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ABSTRACT A model is developed to predict the changes in total capacitance
(i.e. total charge stored divided by surface membrane potential) of the tubular
system of muscle fibers. The tubular system is represented as a punctated disc
and the area of membrane across which current flows is represented as a punc-
tated annulus, the capacitance of the muscle fiber being proportional to thisarea,
The area can be determined from a distributed model of the tubular system.
in which the only resistance to radial current flow is presumed to be in the
lumen of the tubules. Calculations are made of the variation of capacitance
expected as the conductivity of the bathing solution is varied. These calcula-
tions include the effects of fixed charge in the tubular lumen and the effects of
changes in the shape and volume of the tubular system in solutions of low
conductivity. The calculated results fail to fit comparable experimental data,
although they do qualitatively account for the known variation of the radial
spread of contraction with conductivity of the bathing medium. It is pointed
out that the existence of a significant ““access resistance” at the mouth of the
tubules might explain the discrepancy between theory and experiment.

The transverse tubular system of skeletal muscle is a dense network of tiny
branching tubules which has been represented electrically as two discs of
membrane enclosing a resistive solution (Fatt, 1964; Falk and Fatt, 1964;
Falk, 1968; Adrian et al, 1969; Schneider, 1970). The electrical model
used by these authors allows radial variation in the potential across the
tubular membranes, al/ the variation being caused by potential drops within
the resistive material filling the lumen of the tubules, so that the resistance
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in series with any piece of membrane depends entirely on the radial location
of the membrane. Thus, the tubular membrane is represented as an electrical
circuit consisting of a parallel combination of resistance and capacitance dis-
tributed along the resistance of the tubular lumen.

Although the distributed model is appealing, especially because it so
naturally fits the anatomical data, there is little evidence which supports it,
at least in detail. Impedance measurements have been considered to oppose
the distributed model (Falk and Fatt, 1964; Freygang et al,, 1967) and to
support it (Schneider, 1970) ; measurements of total capacitance seem difficult
to reconcile with the model (Eisenberg, 1971) and quantitative measurements
of the radial spread of contraction (Adrian, Costantin, and Peachey, 1969)
do not agree with the predictions of the model. However, experiments do
show that there is some kind of radial spread of contraction (see also Gonzalez-
Serratos, 1971, and Costantin, 1970) and this spread is most easily inter-
preted if one postulates a radial variation of potential within the tubular
system.

The purpose of this paper is to show how measurements of the total capaci-
tance of muscle fibers (measured with step functions of current applied at a
point: Fatt and Katz, 1951; for more recent references see Gage and Eisen-
berg, 1969) can be used to test the distributed theory of the tubular system.
The analysis shows that the capacitance of the tubular system is simply
related to the electrical properties of the distributed model, and therefore that
relatively straightforward measurements, practical under a variety of con-
ditions, can be used to test the theory. Finally, we conclude that the theory
cannot account for the results of Vaughan et al. (1972).

THEORY

The Disc Model of the Tubular System

We will initially interpret the properties of the tubular system in terms of the
simple geometrical model shown in Fig. 1. We approximate the tubular
system as a punctated disc of membrane, the area and volume of which cor-
respond to the parameters of the T system. The branching of the tubules is
considered sufficiently dense that the equations for a disc can be used (the
justification for this approach is discussed in Adrian et al., 1969 and Schneider,
1970). The area of membrane across which current flows is called F (the
variable F is dimensionless and is taken as the ratio of this area to the total
area of tubular membrane), the radial dimension of the annular region being
called L. These variables are related by

pra’ — prd’

L 1L
=9 — = 1
pma* 2a<1 Qa) (1)

where a is the radius of the fiber, 4 is the inner diameter of the annulus, and p

F:
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is the fraction of the disc occupied by the tubular system. This approximate
form of the distributed model assumes in effect that the potential in the tubu-
lar lumen is constant over some distance L and then drops to zero. Such an
approach is justified below by an analysis based on the model of Adrian et al.
(1969) and can be derived from any distributed model using the mean value
theorems of the calculus. The approximate form has the advantage of clarity,
the physical basis of the model being immediately apparent, and of generality,
the results not depending on assumptions concerning the particular geom-
etry of the tubular system.

