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For many years now the transverse tubular system of skeletal muscle has
been implicated in the mechanism by which an action potential on the surface
membrane initiates contraction in the depths of the muscle fiber. The tubular
system has been thought to act as a pathway for current flow, linking the
potential change at the surface with potential change across tubular membranes
near the axis of the fiber. These potential changes across the tubular membrane
presumably act as a trigger, in a manner not known, for the release of calcium
from the sarcoplasmic reticulum. This paper discusses the flow of current in the
tubular system, and gives a quantitative description of the electrical properties of
the tubular system and surface membrane.

One way to study the electrical properties of the tubular system is to
measure the various pathways by which current can flow from the sarcoplasm to
the extracellular solution; these pathways presumably will include a pathway
across the tubular membrane and through the solution filling the lumen of the T
system (Fig. 1). The circuit which represents all of these properties is called the
equivalent circuit of the muscle fiber. Thus one way to determine the electrical
properties of the T system is to determine the equivalent circuit of the muscle
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Figure 1. A schematic representation of the equivalent circuit of frog
skeletal muscle fibers, as determined by intracellular electrodes. The
upper part of the figure is a sketch of the membranous structures
thought to be important in the determination of the equivalent circuit.
A circuit which represents the properties of each structure is shown as
an overlay. It should be pointed out that this circuit is neither complete
nor unique but hopefully is sufficient to account for the observed
electrical properties. Simplifications of the circuit are shown below; the
left hand side showing the simplification which occurs if the predomi-
nant series resistance were that of the sarcoplasmic reticulum or mouth
of the tubules; the right hand side showing the simplification which
occurs if the predominant series resistance were the resistance of the
solution filling the lumen of the tubules. All of the circuits represent
the properties of a small isopotential length of muscle fiber; the circuit
appropriate for a long length of muscle fiber consists of one of these
elements distributed along the longitudinal resistance of the sarcoplasm.
Ry, is the resistance of 1 cm? of surface membrane; Cp is the
capacitance of 1 em? of surface membrane; R, is the (lumped)
resistance of the sarcoplasmic reticulum and/or mouth of the tubule
associated with 1 cm? of surface membrane; C, is the capacitance of
the tubular system associated with 1 cm? of surface membrane; Ry is
the resistance of the membrane of the tubular system associated with 1
cm? of surface membrane, it is shown dotted for technical reasons (see
text). The peculiar circuit element on the right side of the distributed
circuit is meant to represent a capacitance (that of the tubular
membrane) distributed along a radial structure,
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fiber; and then to interpret one of the branches of the circuit as the properties of
the T system. The two pathways for flow of current can be distinguished
experimentally if, and only if, they have different electrical properties, in
particular if one of them has a resistance in series with its capacitance. Even then
it is difficult to detect the presence of two pathways for the flow of current,
especially using step functions of applied current, or indeed other non-periodic
waveforms of current. In fact, it can be shown both theoretically and
experimentally (Lanczos, 1957) that it is most difficult to prove the existence of
the two pathways unless sinusoidal excitation is used. Using sinusoidal excitation
and rigorous attention to the removal, analysis and correction of artifact caused
by stray capacitances, Falk and Fatt (1964) were able to show that, as might be
expected, a circuit with at least two components was needed to describe the
pathways for current flow from the sarcoplasm to the extracellular solution.
Freygang, Rapoport and Peachey (1967) and Schneider (1970) have confirmed
this. Our major interest is the detailed configuration of the part of the circuit
which represents the T system, and the implications of this configuration for the
function of the muscle and for the interpretation of the electrical properties of
the muscle fibers.

