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ABSTRAcr An analysis is presented of the displacement of potential recorded when
one microelectrode is used both to apply current to and record potential from a
spherical cell. There are three significant components of the displacement in poten-
tial: a component produced inside the microelectrode, a time-independent com-
ponent representing the spatially nonuniform flow of current in the immediate
vicinity of the microelectrode, and a time-dependent spatially uniform component
representing the average potential across the cell membrane. The second component
describes changes in the potential across the cell membrane as well as potential
drops in the interior of the cell, the importance of each factor being dependent on
the location of the electrode. Simple expressions, derived by a theoretical treatment,
are given for each component of potential. The implications for the interpretation
of experimental results determined with the "singe-electrode bridge" technique are
discussed and an optimal balancing procedure is suggested.

INTRODUCTION

Many cells with interesting electrical properties are small and inaccessible and thus
cannot be penetrated with two microelectrodes. The electrical properties of such
cells must be studied by passing current through the same microelectrode which
records potential (Fig. 1). Because the microelectrode has a high impedance, usually
much higher than that of the cell, specialized electronic circuits, often called a
single-electrode bridge (Araki and Otani, 1955; Frank and Fuortes, 1956; Kandel
et al., 19611), are used to separate the electrical properties of the cell from those of
the microelectrode. The implementation of the electronics causes some problems
but there are indications (Schanne et al., 1966; Tupper et al., 1970) from experi-
ments which compared results determined with the single-probe technique and

1These are references to some of the early papers using the technique; many laboratories now use
the method routinely.
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FiGuRE 1 A sketch of two setups for recording the electrical properties of cells. The upper
setup uses two microelectrodes. The equivalent circuit to the right shows that measure-
ments made with this technique are not too sensitive to the properties of the microelectrodes.
The lower setup, often called a single-electrode bridge, uses only one microelectrode both to
pass current and record potential. The equivalent circuit shows that the measurements de-
pend critically on the property of the microelectrode and so this technique is used only in
cases where two electrodes cannot be inserted into the cell. The text analyzes the potential
recorded by the one-probe technique.

the usual two-probe technique, that there are other difficulties in using the single-
probe method. It seemed likely that these difficulties might be connected with the
complicated pattern of current flow in the immediate vicinity of the microelectrode
(Falk and Fatt, 1964; Eisenberg and Johnson, 1970; Pickard, 1971). Therefore,
we have analyzed the potential recorded by a single-electrode bridge using the
equations which define the flow of current in three dimensions.
The theoretical relation between the potential observed with the single-probe

technique (Fig. 1) and the resistance and capacitance of cell structures has not pre-
viously been derived because the expressions for the potential near a small source
of current are cumbersome. Recently, these expressions have been simplified by the
development of a mathematical identity (Eisenberg and Engel, 1970; see also
Pickard, 1971) and by the application of the mathematical technique of singular
perturbation (Barcilon et al., 1971). The mathematical identity applies to a restricted
problem and is exact, whereas the perturbation analysis applies to a general case
and is approximate (although accurate enough for our purposes). Furthermore, the
perturbation analysis shows that the properties of any finite cell are similar to those
of a spherical cell. Therefore, we have computed the potential recorded by the
single-probe technique for the case where the probe is inserted into a spherical cell
and expect that the qualitative features of this computation will be generally appli-
cable.
The analysis produces a pleasingly simple result, and the implications of this
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result for experimental measurements of cell properties can be neatly summarized:
the single-probe technique measures the sum of the displacement of membrane po-
tential which would occur in an isopotential cell (which we will call the spatially
uniform potential) and an extra potential associated with the steep gradient of po-
tential which invariably surrounds a small source of current, such gradients being
necessary to force the current out of the source. This extra, spatially nonuniform
potential reaches steady state much more quickly than the spatially uniform poten-
tial, and contributes to the total potential in a simple way, without changing the
time course of the spatially uniform component ofmembrane potential. Our analysis
thus provides some support for a method commonly used to determine the spatially
uniform component of potential, namely the subtraction of the quickly established,
time-independent potential from the total observed potential. We show, however,
that part of the subtracted potential represents a true transmembrane potential, not
a drop in potential within the cell interior, and that this fact can alter the interpre-
tation of the properties of the cell. For instance, the time-independent component of
true membrane potential probably accounts for the different results obtained during
the steady state with the two-probe and single-probe techniques.
Our analysis shows that there is not a simple criterion for separating the time-

independent component of potential (the spatially nonuniform component) from
the "time-independent" potential produced by changes in the electrode resistance.2
This problem, combined with the difficulty in determining the precise location and
size of the microelectrode, will complicate an experimental verification of our results.
The bulk of this paper is devoted to a quantitative statement of the results of our

analysis and to a discussion of their physiological implications; the derivation is
presented in the Appendix.