Most electrical properties, and certainly the capacitance, are related to the
area of membrane across which current flows. Thus, we write (this equation

Ficure 1. A disc model of current flow in the tubular system. The stipled area
represents the mean area of tubular membrane across which current flows.

is also derived below from the model of Adrian et al. [1969])

C. = AC,F (2)
where

C., is the capacitance (in microfarads per square centimeter) of the tubular
system associated with 1 cm? of surface membrane and is identical to the
variable of the same name measured by Falk and Fatt (1964) and Gage
and Eisenberg (1969).
A is the area of tubular membrane per square centimeter of surface mem-
brane. This variable, measured by Peachey (1965, Table I), can be ex-
pressed in terms of the variables used by Adrian et al. (1969) by the for-
mula (a/2) (p/¢) where { is the volume-to-surface ratio of the tubules, and
p is the fraction of fiber volume occupied by the tubular system.
C, is the capacitance (in microfarads per square centimeter) of 1 cm?* of
tubular membrane.
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F, qualitatively defined above, is a function which depends on the prop-
erties of the tubular membrane and lumen, the radius of the fiber, and
the time or frequency at which the measurement of C, is made.

Equation 2 can be rewritten in terms of the characteristic length L

C, = 24(L/a)(1 — 0.5L/a) C,. (3)

The usefulness of the equation will depend on finding an expression for L/a
in terms of electrical parameters of the distributed model.

It is useful to write equation 3 in a dimensionless form. We denote the
properties of the tubular system in the test condition by an asterisk (*) and
the properties in the standard condition by variables with no superscript.
Then, if the specific capacitance C,, does not vary with the test condition,

| _L1L*L
c; 2L a4 A*L* (4)
C. 1L AL -

This equation is our key result, enabling us to predict changes in tubular
capacitance. Note that the change in tubular capacitance will depend on the
characteristic length in the standard solution (L/a), the change in char-
acteristic length in the test solution (L*/L), and the change in the total area
of the tubular membranes (4*/A4). In the next section we derive a relation
for L and L* in terms of membrane parameters; later on we develop an equa-
tion which describes 4*/4 in some conditions. Little is known about L/a,
unfortunately, and therefore our calculations are all done for several values
of the parameter. Finally, it must be realized that this analysis is not useful
if the characteristic length exceeds the radius of the cell; in that case the
potential in the tubular system does not vary significantly with radial position
and no distributed model is applicable.

The Effective Capacitance and the Charge Stored in the Tubular System

In order to use equation 4 to make predictions about the variation in tubular
capacitance C, , we must be able to relate the various parameters of the equa-
tion to physical parameters of the tubular system. The parameter which
causes particular difficulty is the characteristic length Z, whose relationship
to the properties of the tubular membrane and lumen is not clear. We will
now develop an equation for the charge stored in the tubular system when
sinusoidal currents are applied, and show that it is similar to equation 4
above. We then can relate the characteristic length, L, to the parameters
which describe the physical properties of the tubular membrane and lumen.
Our analysis is based on the general expression for the voltage across the
tubular membrane u(r) at a distance r from the center of the fiber, derived by
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Adrian et al. (1969). Different forms of the same relation have been derived
by several authors; we choose this formulation because of the ease of inter-
preting the physical meaning and physiological significance of the parameters
used. Except where otherwise noted, our nomenclature is identical with that
of Adrian et al. (1969). We describe the membrane by an admittance Y,
defined as a complex number in the usual manner of circuit theory (see van
Valkenburg [1964] for the engineering treatment, and Eisenberg and Engel,
[1970, Appendix 2] for a derivation in a physiological case): the phase angle
of the complex number represents the phase angle between the voltage across
and the current crossing the tubular membrane; the amplitude of the com-
plex number represents the relative magnitude of the current and voltage.
The expression for the voltage across the tubular membrane is then (see the
analogous DC expression: equation 10 of Adrian et al. [1969]) :

u(r) _ LOT) _ LIr(7u/Gu)] (5)
u(a) I(al') Io[a(f/w/éz,)%]

where
u(a) is the potential across the surface membrane of the fiber (in volts),
a is the radius of the fiber (in centimeters),
I, is a modified Bessel function of the first kind (Tranter, 1969; Abramo-
witz and Stegun, 1964),
G . is the ¢ffective radial conductivity of the lumen of the tubule (in mho
per centimeter) (Note that this variable is proportional to, but not iden-
tical to, the conductivity G, of the solution filling the lumen of the
tubules.),
I' the propagation constant! is defined as [¥,/G ;]¥? (in centimeters—!), and
Y, is the admittance of the tubular membrane per unit volume of the
fiber (in mho per centimeters) = G, + jwC, where G, and C, are conduc-
tance and capacitance of the tubular membrane per unit volume and j =
~1.
We can now compute the charge stored in the tubular system. We call the
charge stored in 1 cm? of tubular membrane Q, and the charge stored in the
tubular membrane arising from 1 cm? of surface membrane Q.. Then, Q. =
AQ, . Note that Q. and Q, are both complex numbers if sinusoidal excitation
1s used.
In order to determine Q, and thus Q,, we need simple expressions for the
total charge stored in the capacitance of the tubular system. This is given by

