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INTRODUCTION

Laplace's equation arises in many physical problems which involve
conservation laws and so has been well studied for a number of boundary
conditions, most notably for the Dirichlet and Neumann conditions in which
the potential or normal derivative of potential is specified on the boundary.
There is a class of problems, common in heat, diffusion, and physiologi-
cal situations, which have another less well studied boundary condition.
This boundary condition is often called the mixed or general boundary
condition since in its simplest form it specifies a linear combination of
the potential and its normal derivative at the boundary. If the boundary
separates two regions, in both of which Laplace's equation is obeyed,
the mixed boundary condition takes on a more complicated form. This
report is devoted to the solution of Laplace's equation for spherical
geometry with a particular mixed boundary condition appropriate to the
description of a thin layer or membrane. The problem is more general _
than the usual mixed boundary problem of heat or ditfusion problems and
can be specialized to the usual case.

While the solution to the problem can be written by classical eigen-
function techniques, the resulting formulae are of limited utility since
they are barely computable and since they do not permit physical
interpretation. We derive representations of obvious physical significance
which are easy to compute by exploiting a particular property of the
mixed boundary value problem; namely, in most physical situations the

-

boundary condition, written in dimensionless units, involves a uniformly



small parameter. The size of this parameter allows an expansion of the

eigenfunction representation, which expansion can be made computable.
The physical significance of the terms remains unclear, however, and
this is particularly worrisome since some of the properties of the solu-
tion differ from one's a priori expectations.

A class of techniques called singular perturbation theory has been
developed to exploit small parameters in problems specified by differential
equations. 3 These techniques allow the derivation of expressions having
simple physical meaning and indeed allow approximations to the solution
of some otherwise unsolvable problems. In the case of our problem of
Laplace's equation with mixed boundary conditions, singular perturbation
techniques are helpful because the physical meaning given to each of the
individual terms in the solution explains the conflict with a priori expec-
tations. However, in our case, exact methods may also be used to
obtain the solution,

There are no theorems available to justify the results of a singular
perturbation analysis of partial differential equations and so it is particu-
larly important to compare the representation derived by singular perturba-
tion techniques with the corresponding exact solution. Such comparisons
are quite rare and for that reason we solve our present problem in three
ways--by classical exact methods based essentially on eigenfunction tech-
niques; by the singular perturbation technique of matched asymptotic expan-
sions; and by the singular perturbation technique of multiple scaling. A

comparison of the results shows the representations to be equivalent, thus



Justifying in this case the techniques of singular perturbation. The several
methods are presented in some detail with the hope that this report may

serve as an effective teaching aid to our students and colleagues unfamiliar
with some of the methods of eigenfunction expansions or singular perturba-

tion theory.



I. CELL MODEL

We consider the potential everywhere as a function of time for a
point source of current turned on abruptly at t=0, somewhere in the inter-
ior of a cell. The model taken for the cell is a sphere of radius a,
enclosed by a thin membrane of thickness 6, surrounded by an external
conducting medium. We also obtain some results for a cell of arbitrary
shape in which all dimensions are of the same order. The current is
collected by an electrode a long distance away in the external medium.

The geometry and coordinate system are shown in Figure 1.

The conductivities of the cell interior, membrane and outside
medium are 0., 0 and g, (mhos /cm), respectively. The membrane
thickness and conductivity are considered to approach zero individually
in such a way that the ratio cm/é , the surface conductivity (mhos/cmz)
remains finite. For a typical cell used in physiological experiments,

3

8 10_6cm and a= 10"

il

to 5 x lO—Zcm, so that the limit 6§ — 0 will
lead to no appreciable error on the scale of the cell. The membrane
1s also assumed to have a capacity per unit area Cm(~ 1p farad/cmz).

The point source of current is a mathematical idealization of a
fluid-filled, tapered glass pipette which, in an actual experiment, 1is
used to pierce the cell membrane and inject current into the cell.
The open tip of the pipette is much smaller than the dimensions of a
cell, so that for studying potential variations on a scale comparable
to the cell size, a delta function is an adequate representation for
the spatial distribution of the source.

In many cases, the electrical resistance of the pipette is large
compared to the effective resistance across the cell interior and

membrane, so that the source is naturally a current source. In

4



Figure 1. Coordinate System for Spherical Cell.



other cases, the source can be made a current source by external elec-
tronics. However, on a short time scale, capacitive coupling between the
pipette and the cell is important, and in this case the current-source
assumption breaks down. Hence, the results we obtain for the short time
scale (defined below) may not apply to a physical micro-electrode. It
should be pointed out, though, that if the electrical behavior of the source
were well described, our analysis could be extended to short times for a
real microelectrode.

Typical values for S and % are 3 x 10—10 mhos/cm and 7 x 10-3
mhos/cm, respectively., Hence the quantity

m a
€=—7" ;; (1)

is small (< 10—3) and although our solution is valid for all €, we discuss
the physiologically interesting case of small ¢, in which case simpler
analytic expressions are obtained.

If we assume a point current source of 47 amperes at a position

—

r' = R', inside the cell, then

—

V' . JU =4 s(r' - R') u(t!) (2)
where 6(1: - f—%,’) is a delta function, u(t') a unit step function, J! is
the current density in amps/cm2, and primes denote quantities measured
in physical units. Unprimed quantities will be in nondimensional units,
defined below. The potential V' is related to the current density by
Ohm' g law,

J=~-g V' V! (3)

where ¢ is Oi’ crm or qo in the respective regions.
6



Substituting (3) in (2), we obtain the equation for the potential,

vtzv'z_gﬁ 5(?-§')u(t'). (4)
1

We now derive the boundary condition appropriate for our mem-
- +
brane model. Letting q' and q' be the charge per unit area on the
inner and outer surfaces of the membrane, respectively, and Jl',n be the

component of current density within the membrane, normal to the mem-

brane surfaces, we have rom conservation of charge,

oq' av! o
ot 9 o T
oqtt v
dat! o dn'! m

We assume that the membrane is thin (6 << a) and that no volume
charge density exists in the interior of the membrane. The electric field

within the membrane is then constant, and Ohm's law leads to

ag

Jro= - _m (V'+- V‘_)
m 6 ’

where (+) and (-) superscripts denote quantities immediately outside and

immediately inside the membrane. Conservation of charge then becomes

oq' oVt m + -
str % mar e VooV
aq’+ BV'+ < +

—_— = - .ﬂ 71 - !_
ot! Go ani 5 (v Vi)

Using Gauss' law we can obtain another pair of equations relating the
normal derivatives of the potential to the charge on cach membrane

surface:

~1



o on' m 6
- vitoyrT oV
= - —_— ¢
4 K 5 Ko an

where the K's are the permittivities in the respective regions, and the
membrane capacitance per unit area is related to K by C =K /6.
m m m

Taking the time derivative of this pair of equations we obtain

CCIM - K v + ‘m o (Vi vy
ot! o ot'éon' B ot!

- K 2 -
aq" m 9 o SRAYA
at! 8 ot! (Vi- v+ Ki ot' on'

Equating these two equations to the two charge conservation equations

leads to
- + -
o ov'! - 0 AR
<Gi i Ki 8t'> on' B (Gm " Krn 8t'> 6
+ +
0 ov'! - a ARER'A
(Go " Ko ot! ) on' <Om " Km 8t'> 6

Making the change of variables

Ir
r:__
a
V=aoV!
1
t :<cr /K )t'
m m

the last two equations become
3\ ov 9 + -
<l+wi¥>§; 'E(l+¥>(V'V)
+
1 0 aVv 0 o+ -
;<1+%W> o (“ﬁ)“ -V
9

where € = © a/0A6~10_3, w.=K o /K o .~ 3x10 °,
m 1 1 1 m m 1

m

"

w =Ko [K o NlO_g, and @ = o /o .
o om m o i o

oo



The w, and W terms are negligible and if we ignore them we obtain

for the membrane boundary condition,

- +
d + -
_— = a]l .._V_ = ¢ [V - V +

n

av’ _av”
ot ot !

or, in terms of physical variables

- + o)
av' oV' ' m [“+ ,-]
Gi on! Cro on! 6 v -V " Cm

at! ot!

+ -
ovi _3v } (6)

The physical interpretation of this boundary condition is that the rormal
component of current density is continuous across the membrane and is
equal to the sum of the resistive and capacitive currents within the
membrane.

Making the same change of variables in Laplace's Equation (4),
gives in nondimensional form,

v2v = - 47 &(r - R) u(t) . (7)

We now formulate the problem in spherical coordinates (r, 0, ¢)
with origin at the center of the spherical cell. With no loss in generality
we take the point source on the 6 = 0 axis so that the potential becomes

inaependent of the azimuthal angle ¢.

