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A SINGULAR PERTURBATION ANALYSIS OF INDUCED ELECTRIC

FIELDS IN NERVE CELLS*

VICTOR BARCILON’, JULIAN D. COLE AND ROBERT S. EISENBERC

Abstract. The electric field induced by a microelectrode inserted in a nerve cell is investigated in
order: to interpret the results obtained by the single and double probe techniques. The solution is
obtained by means of a singular perturbation expansion in terms of the ratio of the membrane con-
ductance to the cell conductivity. Both finite and infinite cells are considered and special attention is
devoted to the spherical and cylindrical geometries.

1. Introduction. Nerve cells, like other cells which make up the tissues of
animals, consist of material suspended in a salt solution surrounded by a thin
membrane, typically 10- cm thick. The primary function of the membrane is to
maintain a constant chemical and physical environment within the cell by isolating
the cell interior from its surroundings. Thus, cell membranes are invariably quite
impermeable to the movement ofthe solute molecules commonlyfound in biological
systems. In particular, the membranes have low permeability to ions, and thus
can be described electrically as having very small specific conductivity (typically,
3 10-lo ohm-1 cm-1). However, the thinness of the membrane implies that
the conductance of one square centimeter of membrane, called the membrane
conductance G,, in the physiological literature (the reciprocal being the membrane
resistance Rm), is small but not negligible, namely some 3 10 -4 ohm-1 cm-2.
Similarly, the thinness of the membrane means that the capacitance of the mem-
brane (usually about #F/cm2) is appreciable. Thus, small but significant amounts
of current, either ionic (that is, resistive) or capacitive, can cross the membrane.

The flow of these currents within cells and from cell to cell is of great import-
ance for the function of many living systems"

(i) The signal which initiates muscular contraction is electrical [17].
(ii) Embryonic cells and the epithelial cells which make up most secretory

organs have specialized regions of membrane which allow current to flow from
one cell to another. The significance of this electrical coupling is not well known
[13, but is likely to be important.

(iii) Sensory systems, such as the eye, ear, taste cells, pressure sensitive cells,
etc. are transducers which convert the appropriate natural stimuli into electrical
signals [9], [4].

(iv) Signaling and information processing in the nervous system are essentially
electrical in nature [11], [123.
Thus, the study of the electrical properties of cells is of considerable biological
significance.
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340 VICTOR BARCILON, JULIAN D. COLE AND ROBERT S. EISENBERG

Experimental procedures which record the natural electrical activity of cells
must preserve the integrity of the cell, that is to say, the procedures must not
destroy the isolation of the cell interiQr from the outside world. Thus, the probes
which record this activity must be so small that they do not damage the membrane.
Wherever possible, this activity is measured by inserting into the cell a small
diameter (less than 10 .4 cm) glass pipette filled with an electrically conducting
salt solution, and then measuring the electrical potential in the solution filling the
pipette. With care and luck this can be done without significant damage to the
cell.

Measurements of the electrical parameters of the cell, as opposed to simple
recordings of natural electrical activity, face further difficulties since the experi-
ment must be arranged so that current flows through the structures of interest.
Since the membrane, which has the highest impedance of any of the cellular
structures, is most important in determining the electrical properties of the cell,
the current is usually applied across the membrane. This is often done by inserting
a second micropipette into the cell and passing current between it and an
"indifferent" electrode in the external solution, meanwhile recording potential
with the first pipette (the "two probe technique" shown in Fig. l(a)). In many cases
however, it is possible to insert only one probe into the cell: then the one probe
technique (Fig. l(b)) must be used. In either case, measurements are made of the
change in potential produced by the flow of current.

o Potentic[

Recordin9

Bath
Electrode

(a)

(b)

o Potentict[

Recording

FIG. 1. Two setupsfor recording the current-voltage relations of cells. Part (a) shows the two probe
technique. Two probes (microelectrodes), here shown as cones, are inserted into the cell." one probe passes
current to a bath electrode located in the solution outside the cell; the other records potential with respect
to another bath electrode.

