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1. INTRODUCTION

In this report we determine the potential inside a right circular
cylinder produced by a point source at an arbitrary location inside the
cylinder. The potential is given by a Green's function which is the solution
of Laplace's equation inside a cylindrical boundary on which the potential is
specified by homogeneous mixed boundary conditions (the potential on the
boundary is proportional to its normal derivative). We develop a repre-
sentation for the case in which the boundary acts as an almost perfect
insulator; the representation has a simple physical interpretation and is
easy to compute. This Green's function has not previously been determined
in an easily interpretable or computable form and indeed few problems

2,3 We have,

involving the mixed boundary condition have been studied. L
however, solved the spherical problem. 4 In cylindrical geometry comput-
able Green's functions have not been obtained even for Dirichlet and Neumann
boundary conditions, in which just the potential or just the normal derivative
respectively, of the potential is specified at boundary.

The mixed boundary condition for Laplace's equation is of wide
interest since it arises naturally in many physical situations. In problems
of steady heat flow this boundary condition is commons’ 6 and is called
the "radiation' boundary condition; in diffusion problems the boundary

"and applies to a variety

condition is called the ''general boundary condition'
of specific situations including film limited diffusion, surface evaporation,
and so on. 7 In electric potential problems the mixed boundary condition is
used to describe the flow of current across a contact resistance between two
materials of widely different conductivities. In physical problems, the

contact resistance usually arises in a thin layer of resistive material; in

biological problems, the resistance usually arises in a membrane.




One of the reasons so few problems involving the mixed boundary
condition have been solved completely is that solutions have been sought for
the general case in which any linear combination of potential and the normal
derivative might occur at the boundary. From the point of view of applied
mathematics, however, it is not necessary to consider such a general case:
in most of the physical situations described above the boundary is known to
act as a slightly imperfect insulator and there is only a small flow or gra-
dient of potential normal to the boundary. In such cases the normal deriva-
tive, expressed with respect to a dimensionless spatial variable, is much
less than the potential at the boundary, and so the problem has many features
in common with the Neumann problem. We exploit the relative size of the
potential and normal derivative by using the method of matched asymptotic
expansions, a particular technique in singular perturbation theory. 8 The
technique permits development of asymptotic expansions for the potential,
one expansion (the near field or inner expansion) being valid in a region
including the source; the other expansion (the far field or outer expansion)
being valid in the entire region away from the source. The two expansions
match in the intermediate overlap region in which both are valid and a com-
posite expansion can be written which is valid everywhere. A quite simple
formula is obtained for the far-field expansion, consisting of a known result,
and correction terms. The near field expansion is more complicated. How-
ever, its leading term is merely a large constant potential. The higher
order terms are obtained as eigenfunction expansions, double infinite series
of Bessel functions or single infinite sums of infinite integrals of Bessel
functions. We also derive these expansions directly from the exact solution
to the problem and so establish the validity of the method of matched asymp-

totic expansions for this problem. This result is of some general interest



‘since theorems are not available to establish the validity of the method
of matched asymptotic expansions and since there are few boundary value
problems of this complexity which permit the comparision of the exact
solution with that derived by singular perturbation theory. 9
In order to be specific, we now derive the equation and boundary
condition, and will calculate the electric potential induced by a point source
of current inside a long cylindrical cell. The model for the cell is a
circular cylinder of infinite length. The cell interior has a conductivity
s and is surrounded by a thin membrane with conductivity o The outside
surface of the membrane is held at zero potential. The current density ;F is
related to the potential V' by

j -0, V' V', inside cell,
(1.1

i =

( "o, v' V', in membrane,

where primes denote quantities in physical units; unprimed quantities will be
defined later in nondimensional variables.

Continuity of current across the boundary between the cell interior
and membrane requires that

Cvat oV!

5 " " % ppr ons, 1. 2)

where S is the inner surface of the membrane, 8/9n' is of the outward normal
derivative, and ¢ is the thickness of the membrane, so that the potential
gradient within the membrane is - V'/s.

