularly when the length con
stant is small, will differ considerably from that predicted by one dimensional 
cable theory. Although the value of this potential displacement divided by the 
magnitude of the current injected, indeed, gives a true input resistance, R; its 
value cannot be equated with the value RP given by one-dimensional theory. t 

V.o 1J- 1JR R. m 1 * -:- = RP = -2 rmri = 2- --3 =I RP 
lo na 

(II.l-1) 

Depending on the angular separation of the tips of the two microelectrodes 
and the distance separating them along the longitudinal axis of the fiber, the 
potential will either be greater or smaller than that predicted by one-dimen
sional theory. Hence, were the recorded potential used to evaluate an input 
resistance, this resistance, if substituted into equation (II.l-1) would lead to 
either an overestimate or underestimate of the specific membrane resistance of 
the fiber. From the three-dimensional analysis in Part A of this article, it was 
found that the recorded potential, V, could be thought of as the sum of two 
components. One component, given by L(x,r m), was identical to the classical 
one-dimensional expression for the spread of potential along the longitudinal 
axis of the fiber: 

L( ) - ~ · ( )t - xf). x,rm = zlo rmri e (II.l-2) 

where current is injected in the middle of a fiber of semi-infinite length and 

A. = (r mfri)t 

tWhere rm is the resistance of the membrane in one unit length of the fiber and r1 is the 
resistance of one unit length of cytoplasm, Rm is the resistance of 1 cm2 of membrane and 
R1 is the volume resistivity, of the cytoplasm of the fiber and a is its radius. i0 is the current 
injected at x = 0 and V0 is the hypothetical potential predicted at x= 0 in one-dimensional 
cable theory. 
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The second component, given by S(x,8), described the effects of the three
dimensional spread of current in the cell. This second term was found to be 
independent of the membrane properties, provided that the length constant 
was not smaller than the fiber diameter. Hence it is constant at any position 
x, 0, relative to the current electrode. Restated, the complete equation describ
ing the spread of potential within a cylindrical cell about a point source of 
current is: 

ria 
V(x,8) = L(x,r m + 2 S(x,8) (II.1-3) 

Our problem here is to devise some experimental technique to eliminate or 
conceal the effects of the second term in equation (II.l-3) so that we can 
determine the hypothetical potential, V0 , which can be used in the one dimen
sional equation (II.l-1). One method would be to measure the potential at 
several points along the fiber, away from the current electrode, take the 
logarithm of these values and plot them against the corresponding values of 
x. Since the value of S(x,8) in equation (II.l-3) becomes negligible at relatively 
large values of x, the one-dimensional term in this equation dominates and the 
plotted points will fall along a straight line with slope 1/A. (for detailed dis
cussion see Falk and Fatt, 1964). The line is extrapolated back and the point 
at which it intercepts the voltage axis at zero x gives the voltage we need to 
compute the required input resistance. This, voltage, it must be remembered, is 
not the true membrane voltage at zero electrode separation, or, for that mat
ter, at small finite electrode separations. However, it is the hypothetical voltage 
that is given by equation (II.l-1) and which can be used, together with the 
values of Ri and radius, a, of the fiber, to compute the value of the specific 
membrane resistance, Rm. 

In order to describe our second method to determine the hypothetical 
voltage, V0 , for which equation (II.l-1) is true, we need to reconsider the one
dimensional cable equation. If the electrodes are a finite distance apart, then 
the potential displacement given by this equation falls short of the value for 
x = 0. This is not a trivial point and we can illustrate it with an example. If 
the length constant is 1 mm, and the electrode separation is 100 fl, not unrealistic 
values for many circumstances, the potential recorded at this small electrode 
separation falls 10% short of the theoretical value for x = 0, and the discre
pancy of course is greater for smaller length constants and greater electrode 
separations. The first method described above not only allows us to circum
vent the effects of the three-dimensional spread of current but allows us to 
obtain a closer estimate of the potential for zero electrode separation to be 
used in equation (II.l-1). 

Our second method of obtaining the potential, V0 , to be used in equation 
(II.l-1) is to make use of the effects of three-dimensional spread of current. 
We now recall that the three-dimensional correction term in equation (II.l-3), 
S(x,8), has positive values for moderate angular and longitudinal positions of 
the electrode relative to the current electrode. Now let us suppose that we 
could determine a position for the voltage electrode such that the positive 
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value of the correction term, S(x,8), exactly equals the decrement in potential 
(because x =f. 0) predicted by one-dimensional theory (i.e. the first term in 
equation (II.l-1)). Even though we do not measure the membrane potential 
displacement at zero electrode separation, as one-dimensional cable theory 
dictates, we could with this trick, measure the potential that this theory would 
predict at zero separation. We accept the fact, therefore, that there are effects 
due to the three dimensional spread of current within the cell and make use of 
them to allow us to to determine the potential we would measure if the current 
came from an infinite plane source or less than ideal, a disc that filled a cross 
section of the fiber, in other words, the three-dimensional effects of current 
spread did not exist. We, in effect, make a real cylindrical cell behave like an 
imaginary, one-dimensional cell. 