There is an arbitrary additive constant in the potential V(r, 0, t)
which we choose so that the potential is zero at r = . We assume that
there are no sources for t < 0 so that the membrane capacitance is
uncharged at t = 0 and hence the potential is continuous across the

Mmembrane at t = 0, Including this boundary condition at infinity, and

lnitial condition, the problem becomes

<o}



. VZV: - 47 6(T - K) u(t) (7)
Vi(eo, §,t) = 0 (8)
1 9V _ 1 a9V .+
car a8t =rar (L6,
< ;
=V(1l,6,t)-V(l,09,t)
oV, + av -
+ a—t'(l ,Q,t)—gt_(l ,g,t) (9)

0)=0. (10)
This problem is solved exactly in Section II and the solution is

studied for small € . In Section III and Section IV, we show how to

obtain asymptotic expansions for small € using two singular perturbation

methods: the techniques of matching and multiple scaling, respectively.

10



I1. EXACT SOLUTION IN SPHERICAL HARMONICS

A. General Solution

The general solution to Laplace' s Equation in spherical
coordinates may be expanded in a series of terms of the form

n -n-1

P (cos f)a (t)r and P (cos @)b (t) r . P (cos §) is the
n n n n n

nth_order Legendre polynomial, an[t) and bn(t) are functions of

time, n 1is an integer, and we have assumed no ¢ dependence

because ot the rotational symmetry. The solutionl to (7)-(10) must
therefore be of this form in each of the three regions 0 = r < R,

R<r <1, 1<r <, ineach of which the right-hand side of (7) is zero.
= oo, and in addition

Requiring, in accordance with (8), that V = QO at r =

that V be finite at r = 0, the general solution may be written

a (t) r", 0=r =R,

n

e o]
A \ -n-1 n
Viir,6,t) = Pn(coss‘é?; bo(t) x + c{t)r, Rsr<i
n=0 In n

d(t)r“n‘l, 1r = o

n

It 1s convenient, at this point, to extract the free-space potential
of a point source of magnitude 47 at r= R, from the solution, so that

We write the potential in the form

n
rl r n -
'§<§>+An(t)l ) Osr =R,
S 1 /R
Vir, 6,t) = Z P _(cos 9) ~(—> + A (t)r") R=rcs<l
n=0 r I n
B (t)r -1 1 <1 < oo,
n
(11)

i1



The delta-function source at T=TRin (7) is entirely accounted for by

the known potential of a point source,l

S 1/2
— L ~(+*+R*-2rRcosg)
|7~ K|

el Loy
—~~
ool il
~—
o
ItA
H
A
23]

<
= Z Pn(cos 8)
n=0

-
N
I
~—
tJ
A
~
HA
8

We now find the functions An(t) and Bn(t) for which the potential
(11) satisfies the membrane boundary condition (9) and initial condition
(10). Substituting (11) in (9)

, we obtain the pair of coupled first-order

differential equations,

- n+1)R" 4 nA_(t)= - al (n+1) B_(t)

elB (t) - R®- A t+d—B—9 iA—n (12)
plt) - RO-A () —5 - 5 |-

Applying the initial condition (10) to the potential (11), we obtain

n
Bn(O) - R - An(O) =0 . (13)

The solution to the pair of equations (12) may be written in the form

-t
Af(t)y=2 +d e n’
n n n
- At
Bn(t):bn+ c. e no (14)

Substituting (14) in (12) and equating the exponential and time-independent

parts separately, we have

S (n+41) R4+ na = - 2Ly :e[b —Rn—a}, (15)
n [63 n n n



nd :_n+1
n o

Cn'——'E[Cn—d](l"A>. (16)

n n

Substituting (14) in (13) yields

b +¢c -RY-a -d =0. (17)
n n n n

Solving the two equations (15) for a_ and bn’ we obtain

 R"[e(e - 1)+ n+1]
oo n+e (f—f—ﬁ 15 e
and
B nj n[G(a—1)+n+ 1]
bn# R |} - n(n+l)+e(an+n+l)J : (19)

Using the second of equations (15), the first of equations (16)
together with equation (17), we obtain the following expressions for

c and d ,
n n

1’1(n~0—l)bn
“n’” €(l +n +ogn) (20)
(r1+1)Z bn
dn: "€l +n +aon) (21)

Finally, solving Equations (16) for An , we have

_ n _1li+n
Ay E Lt T TiaTan (22)

Substituting (18) through (22) in (14), and the resulting expressions
for An(t) and Bn(t) in the expansion (11) for the potential we have for the

potential inside the cell, i.e., for r=1,



o (n+1)(rR)" P (cos§)

V(r,0,t) = ———+
l TR =o n{n+1)+e(l+n+on)

‘n(n+1) f__
(n+1)2n+1) e_KH n+ an+ 6) €

- - 23
«ell+ntele-1) T oren (23)
and for the potential outside the cell, i.e., for r > 1,
R\’ n 1+
2n+ 0s6) () fien L,
vir, 0,t) =25 ci = UPH(L%G)& . _n(n+l) (l € 1+n+fm)
, 6, r = n(n+1) +elan+n+1) €(l+n+gn)
(24)

Equations (23) and (24) are the unique solution to Equations (7) - (10).
A direct substitution of {23) and (24) in (7) - (10) verifies that they are
indeed the solution to the problem, and the uniqueness theoreml proves
that they represent the only solution to the problem.

The solution given by (23) and (24) is unwieldy. We shall confine
our discussion to the special case of small €, which is the only case
of physiological interest.

We can see from the solutions (23) and (24) that the potential
contains two natural time constants. One 1s T = 1, the other T, = €.
We will refer to variations on a time scale t ~T_ as the slow
transient, and variations on a time scale t ~T., as the rapid transient.
Converting to physical time (primed) these constants are
T Cm6/0m~3 X 10-3 sec and T = Cma/gii 7 x 10_6 sec. The
first is just the product of the membrane capacitance per unit area

and the membrane surface resistivity, the second and shorter time is the
product of the membrane capacitance per unit area and an effective sur-

face resistivity of the interior of the cell.



B. Solution for Small ¢

Since the parameter ¢ is small, the two time scales are of very
different magnitudes and we obtain simplifications in formulas (23) and

(24) for the two separate epochs 0=t < ¢ (in which et s essentially

unity so that the slow transient has barely started) and € << t < 1 (in

t/c

which e 1s essentially zero so that the rapid transient is over),
First we expand the coefficients in (23) and (24) in powers of € and

retain terms of O(e) and thereby obtain the following formulas valid

for all t,
1 1 " & (r RYD
Vir, g, t) = ————+ - to -1+ Z AL p (cosh)
lr-R' n=1 n n
nn+1) t
1 n+1 € -t~ l4+n+an €
(14 n) —6(2+n) —(2n+l)<m —;1—)8 e
2
+0(e7), r=1, (25)
and
— 1o &S n-1 n 2n+1 - (1+ EE liiian)t
Y t)= =+ T L —
(r,t) T a Z r Pn(COSG)R Tinion ©

1 1 > 7—( € 1+n+on
o l-e

F 0y, £ 1. (26)

The n = 0 terms have been written separately to illustrate their
simplicity. The summation of the first term in square brackets in (25}

can be written in closed form, by noting that (letting r R = a)

00 n > -1/2
Za Pn(cosﬂ):<l+a - 2a cos 6)) ,
n=0

and



1l

o0 an a da' [e¢]
Z n—Pﬂ(cosQ) S —_— Z a‘nPn(COSG)

n=1 o) a n=1
ada' -1/2
=§—a,— (l-ZacosQ+a) -1
O
1/2

1

log 2 - log <1+a2-2a c059> +1-acosf]|,

so that, (25) becomes

-t

1 -e 1 1
Vir, t)= + +
¢ |7-% r[T-5
R

] 2 2 1/2
- log {1 - rRcosf + <1+r R™ -2r Rc056> -2+ log 2 +a
J

n
o l+n  t]  (n+1)@2n+1) )
-t OZO 1l +n+an € n(n+1 +an) Pn(cosg)
-e rRe
n=1
n l+ n
00 (i 22T
2 1 ( 14+n+ )
- € Z(rR)n(H+ —2>Pn(cose)_1_e € nTan
n=1 n
2
+ 0(e”), rs1. (27)

The third term in (27) is the potential of an image source of magnitude

47 /R, locatedat r= 1/R on the § = 0 axis,

~1/2
1
<l+ r2 R2 - 2chos€> = =
—- R
RIT- =
R

C. Long-Time Solution

Examining (26) and (27), we see that the only remaining time
dependence, when t/€ >> 1, is in one term in the inside potential,

The outside potential is independent of time during this epoch. The

fime-dependent term (1 - e—t)/e in (25) represents the transient buildup

of the cell interior to a large potential (0[1/e]) in a time t ~ 1.