Assuming a unit point source of current within the cell at ;‘ = _PE‘, the

divergence of the current density is given by

— —

V' =6 (r - R (1. 3)

where 6(r' - R') is a Dirac 'delta function. "



Using (1.1) in (1. 3),

- o V’2 V=56 (r' - R")

Making the change of variables

—
- l",
r = —

a

’

where a is the radius of the cylinder, and
V=a o, V',

(1. 4) becomes
vZve-s(r- R),

and the boundary condition (1. 2) becomes

ﬂ/——Jr €EV=20, onS,
on

where

is a dimensionless parameter which is small (< 10—3) in living cells.
Defining cylindrical coordinates (x, r, 8), shown in Figure 1, the

source may be placed at R = (0, R, 0) with no loss in generality. The

boundary condition at large distances down the cylinder, ]X’ — o, is that

the inside potential approach the zero potential of the outer membrane

surface. The problem for determining the potential may thus be written,

in cylindrical coordinates,

1 o[, aVv), 1t 82V+32V_~l
r or or 2 2 2 r
r 96 0x

A% a
W(X’ 1,6) + eV(x,1,6) = 0,

\/. (OO’ I‘:@) = O'

6(x)6(r-R)6 (0

)‘

(1.

(1.

(1.

(1.

(1.

7)

. 8)

10)

11)

.12)
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Figure 1. Coordinate System for Cylindrical Cell.



9.  METHOD OF SOLUTION FOR SMALL € -

The problem posed by(1.10) - (1.12) can be solved exactly, for any e,
in the form of a double infinite sum or a single infinite sum of infinite
integrals of Bessel functions. 10 The behavior of these exact solutions for
small ¢ can then be obtained by taking appropriate limits of the solutions,
letting ¢ —0 in a region including the source and in a region some distance
from the source. This procedure is carried out in Section 6, starting from
the double infinite sum representation of the solution, given in Equations
(6.1) and (6. 2).

Since we are only interested in the small-¢ behavior of the solution,
we can alternatively bypass the exact solution entirely and apply the techniques
of singular perturbation theory to (1.10) - (1.12). The procedure is to gener-
ate a sequence of problems from (1.10) - (1.12), Each problem in the
sequence is simpler than the original problem; its solution corresponds to
one term in the expansion of the exact solution in powers of ¢. We find one
sequence of problems, and its corresponding expansion of the potential, which
is valid near the source; another which is valid far from the source, and use
the technique of matching 8 to join the two together in the intermediate region
where they are both valid. This mathematical approach is justified by the
relative simplicity of each problem and the physical insight gained by
obtaining each individual term in the expansions directly from the solution
of a relatively simple problem.

Let us consider the basis for the singular nature of the problem. The
physical problem under study is the potential distribution caused by a point
current source inside an infinitely long cylinder. When ¢ is small, the
boundafy condition (1. 11) implies that the current flow will be predominantly

in the axial direct, i.e., only a small fraction of the local current, O(e),



crosses the membrane in an axial distance of O(1). We are tempted to try
to find an expansion, in the small parameter ¢, in which the leading term is
the potential for ¢ = 0. Denoting this potential by vy (x,r,60), from (1.10)

and (1.11) V,; satisfies the equation,

oV A% 0~V
1 0 1 1 1 1 _ 1 _
- W(r =T >+ — 5— T == 7 -—6(x) 6(r-R)6(0) (2.1)
T o6 ox
and the boundary condition atr = 1,

8\/1

(x,1,0) = 0. (2.2)
ar

Physically, the boundary condition (2. 2) means that no current crosses
the membrane; all the current is confined to flow in the interior of the cell.
Consequently, V1 must contain a part which is linearly decreasing with
increasing I xl . This would lead to a potential of V1 —-0 as lxl — o,
which would make it impossible to satisfy the boundary condition V = 0 at
l xl —, required by (1.12). To avoid this divergence, any expansion
which contains V1 can be valid only over a limited range of x, designated
the near field, which contains the source point. At large distances from
the source, we must look for another, far-field, expansion.

We expect that as € —0, the region of validity of any near-field
expansion of which Vl is a part will become large. If there is a linearly
decaying potential over a large distance, and in addition the potential is
required to approach zero as , xl — o, then the potential at x = 0 must be
very large, i.e., V(0,r,0) —«=as ¢ —0. As usual, we will separate
terms in the expansion according to their order in ¢. Clearly, V1 must

be O(1), and therefore cannot be the leading term in the expansion.



This is about as far as we can go with these somewhat intuitive
arguments. They are presented to give physical perspective to the
problem. We turn now to a solution of the far-field problem and will see
that the process of matching it to the near field will dictate in a precise
way each term that is necessary in the near field, without any need for

intuitive arguments.