Restating equation (II.l-3) 

V(x,e) = R* = _!. Jr r. e -x;A. + ria . S(x 8) 
io P 2 m ' 2 ' 

(II.l-4) 

Thus 

(II.l-5) 

But e-= is defined by the series sum 

(II.l-6) 

So that we can write an approximation to equation (II.l-5) thus 

(II.l-7) 

The question now to be answered is, what values of x brings the right-hand 
side of equation (II.l-7) equal to 1. When the right-hand side of equation 

(II.l-7) equals 1 then R; = tJrmri as we desired. This value of xis clearly 

a x x 2 

I S(x,e) ==I- 2A.2 (II.l-8) 

As a first approximation, for small values of xfA., R;ftJrmri would approach 
unity when 

(II.l-9) 

that is to say, when 
X 
-;; = S(x,e) (II.l-10) 
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At such a distance, x, and angle, 8, the calculated value of the input resis
tance, R~ from the measured value of potential V(x,8) would come closest 
to equaling that given by t~ of one-dimensional theory. Note also that 
this position is independent of .A, that is to say, as a first approximation, it is 
independent of the membrane resistance or impedance should these change 
from measurement to measurement. 

A better approximation is obtained by including an additional term in the 
series expansion of e _xfA, which gives 

(II.l-11) 

Using our first approximation, equation (II.l-10), we can see from Table 
3 that for an electrode separation, xfa = 0·5, the angular position of the 
voltage electrode which would give a value of S(x,8) = xfa = 0·5 is between 
22·5 and 45 degrees. A closer estimate is obtained by inspection of the curve 
xja = 0·5 in Fig. IV.4-3 of Part A. This estimate is about 38 degrees. One could 
choose to have the electrodes in line with no angular separation and choose a 
value of xfa = S(x,8). However, in this case, S(x,8) varies steeply with x and 
slight errors in position make it difficult to use this technique. 

III. THE A.C. CASE 

Ill. I. A Brief Description and Derivation of 

the Generalized Frequency-dependent Length Constant 

We have already indicated that although the solution we have obtained for 
the three-dimensional spread of potential within cells are steady-state solu
tions, we can nevertheless use these solutions to obtain non-steady-state 
solutions. The rationale and detailed description of how to perform this 
feat cannot be given here. But suffice it to say that we define new currents and 
voltages, which are uniquely related to the real physical currents and voltages, 
but which do not require functions of time to describe them. This method is 
that of the Laplace transform and with it, the non-steady-state solution of 
electrical problems, where the currents and voltages can be any function of 
time, are obtainable from the steady-state solution of the problem (Van 
Valkenburg, 1964). 

However, let us restrict ourselves to a consideration of the case where we 
allow the membrane potential or the injected current to vary in time in a 
rather special way, namely as a sinusoidal function of time. When we do this, 
the impedance presented to current flow by the capacitive elements of the 
membrane is considerably simplified and is more easily analysed mathemati
cally. Furthermore, if we consider only the peak values of the currents and 
voltages, recognizing that these may not occur at the same time, we can obtain 
with relative ease many of the qualitative features of the response of the system 
to, for example, a step or pulse of current, as well as some quantitative infor
mation with regard to the response to a steady sine wave of current. 
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We can illustrate this procedure by applying it to the steady-state solution 
for the one-dimensional cylindrical cell, in which the membrane behaves as a 
resistance and capacitance in parallel. The total membrane current, Iris given 
by 

Ir = V/Rm + Cm · dVfdt 

If the imposed voltage is a sinusoid, i.e. V = VP sin wt where w 
[sec-1], (w = 2nf, wherefis frequency [Hz]), then 

V P sin wt 
Ir = R + CmVv w cos wt 

m 

(III.l-1) 

[radians] 

(III.l-2) 

(III.l-3) 