Part (b) shows the one probe technique. Current is passedfrom a microelectrode to a bath electrode
outside the cell and voltage is recorded between these two electrodes.
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A SINGULAR PERTURBATION ANALYSIS 341

In this paper we are concerned with the interpretation of changes in potential
recorded by the two probe method and the determination ofthe electrical properties
of individual parts of the cell (the cell membrane or cell interior) from these
measurements. The one probe method will be considered in another paper. The
properties we shall be concerned with are the so-called linear properties of the
cell, that is to say, the responses of cells to small current. The nonlinear processes,
for example those processes which actually produce and amplify the signals in
the nervous system (see [10] for a discussion of these), are not susceptible to an
analysis of this kind. Moreover, we shall be primarily concerned with the steady
state.

The essential problem which faces us then is to analyze the flow of current
within cells so as to predict the change in potential produced by the application of
current. This problem has been considered in some detail by many physiologists
over the last century (see [16] for references); our contribution will be to analyze
the flow of current with as few assumptions about the nature of the electric field
as possible. In particular we shall not follow the usual practice of assuming that
the field can be described by a differential equation with only one spatial coordinate.
Falk and Fatt [8] were the first to analyze this problem without such an assumption
Eisenberg and Johnson [6] have discussed in detail the practical implications of
this theoretical work and have extended the analysis to different cell geometries.
Adrian, Costantin and Peachy [1] have computed the solution for a cylinder;
Eisenberg and Engel [5] have treated the spherical cell in some detail. In this
previous work, expansions in the eigenfunctions which describe the potential in
cells of various shapes were used; they gave rise to expressions which have little
physical meaning and which require ext.ensive numerical computations. By using
a singular perturbation expansion based upon the small dimensionless value of
the membrane conductance, we are able to derive equivalent but simpler expressions
and to interpret physically the meaning of the various terms of the solution.
Furthermore, in the case of the spherical cell, we can simplify the expressions
involved to the point where subsequent treatment of the single, probe method
becomes practicable.

2. Formulation. Denoting by j’, E’ and Gi the current density, electric field
and conductivity of the material within the cell, we can write Ohm’s law and the
continuity equation thus:

(1) j’= GiE’,

(2) V’.j’ Q,

where Q is the source distribution. Introducing the potential V’ defined by

(3) E’= V’V’,

we can express the continuity of current at the membrane as follows:

(4) Gn. V’V’ GmV’
where n is the unit outward normal and Gm is the conductance of one cm2 of the
membrane. The membrane is treated here as a zero thickness structure providing
a contact resistance between the internal and external solutions. We have also
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342 VICTOR BARCILON, JULIAN D. COLE AND ROBERT S. EISENBERG

assumed that the potential outside the cell is constant, equal to zero the validity
of this assumption is discussed by Rall [14], [15].

Throughout this paper we shall restrict our attention to a point source of
current which, in addition to providing a good approximation for the micro-
pipette, yields the Green’s function for this class of problems.

Let us introduce dimensionless variables (unprimed) in an obvious way
associated with the apparent orders of magnitude inside the cell,

_
G 1.,

E= E’, V= V, ql--,
where is a typical cross-sectional length (in m) and q a measure of the strength
of the current distribution (in amp/m). As a result, the problem becomes

V2V= 6(r-R) inD,
(5)

c3 V/c3n + eV O onF,
where 6(. is the Dirac delta function, r the position vector, R the position of the
current source, D the volume of the cell and F its membrane. The dimensionless
number e is defined as follows:

(6) e lGm/G.
For situations of physiological interest, e is of the order 10-3.

In the present paper we propose to develop a procedure for solving (5) for
rather general cell geometries, based on the smalliaess of e. It should be noted
that a regular perturbation expansion is not possible. Indeed, if such an expansion
existed, its first term, say v, would have to be a solution of the following problem:

V2v 6(r R) inD,
(7)

c3v/c3n 0 on F.