16



We also can see from (26) that in the limit ¢ — 0, t/e — o, the
outside potential approaches an inverse r potential. The outer surface

of the membrane becomes an equipotential surface, at potential V = ¢,

e-t/e

plus terms of O(e, ). The deviation from isopotentiality is given

to O(e) by the time-independent part of the second sum in (26) (when

t/€ >> 1).

-t/c
e

Neglecting terms of O(e, ), Equation (27) vields a closed-

form expression for the inside potential,

-t
— 1 -e N 1 1

|7~ ]

1/2
-log |l ~-rRcos@ + <l+ r R -2ch059>

_2+log2+a+0(€,e_t/€>,r<l. (27')

Equation (27') represents the entire part of the interior potential that
1s within the current realm of measurability in physiological experi-
ments. The terms of higher order in € are too small to detect; the
terms of higher order in e t/e are too rapid to detect, and also
occur during a period when the assumption of a pure current source
1s questionable.

If the outside conductivity were infinite, o = %, then we have
o= 0. Also, infinite outside conductivity would imply the cuter
surface of the membrane, as well as the entire exterral medium,

s at a constant potential of V = 0. Thus, the assumption ¢ = 0 is
¢quivalent to the condition of isopotentiality (to all orders of ¢) of the
outside surface of the menibrane. This condition has been used in the

; 2
lite rature.



Examination of Equation (27') shows that the effect of the finite
conductivity of the external medium or, equivalently, the removal of
the isopotentiality assymption, is merely to increase the inside
potential by an additive constant, ¢, relative to the potential a long
distance away from the cell.

We now give a closed-form expression for the outside potential

when t>>e¢, neglecting terms of 0(62, e t/6), We note that the

following sum can be evaluated:

2 ot 1 a 0 n
) P (cosf) :g da' ), a' " P_(cosf)
n=1 o n=1

n+1
~a -1/2
= \S da' [(l - 2a' cosf@+ a'2> -]]

O

1/2

= log [(l +aL2 -2a c059> +a —cos@] -a - log(l-cosf),

so that (26) becomes

0 n+1
v - 2r g $(E) 0s0) (L4 L 2 et
(T t) r+Rn;(r P (cosf) (= + —7)+ 0(c e
> 1/2
o €¢ R ' R R R
:;«l—T;-log ?—c058+(1-2—r—cos(~}+:2—> —log(l-cos())—?
5 1/2

R R ‘ R R R
_—r—log 1-;COSQ+(1—2‘;COSQ+7> +;1og2
T

+ O(CZ, e—t/€>, r> 1. (28)

18



Equation (28) shows that the deviation from a simple inverse
distance potential in the external medium is of 0(¢), and hence hardly
detectable. This is an extremely interesting result. It indicates that to
0(1) the external potential is independent of the position of the source
inside the cell. The membrane, because of its high resistance, shields
the external world from the events occurring inside the cell. The depend-
ence of the exterior potential on 6 and on the location R of the current
source appears in the 0(e) term, whereas for the interior potential it
appears already in the 0(1) term. On physical grounds, although we
have not actually proved it, we would expect the opposite to be true as
well, that is, that the membrane shields the interior of the cell from
electrical events outside the cell. This could be shown by moving the
second electrode from infinity to a finite position.

D. Transmembrane Potential

Defining the transmembrane potential by
AV—__ V(l—, 97 t) -V(1+1 9: t))
we obtain from (26) and (27),

1 -et : > -1/2 o, 1/2
av= == +2(1+ R ~2Rcos@> - log[l-Rcosg + (1+R -2Rc059>
1l +n ¢
it " l+ntan € 1
~2+log2 -et ) |Re (z+—>p(cosg)
= n/ n
' n 1l +n >
0 , (1221 )
- ¢ E R (Zn;l)(lanLan) P (COS@)[l e ( € l+nton J
n
n=1 n (n+1)
2

19



for all t. For long times, t/e = «, (29) becomes

1 et 2 - 1/2 2 /2|
AV = — + 2(1+R -2Rcos€> -log|l-Rcosf+ <1+ R —2Rcos€> J
| S (2nt 1
-2+ log2 -« z R" ? J(1tntan) P (cosh)
n=1 n {n+1) n
2 -t
voo(el emtey (30)

Thus, to 0(1), for long times AV is independent of the external conduc-
tivity. Almost all experimental measurements are taken in the domain
in which Equation (30) is valid.

E. Infinite External Conductivity

It is of some mathematical interest that in the special case of @ = 0,
corresponding to infinite external conductivity or outer membrane surface
constrained to a constant potential of zero, a great simplification of (25)

occurs and a closed-form expression can be obtained to 0(1), for all t.

Letting ¢ = 0 in (25) we obtain
-t
V(E Y= 22 — '
¥l 7. X
. R
| 22 1/2]
- log [1 - rRcos@ + (Hr R™ - 2r Rcos(9> J -2+ log?2
[ee] n
-t -t/e 1
_e n;l<rRe ) (2+ ;)Pn(cosé)
Il
X0 -1+ =)t
= 2 )
- € L(rx\)n<—+—lz—)P(cosé))l:l—e ( ¢ ]
n=1 = n n 4
+ 0(62)



-t > -1/2 -1/2

= l-e ~ + (r + RZ- 2chos(9> + (1+r2

RZ-Zch059>
-1/2
_2et (l+ rZR2 e—Zt/€ -ZrRe-t/6 c039>

2 2 1/2
- log|(1 - rRcosg) + <1+ “R. 2chosQ>

) 1/2
+ et log {l-rRe_t/€ cosf+ <l+r2R2 e 2t/e -2rRe t/e COSQ) ]

- (2-log2)(l -e Y+ 0(e), r=1, (29)
and V.= 0 for r > 1.
. Physiological Significance of Extracellular Fields

Previous analyses of the potential inside spherical cells have
assumed the external potential to be zero and so it is interesting to investi-
gate the validity of that assumption now that the external potential can be
explicitly determined. Equation (27') shows that the external conduc-
tivity (and thus the external potential) enters into the 0(1l) term (the
second term) of the expression for the potential inside the cell. It might
seem then that the potential recorded inside the cell depends in a signi-
ficant manner on the external potential.

This is not the case for two reasons. First, under most conditions
€ < 0.005 and so the 0(1) term in most locations is insignificant compared
to the total potential. Close to the point source, at distances less than

a €, the 0(1) term is approximately equal to the leading term (of order



1/€). However, at this location and under these conditions, the contribution
of the external conductivity to the 0(1) term is small. Secondly, the most
important potential for physiological purposes is the transmembrane
potential AV and this is independent of the external conductivity to two
orders of magnitude of €; that is to say, the external resistance appears
multiplied by € in the expression for AV whereas, for instance, the terms
involving the membrane capacitance appear divided by €. The earlier
analyses are then not in serious error.

It 1s rather interesting to pursue this latter point concerning the
dependence of AV on €. The reason that the transmembrane potential
does not depend significantly on the external resistance is that the exter-
nal potential, produced by current flow through the external resistance, is
independent of the angular coordinate 6. The external potential then
changes the internal potential by a constant amount, independent of
position, and the difference of the external potential and the internal
potential (the transmembrane potential) is independent of the external
resistance to two orders of magnitude. This result may be rationalized
by saying that the primary effect of the external resistance is to uniforrhly
raise the potential immediately outside the cell; redistribution of current
outside the cell (which creates circumferential gradients of external
potential} is a secondary effect. Thus the effect ot the external potential
on transmembrane potential is secondary.

This result is of some use in understanding the role of small extra-

cellular spaces in excitable tissues, including the heart and the central

SN
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nervous system. Although the local internal potentials given by the 0(1)
term-are not terribly important under resting conditions in nerve cells,
they do become important during fast phenomena and phenomena charac-
terized by large values of membrane conductance (and so by relatively
large values of €). Since the action potential, and some synaptic
potentials, are states of high conductance and rapidly changing potential,
the local potential does become important in normal physioclogical states.
If the external resistance were to be important in the 0(1) term of the
transmembrane potential, then the external resistance would influence
the local potentials during an action potential and the shape and properties
of the action potential would be expected to depend on the detailed
properties of the extracellular space. This would seem to be an unfortu-
nate situation from the teleological point of view, since the detailed
properties of the extracellular space are quite variable and not well
controlled. One would hope that the properties and shape of the action
potential shape would be insulated from the effect of changes in the
extracellular space.