RESULTS
We analyze the single-probe method by considering the steps involved in the prac-
tical implementation of the technique.
The first step in the single-probe technique is to connect the microelectrode to the

electronics, and place the electrode into the bathing solution outside the cell. A step
function of current is then applied and the resulting displacement in potential is
recorded. This displacement in potential is the sum of the potential drop within the
microelectrode and the potential drop in the bathing solution from the tip of the

2Professor J. D. Cole has recently shown that the spatially nonuniform component of potential
(loosely referred to in this paper as the time-independent component of potential outside the micro-
electrode) is itself established on two different time scales. The component representing the potential
drop within the cell interior is established "instantaneously" (that is, according to the relaxation time
of the solution filling the interior of the cell), whereas the spatially nonuniform component of mem-
brane potential is established on a time scale some 10,000 times faster than the membrane time con-
stant (on a time scale of eRmCm = aRiCm, symbols defined below). Thus, in principle, the spatially
nonuniform component of membrane potential can be separated from the potential drops within the
microelectrode and within the cell interior.
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microelectrode to the "indifferent" bath electrode. While it is common and sensible
to define the "microelectrode resistance" operationally as the sum of these poten-
tials divided by the applied current, this is not the convention we have used here;
it is easier for our analysis if we define microelectrode resistance Rv to mean only
the resistance within the microelectrode. Following that convention, we can derive
the potential Ve recorded outside the cell

Ve = 1R +-
I 7Re4

where the potential outside the electrode, the second term, has been calculated from
equation A 18 of the Appendix.8 Typical values might be R, = 20 MU; Re, the re-
sistivity of the bathing solutions = 100 ohm-cm; s, the radius of the microelec-
trode = 0.1 ,; then 0.135 Re/s = 1.35 Mg. At this stage it is usual to adjust the
electronics to read zero output during the current pulse (except for a nasty transient
artifact caused by imperfect behavior of the electronics at short times). This proce-
dure is usually called "balancing the circuit." In our analysis we will not balance
the circuit at this stage, but will perform the equivalent subtraction later on.

Electrode Just under the Cell Membrane

We next consider the electrode to be inserted into the cell just under the cell mem-
brane. A steady potential, the resting potential, is observed, which potential is uni-
form both spatially and temporally (except for the effects of damage to the cell).
We therefore will only consider the displacement in potential from this resting poten-
tial produced by the current applied to the cell, and from now on we use the phrase
"membrane potential" as an abbreviation for the phrase "the displacement of the
potential immediately across the membrane produced by applied current." We use
the word "potential" to mean the displacement in potential within the cell produced
by current, noting that the potential so defined will include potential drops within
the cytoplasm as well as across the membrane.

In the special case where the electrode is just under the membrane there is no cyto-
plasm between the tip of the electrode and the cell membrane and there can be no
potential drops between the tip of the electrode and the immediately adjacent mem-
brane. The electrode potential is thus a measure of the true transmembrane potential
near the microelectrode (if we assume that potential drops in the solution outside
the cell are not important; see Rall, 1969). Our analysis (see equation A 19 of the
Appendix) shows that the potential measured will then be

"The coefficient of R. differs slightly (by 8%) from the equivalent expression in Gray et al. (1922),
equation 15, p. 143, and from that in Rush et al. (1968), p. 84. The difference arises because our treat-
ment does not allow current to flow from the (infinitely thin) edge of the disc source whereas the solu-
tions derived by the other authors allow such current flow.
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Vi =IR, + I 8R + IR. {1 - eCt"'"C"} (2)3~2s 4ira

where the first term represents the potential drop within the electrode and the other
terms represent the potential drop across the cell membrane.

V, = the potential recorded inside the cell after the application of a step function
of current (volts),

I = the amount of current applied (amperes),
RV = the resistance within the microelectrode (ohms),
Rm= the resistance of 1 square centimeter of membrane (ohm-square centi-

meters),
Cm = the capacitance of 1 square centimeter of membrane (farads per square

centimeter),
Ri the resistivity of the solution filling the cell (ohm-centimeters),
a the radius of the cell (centimeters), and
s = the inner radius of the opening of the microelectrode (centimeters).

The meaning of the terms which represent potential drops outside the electrode
(the last two terms in equation 2) is of considerable interest. The exponential term

A 2
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FiGuRE 2 The potential outside the microelectrode measured by the single-probe technique
when a step function of current is applied to a spherical cell. The upper figure shows a gen-
eral case, corresponding to equation 2 of the text. The lower figure represents a particular
case, with cell parameters Cm = 1.5 iAF/cm2; Rm = 1000 ohm-cm2; R; = 200 ohm-cm; a, the
radius of the cell = 30 u; s, the radius of the microelectrode = 0.1 ;s. Note the initial jump
produced by the time-independent component of potential, followed by the RC rise repre-
senting the charging of the membrane capacitance.
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represents the spatially uniform component of membrane potential, i.e. the average
potential, the potential being independent of position around the cell and corre-
sponding to the usual assumption that a spherical cell is "isopotential." The other
term represents the nonuniform spatial variation of membrane potential produced
by the convergence of current, and the concomitant steep gradient of potential,
which invariably exist near a small source of current. This extra component of
membrane potential reaches steady state much more quickly than the spatially uni-
form component (quicker by a factor of Rm/aRi - 10,000; see Appendix 2 of
Eisenberg and Engel, 1970) and so we can call it the time-independent term. The
physical origin of this term is examined in the Discussion section; the rigorous
derivation is in the Appendix.
Graphs of the two terms which represent the potential drops outside the electrode