But the above problem has no solution: it is physically impossible to have a
source of current within the cell and no flow of current across the membrane!

3. Finite cells. It seems evident that the difficulty with the previous expansion
is that the estimate of the order of magnitude of V is incorrect; in order to drive
a current across a highly resistive membrane a large potential must build up inside
the cell. The following form of expansion leads to a consistent set of approxima-
tions:

1 V(1) V(2)(8) V =-V()+ + e + ...,
where V(), V(1), are independent of e. Substituting (8) into (5) and equating
powers of e we deduce a sequence of problems for the various terms. In particular,
the boundary value problem for V() is

V2V()=0 inD,
(9)

(3V()/c3n 0 on F.
The most general solution is

(10) V()= C,D
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A SINGULAR PERTURBATION ANALYSIS 343

where C is a constant. Similarly the problem for V(1) is

(11)
V2 V(1) 6(r R) in D,

V(1)/n C on F.

Integrating the equation for V(1) over the domain D and making use of the diver-
gence theorem we get

(12) On
dS I.

From the boundary condition for V(1) we therefore deduce that

(13) C l/A,

where A is the area of the membrane. It should be noted at this stage that (11)
specifies V(1) only to within an arbitrary constant. Just as for V(), the indeter-
minacy in V(1) is removed by considering the next order field. Indeed, the boundary
value problem for V(2),. viz.

(14)

implies that

V2V(2) 0 in D,

OV(2)/n V(1) on F,

(15) f f v(1) dS O.

We can now rewrite the problem for V(1) thus"

V2V(1) -$(r- R) in D,

(16) (3 V(1)/0n llA on F,

f fF V(1) dS O.

Similarly, the problem for the higher order terms is

V2V(")=0 inD,

(17) V(’)/n V("- ) on F,

f fr V(") dS 0

for n 2,3,....
The above sequence of problems enables us to give a simple physical inter-

pretation of the various contributions to the potential. V() represents a constant
potential independent of position. V(1) represents the field produced by a point
source of current within a cell surrounded by a membrane which allows all the
current to flow uniformly across its entire surface. This problem introduces the
singularity in potential which must be present according to the original problem.
V(2), V(3), represent potential corrections due to current distributions on the
membrane with zero surface averages. As a result, these higher order correctionsD
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344 VICTOR BARCILON, JULIAN D. COLE AND ROBERT S. EISENBERG

produce no current efflux. Indeed, the integral constraints

(18) f fr V’’ as o, n= 2,3, ...,
are a consequence of this result.

As an illustration of the asymptotic expansion method, let us reexamine the
case of spherical cells which has previously been considered by Eisenberg and
Engel 5]. Assuming that the dimensionless radius of the sphere is equal to one,
we immediately deduce that

(19) Vt)= 1/(4rc)

furthermore, the problem for V1) becomes

V2 V(1) 6(r R) in r < 1,
(20)

t3vl)/c3r 1/(4) on r 1.

We look for a solution of (20) made up of the fundamental solution of Laplace’s
equation in three dimensions, the "image" and an unknown harmonic function,,, with no singularities in the interior"

(21) V(1) 1 It -RI +
rlr/r2 RI /O

Without loss of generality we can assume that R coincides with the axis 0 0,
where 0 is the polar angle. As a result , is solely a function of r and 0, and can be
written

(22) , A,r"P,(cos 0),
n=0

where P,(cos 0) is the nth Legendre polynomial and the A,’s are unknown
coefficients. From a consideration of the boundary condition we deduce that

(23) A,, R"/n, n 1, 2,...,

Ao being undetermined. Therefore

(24) ’ 1 rR)"e,(cos O) + Ao;

this series expression for , can be summed by simply noting that , satisfies the
differential equation