Our analysis shows that the effects of external resistance (and thus
external potential) on a transmembrane potential like the action potential
are extremely small, occurring only in a high order term. Thus, during
an action potential the effect of external resistance would be expected to
be small, even if the external potential itself is not negligible. This

relative independence of the transmembrane potential from the external



potential is probably significant in allowing the nervous system to func-
tion with so little extracellular space and thus with such a high density

of information processing and transmitting units.



III. SINGULAR PERTURBATION ANALYSIS USING MATCHED
ASYMPTOTIC EXPANSIONS

The Legendre polynomial expansions (23) and (24) represent the
exact solution to the problem defined by Equations (7), (8), (9) and (10)
for a spherical cell. It is valid for all values of € and t. For the case
of physiological interest in which € << 1 and t/e >> 1 we were able
to study the limiting behavior of the solution (23) and (24), as € — 0O
and t/¢ — .

Another approach that may be taken is to solve the problem by
singular perturbation theory. Rather than considering the limiting
behavior of the solution, we may apply a limiting process directly to
Equations (7), (8), (9) and (10) and bypass the exact solution going
directly to the solution in various limiting cases of interest. This
procedure has a number of advantages. The equations to be solved
are simpler (although there are more of them). In the case of the
spherical cell under consideration, it was possible to obtain the exact
solution to the problem in fairly simple form; in more complicated
problems this may not be possible. For example, if we allow the cell
to deviate from a spherical shape, we cannot directly see what changes
will occur in the solution (23) and (24). We will see, however, that
using perturbation theory, some knowledge of the solution may be
obtained without any specification of the shape of the cell. We also
will see that it is possible to gain greater insight into the physical
process corresponding to each limit from the limiting forms of the

equations which lead directly to the corresponding limiting solutions.



A, Long-Time Solution
First, we will obtain the solution valid for long times, i.e.,
t >> ¢ . The solution in this epoch will be obtained using Equations

7), (8) and (9} generalized to arbitrary geometry. The initial

o

conditioa (10} does not apply during this period. We will therefore

be left with some unknown constants in the solution which can only

be evaluated by requiring that the long-time solution match to a

short-time solution which we will subsequently obtain.

We expand the potential in a series in which each successive

2

term 1s of higher order in ¢ than the preceding one:

VIT L o) = Gole) Vo (F o+ C(e) V(E s e, (32)
where Cn+l(€)/§n(€) —~ 0 as € - 0, and VO’ Vl,.. . are all of 0(1). Equa-

tion (32) is an asymptotic expansion for V(;,t, €) in the sense that each

term improves the approximation, in the limit € - 0, that is,

: 1 —- = -
e].l:"ilo —gNﬁ [V(r,‘c, €) - nz:]. gn(E)Vn(r’t)] - 0

Substituting the expansion (32) in Equation (7) yields,

—_

2 —
~ 47 6(r ~ R) .

vzvzto(e)vzvo+fl(c) VoVt o= (33)

Substituting (32) in the boundary condition (9), and equatinp terms of

the same order in € yields the following set of boundary conditions

for each order,

- +
vy L1 oV,
on & On
+ - +
av ) eﬁo(e) (\/+ - BVO 8VO> 1 BVl
an §l(€) g 0 ot T ot T o 9n
5V et | sVvE o v oV
oV, chyle (v gy L 1>_£ 2
oo () 17 1 et oot T o on

ﬁ
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In order that all terms in each equation in (34) be of the same order in

¢ we require that

§)nJrl(E)
€ (€)

n

=€ . (35)

Returning to Equation (33), we might be tempted to try §’O(e) = 1,

leading to the lowest order equation,

This equation for VO cannot be consistent with the lowest-order boundary
condition for VO in (34). The equation states that there is a source of
current within the cell; the boundary condition implies that no current
crosses the membrane. No steady state is possible under these conditions.
The conclusion is that the second term: in the expansion of VZV, rather
than the first, must be of the same order as the delta function. This

€ _1. We therefore

1]

requires that §’l(€) = 1 and hence, by (35), §O(<—:)

obtain the following sequence of problems, for the potential

V(th;c_):ei VO(ZL) ; vl(}ft)+ev2<¥jt)+---, (36)
2

V VO: 01

2V, avg

m "% & S

?kvo—-o as | 7| -~ o,



ﬁ
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1
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d

1
oV ovi v ovt

{2 -viove 0. 0.1 _1 (38)
3n o~ Yot 5t 5t o oo

Vl——O as,? — 00,

-2

VVZZO,

3V, . av{ v, avg

s V1o VIts CF o gm (39)
V2—+O aslr’—-oo,

The solution to the lowest-order problem (37) is:

fO(t) , inside,
Vo (r,t)= (40)

0 , outside .

There is no dependence on T in the inside or outside solution and the
outside potential must be zero to satisfy the boundary condition at l ;.I: o,
Performing a volume integral of the Laplacian (38) over the

volume enclosed by the surface S just inside the membrane,

N av.”
2 3. _ 1
Sg‘gv V1 dr= -47 = S\ 50 ds . (41)

Using the boundary condition of (38) for avl'/an , and the result (40)

for VO’ (41) leads to

o afo , afo
= -_— = ronss 2
aq Sg (f,(0+ = >dS A (£ (0+ 5 ) (42)
where A is the surface area of the membrane. Solving the first order

linear differential Equation (42) for fO(t) , we obtain
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47 -t . .
"y + ao e , inside,

Vo(r,t)z

0, outside.
The constant a, can be determined by requiring the initial condition (10) to

be satisfied, leading to

N 47 1-e ~, 1inside,
Volr,t) = 4 (43)
0 , outside

Although we are able to satisfy the initial condition for the O(E—l) term,

VO’ we will not be able to do so for higher order terms. In other words,
while the first term in the expansion is valid for all t, we will see that the
entire expansion (32) is only valid for t >> €. Note that (43) and (36)
demonstrate that the cell interior builds up to a large potential 47/€A which
is just the reciprocal of the small parameter € multiplied by the current per
unit area crossing the membrane, 47/A. This result is obtained independent
of the shape of the cell and may be considered a generalization of the 1/e
term in Equation (25) for the potential within a spherical cell. Converting
to physical (primed) units, this potential corresponds to V'= (4m/A? )(6/Gm),
the potential necessary to drive a current density 47/A' across a surface

of surface resistivity 6/Gm. There is no current crossing the membrane
in the €~l problem of (37), but the voltage jump VO = 47/ €A across the
membrane in the e—l problem is just the potential needed to drive the
current in the eo rroblem across the membrane.

Substituting the potential V_ from (43) in (38) yields

0
2 —_ —
v Vl:—477 5(r - R),
] . (44)
i a1
an T A T o dn

for the ¢ problem.



By performing a volume integral of VZ V, and using the aV, /an

boundary condition in (39), we obtain

oV,
2 3 2
SVSS‘V Vzdr_O- S:S'VBT' dS
avi oV

- + - 1 1
3§<V1-V1+§-t——-5t—>ds (45)

This is an integral constraint on Vl’ which combined with (44) deter-

1

mines Vl .

The potential V (T, t) may be written as the sum of two functions

1

v r,t):Gl(r)+fl(r,t) , (46)

1(

where Cr1 is a time-independent Green' s function satisfying

e 2 . -
VG1=—41T 6(r - R),
- +
aGl_ éZT___l 8Gl
J on " A o on

(47)
5§(G+ G‘)ds— 0
17 =Y
Gyl =0

With the definition of Glgiven by (46) and (47), we find, from (44) and

(45), that f. must be the solution of

1
r 2
v fl—O,
- +
o o1
‘481‘1 B " @ 9On '
£ (0, )= 0, (48)
. 8f; o1,
\S‘Sﬂ (fl'f1+8t 'W)ds:o'
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This problem is identical to that of (37) and (42) for VO , except that
the surface integral in (48) is zero rather than 47.
The first three of Equations (48) imply

fl(t) , 1lnside

0 , outside .

Substituting this in the fourth of Equations (48) yields

8fl
fl + prali 0, inside,
so that
a, e , inside
f,(r,t)= (49)
0 , outside

The constant a is undetermined. Trying to satisfy the initial condition

(10) would require a, to be equal to ~AG, = GI(;) - G;(?), but since AGl

1 1

is a function of position and a, is a constant, this is not possible for all

1
points on the membrane. The conclusion is that the expansion (32) is not
valid att = 0. In Figure 2, the solid curve represents the first two terms
in the long-time expansion for the transmembrane potential. It can be
seen that as t = 0, the long-time expansion for the transmembrane poten-
tial, A(VO+ V1+ ...), approaches a nonzero value, violating the initial
condition AV = 0att = 0. In the next subsection, we will define another
expansion, valid at short times, incivding t = 0, which joins smoothly to

the long-time expansion. The short time expansion is shown as the dotted

curve in Figure 2.
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Figure 2. Matching of Short-Time and Long-Time Expansions.