It is best to proceed by considering what equivalent circuit we might expect
from a system with a structure like that of a T system, namely a dense branching
array of tubules, using the quantitative anatomical data provided by Peachey
(1965). Each tubule itself is a narrow elliptical structure some 250 by 800A in
cross section. One might expect the core of the tubule to offer significant
resistance to the flow of current. Thus, current would not flow unimpeded down
the lumen of the tubules but would tend to cross the tubular membrane into the
sarcoplasm either directly or by way of the sarcoplasmic reticulum (the partition
of current between these paths does not affect the analysis that follows). I am
sure this situation is familiar since it is precisely analogous to the flow of current
down a cylindrical fiber, the classical problem of cable theory. Because this kind
of behavior cannot be described by a finite number of circuit elements, the
circuits involved are called distributed circuits; circuits with a finite number of
elements are called lumped. It seems natural to expect that the equivalent circuit
of the tubular system will be a distributed circuit, different parts of the tubular
membrane having different series resistances, each representing the resistance of
a length of the solution filling the lumen of the tubule. But upon further
reflection, it is easy to see that there may be other circuit elements in series with
the resistance of the fluid filling the lumen of the tubules, and it is conceivable
that these other resistances could be as large as or larger than the core resistance.
In particular, the sarcoplasmic reticulum or a constriction at the mouth of the
tubules might contribute significant resistance. If either resistance were much
larger than the core resistance of the tubules, all of the membrane of the tubular
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system would be in series with much the same resistance, and a lumped circuit,
with a finite number of elements would describe the tubular system. In this case
current flowing across the tubular membrane deep in the muscle fiber will flow
further down a resistive material than current crossing the tubular membrane
just under the surface. However, the extra resistance residing in the sarcoplasmic
reticulum or mouth of the tubules would swamp this effect and make the
tubular membrane quite isopotential. The equivalent circuit emphasizing these
effects is shown in Fig. 1. Two possible simplifications of the circuit are
apparent, depending on which series resistance, lumped or distributed, predomi-
nates. The circuit on the lower lefthand side of the figure is an appropriate
representation of a small length of the muscle fiber if the predominant series
resistance is that of the sarcoplasmic reticulum or of a constriction at the mouth
of the tubules; the resistive leak across the tubular membrane is shown dotted
because of technical considerations, see Eisenberg (1967) for a discussion of this
point and Eisenberg and Gage (1969) for an attempt to measure this quantity.
The circuit on the lower right hand side of the figure is an appropriate
simplification if the predominant series resistance is that of the fluid filling the
core of the tubules; the peculiar circuit element which comprises the right hand
branch of the circuit is meant to represent the radial dependence of the value of
the resistance of the luminal solution and is an adaptation of an engineering
symbol for a tapered distributed circuit.

[t seems likely that the distributed circuit could explain the electrical
properties of muscle fibers. In order to test this idea we must make a precise
analysis of this distributed circuit; this analysis is quite difficult, essentially
because the exponential functions which describe current flow in long
cylindrical cells must be replaced by hyperbolic Bessel functions when a disc-like
structure such as the T system is considered. The analysis has been done in many
ways by now, by Falk and Fatt (1964), later extended by Falk (1968), by
Adrian, Chandler and Hodgkin (1969), and by Schneider (1970). In each case
the tubular system is treated as a dense meshwork of tubules and the spread of
current is calculated using Ohm’s law and a differential equation form of the law
of conservation of current. Fortunately, all the theories give similar results;
unfortunately, the results are very hard to understand intuitively except in the
case of sinusoidal excitation. The following treatment is essentially intuitive and
physical and is intended to make plausible the discussion that follows. The key
results can be proven, however. The basic result of the theory is that the
potential across the tubular membrane varies as you go deeper and deeper into
the cell. The tubular membrane potential close to the edge of the fiber is close to
the potential across the surface membrane, and the potential across tubules deep
in the fiber near the center of the cell may be considerably less since current has
leaked across the membranes between the surface and the center. In the
quantitative discussion of the variation of potential it is very convenient to
define a characteristic length of the tubular system, A, analogous to the length
constant of cable theory. This characteristic length measures the depth to which
current flows in the tubular system; in particular the equation,
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gives the ratio between the potential across the tubular membrane at a distance

a -1 from the surface of the cell to the potential across the surface membrane
where