©3, FAR-FIELD POTENTIAL
In the near field, in order to conform to the boundary condition at r = 1

and the singularity at (0, R, 0) the current-density field is complicated and
its variation along the three coordinate axes are of comparable magnitudes.
In the far field, a long distance from the source, the situation is different.
The current is predominantly in the axial direction. Since only a small
fraction of the current within the cell, at any value of x, leaks out of the
cylinder in an axial distance of O(1), the variation in the x direction will be
slow. We therefore, for convenience in ordering the far-field expansion,
write the far-field potential in terms of a new slow variable x*. Denoting the
far field by W, we write the following expansion,

W7, 05.€) = €W (x",r, 0) + € (W, (x7r,0) + ..., (8.1)

where the slow variable is defined by

x™ = x n(e), (3.2)
W_ is of O(1) and gn/gn—l — 0 as € — 0, and in accordance with the physical
argument given above, it is expected that n—0ase—~ 0. We might expect
initially that this expansion is valid only for x* > xg, say.

Substituting (3. 1) and (3. 2) in (1.10) and (1.11), and noting that the

right-hand side of (1.10) is zero since x = 0 is outside the present domain,

we have, 9 9
9 9 0 WO 9 ] W1
VW=0=§On —3 t¢nm 5t
ox™ ox™
2 2 (3. 3)
Ve Wy H G VW e
2_109 ] 1 82
where vt “r37 (T 37 + ;—2- 8—92- is the transverse Laplacian, and on the
boundary, r = 1, we have,
A EAYY
oW P 0 1 ,...



Requiring that (3. 3) and (3. 4) be satisfied to each order of €, the

lowest-order € problem is

12 x*%,1,6) =0 (3. 5)

LWO(:t ©,r,0)=0 .

The second problem is

A
2

€t =§’1 (3.7)

to obtain the second of Equations (3.6).
Writing an expansion for n(e€) in the form

n(E)=n0(6)+n1(€)+n2<e)+----, (3.8)

where the ni(e) are an ordered sequence, we further set

2

’é’ono =%

to obtain the first of Equations (3. 6). Thus,

n_ = Je. (3.9)

0

2

problems of increasing order in €. It will be seen below, however, that we

We could take n = no, with My =My =rvr = 0 and still obtain a sequence of

would not be able to maintain uniform validity of the asymptotic expansion for
W at large x*. Assuming n(€) to have the more general form (3. 8) makes it

possible to obtain a uniform expansion.

10



The third problem is found by collecting terms of the next higher order

in € in Equation (3. 3) and (3. 4), and is

2
e 2 ___ 0 : .
Vt W2 _75)(* (W1 + 2a1W0 )

< 8W2 '
T (X:':, 1, 9) = = Wl(X’P, 1,9) (3. 10)

\WZ(i o, r,0) =0,

where we set

€§’1 = §2 (3.11)

to obtain the second of Equations (3.10), and, in addition
4 =aen (3.12)
to obtain the first of Equations (3. 10). Continuing this process of collecting

terms of equal order in € in Equations (3. 3) and (3.4), we obtain for the

fourth problem,
r 2

2, _ _ 9 2 )
ViW, = - (w2 + 20, W, + (@] + 20,)W,
Jaw, )
W’(X ,1,9):'W2(X',1,6) (3.13)
Wo(tw,r,0)=0
.

Combining (3.1), (3.7) - (3.9), (3.11), (3.12) and the additional
requirements on §3 and g needed to obtain (3. 13), we have, for the far-field

expansion of the potential,

(x,*r, 6) + eW (X*, r, 9)

W(X:,:’ r, 6; €) = EO(E) [WO 1

+ePW, c,r, 0) + oo, (3.14)
where the axial coordinate variable is

x = \/gx(1+a/1€+a262+ sl )l (3.15)

11



So far §O(e), the order of the leading term in the W expansion, is
unknown. It will be determined by matching to the near field. The constants
ays Ao . in the expansion of x*, which appear as coupling constants bet-
ween different orders of W in the sequence of problems, will be determined
by requiring uniform validity of the W expansion (3. 14) for all values of x™.

We now return to (3.5) and begin to solve the sequence of problems.
The solution to the first problem (3.5) is independent of r and 6 . Thus we
have

W %, v, 0) = F(x™), (3.16)
where F(x™¥) is an as yet arbitrary function of x*. We must go to the second
problem (3.6) to determine its functional form.

From (3.6) and (3. 16), we obtain

.

2
BWI ; 9@ W1

18 38
rar T ap ) gy = FUGD)
r 00

< oW

E)rl x* 1, 0) = - F(x*) (3.17)

\.Wl (t o, r, 8) =0,

where prime denotes differentiation with respect to x ",
Since the inhomogenous term in the equation, and the boundary condition
at r=1, are both independent of 6, clearly, W is independent of 6. Examin-

ing (3.10) and (3. 13), the same reasoning then implies that Wy, W3. .. are

all independent of 6.