The constants al, a2, ... will be determined by matching, that is,
by requiring that the short-time expansion be identical, term by term, to
the long-time expansion in some intermediate range of t (¢ Lt < 1) where
they are both valid.

Continuing the procedure one order higher, we obtain for the €

problem, by substituting (46) and (49) in (39),

r 2 N
V Vz" Oy
- +
oV. aV.
< 2 _ 12 50
on - G1 Gl—a n ’ (50)
V, -0 as |1t | — o0 |
L 2 ‘

and by integrating VZ V3 over the cell interior,

av)

o . oV,
355v2v3d3r=o=§ _._ds__ﬂ( at—z_é-ti>d5(51)

As in the preceding problem, we break up the potential VZ into two parts,

T+ fz(?, t) (52)

( - +
. -G S = 53)
35( S -Gh)das=o, (53)
- +
- of of
+ 2 2 )
SS (fz—f2+~t——— -—t—>dS-O (54)

, inside

0 , outside,

and G, is a solution of the problem
&



B. Short-Time Solution

Initially, the membrane capacitance is uncharged, and the transmem-
brane potential is zero. However, the time derivative of the transmembrane
potential need not be small. If we (incorrectly) extrapolate the long-time
solution back to t = 0 we saw above and in Figure 2, that there is a finite
discontinuity in the transmembrane potential, AV, betweent = 0 andt=0 .
That is, the time derivative is infinite at t = 0. We therefore look for an
initially valid, short-time expansion which satisfies the initial condition
and joins smoothly to the long-time solution (the dotted curve in Figure 2).
In the limit of € ~ 0 we expect the region of validity of the long-time solu-
tion to get closer to t = 0 and the time derivative of AV to approach infinity
att = 0. Hence we see that the reason for the breakdown of the long-time
expansion near t = 0 is the assumption that 8Vn/8t is of the same order in

€ as Vn. We therefore expect that in the initially valid expansion for

Vir,t),
V" BVZ .
8 __=n NERY ) .
ot ot >z ( n n
There is another time variable, T = t/u(e), for which
sV vt , \
= - =) o~ (Y- Vn> :
\\ ot at
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and the short-time solution should be written in terms of this variable, for

convenience in grouping terms of comparable magnitude. We write the

expansion for V in the form,

VT, t5 €)= v () vi(T, ) +ue) vy (T, T)+ - (58)
Substituting (58) in (6),
VIV =0 (Vv + v ()T v +. .. = - 4T 6(r- R) u(t)
vle V1 1/26 ’v'2...- T olr uity, (59)
and substituting (58) in (51),
8vl . BVZ .
8} on Y2 Bn
v 8v+ v E)vJr
I S S A
T o 9n @ on
+ -
= €y (v+-v-)+ g <8V1 - 8Vl>
LA Hoo\GT 8%
+ -
€V av. ov
+eyz(v;-v£>+ 2<~2 - N2>+~--
H 57t 51

We make the following separation in orders of €

’

" - + + -
oL e (LT
on @ on KoV et ot
- + + -
8v2 1 BVZ 121 n _ c sz vy
e o (Vi) rE s -
2 ot ot
e e e e (60
This separation requires the choices
- T &L 61
ule) =€ or t = < - (61)
and
v
ntl _ ¢ (62)
v,



Unlike in the long-time expansion, here the lowest-order
potential has a nonzero normal derivative, and so placing the delta-
function source in the lowest-order problem leads to no inconsistency.
If this is done, we must require yl(e) = 1. The sequence of problems

then becomes, for t 2 0

’

fvz vy = - 47 6(T - R)
- + - +
vy ) v, 9vy 1 vy
ﬁ on ot ot @ on
(63)
, + =
vilr, 0)=v,(r, 0)
Vil D=0
-
\Y% v, = 0
- + - +
ov + ova 3V 1 9%
m T V1MWt - T T4 5m
< ot 8t (64)
- — + —
vz(r,O)— vz(r,O)
kvz( o, t)=0
In the vy problem, only the membrane capacitance enters; in the
Vs and higher problems, the resistance enters also, via the potential in

the next-lower-order problem.
Integrating the first of Equations (63) over the cell volume,
L c OV,
viv dr=-4r = |\ —L as=-2 g (V) - vy )ds .63)
1 on ~ 1 1

ot
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and using the initial condition in (63), we find

~

Integrating over t ,

gg(v’;_vi)ds=-4n?

This implies that there is a part of Vi which increases linearly with

(66)

T. The potential v, can therefore be broken into the following three

parts,

(67)

Vl(?’ t)

where Gl is the same Green's function that was defined in (46) and

Gl(r) + wl(r, t)+hir)t,

(47) and accounts completely for the singular part of Vi and

w (T, T)

is bounded.
Using (47) to eliminate G1 from the boundary condition in (6. 3),

- + - +
ow - oW ow oW +
_~l+?_h_?:ﬂ+._l____l+h+_h_:l__—l+}_gh_?_ (68)
an on A 5T 57 o on o on

t are zero,

The only way (68) can be satisfied is if the coefficients of

so that
- +
ogh _ 8h 3
5n  on 0 (69)

Since Vzhz 0 and h(e«) =0,

0 outside.

2

— {constant, inside,

Using (66) to evaluate the constant, we have

{471 /A, inside,

—

h(r) =

0 , outside.



The remainder of vl(?,~), that is, wl(?,N), can be expanded

in a series of eigenfunctions in some spatial coordinate system r

appropriate for the particular cell shape. The problem for deter-

mining wl(?, ?) 1s obtained by substituting (67) - (70) in (63), and is
2
\v4 w1 =0
- + - +
Bwl . 8wl Bwl 1 Bwl
on T .~ .~ " o dn
T,0) -w(T,0) = G(F)-GF)
w (r > ) - Wl(r ’ ) - l r .].
wl(w,'\tJ) = wl(?, )= 0

We assume an eigenfunction expansion for wl(?, t) of the form

(. .
}1; g, (F) ¢, (F), inside,
}1; g, (¥) ¢, (F) , outside.

L

In the case of the spherical cell considered in Section II, ¢1i{(;) = Pk(COSB)rk.
and d)i (t) = Pk(COSG)r_k-l; in general, ¢1i< and ¢lo{ are eigenfunctions

which are the solutions of Laplace's equation bounded inside and outside

the cell, respectively. Substituting the form (72) in the membrane

boundary condition in (71), we find
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(1)11( (;3 , inside,

K ad¢, /on
— ¢k(r), outside,
L 8¢}(/8n
where ; 4 -1
¢ ¢
) Lad)n/an 8¢n/8n

The Green's function Gl may be expanded in terms of the same
eigenfunctions d)li( and d))i. Substituting this expansion for Gl’ and the
expansion (73) for Wy in the initial condition in (71) yields values for
the coefficients ay in (73). We will not carry out this process in the
general case, which is somewhat cumbersome, but return now to the
special case of the spherical cell.

We have a general procedure for obtaining a solution to (63) for
v, , and we could apply this to the special case of a sphere. We could
also continue and similarly obtain a solution to (64) for Ve However,
we can more easily write down the solutions by taking the limit of the

solutions (26) and (27) as € — 0, and T = t/e is held fixed, and then

verify by direct substitution that the 0(1), O(e), ... terms are the
solutions to (63), (64)..., respectively.
Letting t = €t in (26) and (27) and expanding e—t = e t in powers

of €, we obtain for the inside potential



Vir,t)=t+ + -2+ ot log 2

|7 K| R|T

1/2
- log [1 - rRcosg + <1+ rZR2 - 2chosG> }

1l +n ~1
o [ " T+ntan t} (n+ 1)2n+ 1)
- Z rRe At l+an) Pn(COSG)

n=1

t ~ l+4n +aon (n+1)2n+1)
tel|-5—+T )
€ 2 L rRe n{n+1 +an) Pn(cose)

n

o _ n(l+n) ~
- ) R (24 —12>Pn(c059) ] . e ltntoen
n

+0(e”), r=1, (75)

and for the outside potential,

n(l +n) ~

@ S RV 2n +1 “1+n+
—~— .o, 6 a R n n +an
V(T =2 rﬂ}g‘l( r) P (cosf) TRt e
n(l +n) ~
0 n - —  t
o R 2n +1 1l +n+on
+ —_ p— —_—_— -
“lr Z_: (r) Pn(cosf)) n(n +1) L-e
n=1
n(l +n) ~
_2n+l ~ " l+n+on
l+n+an ¢
2
+ 0(e”), r>1. (76)

We see that the O(EO) term in the short-time expansion of V in the cell
interior, (75), has a linear growth int . This behavior is shown by the
dotted curve for Avo in Figure 2. Thus we see that the first term in

the short-time expansion does not correctly represent the solution for
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long times, t > 1. Equation (75) also indicates that the 0(¢) term in the
short-time expansion is quadratic int . The effect of adding this term
would be to make the dotted curve a parabola which more closely follows
the solid curve as t increases. In fact, we can see that these are just the
first two terms in the Taylor series for (1-e —t)/e, and if we continued the
expansion indefinitely to higher orders of €, we would recover the 0(6-1)
term in (27'), or (43). In most problems that can be handled by singular
perturbation theory one is not able to obtain an exact solution or sum the
expansion. -It is instructive to compare (75) in this way with the exact
solution. However, we should point out that it is in the other cases, where
asymptotic expansions like (75) are the best that can be done, that the
singular perturbation approach is seen to be mathematically more power-
ful than the exact method of Section II. In the present case the singular
perturbation approach yields greater physical insight, although the

formulation is a bit more clumsy than the exact formulation of Section II.