(1)

u(r) is the potential across the tubular membrane at a distance r from the
fiber axis
a is the radius of the cell, so u(a) is the potential just under the surface
membrane

[o is a hyperbolic Bessel function, an elementary but complete
discussion of which can be found in Tranter (1969)

A;{ is the length constant of the tubular system determined at steady
state by the ratio of the resistance of the tubular membrane to the
resistance of the core of the tubules. See Adrian, Chandler and
Hodgkin (1969) for a discussion of the appropriate units for the
membrane and luminal resistance. See Eisenberg and Johnson (1970)
and Eq. 3 below for a discussion of the generalization of the length
constant to the sinusoidal steady-state.

This equation approximates unity if the characteristic length is much larger
than the cell radius, that is to say the potential across the tubular membrane is
much the same no matter where in the cell one looks. If the characteristic length
is less than 0.5 r, the equation is well approximated by a simple exponential
relation

u() . [a -@-10)/i
u (a) \/: © ®

That is to say the decrement of potential in the radial direction when there is
decrement is exponential in character, much as it is in the longitudinal direction.

Our task now is to determine whether the lumped or distributed circuit
better describes the electrical properties of a muscle fiber. Unfortunately, the
impedance data do not decide this question, at least in my opinion. Falk and
Fatt concluded that the distributed model fit the impedance data worse than the
lumped model; Schneider concluded the opposite. I am not really convinced of
either case, particularly because the differences in fit of the two models over the
frequency range investigated are small, and could conceivably be due to other
effects, for instance leakage of current through the damaged region which
surrounds the current microelectrode. If we cannot decide between the
distributed and lumped models on the basis of the fit to the impedance data,
how can we choose between them? One test that has recently been made
(Nakajima & Hodgkin, 1970) is to measure the variation of capacitance with
fiber diameter: the distributed model predicts that properties which result from
the properties of the entire T system should be proportional to diameter,
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whereas properties which result from only a small fraction of the T system or
from the surface membrane should be independent of fiber diameter. Nakajima
and Hodgkin have recently completed these measurements and they certainly are
consistent with the distributed model. It seems to me, however, that they might
be consistent with a lumped model and do not provide a decisive test of the two
models.

Another way to determine which model best describes muscle electrical
properties is to compare the sizes of the various parameters in the model. In
particular the two models give different values for the capacitance of the surface
membrane: the lumped model gives 2 uF/cm? and the distributed model gives 1
uF/cm?. If an independent method of measuring these capacitances were
available, we might be able to choose between the models. Of course, one
method that seems to be independent is to reason by analogy and say that the
capacitance of the surface membrane of muscle fibers should be close to the
capacitance of nerve fibers. This is particularly appealing since the capacitance of
nerve fibers comes out to be close to the simplest integer, one! This I call the
“unitarian hypothesis.” Closer examination of the argument shows its weakness,
however. The capacitance of a membrane depends on the thickness of the
membrane, the area of the membranes across which current can flow and the
average dielectric constant of the membrane (which in turn depends on the lipid
composition of the membrane, and the fraction of the membrane occupied by
material with aqueous-like properties). There is little evidence to indicate that
the lipid composition, aqueous fraction or thickness of all membranes is the
same, although it would be nice if this were so. Furthermore, it seems likely that
there is more area of surface membrane in one centimeter length of muscle fiber
than in one centimeter length of a nerve with the same diameter, and thus the
specific capacitances should not be equal, even if the membranes were identical.
To understand this statement we must make a little detour to discuss the
conventions used to describe the capacitance of membranes.