(rR)c(25) (rER2 + 1 2rR cos 0) 1/2
1,

which can be easily deduced from (24) together with the generating function for
the Legendre polynomials. Solving for , and evaluating Ao in such a way as to
satisfy the integral constraint

f fFV 1) dS O,D
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A SINGULAR PERTURBATION ANALYSIS 345

we deduce that

V(1) 1 1
4r: [_(r + R 2rR

(26)
cos 0)t/2 (rZR2 + 2rR cos 0) 1/2

-log{1 rRcosO + (1 + r2R2 2rRcosO)1/2} 2 + log2/
This very simple expression for V(1) is well-suited for computational purposes.
In addition, it can be used to derive the average potential on a disc source of
current [7] which would correspond to the potential recorded by the single probe
method described above. Since there has been no basis for the interpretation of
the results obtained by means of the single probe technique, the computation of
the average potential on a disc source is of particular significance.

It should be noted that the expansion (8) is, strictly speaking, not uniformly
valid inside the cell because of the source singularity in the V(1) term; however,
it is valid for the difference of the potential from its singular part.

4. Infinitely long cells. We have previously deduced that for a finite cell the
potential is of the form

1
(27) V -----+- V(1)+ V(2) - ....
For more and more elongated cells, the area of the membrane will become larger
and larger, and for sufficiently large values of A the above representation will
cease to be valid. For these elongated cel!s, the idealization of an infinitely long
geometry might be appropriate. To that effect let us reexamine the specific case
of an infinitely long cylindrical cell previously investigated by Eisenberg and
Johnson [6].

Denoting by x, r, 0 the cylindrical coordinates, we can assume without loss
of generality that the source of current is located at x 0, r R, 0 0. As a
result of the boundary value problem (5) can be written thus:

c2 1 c3 1 (2
r2 -t- +

(28) cr + eV 0

V 1-5(x)5(r R)5(O),
r

onr= 1,

V-*O as Ixl .
The boundary condition at large x’s is related to the fact that the outside potential
was chosen to be zero.

The above problem can be solved by means of a Fourier transform in the
x-direction;however, a method based on perturbation techniques presents the
advantage that it can be generalized to other geometries.

Let us first observe that a "regular" expansion of the form

(29) V V()(x, r, O) + eV(1)(x, r, O) +D
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346 VICTOR BARCILON, JULIAN D. COLE AND ROBERT S. EISENBERG

is again not possible. This can be seen most easily by averaging the zeroth order
problem over a cross section, viz.

d2

-v(x) 6(x),

(30)

where

F()(x) ---, 0 as Ixl

(31) ()(x) lffffdO rV()(r, O, x) dr.

Clearly, the boundary conditions at infinity cannot be satisfied. The following
heuristic argument suggests the modification necessary for the derivation of a
formal asymptotic expansion. Once again let us average the equation over a
cross section, viz.

(32) rCsx2 V x + -r
or making use of the boundary condition at r and assuming that, for large
x’s, V(1, 0, x) is nearly equal to the average V(x), we deduce that

(33) d2 /dx2 2e - 0.

This indicates that

(34) 1 x/x
is an appropriate far field variable and that half powers of e will appear in the
asymptotic expansion.

The multiple scale method [2] provides a means of removing nonuniformities
at infinity. Let us introduce the following new variables:

(35) , en/2x, El O, 1, 2,’’’,

and regard them formally as independent variables. Let us furthermore look for
an asymptotic approximation of the form

1

0 gn/2 v(n)(r, O, o 1, )"(36) V
x/,

We shall require that (36) remain uniformly valid as ]x[ - oe. To that effect, the
terms which lead to nonuniformity (viz. the secular terms) will have to be system-
atically eliminated. This process will generate the additional differential equations
which determine the dependence of the different V(")’s on the various ’s. Since
all the new variables are formally independent variables, the operator /#x must
be replaced by

+s + +....
,2 o,2 o,,3

Throughout the remainder of the paper we shall denote cross-sectional averages by an overbar.
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A SINGULAR PERTURBATION ANALYSIS 347

It is convenient to use the symmetry of V and replace 6(x) by a boundary
condition, and rewrite (28) thus"

V2V ---0,

(38)

? V/c?r + eV O onr= 1,

V 1
2r6(r R)$(O) on x O,x

VO as x -, o.