C. Matching

When t — 0 in the long-time solution andt — = in the short-time
solution, the two potentials, written in some intermediate time variable,
must be equal, to all orders of €. This requirement permits evaluation of
the constants a,a_,a,, ... appearing in the long-time solution. The value

0" 1" 2

of 2 must be consistent with the value of a deterrnined previously in {43).

The intermediate time variable is defined as

t = t/nle),
1



where
n€)~0ase—~ 0
but n approaches zero less rapidly than € does, so that
n(€)/e - as € - 0,
Thus the limiting behavior of tTi as € > 0 is intermediate between t and ?
If we hold 1:77 fixed at some value in the overlap region of Figure 2,
say t:;, and take the limit € — 0, the point t; remains in the overlap region

while the lower extremity of the overlap region approaches t = 0. The

corresponding limiting values of t and T are

1]

t n(e)tn—' 0 as e~ 0,

and

H

T {;n(e)/e]tn ~o ase—~ 0.
In order to match the long-time and short-time expansions in the overlap
region, it is most convenient to write the t— 0 limit of the long-time
expansion and the t — e limit of the short-time expansion both in terms
of t.

As t— 0 in the long-time solution given by (36), (43), (46), (49), (52),
and (55), we obtain the expansion in powers of €, forr <1,

-

V(r,t) =§ [1-e't}+{cl<¥) +ale—t] e [Gz(r) +a2e't] ‘...

_,_15[4[ _t_22_+... }+ [Gl(;) +a (1t +...)]

+€[G2(I-T)+a2(1—t +---)] +.u. (77a)
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where we have taken aO = -47/A = -1 for a sphere, and for r >1,

V(r,t) = Gl(}') +e Gz(;) ... (77b)

Ignoring the exponentially small terms in (75), as T — «, the short-

time solution becomes, for r<1i,
V(T,t) = %+ L + 1_’ -2+a+ log?2

|7 R R['r’_—R%l

1/2
- log [l - rRcosf + (l+ 1‘2 R2 - Zchosa) }

tz 3 n /2 1
ey - € z (rR) <H+-*2—>Pn((3059)-
n=1 n
(78a)
+
and forr21,
o0
_a, @ R\ 2o+l (78b)
Comparing (77) and (78) we find that our earlier choice of ag = -47/A = -
is satisfactory, and
a, =a_=...=0 (79)

1 2
We also find that the solution Gl(;) to Equations (47) is

Gl(;)= L + L -2+a+ log2

r-K - K
‘r ! RII‘--—2|

/
log]|:1 - rR cosh + (1 + r2R2— 2rRcosb) L 2} ,T 21, (80a)

and

Gl&’) 1, (80b)

H
HiR
-
W,

and the solution G2(;) to Equations (56) is
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G (;) = - Z (rR)n(§+ ~1——)Pn(c059), r<l, (81a)

2 n=1 n2
and
-~ o o (RY 2n+1
=~ = —_— >1. 81b
G,(r) - ngl(r> ED Pn(cose), r>1 (81b)
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IV. SINGULAR PERTURBATION ANALYSIS USING TWO
TIME-VARIABLES

In this Section we repeat the analysis of the problem solved

previously in Section II by exact methods and in Section III by using matched

asymptotic expansions. We use instead a perturbation technique, intro-
duced by Poincare for analyzing the motion of a slightly nonlinear damped
oscillator, which is particularly useful for problems in which there are
two (or more) time constants of widely differing magnitude. 4 In the case
of a damped oscillator, the two time constants are the period of oscilla-
tion and the damping time. In our case, the two time constants are the
relaxation time associated with the membrane capacitance and membrane
resistance, 'r'm = Cmé/cm, and the relaxation time associated with the
membrane capacitance and the interior medium resistance, Ti' = Cma/oi'
for which T;n/'ri' = € << 1 (see discussion following Equation 24).

It is assumed that the potential may be represented by an asymptotic

expansion of the form

V(r,te) = CO(G)VO(?.t.?) + ¢ (€) Vl(?,t,?) ... (82)

5
in which the quantities ¢, ¢,,¢_, ... form an asymptotic sequence of
0’>1°°2

increasing order in €, i.e.,

¢ . (€)
lim EE%_ =0
€~ 0 n€
and,
1 — _ ~
lim I:V(r,t;é) - Z ¢ (e)V (r,t,t )} =0 ,
e~0 ‘N ;1 &0

so that each successive term in (82) improves the approximation, in the
limit ¢ —~ 0. In anticipation of the result that the §n' s are identical to
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the §’n' s in (32), we have used the same symbol. Also, t will be found
to be related to t by the same relation (61), and hence we use the same
notation in anticipation of this result. It should be pointed out that Vn
is considered to be a function of the space variable T and the two
independent time variables t and t .

The specific functional form Cn(e) will be determined in the course

of the perturbation analysis. The quantities VO’ 71, V2, ... are all of the
same order, 0(1), in €. That is, they do not depend on €, but are each
functions of position ;, and two time variables, t, the slow time variable,
and tN, the fast time variable. The relationship between t and T also will
be determined by the perturbation analysis.

The problem which must be solved to determine the potential

V(;, t;€) is again

2 —_ -
V'V = -471 6(r -R)
- + -
ov. _ 1 av [t g, oV _av]
or @ or ot at
+ . (83)
V(r,0;€) -V (r,0;€) =0
V(;,t;é) =0
As above, superscripts (+) and (-) indicate quantities on the outer and
inner surfaces of the membrane.
Substituting the expansion (82) for V in (83), we have
¢ VT + ¢ VT 4... = -4 6(r-R) (84)
0 0 1 1 "

and substituting (82) in the membrane boundary condition in (83) we have
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7 1
¢ ifg + ¢ aﬁ + = i ¢ aVO l g ﬁ +
0 or 1 or " o ’0 Or a °1 Odr
— + —+ =" —-
—G[COVO+§IV1+ . —COVO— ClVl— .
—t —_ - -
8V, avz A 8V,
+ —_ -
o thiEm S TN E
J— —4 —— ——
dr E)VO 8V1 8VO 8Vl
& o R B R R R v oty
ot ot ot ot
(85)
The procedure now is to collect terms of each order in € in (84)
and (85), and require that the equation and boundary condition be satis-
fied in each order. If we assume
dat 1 ~ _t
_— = = = 6
dt €’ t € (86)
the lowest-order boundary condition is i
— - —t — + —- !
d 0 1 8VO BVO BVO |
Br 2 v = = (87) |
at ot !

The choice (86) for t is motivated by Tr'n/'ril = €, but its ultimate justifi-

cation is that with this choice we will obtain a consistent set of problems

for determining V,V.,V

o0 V12 Vgreee - Note that the partial derivative of VO

with respect to the slow variable, t, does not appear in the lowest-order
boundary condition (87), nor does V_ itself. These quantities will appear

0

in the next order boundary condition, which is

- -+ .+ —_— —+ ==
VL :_\7+_‘_]_+avo _ avo+aV1_OV1 -
or o or 0 0 ot ot & 5t

To obtain (88), we set
gl(e) =€ §O(€). {89)
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Continuing the process to the next order, we have

V. av . AR AR AR A
2 .12 gttt T T T (90)
3 = =
r a or 1 1 ot at " 5
and
§’2(6) =€ C’l(E) . (91)

Returning to Equation (84), we might be tempted to assume Co(e) =1,
which places the ¢ function in the lowest-order problem, leading to

2— - -
\% VO = -471 &6(r-R) .