! This definition of the propagation constant as a complex number is precisely analogous to the
definition used in the engineering formulation of one-dimensional cable theory (see Falk and Fatt,
1964; Eisenberg and Johnson, 1970, p. 61; LePage and Seely, 1952, Section 9-4). It is not simply
related, however, to the variable of the same name defined by Adrian et al. (1969).
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the sum (actually the surface integral) of the charge stored in each element of
area pdS of the tubular system:

pTa'Q, = y{u(r%Cw-pdS = fa u(r)-Cy-p-2xr dr. (6)

o

Now we substitute for u(r) from equation 5.

o 2Cou(a) [°
praQ,, = W-/; L) rdr. (7)

This integral is known (Dwight, 1961, No. 835.3) and thus we have an ex-
pression for (Q,

Q. _pa 2 I)(Ta)

u(a) ~ 2{ Ta1,(Ta) Ca- (®)
In order to complete this phase of our analysis we must now find a way to
determine the effective capacitance C, (which ought to be a real number)
from the charge stored in the tubular system (described by O., a complex
number). Equation 8, which describes Q., gives both the amplitude and
phase angle of the charge in the tubular system. It seems likely, however, that
the amplitude of the stored charge will be of the greater importance in
determining the effective capacitance of the tubular system. (If it is assumed
that the real part of Q, is the important variable, or that C, ought to be a
complex number, an equation similar to equation 10 is still the result.)
Defining C. in this way (vertical lines denote the amplitude of a complex
number),

_ Q¢ pa 1 I(Ta). (9)

Comparison of this equation with equation 3 can give the general relation
between L and the membrane parameters. Since the equations defining and
using L in the geometric model are useful only when L/a is less than one, we
are justified in approximating the Bessel functions in equation 1! by their
asymptotic expansions (Abramowitz and Stegun, 1964, equation 9.7.1). This
gives an equation for L:

L= L~ (10)

T

Thus, there is a simple relation between the characteristic length of the
geometric model and the membrane and luminal properties of the T system.
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Consideration of the actual properties of the tubular membrane allow this
expression to be further simplified. It is known that the tubular membrane
has a very high resistance, at least under resting conditions (Eisenberg and
Gage, 1969). Thus, under many conditions of interest almost all the current
which crosses the membrane is capacitive current. This approximation is
accurate to the extent that the frequency of the sinusoidal current is much
greater than the natural frequency of the tubular membrane G,/27C., .

The time constant of the tubular membrane (G,/G.) can be estimated
from the data of Gage and Eisenberg (1969) as about 60 msec; thus, the
following approximation is useful for frequencies much higher than 2 cycle/
sec. The resulting expression for the magnitude of the propagation constant,
that is to say the characteristic length L, is

6 1/2
L_N_Ii——_L—:I ;w = 27f > 20w, (11)

wCy
Note that in this case the effective capacitance decreases inversely with the
square root of frequency, and depends on the luminal resistance and the
tubular membrane capacitance. At any frequency, L lies between its steady
state value G'./G, (called N, by Adrian et al. [1969]) and the value given
above by equation 11.

COMPUTATIONS OF TUBULAR CAPACITANCE

The theoretical analysis presented above can be used to predict the change in
tubular capacitance C, expected when the ionic strength of the external solu-
tion is lowered. The effects of lowering ionic strength are conceivably multiple:
any of the variables in equation 4 might be affected.

We will consider different possibilities one at a time. First, we consider the
effect of changes in ionic strength on a hypothetical tubular system, which
changes neither size nor shape as the ionic strength of the bathing solution is
changed. The change in tubular capacitance then reflects the change in the
characteristic length produced by changes in the conductivity of the solution
filling the tubular lumen. The calculations are made for different concentra-
tions of fixed charge in the lumen of the tubules and for different values of
the characteristic length in normal Ringer solution, since neither of these
parameters is well known.