Integrating the equation in (3. 17) twice (noting that 82W1/882 is zero)

we obtain for the solution which is bounded at r = 0,

2
Wl(x*, r) = - 1’4_ F''x™ )+ G(x™), (3.18)

12



where G(x*) is an, as yet, arbitrary function of x* which cannot be determined
until we go to the next problem, (3.10), for Wz.

Substituting the result (3. 18) in the r = 1 boundary condition of (3.17)
yields,

B - 2F =0, (3.19)
and hence,

WO(X:)z) - F(X*) = A e_\/5 I X*l s (320)

where A is a constant to be determined by matching to the near field.
Substituting W, and W,, from (3.16) and (3. 18) in (3. 10), and using
(3.19) to eliminate derivatives of F, and deleting the 6 dependence in accord-

ance with our findings, we obtain,

. oW
19 2 _ .2 .
Tl (r 4011) F - G
oW

A 81‘2 (x*, 1) =-é—F -G (3.21)

(W, (£, 1) =0,
for the next problem.
Integrating the equation in (3.21) twice and requiring the result to be
finite at r = 0, we obtain
4 2

Wy, r) = I F - x? @ F +_}IG”) + H(x¥), (3.22)

where H(x™) is an arbitrary function of x™.
Substituting the expression (3.22) for W, and (3.20) for Finther =1

boundary condition in (3. 21) yields,
G”—2G=-4A(a1+—é—)e-\/§lx I. (3.23)

The right-hand side of (3.23) is an homogeneous solution of the equation.

Therefore the particular solution contains a term proportional to x™ times

13



exp (—El x*' ). If such a term appears in G, and consequently, by (3.18),

in Wy, then for sufficiently large I x*l (i.e., | X*I > €~1) the equality used

in the definition of an asymptotic development,

. eW
lim 1 =0
e — 0 WO ’

will not be satisfied and hence the expansion (3. 14) will not be valid uniformly

in x*. To avoid this we require the right-hand side of (3. 23) to vanish, which

occurs if
_ 1
a = -1 (3.24)
It is now clear why we could not assume the simple relation x™ = Ve x but

required the more general form (3.15). The freedom to choose @ys Qg -
allows us to force all of the x™ dependence of W into exp (—\/—2-}{*) eliminating
nonuniformities in the expansion.

With the choice (3. 24) of «,, the solution to (3.23) is

1’
G(x*) = B e‘/EX (3.25)

where

x”‘z\/?(1-%+-..), (3.26)

and B will be determined by matching.
Substituting (3.20) and (3. 25) for F and G in (3. 18) we obtain for the

second term in the far-field expansion,
W, (% 1) = (-3 Ar +B) VRS (3.27)
We will now continue the same procedure in the next problem (3. 13),
to obtain an expression for W2, and to find x™* to one more order in €.

Substituting (3.16), (3.18) and (3.22) in (3. 13) and using (3.19), (3.23)

and (3. 24), we obtain for the next problem,

14



a oW 4 2

1 o 3 _ _{r r 1 2 1 - 1"
< 8W3 % 3 1

—15-1-_—(X"‘, I)Z'R-F +§G"}I (3.28)
\W3(i°o, r)=0

Integrating the equation in (3.28) once, setting r = 1 in the result, and
substituting this in the r = 1 boundary condition yields the equation

5
no_ - -

Using our earlier arguments, we require the right-hand side of (3.29)

to be zero, in order to maintain uniformity of the expansion in x*. This
yields
@y = (3. 30)
2 384’ :
and
H(x*) = C e"/z—X , (3.31)

where C is to be determined by matching, and we now have x™ to one more

order,

Xo— _E ) 2_
X —X\/E(l 8+'§—4€ "')o (3.32)

Substituting (3.20), (3.25) and (3. 31) for F, G and H and (3. 24) for aq

in (3.22), we obtain

2 5K
Wz(x*, r) = [Ar (1 +-—) - =+ C]e—‘/5 lx I . (3.33)

Substituting (3.20), (3.27) and (3. 33) in (3. 14), we obtain for the far-

field expansion,

2
W(x*, rie) =g, (€) e V2 || [A+e( 2L+B>

2 2 2
+62(Ag (1 +—-)——2—+C)+O(€3)}, (3.34)

15




1,

where x " is given to 0(62) by (3.32). The three constants A, B, and C, and
the function E’O(e) are to be determined by requiring that the x*— 0 limit of
W(x™, r;€) be identical, in all orders of €, to the I xl — 00 limit of the near-
field expansion, V(x,r,0;€). This procedure is motivated in the following
way.