are shown in Fig. 2 A (the general case) and Fig. 2 B (a specific case). The latter
shows the response computed for a cell of radius 30 ,p, membrane resistance 1000
ohm-cm2, internal resistivity 200 ohm-cm, membrane capacitance 1.5 jsF/cm2, and
electrode radius 0.1 tt. Similar experimental records can be found, for instance, in
Tupper et al. (1970), Fig. 2.

Electrode in the Center of the Cell

So far our analysis has been restricted to the case where the electrode is inserted just
under the membrane of the cell; we now consider the case when the electrode is in
the center of the cell. Then the potential across the membrane will be uniform and
will not vary with position around the cell, but the current will flow across the re-
sistance of the cell interior, producing a potential drop in the interior of the cell.
The expression for the potential V, recorded in the middle of the cell (r = 0) will
then be different from the potential immediately across the membrane. Indeed,

{37r2s 47ra 47

~IR, + 3iRs + IRm {1 _ etIRmCm}, (3)

where we have assumed the electrode radius is much smaller than the cell radius and
that no balancing or rebalancing has been done. This expression has been deter-
mined from equation A 19 in the Appendix.
We see again that there is a time-independent component of potential, composed

of the potential drop within the microelectrode and a potential drop outside the
electrode, and a spatially uniform component, the average potential across the
membrane. The time-independent term which describes potential drops outside the
electrode has a different physical significance than the analogous term which occurs
when the electrode is just under the cell membrane. In the latter case the term repre-
sented a change in membrane potential, whereas in the present case, with the elec-
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trode in the middle of the cell, this time-independent term represents only a drop in
potential in the resistive material filling the cell.
One further point should be made before we proceed with our analysis. It is

interesting to note the similarity between equation 1 and the time-independent terms
in equation 3. In particular the terms representing the potential drops associated
with current leaving the electrode are similar. These terms are familiarly, if impre-
cisely, called the "convergence resistance" in the physiological literature. It is evi-
dent from the above analysis (see equation 2) that this name is only appropriate to
the case where there is a great deal of symmetry in the flow of current, when the
electrode is either in a uniform resistive material or in the center of a spherical cell.
When current flow is not symmetrical, for instance if the electrode is not in the center
of the cell, the time-independent potential has two components, one representing
the nonuniform component of membrane potential and the other representing the
potential drop within the resistive material filling the cell. According to common
usage, all the time-independent components of potential (except those caused by
changes in the electrode resistance) are called effects of the convergence resistance.
This usage of the phrase "convergence resistance" to describe all the time-inde-
pendent components of potential is unfortunate since it lumps together quantities
with different physical significance; for instance it lumps together potential drops
in the cytoplasm and spatially nonuniform components of true membrane potential.

Variation of Potential within the Cell Interior

In this section we consider the general expression for the potential anywhere within
the cell. The expression for the total potential recorded (assuming no balancing
outside the cell or rebalancing inside) is then (see equation A 19 of the Appendix)

V1 = IR-v+4IaR I + P)(d/a;sl)+InI- "c 4
472s aR +/4 ra-2 IRmCm (

where P)(d/a; s/a), a function of the distance from the center of the cell d and the
microelectrode radius s, is tabulated in Table I and shown in Fig. 3. When d/a = 1,
and the expression simplifies to the expression given above (equation 2). When the
electrode is fairly deep in the cell (say dla = 0.9), the P(d/a; s/a) term is tiny and
the equation is quite simple.

Using equation 4, we can describe in a qualitative way (see Fig. 3) the effect of
advancing the electrode into the cell. Close to the membrane the effect of advancing
the electrode is quite pronounced, reducing the time-independent term by a factor
of 2. After that, advancing the electrode hardly changes the size of the time-inde-
pendent term. This effect occurs because, just under the membrane, current can only
leave the electrode by flowing downwards, away from the electrode and the mem-
brane, whereas deeper in the cell current can leave the electrode in all directions.
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TABLE I

THE VARIATION OF POTENTIAL WITH DEPTH: A TABLE OF THE
TIME-INDEPENDENT TERM 6P(d/a; s/a)