Our second set of calculations will include the variation of shape, area, and
volume of the tubular system with changes in ionic strength reported by
Rapoport et al. (1969). Again, calculations are made for several concentra-
tions of fixed charge and several values of the normal characteristic length.
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The Effect of Ionic Strength on Tubular Capacitance, Assuming no Changes in
Tubular Shape, Volume, or Area

A phenomenon important in determining the capacitance C, under all con-
ditions is illustrated by the special case in which the shape, volume, and area
of the tubular system are imagined to be independent of ionic strength. In
this case the changes in capacitance reflect changes in the depth L (that is the
area F in Fig. 1) to which radial currents can flow into the tubular system.
The characteristic length L varies because the conductivity of the solution
filling the lumen of the tubules presumably varies with ionic strength. If the
tubules contain no fixed charge, then we have from equation 10 above

Lt [L* 9_]’ (12)
L ¢ Gy

where we have assumed that all measurements of capacitance can be char-
acterized by the same value of ¥, and where we have used the equations of
Adrian et al. (1969, p. 224) to write the expression in terms of the conductivity
G .. (as opposed to the effective conductivity G ). Note that {*/{ = 1 if there
are no changes in the shape or volume of the tubules.

It is now a simple matter to calculate the expected tubular capacitance
from equation 4. If there is no fixed charge in the tubular lumen, the conduc-
tivity of the luminal solution G,.*/G, is almost proportional to the ionic
strength of the bathing solution, and the variation of C, with ionic strength
Is as shown in Fig. 2 A for various values of the resting length constant. Com-
parison of this curve with the data of Vaughan et al. (1972) for the variation
of tubular capacitance with ionic strength shows that the theoretical curve
declines less slowly with ionic strength than the experimental points. This will
be a general finding of this paper; indeed, all the features added onto the
model tend to increase the figure predicted for the tubular capacitance in
solutions of low ionic strength and thus aggravate the discrepancy with the
experimental data. For example, Fig. 2 B was calculated allowing for the
effects of fixed charge in the tubular lumen (called ¢; here ¥ = 0.1 m) ac-
cording to equation 13 of Rapoport (1969). Since the presence of fixed
charges requires the presence of an equal amount of counterions under all
conditions there will be less effect on G.*/G, in this case. If the fixed charge
concentration is set to 0.4 m, calculations show that ionic strength has almost
no effect. Thus, tubular capacitance decreases less with ionic strength if there
is fixed charge in the tubules, and, further, the capacitance does not decrease
to zero but to some limiting value.
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Figure 2. The variation of capacitance with ionic strength assuming no changes in
tubular shape or area. Each curve is calculated assuming a different value of the char-
acteristic length L in normal Ringer’s. The upper curves (A) were calculated assuming
no fixed charge in the tubules while the lower curves (B) were calculated assuming a
fixed charge density of 0.1 m.

The Effect of Ionic Strength on Tubular Capacitance, Including Changes of
Tubular Shape, Volume, and Area

In order to allow for changes of tubular shape in these calculations we must
have a quantitative description of the effect of solutions of low ionic strength
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on the geometry of the tubules. It is fortunate that such a description is avail-
able (Rapoport, et al., 1969; Rapoport, 1969). We have put their results into
algebraic form by fitting to their data a geometric model of the tubules in
which the tubule is considered to be rectangular in cross-section with sides of
length w and b, and volume-to-surface ratio wb/2(w + b). The data of Rapo-
port et al. (1969) suggest that the major effect of ionic strength is on the
longitudinal dimension of the tubular system, b, the transverse dimension w
being some 800 A and relatively independent of ionic strength. The following

Volume /Surface

Surface Area

! | | | | | |
0 0.02 0.04 0.06 0.08 0.10 0.12 O.i4

I (molar)

Ficure 3. The change in size and shape of the tubules with changes in ionic strength.
The curves were computed from a simple model fitted to the data summarized by
Rapoport et al. (1969).

equation was fitted to the straight line in Fig. 1 of Rapoport (1969) and de-
scribes the variation of the longitudinal dimension with ionic strength.

b = 1290—7830 I (13)

where the units of 4 are Angstroms and the units of 7, the ionic strength, are
moles per liter. The area, volume, and volume-to-surface ratios have been
calculated from the rectangular model described above (Fig. 3).

Further computations (using equations 4, 12, and 13) were carried out to
determine the effects of ionic strength allowing changes in shape (i.e. volume-
to-surface ratio) but considering the total area of membrane in the tubular
system as a constant; these calculations gave curves qualitatively similar to
those shown in Fig. 3. Finally, calculations were made including the effects of
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fixed charge, change of shape, and change in the total membrane area of the
T system (Fig. 4).
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Ficure 4. The variation of capacitance with ionic strength assuming changes in
tubular shape, volume, and area. Each curve is calculated from a value of the char-
acteristic length L in normal Ringer’s. The curves in (A) were calculated assuming no
fixed charge in the tubular lumen; the curves in (B) and (C) were calculated for the
fixed charge concentration indicated.