It is assumed that as € — 0, the far-field expansion is asymptotic to the
true potential if the far-field coordinate is greater than some value i.e.,
x> xg(e). Similarly, the near-field expansion is asymptotic to the true
potential if x < xl(e). Furthermore, in order to be able to match the two
expansions, there must be an overlap domain in which both expansions are

valid, that is, we must have

X:k(e)
X1(€)> 0 5 =x (€).
\/—(1_ € + 513 - ed) 0
€T3 382

We expect that as € — 0, xl(e) — o and x:;(e) — 0.
If we write both expansions in terms of an intermediate variable

X, = E(e)x, where &(€) has the asymptotic behavior

£
Iim _
6__»05(6)-0)
lim E(e) _
e— 0 &

then in the €—0 limit the two expansions must be identical in each order of
€. As e€—~0, for some fixed Xg‘ in the range

S(e)x1(€)> Xeo > E(e)xO(E),

3

we then have

£
*TEe T

and c
LY A
gle)

—0.

16



Thus the x*— 0 limit of the far-field expansion must coincide with the x —
limit of the near-field expansion. For compactness, rather than write each
expansion in terms of some arbitrary intermediate variable and take the
€ — 0 limit, we accomplish the same result by writing both in terms of x and
taking the x — o limit of the near-field expansion and the x*— 0 limit of the
far-field expansion. The procedure outlined here is discussed in greater
detail, with many examples, elsewhere. 8

Substituting the expression (3.32) for x" in (3. 34), expanding the

5/2)

exponential to Ofe , multiplying by the expression in square brackets, and

arranging terms in ascending powers of €, we obtain
€ 5€
( f(l— 384: ")) rle)
1/2 2 12
=g (e) [A-c AV2]| x| +6[A(x-7)+B]

2 2
NP }[A%-%— L) —B]

2 x2 X4 r2x2 rz 4 r2

2

2 2 2 2 4 4

5
o ’%ixl[A<-—3%z+%+ig— L o

1 %2, r? 3
+B(§-~§.+_2._)—C}+O(E ). (3. 35)

The expansion (3.35) of W in near-field coordinates contains integral
powers of \E, whereas the expansion (3. 34) in far-field coordinates contains
only integral powers of €. The powers of \/garise from expanding the expo-
nential in (3. 34). It should be noted that an individual term of O(e") in (3. 34)
contributes to all orders in (3. 35). Consequently, although each term in
(3. 34) is the solution to a particular problem in the far-field, each term in

(3.35) is not related in any simple way to a physical problem in the far field.

17



It is interesting that even in the far-field expression (3. 34) the potential
depends on € in two different ways. In the near region of the far field (x*—0)
the potential can be described as a series which ascends in powers of \/e—,
whereas in the far part of the far field, (x*> 1) the potential can be described
as a series which ascends in powers of €. This illustrates the fundamentally

different behavior of the potential for small and large x.

18



4. NEAR-FIELD POTENTIAL

In the vicinity of the point source the potential is a rather complex
function of position, and there is apparently no simple mathematical repre-
sentation in terms of elementary functions, as there is in the far field. The
potential has a singularity at the source point; the current diverges from this

point, half the current going toward x = + «, and half toward x = - «. Close

to the source, the lines of current flow are diverging outward, equally in all
directions. Those lines which are directed toward the membrane must curve
to avoid the membrane as, again, only a small fraction of the local current
leaves the cylinder. As the current flows down the cylinder, the lines
become predominantly in the axial direction, and the potential joins smoothly
onto the far-field potential calculated in Section 3.

In terms of the asymptotic expansions representing the near and far
fields, this behavior requires that the near-field expansion increase in powers
of Ve so it can join to the expansion (3. 35) of the far field. Furthermore, in
accordance with the arguments in Section 2, which concluded that the O(1)
term in the near field has a linear dependence on | XI as | xl — ©, we see
that the second term in (3. 35) must be O(1) in order to match the near field.