If there is to be a steady state, however, in the limit? -, the lowest-

order boundary condition becomes

— —+

BVO 1 8VO N

- == —— =0 ast—> «,
or o T

i.e., the time derivatives must vanish in this limit. This equation and
boundary condition are clearly inconsistent. The equation states that
there is a source of current within the cell; the boundary condition states
that no current crosses the boundary. To avoid this difficulty, we take

_1
50(6) =< (92)

which places the é function in the second problem rather than the first.
As a result, (82) becomes

V(r, 6, t;e) = -\70(1', 0, t,fi? ) + Vl(r, 0, t,?) +ou (93)

m |

and the problem (83) is replaced by the sequence of problems
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\

We

v VO =0
- — + — + — -
BVO i -1— 8VO _ BVO ] oV
or a Oor 8? 8?
_ (94)
VO(l,G,t,t) =0
_+ -
K V0 (1,6,0,0) = VO(I,G, 0, 0)
[ o_ -
v Vl = -47 6{(r - R)
- _ + - + -
B_V_l :iﬁv_l=v+_v_+av _8V0+8V1_8V1
< or o r 0 0 ot ot 8"? "
_ (95)
Vl(oo,e,t,t ) =0
+ -
Vl(l,G,0,0) = Vl(l,G, 0, 0)
(2= _
v V2 =0
- —t _+ - + -
8V2 1 8V2 _ '\_/+_ \_]- . BV1 ) 8V1 N 8V2 ) 8V2
< or a Or 1 1 ot ot 5t 5
(96)

—+ —+
V,(1,6,0,0) = V,(1,6,0,0)

now can proceed to solve these problems in succession. Taking

the volume integral over the entire interior of the cell, of the Laplacian

in (94):

v

. L
vV a%r -0 :5 Y a5 2 5(\7 - V_.)dS. (97)
0 or ~ 0 0
ot = 1

cell r=1

H>
0



The second equality in (97) relates the volume integral of Vz\_/0 to the
surface integral of aVO/ar over the inner surface of the membrane by
application of the divergence theorem; the last equality in (97) follows
from the boundary condition at r=1 in (94).

The solution to (94) is clearly independent of 6 since there is no
source term or boundary condition to introduce 6-dependence. Therefore

— -
VO and VO are constant, the surface integral in (97) becomes simply 47

times the integrand and consequently,

oV XY

0

2 0 .o . (98)
ot ot

Since there is no 6 dependence, and in addition VO—) 0 as r -, the

potential V_ must be of the form

0
_ o~ A(t,? ), forr<i1,
Vo(r,t,t ) = 1 N
;B(t,t ), for r > 1,

Now, if we take a volume integral like (97) over a sphere of radius p> 1,
ng VZVO a°r = 0 = 4n B(t,:)
p > 1
SO that B=0 and \_/'0= 0 for r > 1. In particular, VO+= 0. Consequently,
(98) becomes BVO-/ 6t = 0 = dA/dt » and the inside potential is independent
of t , the fast time variable. The potential is thus of the form

SA(t), r<i

VO(r’G’t’t):l 0, r>1

To obtain the functional form of A(t) we must go on to the next

problem, (95). Taking the volume integral of the Laplacian in (35) over



the entire cell interior, we have

5T
§5§V2Vd3r: —477:5 1 as
1 r
cell r=1
_+ - —+ -
\ + - aV oV av oV,
) S<—\}O"vo+ ato' ato F— - l>ds
ot ot
r=1
—+ —_
:—4n<A+%>+ igg(v - V) ds. (100)
dt ~ 1 1
ot
r=1
Rearranging terms in (100),
aA+d8_, 1L 8 5§(V+-—‘7—)d5 (101)
dt 4T~ 1 1 )
ot =1

Since the left-hand-side of (101) is independent of t , the right-hand-side
must be also, and therefore
8 (=7 ="
—~—S§(v - V.)dS = h(t) .
F 1 1
r=1

Integrating,

— 4+ —_ ~
‘gg (V) - V) dS =1£(t) +h(t) t .
r=1
For a steady state to exist, there cannot be linear growth inT and hence
h(t) = 0 and
dA

A+ar:l. (102)

From (99) and the initial condition in (94),

A(0)=0 . (103)
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The solution (102) and (103) is

Al) =1-e b

and consequently, from (99),

V. = (104)

Thus in the lowest-order term in our expansion of the potential, the
whole interior of the cell builds up exponentially in time to a large
potential 1/e, with a time constant of unity in nondimensional units, or
Trln in seconds.

We now continue by solving for Vl. Substituting the result (104) for

V, in the boundary condition in (95), we obtain

v V. oV, v,

v v

_a_l_=£ alz 11 (105)
ro« or ot ot

2= .
Just as we found it necessary to consider the volume integral of V¥ V1 in

order to determine vo, we must consider the volume integral of VZVZ to
determine V, :

1 — —+
— _+ —
§§§V2V2d3r=0=§§<vl"vl+at'at1+ 2 -
J R

cell r=1 (106)

It is now convenient to decompose vl into

\'/l(r, 6,t,%) = G, (r, ) +g (r,6,t,7) (107)

where Gl(r, 6) is defined as independent of the time variables and satisfies

the problem:
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szl = -47 &(r -R)
- +
E = 1_ ?i}_]_" = - l
< or o r
. N (108)
55(Gl - Gl)dS =0
\ Gl(oo, 6) =0
Note that this is identical to (4 7).
The leftover gl(r, G,t,?) satisfies:
2
v = 0
g
- -+ + -
8 1 % By 8g
or «a or 8? 5t
g (o, t,t) =0 (109)

- - + o+ + -
gl(l 16: O: O) - gl(l :9: 0: O) —Sl(ls 6)-" Gl(l’ 9)

+ -—
L agl Bgl 8V2 8V2 i
78 T T s T o 480
&t ot

We note that this becomes (48) if 8/8t = 0.

The division of (9€) into the two problems (108) and (109) is not
essential, but it is convenient. The problem for (}1 was obtained from
(95) and (106) by setting the t and T derivatives equal to zero and Gl is

thus the solution as t—~ o ; g, is the remainder after substracting Gl from

°1
Vl' The first three lines in (109) for g, are identical to the first three
lines in (94) for VO' However, the initial condition is different (we will

see this introduces 6 dependence to gl) and the integral constraint is zero

in (109) whereas it is -47 in (100).
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The initial condition in the problem (109) for g, depends on the

solution of (108) for Gl’ but (108) is self contained and hence we start by
solving (108). The solution for G1 outside the cell is ki

o
Gl(r) =7 for r > 1. (110)

Substituting (110) in (108) yields:

V2G1 = -47 6(r- R)

-
_G_l = -1 (111)

or

SSGl ds = 470

r=1

The problem (111) has a simple physical interpretation. It represents a
a point source of current inside the spherical cell. The current leaves ‘i

the cell across the boundary with uniform current density, and the average i

B i TR 2

potential just inside the boundary is constrained to be equal to ¢, the

potential just outside the boundary. The uniform distribution of current
flux across the membrane occurs because the voltage drop in going from
the point R to any point on the membrane is small [0(¢)] compared to the
voltage drop across the membrane. If the interior conductivity were
infinite, the uniform distribution would be the exact condition; in our case
the interior conductivity is large, so that this is only an approximation
which will be corrected by the higher-order terms in our solution for
V(r, 6,t).

The problem (111) with « = 0 is identical to a problem which has
been solved in connection with a special case of the present analy5152
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in which the steady state solution is obtained when the outer membrane
is constrained to zero potential (i.e., the « = 0, t —> o0, ?—»oo limit of our
solution). The solution to (111) can be expressed in terms of elementary
functions:

/2 /2

G, (¥) = (r%+ R%-2rR cos 0) "2 4 (1 + r’R2- 2R cos)” )

- log [l - rRcosf + (l+r2R2— 2rR cos@)1/2:]—2+1og2 + «,

(112a)
or it may be expressed as an expansion in Legendre polynomials,
P_(cos 8):
n 1 ¢ B
- $ no 1, R® > <R
G (r)=ca-1 +Z P (cosOXrR) (1 +=) + Z P (cosH)
1 n n n n
n=1 n=0 1 R
- (—) » I‘ZR .
rr

Equations (110) and (112a) are identical to Equations (80a) and (80b). The
most direct way to obtain the solution to (111) is to assume a general
form in terms of an expansion in Legendre polynomials with unknown
coefficients, as was done in Section II. Substituting the form in (111)
then determines the coefficients, yielding (112b) which can then be con-
verted to (112a) using summation formulas given in Section II. Equation
(112a) is clearly more useful for numerical calculation; the alternate
(112b) is given here because it will be useful in calculating higher-order
potentials.

We now turn to the problem (109) for the transient part gl of Vl.