It is clear that all the calculated curves show a slower decline in capacitance
with declining ionic strength than the data of Vaughan et al. (1972). Indeed,
the curves computed using the full available experimental information (Fig.
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4), and thus allowing an increase in the total area of tubular membranes,
show a substantial increase in capacitance as ionic strength is reduced.

DISCUSSION

Approximate Nature of Theory

The analysis presented here is based on physical reasoning applied to a
geometrical and mathematical model. A full-scale rigorous analysis is not
practical because the expressions resulting would most likely be quite un-
wieldy and not too useful in making predictions. For instance, the precise
formula derived by Adrian et al. (1969) for a simpler case is an infinite series
involving the roots of Bessel functions. The errors in our theory are hard to
evaluate in a quantitative way, but it seems most unlikely that the errors could
account for the gross qualitative discrepancy between the theory and experi-
ments described below.

Comparison with Experimental Results

The analysis performed here was done for two purposes. One, to show how
relatively simple measurements of capacitance can be used to test the dis-
tributed model of the tubular system, and two, to compare the predictions of
the theory with measurements made in solutions of low ionic strength. The
predictions in the latter case are complicated by the change in area, shape,
and volume of the T system known to occur in these solutions. The measure-
ments of these parameters have of necessity been done with the electron
microscope after the muscle has been fixed, dehydrated, and imbedded in
plastic. The uncertainties involved in this preparation of the tissue are serious
and in the absence of an independent method of determining tubular size the
results must be treated with caution. We are particularly puzzled by the ap-
parent large increase in total membrane area in solutions of low ionic strength,
not knowing whether this area increase represents the formation of new mem-
brane or simply rearrangement of previously existing membrane. For these
reasons we have performed our computations using various possible values for
the tubular area, volume and shape in solutions of low ionic strength. Further,
the possible existence of fixed charge in the tubular lumen, and the uncertain
value of the characteristic length in normal Ringer have been included in the
calculations.

Even with these uncertainties, however, it is clear that none of the theoretical
curves is in qualitative agreement with the experimental data of Vaughan
et al. (1972), and that the curves including the information available from
structural studies are in striking disagreement with the experimental data. It
is then necessary to discuss revisions in the theory which might remedy this
situation. It is tempting to conclude simply that the distributed model of the
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tubular system is incorrect, and that the source of resistance to current flow
in the radial direction is located in some structure other than the lumen of the
tubules, perhaps in the mouth of the tubules. There is, however, clear evi-
dence (Adrian, Costantin, and Peachey, 1969; Costantin, 1970; Gonzalez-
Serratos, 1971) which shows an inward spread of contraction as depolariza-
tion of the surface membrane is increased. Such an inward spread is easy to
explain if there are radial potential drops in the lumen of the tubules, and
cannot be simply explained if all the radial resistance is located in the mouths
of the tubules. Thus, we are left with a paradox: the electrical measurements
seem to contradict predictions made from the distributed model but experi-
ments on inward spread of contraction seem to require a distributed model.

One set of experiments by Adrian, Costantin, and Peachey (1969) suggest
a way out of this quandary. They studied the inward spread of contraction in
low ionic strength solutions and concluded that ““the large decrease in con-
ductivity of the bathing medium was not effective in altering the inward spread
of activation. . .”” This result is what would be expected from our analysis of
the distributed model, namely that the lowering of the conductivity of the
bathing solution should not substantially change the radial spread of po-
tential. Thus, it seems that one phenomenon reflecting the radial spread of
potential does depend on ionic strength as predicted by the distributed model.

It is clear, however, from the results of Vaughan et al. (1972) that little
current can enter the tubular system in these low ionic strength solutions
since little of the capacitance of the tubular system can be charged in these
solutions. Perhaps the resistance which limits the flow of current into the
tubular system is not the resistance in the lumen of the tubules but is an “access
resistance” (Peachey and Adrian, 1972) at the mouth of the tubules. Then,
an increase in this resistance in solutions of low ionic strength could account
for the results of Vaughan et al. (1972) while the effects studied in this paper
could account for the results of Adrian, Costantin, and Peachey (1969).
Furthermore, the existence of two resistances in the path for radial current
flow would explain many other results concerning the electrical behavior
(Peachey and Adrian, 1972) and equivalent circuit (Eisenberg, 1971) of
muscle fibers.

It 1s not clear why the access resistance should be sensitive to ionic strength,
but the complicated transverse impedance of muscle (Fatt, 1964), the dif-
ficulty of visualizing the mouth of the tubules in the electron microscope,
and the lability of the structure to osmotic shock in the glycerol treatment all
suggest that the mouth of the tubules has complicated properties.
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