Electrode Electrode radius s/a
position d/a 0.002 0.004 0.008 0.016

0.1 0.0000 0.0000 0.0000 0.0001
0.2 0.0000 0.0001 0.0002 0.0004
0.3 0.0001 0.0002 0.0005 0.0009
0.4 0.0002 0.0004 0.0009 0.0018
0.5 0.0004 0.0008 0.0016 0.0031
0.6 0.0007 0.0013 0.0027 0.0053
0.7 0.0011 0.0023 0.0045 0.0091
0.8 0.0021 0.0042 0.0084 0.0168
0.9 0.0050 0.0100 0.0201 0.0401
0.91 0.0057 0.0113 0.0227 0.0453
0.92 0.0065 0.0130 0.0259 0.0517
0.93 0.0075 0.0151 0.0301 0.0600
0.94 0.0089 0.0179 0.0357 0.0710
0.95 0.0109 0.0218 0.0435 0.0863
0.96 0.0138 0.0277 0.0552 0.1089
0.97 0.0187 0.0374 0.0744 0.1456
0.98 0.0285 0.0569 0.1122 0.2140
0.99 0.0577 0.1139 0.2169 0.3773
1.00 0.9988 0.9976 0.9954 0.9909

Furthermore, the physical significance of the term changes considerably, as the
electrode is lowered into the cell. When the electrode is close to the surface, the
time-independent term reflects a change in membrane potential, whereas when the
electrode is further in the cell it reflects both the potential drops inside the cell and
an extra, spatially nonuniform component of membrane potential. Fig. 4 shows the
nonuniform component of membrane potential (the coefficient of R,/47a in equa-
tion A 2) produced by a point source of current at a distance q from the center of
the cell. This figure was calculated from equation A 2, with p = a. Note that the
term is significant even when the electrode is quite deep within the cell.

Balancing and Rebalancing the Single-Electrode Bridge

The single-electrode bridge technique measures the sum of the potential drop within
the microelectrode and the potential drop within the cell and across the cell mem-
brane (see Fig. 1). Since the potential drop within the microelectrode is not usually
of interest, a method is needed for separating this component of potential from the
total potential recorded. Two methods have been used historically, each for sound
experimental reasons. In one method the electronics are adjusted, with the microelec-
trode in the bathing solution, so that there is no voltage displacement seen when cur-
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FiGURE 3 The radial variation of the potential recorded with a single microelectrode bridge.
The function (P(d/a; s/a) describes the variation of the time-independent component of
potential, as the microelectrode is advanced into the cell. (P is in dimensionless units, d is the
radial position of the microelectrode, a is the radius of the cell, and s is the radius of the
microelectrode.
FIGURE 4 The change in membrane potential produced by current applied within the cell.
The ordinate of the plot shows the spatially nonuniform component of potential, the sum of
the terms which multiply R,/47ra in equation A 2. The plot gives a component of membrane
potential at an angular separation e produced by a current source at radial position q. Be-
cause of the symmetry of the situation the plot also gives the component of potential at
radial position q, angular position e, produced by a current source just under the membrane.

rent is passed. The microelectrode is then inserted into the cell and records are taken
without further readjustment of the electronics (Schanne et al., 1966; Tupper et al.,
1970). This procedure corresponds to subtracting the external response (equation 1)
from the internal response (equation 2),

BIOPHYSICAL JOURNAL VOLUME 12 1972392



Vi-V6 = IR. + AL {Ri(l + v(d/a; s/a) - ReJ

+ R4 {i - eL}RmCm (5)

where AR, represents the change in the resistance within the microelectrode when
the electrode is inserted into the cell. The resulting potential has the same shape as
that shown in Fig. 2, but the physical meaning of the components of potential is
different, since the time-independent component will now reflect the resistivity of
the external solution, the properties of the interior of the cell, and, of course,
changes in the electrode resistance.

There are some interesting qualitative features of this balancing procedure. Note
that if the electrode were inserted just under the membrane of a cell (thus, the func-
tion 6'(d/a; s/a) in equation 5 equals 1) which has identical internal and external
solutions (i.e., R6 = R,), the time-independent term would be just twice the analo-
gous term in equation 1 where the electrode was supposed to be outside the cell.
This factor of 2 arises because when the electrode is outside the cell, current flows in
all directions, whereas when the microelectrode is just under the cell membrane,
current flows almost exclusively away from the membrane, in half the directions
previously available. Thus, if a microelectrode is inserted just under the membrane
of a cell, one would expect to see a jump in potential (produced by the time-inde-
pendent term), even if the internal and external resistivity were the same and the
microelectrode resistance had not changed. If the microelectrode were then advanced
further into the cell, to a point where the function 6P were negligible, then the jump
in potential would progressively disappear.4 When the electrode is deep in the cell,
thejump in potential appears if the electrode resistance is changed, or if the internal
resistivity is different from the external resistivity.

In the usual experimental situation, however, a jump in potential appears when
the electrode is inserted into the cell, and the cause is not known. In this case another
procedure is often used: the electronics are readjusted (we call this rebalancing) so
that the time-independent components of potential are invisible; that is to say, there
is no visible jump in potential. This procedure is equivalent to removing the first
two terms of equation 4. The resulting potential, the spatially uniform potential,
will be an exponential function of time, and can be analyzed to give the parameters
(Rm. Cm) of the membrane. On the other hand, it must be remembered that some
of the time-independent potential rendered invisible by this rebalancing procedure
is a true potential across the membrane and as such can have physiologically inter-
esting effects, such as producing nonlinear changes in membrane properties.