From equation (III.l-3) we can see that the capacitive current, unlike the 
resistive current, varies with frequency. When the frequency is zero, i.e., at 
d.c., all the current through the membrane is resistive, whereas at a sufficiently 
high frequency, almost all the membrane current is capacitive and out of 
phase with the applied voltage. In our analysis here, we shall only consider the 
peak values of the voltages and currents and relinquish the fact that they do 
not occur at the same time. However, we can only do this after we have added 
up all the currents and voltages in the problem, and since we cannot add, for 
example, two sinusoidally varying currents unless we know the phase relation
ships between them as well as their peak values, both phase as well as ampli
tude of the voltages and current must be considered. In order to prepare the 
steady-state solutions to give us the peak value of the sinusoidally varying 
transmembrane potential, we first replace the membrane resistance, r m by the 
membrane impedance, zm. Now since the membrane impedance must con
tain enough information to enable us to recover the ratio of two time varying 
functions (the ratio of the membrane voltage and the injected current) the 
quantity that described the impedance, the impedance function, must contain 
information with regard to the time relationship between the two quantities 
(phase), as well as to their magnitude. We shall, therefore, not be so surprised 
to learn that the impedance is not given by one number but by a pair of num
bers, a complex number. Such a number consists of two parts, one which is 

called the real part, a, and the other, the imaginary part, jb, where j = J- 1 
the whole number being written as the pair, a + jb.t 

tThe reader should be reminded that the nomenclature of complex numbers is most 
unfortunate: the numbers are not "complex" in the sense that they are complicated, since 
in fact they follow rules very similar to those applicable to ordinary numbers. Furthermore, 
the "imaginary" part of a complex number is fully as significant as the "real" part; and 
may have just as much physical meaning. Finally, it should be pointed out that the phase and 
amplitude of a complex number do have separate physical significance; in the case of the 
complex impedance one (phase) describes the time relation between current and voltage, the 
other the amplitude relation. However, the phase and amplitude of the impedance are not 
the same as the real and imaginary parts of the impedance, and indeed both the real and im
aginary parts must be used in calculating phase and amplitude. 
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Thus, we replace the quantity r m• which is given by an ordinary number' 
by the membrane impedance, zm, which is described by a complex number· 
In doing so we shall find that we have factors and/or exponents in the equa
tion which contain products, ratios, square roots, etc., of ordinary and com
plex numbers. The next step is to perform the complex algebra, following the 
rules for the arithmetical manipulation of complex numbers, so that we have 
a single complex number where we had originally ratios, products, square
roots, etc. 

Taking the steady-state solution of the one-dimensional cable equation, 
as an example, 

(III.l-4) 

where the factor in the exponent (rmfri)t is usually called the d.c. length con
stant, A. 

Replacing r m by zm in equation (III.l-4), we get, 

v = fio J zmri e -xf../zm/ri (III.l-5) 

However, we know that, in general, (zm/ri)t will be a complex number. 
Thus (zmfri)t in the exponent of equation (III.l-5) cannot, in general, have 
the same significance as A = (rmfri)t in the exponent of the steady-state 
equation. In the latter, A is a real number which gives the length at which the 
potential displacement has declined to exp( -1) of its value at the site of 
injection of a steady current. Since length can only be described by a real 
number, the complex number (zmfri)t cannot have the same meaning. The, in 
general, complex nature of the exponent in equation (III.l-5) is best recognized 
by putting it in the form of the product of the real number, x, and a complex 
number, y, where y = a + j{3. The name given to y in transmission line 
theory (King, 1965) is the propagation constant since it contains information 
as to the way the phase as well as the amplitude of the potential varies with 
distance down the fiber. The name of a is the attenuation constant and that 
of {3, the phase constant.t 

The question now arises as to whether we can define a quantity similar to 
A of the d.c. solution. That is to say, can we define a length, A*, at which the 
peak value of the sinusoidal displacement in transmembrane potential declines 
to exp (- I) of its value close to the site of injection of current. Analysis shows 
that we can, as was first pointed out in the physiological literature by Falk 
and Fatt (1964), and this length, A*, is given by the reciprocal of the real part 
(R.P. denotes real part), of the complex number, y =a + j{3. So that 

(111.1-6) 

t At d. c., the attenuation constant a= 1/ ,.\where ,.\ is the physiologists' measure of atten
uation. It is, we think, unfortunate that this additional constant ..\, was defined since at 
other than d.c. it does not give attenuation nor is there a simple relation between 1/ ,.\ and 
a and fi of transmission line theory. Indeed the propagation constant, y, is defined such that 
the attentuation is given by exp (-ax) at all frequencies. 