The figure actually measured in these analyses is the capacitance of unit
length of the fiber, but one wishes to know the capacitance of one square
centimeter of the membrane responsible for this capacitance. That is, one must
know the amount of this membrane in one unit length of the fiber. If the fiber is
a simple cylinder of membrane like a nerve cell, without infoldings, invagi-
nations, or wrinkles, this figure is easy to compute. Indeed, it is this figure of
membrane area which is used in most calculations of the capacitance of “one
square centimeter of membrane.” If, however, the membrane systems respon-
sible for the capacitance are folded or form a network of tubules there will be
much more area present than that of a simple cylinder and the figures for
capacitance as conventionally given will be inflated by the ratio of the real area
to the hypothetical area. Thus, if the surface membrane of muscle fibers were so
wrinkled that there were twice as much area in a given length as in a simple
cylinder, the conventional figure for capacitance would be an overestimation of
the capacitance of one square centimeter of the surface membrane, an
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overestimation by a factor of two in this case. Indeed, there may be this much
crinkling of the surface membrane in muscle fibers; the extensibility of muscle
fibers, especially compared to nerve suggests this. The electron micrographs
which often show extensive vacuolization just below the surface membrane
support this idea; and the experiments of Martin (1954) on the variation of
conduction velocity with stretch also support this. Thus, the fact that the
distributed model gives a figure for the surface membrane capacitance which
agrees with the unitarian hypothesis—namely a figure of 1 uF/cm?—is not
overwhelming evidence for this theory. Indeed, if it turns out that the surface
membrane of muscle fibers is quite crinkled (by a factor of 2) the figure given by
the lumped model-2 uF/cm?—will agree more closely with the unitarian
hypothesis than that given by the distributed model!

The impedance measures of Fatt (1964), using extracellular electrodes,
provide an independent measurement of the size of the capacitance of the
surface membrane. These measurements show a peculiar low frequency
capacitance, the interpretation of which is not clear. They also show a
capacitance important at high frequencies, which is quite constant over a range
of experimental conditions and which it is natural to attribute to the surface
membrane. The value of this capacitance is some 2.6 uF/cm?, in agreement with
the lumped model. The experiments provide further evidence for the lumped
model since this capacitance of the surface membrane is constant up to some
100 ke/s, a result not expected from the distributed model.

[t is probably worth discussing in detail why the two models make different
predictions concerning the high frequency behavior of the tubular system. This
discussion is useful in itself but also serves as an introduction to the qualitative
analysis of systems, using the idea of a frequency dependent characteristic
length. This idea has rather general applicability and has been useful for me and
some of my colleagues in developing a feel for what otherwise seemed to be
complicated problems. The physics of the situation is rather clear. In the lumped
model there is some definite frequency above which the capacitance of the
tubular system is not very important in determining the impedance of the whole
cell. This occurs because at high frequencies the impedance of the capacitor
representing the properties of the surface membrane becomes much smaller than
the impedance of the circuit representing the tubular system. This frequency is
rather low being around 100 c/s. A different description is necessary for the
distributed model. In this model as frequency increases the impedance of the
tubular membrane becomes smaller and smaller, thus more current can leak out
across the membrane and current flows less and less deeply into the tubular
system. An entirely analogous situation arises in the cable theory used to
describe the longitudinal spread of current down cylindrical cells. Here as
frequency increases the membrane impedance goes down, and current flows out
of the cell in a shorter distance. A useful way to describe this phenomenon in
cable theory is to define a frequency dependent length constant. The rigorous
general definition of this quantity requires some detailed analysis, but the basic
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idea is simple. At frequencies where the membrane impedance is set predomi-
nantly by the membrane capacitance (and this is usually the case above some
100 ¢/s) the longitudinal spread of potential is set by the a.c. length constant

)
A= Wt (3)
where
w =2 times the frequency of applied current
¢y, = capacitance of 1 centimeter length of fiber (F/cm)
r; = resistance of 1 centimeter length of fiber (ohm/cm)

The equations that precisely describe the longitudinal spread of sinusoidal signals
are analogous to those which describe the steady-state spread of potential, if the
usual d.c. length constant is replaced by this quantity.