4Note the jump vanishes only with this balancing procedure, when Ri = R,, and when AR, = 0.
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DISCUSSION

Approximations Used in the Analysis

There are several approximations that have been used in this analysis. The important
approximation, not precisely discussed up to now, is our representation of the micro-
electrode as a source of current, shaped as an infinitely thin one-sided disc of diam-
eter equal to the inner diameter of the micropipette. The actual situation is much
more complicated and requires a specification of the equations which describe cur-
rent flow within the microelectrode, at the boundary between the microelectrode
and the cytoplasm of the cell, at the wall of the microelectrode, in the membrane
(presumably damaged) immediately surrounding the microelectrode, as well as the
equations we have used to describe the flow of current within the cytoplasm and
across the membrane. In our case a consideration of the size of the parameters in-
volved allows us to reduce the complexity of the problem. The essential considera-
tion is that the potential drop within the microelectrode (and within the source im-
pedance of the device connected to the microelectrode) is much greater than the
potential drops within the cell and across the membrane; in other words the im-
pedance of the microelectrode (and current source) is much greater than the input
impedance of the cell. In that case the current flowing out of the microelectrode is
not changed by the potential within the cell or across the membrane, and the micro-
electrode can be represented as a source of current. The potential produced by a
source of current can then be calculated as shown in the Appendix, assuming that
the parameter e = aRi/Rm is sufficiently small. This latter assumption is of little
consequence since the parameter e is of the order of 0.001 or less under most physi-
ological conditions, whereas a value of even 0.03 would not cause serious errors in
the analysis (Eisenberg and Engel, 1970).
The representation of the source of current as a one-sided disc, ignoring the wall

of the microelectrode and the damaged region of membrane immediately around the
electrode, is much harder to justify in a quantitative manner. The effect of leakage
around the microelectrode, through the damaged region of the cell, can be approxi-
mately determined since the size of the leak can be evaluated from the depression of
resting potential produced by insertion of the microelectrode (Adrian et al., 1969,
p. 239). The leakage can be represented by a resistance in parallel with the input
impedance of the cell, and is usually little enough so that the effects are not important
for the analysis presented here.
The microelectrode is represented as a resistance in this analysis and the shunt

capacitance from the interior of the microelectrode into the cell interior is neglected.
This approximation seems quite sound since the capacitance from the inside of the
microelectrode to the cell interior must be of the order of 10-14 farads, assuming that
10 ,A of the electrode is within the cell and that the capacitance of the microelectrode
is some 10-12 farads/mm of electrode length (Nastuk and Hodgkin, 1950; Rush et al.,
1968). Since most of the resistance of the electrode is within this 10 ,, an upper bound
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on the effect of the capacitance into the cell interior can be determined by consider-
ing all the resistance of the electrode to be in parallel with the capacitance of 10-14
farads. The time constant of such a circuit would be (for an electrode of 20 MQ) re-
sistance) 0.2 usec, a time much shorter than we are interested in here. Thus, at the
times of interest the current flowing from the microelectrode into the cell is in phase
with the voltage on the electrode, and the electrode can be considered as a resistor.
An attempt to check this point experimentally is currently being made in our lab-
oratory by Dr. R. Valdiosera.
The approximations involved in our analysis should be evaluated in view of the

purpose of this paper; namely, this paper seeks to analyze the physical factors which
determine the potential recorded when the microelectrode recording potential is
also a source of current. While approximations are involved in the representation
of the microelectrode as a disc source of current, the further analysis is precise,
terms being dropped only when they can be shown to be negligible. An analysis
which represents the microelectrode in a more realistic manner must await detailed
information about the electrical properties of the region within and immediately
around the microelectrode.

Mathematical Derivation and Physical Meaning of the Components of
Potential

The results presented in this paper are derived from our previous analysis of the
spatial variation of potential by repeatedly integrating the formula which gives the
potential produced by a point source. In order to perform these integrals either nu-
merically, with reasonable computing cost, or analytically, the expression which gives
the potential produced by a point source must be known in a simple form. The origi-
nal expressions for potential in a spherical cell, and indeed the only expressions avail-
able now for the potential in a cylindrical cell, are quite complicated (Eisenberg and
Johnson, 1970) and certainly could not be integrated four times as is necessary in our
present analysis. Eisenberg and Engel (1970) were able to simplify these expressions,
without introducing approximations, in one particular case, namely the case where
the microelectrode is inserted just under the membrane of a spherical cell. For this
special case, our present result (essentially equation 2) can be derived from the
exact analysis.
The exact analysis was not completely satisfactory since it gave expressions whose

physical meaning was often obscure. For instance, it was not clear from the exact
analysis why the term which describes the spatially nonuniform potential should be
virtually independent of time (that is to say, this term reached steady state much
more quickly than the uniform component of membrane potential). It was not clear
why an equation describing membrane potential should contain a term which is
independent of membrane parameters. Finally it seemed possible that these puzzling
properties might depend on the assumption concerning the location of the microelec-
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trode just under the membrane. (These features of the exact solution are illustrated
by the second term in equation 2.)