62 ROBERT S. EISENBERG AND EDWARD A. JOHNSON 

where VP is the peak value of sinusoidal voltage, similarly for iP. z'" is the 
magnitude of the impedance and 

and furthermore, 

1 
It* =

IX 

It* = !:._ = __ 1_--=~ 

a R.P.[J;J 

(III.1-7) 

(III.1-8) 

The reader should be warned that because of the rules of complex algebra, 

(III.1-9) 

To simplify the complex algebra that is involved, we shall take the case where 
the frequency of the applied current is sufficiently high that the membrane 
current is largely capacitive, that is to say, the membrane impedance, zm, is 
simply that of a capacitor, which is 1/jwcm. 

Substituting this expression for zm in equation (III.l-5), we get 

--
v = i . - -'- e- xy 1J r. 

P P 2 jwcm 
(III.1-10) 

where 
1 

(III.1-11) 

Simplifying equation (III.l-11) using the rules of complex algebra, we get 

So that 

R P. [ ] _ _ J wcmri 
.. ')'-IX---

2 

(III.l-12) 

(III.1-13) 

For this particular case, where the frequency of the applied current is so high 
that z'" = 1/jwcm, then the length constant, It*, is given by 

(III.1-14) 

or (III.1-15) 
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From this expression one can see that the length constant has a value (in 
fact a maximum value if the membrane has no inductive elements) at d.c., 
given by A. As the frequency of the applied current is increased the length 
constant decreases, approaching, at sufficiently high frequencies, in the 
case of a simple parallel arrangement of resistance and capacitance, the 
value A*, given by (1/rcfcmri)t. Thus we can use this equation to assess whether, 
at a given frequency, the three-dimensional spread of current within the 
cylindrical cell is of importance. The value of .A* can be calculated, and the 
ratio A *fa obtained. Table 2lists the factor by which the voltage predicted by 
one-dimensional cable theory must be multiplied to give the voltage pre
dicted by three-dimensional cable theory, for various values of the ratio 
A* fa of interest. 

If the waveform of the injected current is not a steady sinusoid but a step, 
pulse or ramp then a useful rule of thumb is that fast rates of change corre
spond to high frequencies. It can be shown that, in fact, any waveform of 
current (or voltage) can be described by a series of sine waves of differing 
frequencies and amplitude of varying phase relationships to one another. 
For example, with this rule, we can see, qualitatively that during the start 
of a step of current the effective length constant can momentarily become very 
small and hence the displacement of true transmembrane potential can deviate 
considerably from that predicted by one-dimensional theory. This idea of a 
frequency-dependent length constant is one that it is well to keep always in 
mind for with the rule of thumb referred to above one can deduce many of 
the qualitative features of the spread of current within a cell, without perform
ing a complete analysis. 

IV. THE SPHERICAL CELL 

The mathematical analysis of the effects of the three-dimensional spread of 
current within a spherical cell was not successful in that we could not sum 
a series and so were unable to calculate the magnitude of the three-dimensional 
effects. However, as in the case of the cylindrical cell, our analysis showed 
that the potential at any point within the cell (with respect to the outside) was 
given by an expression which separated into two terms. 

V (r,r',O) = F(Rm) + G(r,r',O) (IV.l-1) 

where r is the radial position of a point source of current, r' is the radial 
position of the point at which the voltage is measured and 8 is the angular 
separation of these two points. One term, F(Rm), is identical to that which 
one would obtain if it was assumed that the current caused no potential 
gradients within the cytoplasm in its passage from the current source to the 
membrane. The second term, G(r, r', 8), depends solely on the resistivity of 
the cytoplasm and accounts for such potential gradients. As for the cylindrical 
cell, for any given position of the voltage electrode relative to the current 
electrode, this term is constant in that as a first approximation it is indepen-

c* 
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dent of membrane properties. The term which depends on membrane pro
perties, is, the first term, F(Rm). However, unlike the cylindrical cell, the only 
factor in the first term involving the membrane properties, is, the input resis
tance of the cell and this factor is not given by !(rmrJt but simply by Rm/4na2

• 

The absence of the square root in the case of the spherical cell therefore 
makes the magnitude of the first term very much more sensitive to changes in 
membrane properties, Rm (or Zm). Thus we would predict that as Rm or Zm 
decrease, the importance of the effects of the three-dimensional spread of 
current, that is to say the magnitude of the second term, G(r, r', 8), relative 
to the first, F(Rm), would become noticeable at higher values of Rm or Zm 
than in the cylindrical cell. 

Hellerstein (1968) has analyzed the three-dimensional spread of current 
within a spherical cell about a point source of current and concludes that 
there are no potential gradients of any significance within the cytoplasm at 
any time. However, an analysis of his solution at small electrode separations 
does not support this conclusion (personal communication, E. Engel and 
R. S. Eisenberg). 
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