Consequently,
1
Ve’ (4.1)

and the near-field expansion must be of the form

§O(€)= -

Vix,r,0;€) = 6_1/2V0(x,r,9 ) + Vl(x,r,G)

+el/2V2(x,r,9)+eV3(x,r,6)+--. (4.2)

Substituting (4.2) in (1. 10) and (1. 11), and requiring the large-x
behavior in each order to conform to (3. 35), we obtain the following sequence

of near-field problems,

19



0
< 8VO
e (x,1,6) =0 (4.3)
\VO(x,r,G)——»Aas ‘XI—*°0,
2 _ 1
A = - =6(x)s(r-R)6(0)
r
oV '
Y55 . 1,6) = 0 (4.4)
kvl(xyrle)'—. _A\/2-IXI as lxl->°0,
FVZVz =0
48\72
g (x,1,9)=—V.O(X,1,9) (4.5)
2 r2
L\/'z(x,r',B)—»A(x - =)t Bas le——oo,
2
rv V3—O
8V3
< _SI‘—(X’ 1’9)=~V1(X,1,6) (4.6)
v 0 \/2_ 1 x2 r2
\. 3(X,1", ) — |x! A(§'T+'2_)—B as!xl-—»oo,
2 =0
(V Vy =
Jav4
W (X, 1,9) = - VZ(X’ 1,9) (4.7)
LV (xre)—»A(-f‘—2+X4- ry’ +r2 +r4)+B( 2-1"2)+c | x| —w
g "% T3 EE T * T as 1 x ‘

20



;‘VZVS =0
8V5 .
T (x,1,6) = - VB(X, 1, 6) (4. 8)

) X x2r2 3r2 r4 x4
—~J9 -9 = - - - 2
V5(X,r,0) \/: | XI A( 557 + 3 + ~— -5 " 1% 30)

1 Xz r2
+E’>(§-—3+2—)~C as \XI—»OO,

The delta-function source appears in the V1 problem, consistent with
the linear growth with x as l x|—> «, All other orders of the potential are
source-free.

Each even(odd)-order problem (except for the first two) is coupled to
the preceding even(odd)-order problem via the boundary condition on the
r = 1 surface. The physical interpretation of this coupling is that the current
crossing the membrane in the nth problem is proportional to the membrane
potential in the (n-2)th problem. The even-order problems are coupled to
the odd-order problems by their asymptotic behavior as | X| — oo, i.e., the
constants A, B, C,... appear in both even- and odd-order problems.

It should be noted that it is only from considerations of the behavior

of the near-field potential at large l x|, required to match the behavior of

the far-field potential at small x*, that we conclude that the VO’ V2, .
terms are even necessary. The Vl’ V3, ... terms alone are sufficient to
satisfy (1.10) and (1.11) at small x. This is an extremely interesting
result. The dominant term as x — 0, VO’ can only be determined by consid-
ering the behavior of the potential as l xi — 0,

By direct substitution of the | xl — o asymptotic forms of VO’ V2 and

V4 in the respective equations and boundary conditions (4.3), (4.5) and

(4.7), it is seen that the asymptotic forms are actually solutions valid for
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all x, and by the uniqueness theorem for Laplace's equation, they are the

only solutions. Thus

V= A, (4. 9)
2 :r'2

v, = A" -2 1 B, (4.10)

v =A<-X2+X4—rzxz+r2+r4)+3( 2-1"2)+c (4.11)

4 T "6 T2 "3 1% X "5 : :

Now we discuss the V1 problem. Integrating (4.4) over the large
volume of the cylinder between -x and x, I x{ — o, and using the divergence

theorem, we obtain,

27 1 X
2
lim f dé frdrf dxv“v1 = -1
IXIAOO O (@] — X

2 1 8V, oV,
| l1im f d@frdr 55 (x,r,0) -W(- x,r,0)
Xt — o0

0 o

= —omA V2 (4.12)

1

In accordance with the r = 1 boundary condition in (4. 4) the integral over the
surface of the cylinder is zero, leaving only the integral over the discs at
tx. The last equality follows after substituting the asymptotic behavior of

V., as |x|— e, obtained from (4.4). Solving for A,

11
A = V2 (4.13)

T 47 ¢
and hence

lim Vl(x,r,G) = 5 (4. 14)

|| = o
It is now convenient to decompose the near-field potential Vl’ into

two terms,

Vl(x, r,0) = Cbl(x,r,G) - —21%(—[ . (4. 15)
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Substituting (4.15) in (4.4), we obtain the problem for & 1
Vo, = - a(x)[l 6(r-R)6(0) - =
1 T T

8@1
W(X, 1,9):0 (4- 16)

Cbl(:too,r,f)) =0

The source term in (4. 16) is the unit point source at (0, R, 0) plus the
uniform disc sink in the x = 0 plane. The net current source for CDl is zero,
i.e., all the current which enters the cylinder at the point (0, R, 0) is
removed uniformly in the cross section (0, r, 6). Unlike the problem for Vl’
which contains unit current flowing outward as I XI — oo, the problem for cbl
contains no current flow as |x|—>oo.