In order to meet these criticisms the problem was reanalyzed using singular per-
turbation theory (Barcilon et al., 1971; see also Pickard, 1971). Briefly, the analysis
showed that the total potential could be written as

VV( ) + V(1 + (Z2 +..
e

where e = aRi/Rm . Each of the terms V(), V(1, ... represent the solutions to elec-
tric field problems related to our original problem but of simpler form. In the case
of the spherical cell, the term V(°) represents the spatially uniform potential
(V(°)/e) = (IRm/4Ta2) (1 - e-tIRMCM). The V(1) term represents the potential pro-
duced by a point source of current located within a hypothetical spherical membrane
which is constrained to have a spatially uniform density of current crossing it; that
is to say the flux of current across the boundary of the structure is independent of
spatial position. V(2) and higher order terms represent the potential produced by a
redistribution of current across the cell membrane, current entering some regions
of the cell and leaving other regions, there being no net source of current. In our
analysis of the physiological case it is only necessary to consider the first two poten-
tials V(°) and V(1) (and quantities derived from them) since the other terms are
negligible everywhere in the cell at all times of interest.
Using the result of the perturbation analysis, we can see the physical meaning of

the various components of potential. In particular the term in our equations which
seemed most troublesome (for instance the second term in equation 2) is derived
from V(1) and thus represents properties of the electric field produced by a point
source of current, in the case where uniform current flux crosses the membrane.
Since the term arises from a problem with a point source, where the current lines
are forced to squeeze into a vanishingly small area, we expect that the potential
near the source will be large. Furthermore, the problem which specified this com-
ponent of potential V(1) does not include any membrane parameters, and therefore
it is not surprising that the corresponding terms in our equations are independent
of membrane properties. Finally, it is now clear why one of the terms is independent
of time, that is to say has reached steady state by the times of interest. The only time-
dependent properties in our description of the electrical properties of a cell are in
the membrane, namely the membrane capacitance; but the V(1) term is independent
of all membrane properties, and thus is independent of time, and appears as a con-
stant term in our equations. The higher order terms, eV(2), etc., are quantitatively
unimportant but will depend on membrane properties and time, thus modifying the
"constant" terms of our equations under extreme conditions or at very short times.
The above physical analysis is based on results obtained with perturbation theory

and it may be interesting to see if it is possible to justify this analysis with physical
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arguments alone. It seems unlikely that such post hoc physical arguments are unique,
but they serve a useful purpose in showing why perturbation theory gives the results
it does. On physical grounds the spatially uniform component of potential (V(0)/e)
miaht be expected to be the largest term; there would be little decrement of potential
along distances of one cell radius in a cylindrical cell with the same size and proper-
ties as the spherical cell and so a spherical cell must have a quite uniform potential.
The correction term VM1) is needed to describe how the electric field forces all the
current to flow out of the microelectrode. The term might be expected to be inde-
pendent of membrane properties (and thus time) since this component of potential
is determined primarily by the properties of the cell interior and the microelectrode.
Higher order terms might be expected to refine these approximations.

Implicationsfor the Evaluation of Experimental Results

A major result of this analysis is that the time-independent component of potential
produced by a step of current is not simply caused by changes in electrode resistance,
but also includes components of true membrane potential and potential drops within
the cytoplasm of the cell. The time-independent component of potential is seen as a
jump in potential immediately after the application of a step function of current.
Thus, measurements with the single-probe technique which are made during the
steady state, and which ignore thejump in potential (Schanne et al., 1966; Tupper et
al., 1970), will include an extra component of potential and will lead to peculiar
values of the membrane parameters.

Furthermore, the procedure of balancing the circuit before penetration with the
microelectrode and then measuring the response without rebalancing will usually
give misleading results. Indeed there is direct experimental evidence of problems
with this procedure. Table IV of Schanne et al. shows that the "input resistance"
measured with a single electrode applying current and recording potential is some
7.9 times greater than the input resistance measured with two microelectrodes.
Tupper et al. (1970) found a similar result and concluded (p. 189) that the discrep-
ancy between the results recorded with two microelectrodes and one microelectrode
was caused by "a consistent imbalance ... which is not dependent on membrane
resistance but which is additive to the depolarization produced by the membrane
resistance."