Substituting (36) and (37) in (38) and equating powers of x/, we obtain a sequence
of problems for the various V("). In particular, the first five problems are"

(39)

(40)

(41)

AV<)=0 inr< 1, 0<0<2re, o>0, 1 >0,’",

c?V()/cr=O onr= 1,

c3V()/Co 0 on 0 1 O,

V/)0 askoo, whenevercgV)/,=-0, n=O, 1,...,k- 1;

2 V()

cV(l)/c?r=O onr= 1,

c3V(1) cV()
6(r- R)6(O)

60 1 2r
on o 1 0,

-V(1)0 askoo, wherecgV()/cg,=0, n=O,...,k- 1;

2V(1) 2 v(O) 62 V(O)
AV(2) 2,263o631 c o2

V(2)/6r V() on r 1,

(V(2) (W(1) (V(0)

on o 1 q

V(2) 0 as k o, where 6V(2)/6, =_ O, n O, ..., kD
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348 VICTOR BARCILON, JULIAN D. COLE AND ROBERT S. EISENBERG

(42)

62V(2) (2 V(1) (2 V(1) (2 v(O) (2 v(O)
AV(3) 2C{oC{ c 2C{oC{2 2oC33 212
V(3)/r V(1) on r 1,

(W(3) cV(2) (V(1) (V(0)

0 (1 62 (3
on o 1 0,

and

(43)

V(3) -- 0 as k - or, where (V(3)/(n -- O, lrl 0,’’’, k 1;

(2 V(3) (2 V(2) (2 V(2) (2 V(1)
AV() 2C3{oC{1 c3{2 2o632 2C3o633

(2 V(1) (2 v(O) (2 v(O) (2 v(O)

2312 6322 2133 2o4,
cV()/cr V(2) on r 1,

cV(4) (V(3) cV(2) cV(1) cV(0)

0 1 2 3
on o 1 0,

V(4) - 0 as oe, where c3V(’r)/c3,, O, n 0,..., k 1.

The operator A is defined thus"

102 1 1 10 2 2
(44) A + -t

r r r2 6302 63(

The last boundary condition in each problem states that whenever the variable
V(s) (j 0, 1, 2, 3, 4) is independent of the first k independent variables o,
2, "’", k- 1, it must decay to zero as

It is usual in multiple scale methods to have to examine one or several of
the higher order approximation equations in order to determine the first approxi-
mation.

Let us now consider each problem in turn. From (39) we can immediately
deduce that V() is not a function of o, r and 0, viz.

(45) V() V()(I, 2, );

furthermore

(46) V() - 0 as 1 -As a result, the equation for V(1) is homogeneous. Averaging the latter over a
cross section, we deduce that

(47) c32V(1)/ O.

Furthermore, averaging the boundary condition at o 1 0, we see
that

V(1) cV() 1
(48) r- 1 2"D
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A SINGULAR PERTURBATION ANALYSIS 349

Since F(1) cannot have a linear dependence on o on account of the boundary
condition at large o’S, we conclude that

c3V() 1
(49) c 2n

on 2 0

The boundary value problem for V1) can now be rewritten thus"

(50)

AV(1) O,

6V(1)/63r 0 on r 1,

(V(1) 1 1
(r- )(0)

Co 2rr 2r
on o 1 O,

V(1) -- 0 as o -’ co.

The solution to the above problem can be expressed by an eigenfunction expansion"

(51)

where

(52) U(ml,

V(1) Z Z a(mln)(l’ 2, )U)(r, O, o),

(n)l (tv(n) t]l (n(n)r]

{)2 n2}[jn(o(nm))]2 cos nO exp(-a(m")o), m, n 1,2,

(53) /(1) Jo((m)R)Jo((m)r)
’+mO "exp(- 0(m0)0)

211:0 [ao(0m )]

where a(m") is the ruth root of J’,(z), and the "m,t"(1)[} 1, 2, are unknown functions
of 1, 2, such that

(54) a(m12(O, 0,... 1.