Taking the Fourier cosine transform of the equation in (4. 16) observing
that Cbl is an even function of x, we obtain

2

8¢ 0%

1 8 1, 1%% 2 1. 1
T AT T BT 2 g K4yt itrRIE@ L, (4. 17)

where d)l is the Fourier transform of cbl, i.e.,

o0
d)l(k,r,Q) = f cos kx ¢1(x, r, 6)dx, (4. 18a)
- 00
and
o0
(1)1(x,r,9) :% f cos kxqbl(k, r, 8)dk. (4. 18b)
0
Multiplying (4.17) by e—in@ and integrating over 6, we obtain
(n)
dy 2
1 d 1,2, n", (n)_ 1 _
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where 60n is the Kronecker delta function and
21

Il/(ln)(k, r) = f e—inG qSl(k, r, 6)d6, (4. 20a)
0

w(ln)(k, r)ein?, (4. 20b)

D18

1
d)l(k; r, 9) _2_,”‘

n o0

The solution to (4. 19) may be written in the form

2% anln(}{r), 0zr =R

i) = n (4.21)
kr) + cnKn(kr'), R=sr =1,

k b I (
n'n

where In and Kn are the modified Bessel functions.

)

Continuity of w§n at r = R implies that,

(an - bn) In(kR) =c Kn(kR). (4.22)

From (4.16), the boundary condition at r = 1 requires that,

bnlil(k) + ¢, K:'n(k) = 0. (4.23)

Integrating (4. 19) across the delta function at r = R, we obtain for the

discontinuity in the derivative,

(n) (n)
W1 &, RY) - V1 k, R7) = - &
ok o K R’

which yields, when substituted in (4.21),

1
_ 1 < = e e
(bn an) In(kR) + c hn(kR) IR - (4. 24)
Using (4.22) to eliminate (an - bn) from (4. 24) yields
c_ =1 (kR), (4.25)
n n

where we used the Wronskian, 11

1 1 = l
I (kR)KL(kR) - K (kR)I| (kR) = - 3,
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to obtain (4.25). Substituting (4.25) in (4. 23), we find

Kl (k)

bn = - In(kR) Tr'l_(T{_)_ . (4- 26)
Substituting (4.25) and (4.26) in (4.22), we have
K;l(k)
Using the expressions (4.25) - (4.27) in (4. 21), we obtain
26 K! (k)
(n) _ _ _0On _ n
l//l (k,- 1") - —;T In(kR) 'I—IYIT'E)— In(kr)
K (kR)I (kr), 0=r =R
n n
+ (4.28)
K (kr)I (kR), Rsr=s1.
n n
Taking the inverse transforms (4. 18b) and (4.20b) of (4.28), yields
[o @] (e o}
®,x,r,0)= % fdk cos kx Z g[/<1n)(k, r) eind
277 n=-o
0
1
= Zlﬁ (x2+ r2+ R2— 2rR cos ) 2 (4.29)
o0
o0 . K! (k) 26
1 T in6 [ n On
- — e dk cos kx I (kR)I_(kr) +
2772 n:L/_oo 0 In' &) n n k2

The first term in (4. 29) is just the free-space potential of a point source at

(0, R, 0). Itis the double transform of the curly-bracketed term in (4. 28)

and is obtained using the known sum, 12

n;m ™ K (KR)L (kr) = )

in6
e Kn(kr) ln(kR)

n=-o

= Ko(k = R - 2rR cos 6 ) s

and the integr all 3

25



00

fdk cos (kx)K  (k§) = l

/ 9 /€2+X2
The potential Vl(x, r, 0) is obtained by substituting (4.29) in (4. 15) and

the result is

x| 1,2, 2 .2 -1
VI(X, r,0) = 55 + s (x"+r"+R”-2rR cos 9)
o0
0 . K' (k) 26
1 Z 1n9[ n On
- = e dk cos kx I (kR)I (kr)+
2772 0w ) In' (k) "n n k2
(4. 30)

The integral over k in (4. 30) can be replaced by an equivalent sum, by
considering the integral in (4. 30) as a portion of a contour integral. This is

done in Appendix A and the result is

- xJ (. R) (A r)
ns® “n 'ns '“n''ns

v, G, 1, 60) = - lxl 1 ¥ ooeind §o (4. 31)
s=1

21 am = 2
n=-eo A (3— § 1)J2(A )
ns )\2 n ‘ns

ns

where Ans is the s-th zero of Jh()t) excluding the one at A = 0.