Equation 5 shows the origin of this problem: namely, there is indeed an extra
additive component of potential. If the electrode is located just under the cell
membrane this component reflects differences in the resistivity of the solution inside
and outside the cell, and also reflects the changed pattern of current flow, current
flowing only in half the directions available when the electrode is outside the cell. If
the electrode is located deeper in the cell (where the 6P (d/a; s/a) term in equation 5
is negligible) the presence of a time-independent component of potential reflects
differences in the resistivity of the cytoplasm and bathing solution.
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In spite of the extra time-independent component of potential, linear membrane
parameters can be determined by a simple rebalancing procedure. If the electronics
are arranged so that the time-independent component of potential is removed,
either by electronic or analytical subtraction, the resulting potential is that which
would occur in an isopotential cell, one without spatial variation of potential, and
the membrane parameters can be calculated by the simple equations which apply
to that case. Measurements of the internal resistivity R; using the time-independent
component of potential are possible in principle, but require knowledge of the loca-
tion and diameter of the microelectrode and assurance that the resistance R, of
the microelectrode has not changed when the electrode was inserted into the cell.

Other procedures for removing the time-independent component of potential are
possible. For instance, in a condition in which the membrane impedance is low and
current is applied with the single-probe technique the potential recorded will be the
time-independent component. Since the action potential represents a state in which
the membrane has low impedance (both because the voltage is changing rapidly and
because the membrane resistance is low), current applied during the action potentia
can be used to determine and remove the time-independent component of potential
(Johnson and Tille, 1960, 1961; Martin and Pilar, 1963). These procedures, which
also can be applied to records taken with double-barreled microelectrodes (Eisen-
berg and Johnson, 1970), depend on a detailed analysis of the time course of poten-
tial changes. In practice, the limiting factor in this analysis will be the ability of the
electronics to faithfully reproduce rapid transients. The reliability of quantitative
results determined with the single-electrode bridge, or double-barreled microelec-
trodes, thus depends critically on the electronics used in the implementation of the
techniques.

It must be remembered, moreover, that either of the above procedures results in
records which do not reflect the large value of the membrane potential near the
microelectrode. This extra potential produced by the divergence of the lines of cur-
rent flow from the small source can change the properties of the membrane, produc-
ing an action potential or even, in an extreme case, dielectric breakdown of the mem-
brane. Thus, measurements of threshold using the single-probe technique would be
expected to give low values. Furthermore, the spatial variation of potential near the
source means that it is not possible to hold all the membrane at uniform potential,
and therefore voltage clamp experiments using a microelectrode as a source of cur-
rent would be expected to be difficult to interpret. A full discussion of this problem
can be found in part 2 of Eisenberg and Johnson (1970).

APPENDIX

In this Appendix we derive approximate expressions for the potential recorded by a micro-
electrode inserted in a spherical cell, the electrode being used to apply current as well as re-
cord potential (see Fig. 1). In this approximation the tip of the microelectrode is treated as
an infinitely thin, one-sided disc which, in conjunction with the associated electronics, acts
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'Center of Cell
)

FiGuRE 5 (Left) A side view of the microelectrode in the cell interior. The microelectrode
is treated as a disc in our analysis, the point 0' being the center of the disc, the point Q
being the location of a point source of current, and the point P being the location at which
potential is computed. (Right) A face-on view of the microelectrode tip. New coordinates,
used in the integrations performed in the text, are shown.

as a current source; that is to say, the current leaving the electrode is independent of the po
tential within the cell. Furthermore, the potential within the microelectrode is supposed to
be independent of radial position and thus the density of current flowing out of the disc is
uniform. The calculation consists of three steps: (a) the evaluation of the potential on the
disc, (b) the averaging of the expression thus obtained over the surface of the disc, and (c)
the conversion of the steady-state solution to the solution of the transient case, where a step
function of current is applied at time zero and the membrane is represented by a resistance
Rm in parallel with a capacitance Cm . The last step is not explicitly performed here since it
has been described in detail (Appendix 2, Eisenberg and Engel, 1970).

Let us denote by 0 and O' the centers of the spherical cell and disc source, respectively,
and by d the distance 00' (Fig. 5). If P and Q are two points on the disc source, we can
denote the line segments which extend from 0 to these points by the vectors p and q, respec-
tively, the angle between the vectors being called 9. The lines from the center of the disc O'
to the points will be called p' and q', and the length of all position vectors will be denoted
by enclosing the name of the vector in vertical lines, or by writing the symbol in italics in-
stead of boldface type. Thus, the length of the vector p is written p or p for short. Finally,
we recall that the inner radius of the circular tip of the microelectrode (i.e., the disc source)
is equal to s and that the applied current is called L.

Turning now to the actual derivation, we denote by v(p, q) the potential at P produced
by a single point source of strength I/7rs2 located at Q. We shall approximate v(p, q) by the
first two terms of the Green's function derived in Barcilon et al. (1971), i.e.

v(p, q) g(p, q), (A 1)

where

g(p 1q) = [R + r {gi(p, q) + g2(p, q) + ga(p, q), A 2
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and

a a
gi(p,q) - p - qa = (p2 + q2- 2pq cos 0)112 (seebelow6), (A3)

2
g2p-q a (A 4)g2(P, q, - (p2q2 + a4- 2&pq COS 0)1/2a

ga(p, q) = -2-logI[1 CSC0- +g(pq)J (A 5)

The potential V(p) at P due to a uniform disc source is obtained by adding the contribution
of each point source Q on the disc, i.e.