[t is natural to try to apply the same procedure to the distributed model of
the tubular system and this can indeed be done. The spread of sinusoidal
potential down the tubular system is described by equations analogous to the
d.c. equations (Egqs. 1 and 2 above) provided the definition of the length
constant is generalized just as we have done for cable theory. The advantage of
this approach is that it allows us to reason about the frequency dependence of
the spread of potential (and crudely about the time dependence as well) in the
same way as we think about the d.c. spread. For instance, increasing the
frequency or the resistance of the lumen of the tubule, or decreasing the
capacitance of the tubular membrane all lower the characteristic length, and thus
lower the depth to which current can enter the tubular system.

[t is a straightforward task to generalize this discussion to the problem
of the frequency dependence of the total capacitance of the tubular system
by computing the total charge stored in the capacitance of the tubular
system. In the case of the lumped model above some 100 c¢/s there is no
frequency dependence of the total capacitance of a muscle fiber that matters,
since there is no significant contribution of the tubular system to the total
properties of the cell. In the distributed model this is not the case. As frequency
increases, the contribution of the tubular system decreases smoothly, never
really vanishing, but becoming unimportant only somewhere near 50,000 c/s. It
is for this reason that the models give different predictions about the frequency
dependence of the capacitance measured at high frequency, the lumped model
fitting more closely to the data. Unfortunately, the only measurements made at
these very high frequencies (Fatt, 1964) cannot be interpreted in an unambig-
uous manner since they fit a model of a circuit with an imperfect capacitator (of
phase angle less than 90°), the physical interpretation of which is not clear.
Thus, these measurements do not provide decisive support for the lumped
model, in my opinion.

It is fortunate that there is still another independent method which ought to
measure the capacitance of just the surface membrane. This method consists of
measurements of the properties of the glycerol-treated preparation of muscle



R. S. Eisenberg 81

fibers, which preparation has little intact tubular system. This preparation was
mentioned by Fujino et al (1961) developed by Howell (1969) and
independently by Krolenko (1969) and has proven helpful in separating the
properties of the tubular system from those of the surface membrane.

My wife and I felt it was most important to determine the extent of
disruption of the tubular system in these glycerol-treated preparations, since the
presence of a substantial number of tubules would greatly change the
interpretation of the properties of the preparations. We decided to use an
extracellular marker, horseradish peroxidase, which is known to fill the tubular
system with an electron dense reaction product, in order to determine how
many tubules were left in glycerol-treated sartorius muscles of Rana pipiens
(Eisenberg & Eisenberg, 1968). I specify the preparation in such detail because
there is reason to believe that the glycerol treatment has different effects on
different preparations. Indeed, one might expect that such parameters as the
amount and strength of connective tissue, the relative permeability of the
membrane to water and glycerol, and the time course and spatial profile of
glycerol concentration in the extracellular medium could all be important in
determining the extent of tubular disruption.

In any case, the peroxidase method applied to Rana pipiens gives highly
reliable results, as illustrated in Table 1 (from Eisenberg & Eisenberg, 1968, with
permission of the authors). In normal muscle almost all the tubular system is
filled with peroxidase. In glycerol-treated preparations (Table 2) there is very
little tubular system left intact, and that which is left consists of stumps of
tubules extending a few micra from the surface. On the basis of these
experiments we concluded that only 2% of the tubular system was intact in
glycerol-treated fibers. Since in normal fibers the tubular system has some four
times as much area as the surface membrane, only some 8% of the membrane
area of these glycerol-treated preparations lies in the remnants of the tubular
system.