We now turn our attention to (41) which becomes

2 v(o) 2V(1)
AV(2) a 2alao

(55) OV(2)/Or V() on r 1,

(V(2) (V(1) (V(0)

(0 1 2
on o 1 O.

The solution to the above problem is of the form

(56)

where

(57)

V,2,
r2V‘o, Fc2V<)

2 2 L a, 2V() o.c V(1)
(1

+ W(2)(r, O, o, 1, ),

AW(2) 0,

W(2)/(r 0 on r 1,

(W(2)/(0 (V()/(2 on o 1 O.D
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Clearly, in order to maintain the uniform validity of the asymptotic expansion
we must eliminate the secular terms appearing in (56) and require that

(58) 2 vo)/, 2v 0

and

(59) (V(1)/(l O.

Making use of (49), we deduce that

VO)_ v(2,
2w/rc exp(-x)’

(60) V(1) .(1)[ (1)
"mn,2, )Utah(r, O, o),

n=O m=l

F2V(2) --V() + W(2)(, 2, ).
2

The only other information contained in (57) is

(61) c3v/2 0 on 1 0.

It is perhaps worth noting that since V(1) depends on o and V(1)---, 0 as

o --’ oe, the expression for V1) cannot contain an additive unknown function of
1, 2, as is the case for V2).

Let us now consider (42) for V3) which becomes

(62)

2 v(o)

212’
onr= 1,

V(1) (W(0)

2 (3

We can immediately see that we must set

(63) c3 V()/c52 0

on o 1 O.

to prevent a term of the form o2 2V()/12 from entering the expression for
V3). As a matter of fact, it should already be apparent at this stage that the fields
with even (odd) superscripts are independent of the variables with even (odd)
subscripts, viz.

V gnv(2n)(F, 1, 3, "’", 2k+1,

(64)
q- Z gnv(2"+ l)(r,O,O,2,’’’,2k,’’" );

n-O

from now on we shall assume that this is the case.
Returning now to (62), we look for a solution of the form

(65) V(3) m=21 n=O cz)Tin’- r/2r Or + W(3)(r, O, o, ),D
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where

(66)

(67)

AW(3)

m=l n=0 n2m" C32 J
c3W(3)/r 0 on r 1,

or, using (54),

(68) () h(1)(fiamn ’mnU’4 exp

where

r2 (W(2)

on o 0.

b(2,)(O, 0,... 1.

The evaluation of W(3) has to await the determination of the dependence of V()

on 3 and that of W(z) on 1. However, by averaging the boundary condition on

o 1 0 over a cross section we get

0= -27r
amo

r2
u(ml)

dr
1 W(2) # v(O)

r g 3

(W(2) cV(0) 1 Jo()R)
( 8G 7 O(mO)2jo(O((mO)

on 1 O.(69)
(1 3 m=l

Let us now turn to the boundary value problem for V(4), viz.

(2 V(2) (2 V()
AV(4) 2

(70) V(4)/r V(2) on r 1,
V(4) 0 as 1 -- c;the boundary condition on o 1 0 is identically satisfied on account

of (64). We now look for a solution of the form

r4 V(0) W(2)’
(71) V(4)=--V() + r2 + W(4)"

16 8 2
then

(2W(2) 2W-’-(2) (v -,A- v
AW(4) e "/-

c321 b + --e

(72) # W(4)/r 0,

W(4) 0 as 1 GO.
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By the usual arguments we deduce that

I2W(2) e-,/,
(73) c32

2W2)

In turn, to eliminate secularities in W(2) we must set

(74) -= 0,
#3

which, on account of (49), implies that

(75) v #(5, )exp

where

(76) #(0,0,... 1.