V(p) = ff v(p, q) dq, (A6)
diso

where dq represents an element of area on the disc. This procedure can be viewed as an ap-
plication of the principle of superposition to linear field problems or as an application of
Green's functions to compute the solution of an inhomogeneous differential equation (see
Courant and Hilbert, 1953).

If we therefore define G(p) thus:

G(p) = ff g(p, q) dq, (A7)
diso

it is natural to approximate V(p) by G(p), viz.

V(p) G(p), (A8)

where

G(p) = 4ra2 + 4Ras2 0 gl + g2+ g8) dq. (A 9)

The first integral in equation A 9 involves only the distance between P and Q and can be
evaluated exactly. The calculations are greatly simplified if we introduce the coordinates X
and 0 representing respectively the distance between p' and q', that is -P q' 1, and the
angle between p' and p' -q' (Fig. 5, right). Indeed:

G1(p) ff gi(p, q) dq = 2adf |4x (A 10)

where x*(q4) is the distance from P to the edge of the disc along a line passing through Q, i.e.

X*(9) = p' COS 4 + (s2 - pl2sin24q)1/2. (A 11)

4 Note that this term represents the potential in a uniform resistive solid and thus expressions derived
from this term alone will represent the properties of a microelectrode in a uniform resistive medium.
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As a result

GI(p) = 2aj {p' cos + (s2 -p in2 0)1I21 d+,

or

GI(p) = 4asEQ(P,2)X (A 12)

where E(p'/s, 7r/2) is a complete elliptic integral of the second kind (Abramowitz and Stegun,
1964).
For the calculation of the second integral in equation A 9 we introduce the additional

assumption that the disc is perpendicular to the line 00' which simplifies the calculations.
Here again the coordinates X and 4b are used. To that effect, we first write p2, q2 and pq cos 0
in terms of x and q5, viz.

p2 = p'2 + '2

q2 = x2- 2p'xcos + d2 + p12'

2qp cos = -2p'x cosc + 2(p'2 + d2). (A 13)

Substituting equation A 13 in equation A 4 we deduce that

G2(p) "diJd g2(p, q) dq = 2 do

a2x dx
[('2 + p'2)x2 + 2p'(a2 - p'2 - d2)X cos 4 + (a2 - pt2 - d2)2]1/2 (A 14)

The third integral in equation A 9 was neglected since g3(p, q) never exceeds 4.3% of
the value of I gi + g2 I for electrode radii smaller than 1% of the cell radius.
The final step in our calculation consists in averaging V(p) over all points P on the disc,

i.e. in computing

IJ V(p)dp, (A15)irS2 disc

which we shall approximate by G defined thus:

1IJ fIRm + IR, (GI+GG2)dp. (A16)irS2 JJisd4Fa 4ir2s2
Once again the integral of Gj(p) can be evaluated exactly, viz.,

fLdi GI(p) dp = 2irp'dp'{4asEQ?,j)} (A17)
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Using the integral form of E(p'/s, ir/2) and inverting the q5 and p' integrations, we can re-
write equation A 17 as follows:

fi Gi(p) dp = 8ira J d4I (S2 _ p)2 sin2 q)1/2pldp'
dis0

With standard integration formulas (e.g. Dwight, 1961, 351.01, 432.20, and 453.32) we deduce
the remarkably simple result

fL|, Gi(p) dp = l6isa (A 18)
di8c 3

As a consequence

-_IRm +4 IRi a jI r Idp' I do
x dx

47ra2 3 7r2s J0 J0 j D2

where

D = (d2 + p'2)x2 + 2p'(a2 - p'2 - d2)x cos 4) + (a2 - p'2 - )2.

In summary, the potential V is approximated by

G T2+ 37S+ FS4F(; S) (A 19 )
47ra2 3irs- 7r2S4 \aa/

where

l yVC08 0+(fl2_y2 8in2,0*

F(a; y)= dy do
x dx ( 0

[(a2 + y2)x2 + 2y(l y2 - a2)X COS 4 + (1-2 - y2)2]1/2
The first integral (over x) was performed analytically using formulas 380.001 and 380.011

of Dwight (1961). The integration over 4) was performed numerically by a six-point Legendre-
Gauss routine (Ralston, 1965) using at least 60 points. The final integration (over y) was
performed by Simpson's rule over at least 31 points. Increasing the density of points used
in either numerical integration made no significant difference in the results. The data are
tabulated in Table I and Fig. 4 in the form of the function 6)(d/a; s/a).

3 a3 Id
(P(d/a; s/a) = aF y; } (A21)

All the digits presented are thought to be significant.
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