These results seem quite clear but important conclusions—in fact the
interpretation of all the properties of glycerol-treated fibers—depend on the
figure for the area of T system present in glycerol-treated fibers. Thus, one
should consider all possible sources of error. One phenomenon which could
conceivably be significant is that of washout of peroxidase from the tubular
system. If the tendency for washout were greatly accentuated in glycerol-treated
fibers, either because of a change in the fixation properties of the tubular system
or in the time necessary for tubular or extracellular diffusion, the amount of
peroxidase remaining in experiments on glycerol-treated fibers might be
underestimated. This hypothesis seems unlikely to us. Another source of error
would occur if there were structures into which current could flow but
peroxidase could not diffuse; for instance if the tubules collapsed, peroxidase
might not be able to enter the T system, but there might be enough room for
ions to move. It is difficult to eliminate this possibility, but the gross disruption
of the fine structure of the T system, and the absence of twitches and various
slow potentials, argues against this possibility. Thus, we conclude that as far as
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we can tell the glycerol-treated preparation is a preparation of essentially surface
membrane, contaminated by some 8% tubular membrane.

If this conclusion is correct, the electrical properties of glycerol-treated
fibers are properties atmost exclusively of the outer membrane. Thus, the
capacitance of glycerol-treated fibers should represent the capacitance of the
surface membrane; hopefully, agreeing quantitatively with either the distributed
or lumped model. The capacitance was measured (Gage & Eisenberg, 1969) using
steps of current. A capacitance of some 2 uF/cm? was found, close to the values
predicted by the lumped model and significantly different from the unitarian
value. For some time we felt that this settled the matter in favor of the lumped
model, but recently measurements of the high frequency capacitance of
glycerol-treated fibers made by Nakajima and Hodgkin (1970) have raised
doubts. It is important to discuss the meaning of “high frequency capacitance.”
To explain this idea, we make a detour into circuit theory. One of the beautiful
results of circuit theory is the ease with which the sinusoidal properties of a
linear system can be analyzed. Thus, the amount of out-of-phase current can be
measured in a system at different frequencies, and from this figure an effective
capacitance can be defined, which, of course, will depend on the frequency at
which the current is measured. For instance, in the lumped circuit used to
describe the T system, the resistance Rq is not very important compared to the
impedance of the capacitor C, at low frequencies; thus one would measure an
effective capacitance close to C, + Ce. At high frequencies, on the other hand,
the capacitor has a very low impedance and the resistor R, is important; the
effective capacitance is then close to Cp,, the capacitance of the surface
membrane. In preparations without tubules, only Cy, should be present and
thus, measurements of the high frequency capacitance in glycerol-treated fibers
would be expected to give similar values to measurement of the low frequency
capacitance. Impedance measurements on glycerol-treated fibers have not been
made yet, but some transient measurements which should give a value close to
the high frequency measurement have recently been made by Drs. Nakajima and
Hodgkin. By analyzing the time course of the foot of the action potential they
have determined a value of 0.9 uF/cm? for the high frequency capacitance. This
figure is, of course, significantly different from the 2 uF/cm? that they and we
have measured for the low frequency capacitance using rectangular pulses. This
result suggests either that there are substantially more tubules left in the
glycerol-treated fibers than were measured by the peroxidase experiments or
that there are two components of the surface membrane capacitance, one
behaving as if it has a resistance in series. The evaluation of these findings
requires a full impedance analysis of glycerol-treated fibers, in my opinion,
particularly in view of the dissimilar findings of Iidefonse et al, (1969) who
measured capacitance of glycerol-treated fibers using voltage-clamp techniques.
Until such measurements are made 1 am afraid that we cannot really say which
of the two models the glycerol data supports, or indeed whether it shows that
further complication is present.
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There is another set of experiments which are relevant to the question of
which equivalent circuit is the most appropriate for skeletal muscle. These
experiments, done by Drs. Vaughan, Howell, and myself (Vaughan, Howell &
Eisenberg, 1970) examined the effects of changes in the conductivity of the
external solution on the capacitance of normal muscle fibers. It is clear the the
distributed model of the tubular system in which the series resistance is ascribed
to the solution in the lumen of the tubules could be tested by varying the
resistance of this solution. We have tried to do this by replacing some of the
sodium chloride in the Ringer solution with sucrose. This procedure should
increase the resistance of the solution in the tubular system, thus current should
flow less far into the depths of the fiber; in other words, the characteristic length
of the tubular system should decrease. We have tried to study this phenomena,
measuring the total (low frequency) capacitance of muscle fibers in solutions of
low ionic strength by applying step functions of current with one microelectrode
and analyzing the voltage recorded with another microelectrode at various points
along the cell. If we expect capacitance to reflect the area of membrane across
which current flows, we can write the following equation