Expanding in Legendre polynomials,

N oo a;l)(t,?)rn , 0O<r<i

6 = P 56 3

g (r,6,8,1) = ), P (cos0) { V0 (113)
n=0 bn (t, t)r , 1l<r<wo
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in which the steady state solution is obtained when the outer membrane
is constrained to zero potential (i.e., the @ = 0, t >, ?-’oo limit of our

solution). The solution to (111) can be expressed in terms of elementary

functions:
- 2 - -
Gl(r) = (r2+ R“-2rR cos 6) /2 + (1 + rZRZ— 2rR cos6) 1/2
- log [l - rRcosf + (1+r2R2— 2rR cose)l/z]—2+log2+ a,
(112a)
or it may be expressed as an expansion in Legendre polynomials,
P (cos 6):
n 1 B
- ot n 1 x R (ﬁ) , T<R
G.(f)=a-1+) P (cosOrR)(1+=) + ), P_(cos0)
. n=1 e e 1 R
-(<), rzR
r r

Equations (110) and (112a) are identical to Equations (80a) and (80b). The
most direct way to obtain the solution to (111) is to assume a general
form in terms of an expansion in Legendre polynomials with unknown
coefficients, as was done in Section II. Substituting the form in (111)
then determines the coefficients, yielding (112b) which can then be con-
verted to (112a) using summation formulas given in Section II. Equation
(112a) is clearly more useful for numerical calculation; the alternate
(112b) is given here because it will be useful in calculating higher-order
potentials.

We now turn to the problem (109) for the transient part g, of Vl .

Expanding in Legendre polynomials,

ot )(t Hrt  , 0<r<1

(r g,t, t) = Z P (cose)l (1) 1 (113)
n=0 (t, Dr~ 1<r<
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Substituting (113) in the r=1 boundary condition and initial condition

in (109) and using the orthogonality properties of Pn(COSG),

a(l)(t,?) = (n+1) b(l)(t,?) -9 (b(l)- a(l)), (114)
n ~ n
ot
0 , n=20
afll)(O, 0) - br(ll)((), 0)={-2nt1 .n (115)
n ’ -7

We have used (110) and (112b) to evaluate the nlCh term in the eigenfunction
+ -

expansion of (G1 - Gl) which appears on the right-hand-side of (115).

Except for an as yet unknown dependence on t, Equations (114) and (115)

(1) )

determine a and b
n n

a(l)(t,?) _ ~ (116a)
a (n+1)(2n+1) n -Ant
>
n(1+n+an) Re f (), nz21
o, n=20
b, 7y - . (116b)
n a(2n+1) n At
>
Troion R7e f(t), n2>1
_ n(n+l)
)\n * Tihion R (116¢)

where fn(O) = 1. For the functional form of fn(t) we must go on to the
problem (96) for Vz(;,t,? ).
As we did in the Vl problem we now break the \72 problem (96) into
two problems by separating 72 into the steady state and transient parts,
V2(r,t,t)=G2(r)+g2(r,t,t) (117)

where Gz(;) satisfies:
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(o2 -
| VG, =0
- +
3G G
¢ M2 2+ -
3 % 5 =G, -6 (118)
(G, (=, 0) = 0

and gz(;,t,?) satisfies;

{
2 _
v g2 0
- + - -
| og og g,  ag og. og
____2_ = l ___g = g+ - g~ + L - 1 + 2 - 2 (119)
or a or 1 1 ot ot 8’; 8?
g (=, 1,7) = 0
- - +, + + -
\gz(l ] 0’ O) - g2(1 ) Ol O) - G2(11 9) g Gz(l, 6)
We expand G2 and gy in eigenfunctions:
A(Z)rn > 0<r< 1,
o0 n
Gy(r) = Z P_(cos6) B(Z)r—n-l’ L<rge | (120)
n=0 n
21(2)(t,?:4)rn , 0<r<1,
0 n
g (r,t,9) =) P (cosb) (121)
2 n=0 (2),. ~ -n-1
b 7t t)r , 1 <r<ew,

n

Substituting (120) in the r=1 boundary condition in (118), and using

(110) and (112b) we have

0, n=0
+
nAI(12) - nal Bl(lz) -
_2n+l Rn’ n>1
n

so that
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(2)
A = (122a)
n _ 2n+1 Rn‘ n>1
2
n
O, n=0
2
B( ) = (122b)
n a(2n+l) _n
Hlall 7/ >
Ami) e m2l

Substituting (122a, b) in (120), for r <1,

o0
G (;) = - Z P (cos 9) 2ntl (rR)n (123a)
2 <. n 2
n-l n
and forr 2 1,
©0 n+l1
-, _ o« 1 1 R
GQ(r)_RZ_(n.FH:l—)(;) Pn(cosﬁ)
n=1
5 1/2
o R R
_-ﬁlog{—-cose +(1-2;c089+;—2> }
9 1/2
R R R R
- log(l-cos6) - ;10g {1 -~ cos® +<1-2 — cosf + r—2> }
N log 2 (123b)
r r

where in the case of the outside potential (123b) it is possible to obtain

the sum in terms of elementary functions.

We now continue by considering the problem for the transient part,

g9 of the potential, V.. Substituting (121) in the r=1 boundary condition

2
in (119) and using the results (116) for a(l)(t,?) and b(l)(t,? ), we obtain

n n
~ + ~
nalP 7y - o @ 7
n [03 n
(2 5.2 4 s 0 ,n=0
n n n ~
= - +| £ (t)+——] ‘ -At
ot at [n dt 12n+l Rne n , n21

n (124)
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(2) (2)

which yields, on elimination of b_~’, the equation for an

n
aa(2) o) (2), ~ a4t 0 , n=0
2y a “l(t,T) = | (1) + =~ ~
gt ltmten o 20t D) a1)2a+1) n Mat
LLAAT I R% 7, 1

n{l+n+on)
(125)

~

. . -A . .
The homogeneous solution to (125) is e nLJ£ , Where )\n is the same as in

the solution for ar(ll) and b;l). Since the right-hand-side of (125) contains

the homogeneous solution, the particular solution to (125} would contain
~ _)‘n’{ ~ —_— —
a term of the form te so that as t — oo, (V2/V1) - o, This is not

permissible as successive terms in the asymptotic expansion (93) for V

must be decreasing in magnitude. We are thus led to the conclusion that

dfn

—_— = 6

T fn(t) 0 (126)
and hence, since fn(O) =1,

f(t)=e" (127)

n

Substituting (127) in (116), we have the complete functional form of

Vl(?,t,?x
(2) (2)

We continue the solution for a and bn by substituting (121) and

(123) in the initial condition in (119), and we obtain

( ) 0
220, 0y - b'%0, 0y = j (128)
n n (an+n+1)(2n+1)

i
Il
e}

F] -

nz(n+l)
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Using the result (126) in (124) and (125), and then solving (124), (125)

and (128) for ar(12) and b;z), we obtain
0 , n=20
ar(12)(t'?) - 2n+1 _n —}\nJc
R e h (t), n21
2 n
n
0 , n=20
b2, T) - AT
n _ a(2n+1) Rn n h (t) o>l
n{n+1) € n '’ -

where hn(O) = 1 and /\n is given by (116c).

(129a)

(129Db)

As before, if we continue with the problem for \—/'3, we can show

that to avoid terms proportional to T in _‘}3, we obtain a condition on hn(t)

identical to (126) for fn(t), which determines the functional form of hn(t)

to be e—t. Hence

0 s n=20
a (t,t) = -A t
n 2n2+1 Rne n o t ) n>1
n
0 , n=20
b 3,7y = ~
n At
_a(2n+l) R1'1 n e-t n>1
n(n+1) :
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ABSTRACT

The potential is calculated for all time, everywhere inside a
spherical cell and in the external bathing medium for the case of a point
source of current turned on abruptly att = 0. The problem is solved by
exact methods and by singular perturbation theory. The model for the
cell consists of a sphere of radius a with an internal medium of conduc-
tivity Oy surrounded by a membrane of thickness &, conductivity S and
surface capacity Cm’ bathed in an external medium of conductivity o
The solution is discussed for the physiologically interesting case of
€=0_ a/Cfi 6 << 1, that is, when the effective internal resistance is
small compared to the effective membrane resistance. The most important
physiological results are when the rapid transient has died out, for times
much greater than Cm a/cri. In this case simple analytic expressions
are obtained for the inside potential, Equation (27'), the outside potential,
Equation (28), and the transmembrane potential, Equation (30). Some
results are obtained for an arbitrarily shaped finite cell. The potential
problem is solved, in addition to the exact solution, by the singular pertur-
bation technique of matching a short-time and a long-time asymptotic
expansion, and independently by the perturbation technique of multiple
scaling. The presentation is designed to give not only the solution to the
problem, but to show how three different methods can be applied to

potential problems containing a small parameter.
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