Finally, solving (73) together with (69), we get

W(2)
3 1 Jo(z)R)+ . e-’1o9(3(77)

( 16rc, ,,/z ")m Om 1)

where

(78) o9(0,0,... 1.

In summary, if we truncate the series expansion after the first two terms and
let x range from -oo to + oo, we get

1

Jo(om R)Jo(o r)
+ exp

m=l 2m [Jo(m )]
(79)

+ rc{) cos nOexp 1 + )_nm:X n2}[jn(Z))]2 Ixl

+
From the point of view of the expansion procedure, it is interesting to note that
the first series in the representation (64) coincides with the far field that would be
obtained by an inner and outer expansion. In fact, one can show that the far field,
say Vs), is of the form

(80) vf)= In=o enP2n(r)l exp[-l(e)lx.],

where P2,(r) is a polynomial of degree 2n, and l(e) is a coefficient dependent on e,
viz.

/33/2
(81) l(e) e--- + O(e5/2).

The far field is independent of 0 but it displays a dependence on r, the distance
of the source from the axis (cf. (77)).D
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A SINGULAR PERTURBATION ANALYSIS 353

It is not possible to give a simple physical interpretation to each V". This is
due to the fact that the various order fields are intricately coupled, as can be seen
from the boundary conditions at o 1 0. However, if we restrict our
attention to Vt and Vtl, we can see that the first term represents the potential
in a transmission line, while the second is the potential due to a point source of
current lying on a transverse, uniform disc sink in an insulated cylinder. Strictly
speaking, this interpretation of Vt is correct provided that its dependence on a
is neglected. A similar restriction is not necessary for Vt; in fact, the entire a-
dependence of Vt can be taken into account by means of the parameter l(a)
introduced in (80), which can be looked upon as a "loss" coefficient characteristic
of the nerve cell. In previous physiological studies of the transmission line model,
l(a) was approximated by the first term in the series expansion (81).

Finally, we should mention that the procedure used for a cylindrical cell can
also be used for an infinitely long axially symmetric cell of variable cross section.
The case of greatest interest is that for which the "wavelength" of the corrugations
is comparable to 1/x/, i.e., the equation of the membrane is of the form

(82) r f(x).
Because of the slowly varying cross-sectional area of the cell, the variable

(83) X= p)

must be introduced. Otherwise, the basic procedure for deriving the potential is
unchanged. In particular, the O(1/ field equation becomes

dld [ )dV{)qdlA(84) f({ 2V a({).

5. Concluding remarks. In 3 and 4 we have examined the problem for
the finite and infinite cells. Mathematically, the results are rather different.
Continuing to denote the area of the surface membrane by A, we can look upon
these results as representations of the solution in different regions of the a-A space.
An investigation of the range of validity of the finite and infinite cell representations
reveals that they are valid when A << 1/x/ and A >> 1/x/, respectively.

Finally, the rather surprising result derived in 3, regarding the uniform
O(1) current flux across the membrane, might be better understood by considering
a transient problem. Since the transient problem for the electric current is rather
delicate, our discussion will be given in terms of a simpler heat conduction problem
with a steady state analogous to that of the electrostatic problem under investiga-
tion. Denoting the temperature field by T and time by t, we consider the following
transient problem:

--g + V2T -(r- R) in D,

(85) c3T/cn + aT 0 on F,

T=0 att =0.D
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We shall omit all calculations, and simply write down the first few terms of the
solution which is uniformly valid in t, viz.

(86) 1T() T(1) O(e)T=+ + +

where

(87) 1{T)= + 1-exp

et and K is the volume of the region. The transient problem reveals that over
a rather long time, viz l/e, for all intents and purposes heat does not flow
across the surface. As a result the temperature in D builds up and becomes
uniform. When the temperature reaches a magnitude of O(1/e) (i.e., for > 1/e), heat
starts to flow, and the heat flux is roughly uniform over the entire boundary.
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