Ce=AFCy (4)
where
Ce is the capacitance of the tubular system associated with one square
centimeter of surface membrane
A is the ratio of the area of the tubular system to that of the surface
membrane (measured by Peachey, 1965)
Cw is the capacitance of one square centimeter of tubular membrane
F is a function which describes the fraction of the area of tubular

membrane across which current flows.

As we increase the resistance of the solution in the lumen of the tubules the
effective length constant (defined by an equation like Eq. 3) should decrease and
the fraction of the area across which current can flow (F in Eq. 4) should
decrease; the total capacitance measured should then also decrease. There is a
complication however: Rapoport, Peachey and Goldstein (1969) have shown
that the tubules swell under these conditions and that there appears to be a large
increase in the area (A) of tubular membrane. Furthermore, Freygang, Rapoport
and Peachey (1967) have shown that a similar swelling of the tubules produced
by hypertonic solutions is accompanied by an increase in the capacitance of
muscle fibers. The increase in area in low ionic strength solutions would thus be
expected to increase the capacitance, while the increase in luminal resistance
should decrease the capacitance. Since the change in area is proportional to the
change in ionic strength, but the change in F (proportional to the change in the
length constant) depends on the square root of the ionic strength, the increase in
area should be more important than the decrease in F. Thus, one would expect
the capacitance to increase as ionic strength is reduced, at least as long as the
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area of tubular membrane increases linearly: a full theoretical analysis predicts
first an increase and then eventually a decrease in the capacitance of the tubular
system as ionic strength of the Ringer solution is lowered.

Figure 2 shows our experimental results. Notice the decrease in capacitance
to some 2 uF/cm? and the flattening of the curve at that value; also note that
similar experiments show no effect on the capacitance of glycerol-treated fibers.
[t seems as if lowering the conductivity of the external solution decreases the
capacitance to the figure of 2 uF/cm?. These experiments provide independent
support for that figure for the capacitance of the surface membrane and thus for
the lumped model. Furthermore, this decrease in capacitance is difficult to
reconcile with the analysis mentioned above.

These fibers, bathed in similar solutions of low ionic strength, have another
property which fits beautifully with the results described by Costantin (1970):
they twitch. This is surprising at first: after all if the capacitance of the tubular
system is negligible in these solutions it means that little current can flow into
the tubular system. On the other hand, a twitch presumably can occur only if
most of the tubular membrane is depolarized (its capacitance discharged). A
simple way to explain these findings is to postulate a regenerative electrical
system in the tubular membrane which can supply current to depolarize the T
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Figure 2. The capacitance, measured using rectangular pulses of current,
of frog skeletal muscle fibers, in solutions of varying ionic strength. The
solutions were made so as to have the same [K] [Cl] product as
normal Ringer. The dotted line indicates the most likely figure for the
low frequency capacitance of the surface membrane.
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system membranes. The small currents used to measure capacitance presumably
do not reach the threshold of this regenerative system, but the larger currents
associated with the action potential on the outer membrane probably do.

[t is now necessary to summarize this mass of data, and to try to reach a
conclusion. Perhaps the best we can say is that taken on balance the lumped
model seems to describe the data better than the distributed model, but that the
evidence is not overwhelming. More experiments, particularly concerning the
impedance of glycerol-treated fibers, and of normal fibers in solutions of low
ionic strength, should be useful in resolving some of the present ambiguities.
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