Using (4. 31) it can be demounstrated that as Ix‘-» o, Vl—— - lxl /21 plus terms
which are exponentially small in x, and hence the solution (4. 30) or (4. 31) is
the required solution to (4. 4).

In Appendix B, a second alternative to (4. 30) is developed by removing
from the integral a term which is the free-space potential of a uniform unit
disc sink located in the x = 0 plane. The remaining integral then has con-
tinuous derivatives everywhere in the interior of the cylinder. The result
is given in (B. 5).

In Appendix D, a third alternative to (4. 30) is derived which is useful
for calculating the potential near the location of the source, (0, R, 0). For

values lx‘ < 0.2 the convergence of (4. 31) is too slow for doing numerical
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calculations and in fact at x = 0 it diverges. Equation (D. 14) has an
adjustable parameter, . It converges for [x’ < 27 /B and converges
rapidly and hence is a very convenient formula for calculating V1 when
|xl < 1/B. Equations (4. 30) and (4. 31) are special cases of (D. 14), for
B =0 and B8 =w/x, respectively. Numerical calculations of Vl, using (4. 31)
and (D. 14) will be included in a future report. The method developed in
Appendix D for obtaining a rapidly converging series is of more general
applicability and has been successfully applied to the Green's function of
L.aplace's equation for a Dirichlet boundary condition on the cylinder surface.
We now turn to the V, problem. Integrating the Laplacian in (4.6)
over a large cylinder extending from - x to x, and using the divergence

theorem, we have

lim dx de v V
x| = J. 37
21 I

. AT ey, ! fov, vV,
= lim dx d6 ——= (x,1,0)+ frdr | d8{——=(x, 1, 0) -5 (-x,r,0);
]X] e or l ar X
X 0 0

0
(4.32)
Using the boundary condition in (4. 6) and (4.15), (4.18b) and (4. 20b) for Vl’

the first integral in (4. 32) becomes,

27

X
- lim fdx de Vl(x,l,é)
xl—e ) S

-X

X 27

- lim fdxfd@— + fdkcoskx Z w )k, 1)el??
IX'-—»OO O n=-oo

X

i

o] [ e]

= %% - % fdxfdk cos kx ¢(10)(k, 1)

Yo 0

- (//(10)(0, 1) (4. 33)

it
]
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. ., 14
From (4.28), we obtain, with the aid of a known identity = and the power

series expansion of In(k), 15
(0) 2 Bl (kR)T (k) + K (k)I (kR)
- . & +
K. (k) (k) + K _ (k)I, (k)
-1 GR)
Kk 1 Y
2, IO(kR)
)
k 1
2
5 1+(l—{25) ten
= - — + 5 5
2
k k 1.k
7 Urglp) *or]
1,.2 1 2
so that,

Using the asymptotic form for large ]XI for V,, from (4.6), the second

3
integral in (4. 32) becomes,
2T

; |
fr drf a6 2v2 [A(%—X2+£2—)-B] = o V2 [A(—;:l-xz) -B] .  (4.35)
0 0 ‘

Combining (4. 32) - (4. 35) yields the equation
27 V2 [A(—g—-xz) - B] +x2-%(R2— —;—)2 0. (4. 36)
Substituting (4. 13) for A in (4. 36) and solving for B,

2
B :LE(%-%_), (4.37)

As consequence of (4. 37), W1 and V2 depend on R, the distance from the

source to the axis of the cylinder, whereas lower-order terms do not.
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Having evaluated A and B in (4. 13) and (4. 37), we have now obtained

1
the near field up to terms of O(e2), i.e., we obtained VO’ Vl’ and V, as

2
given by (4.9), (4.30) and (4. 10), respectively. In addition we have also

1
obtained the far field to O(e ?): WO and W1

respectively. These terms represent that part of the potential which is
Yy p

as given by (3. 20) and (3. 27)

numerically significant; all higher-order terms are too small to detect in a
physiological measurement made anywhere in a cylindrical cell. Neverthe-
less, it is of some mathematical interest to carry out the calculation further
in order to demonstrate that the process can be continued indefinitely,
although it clearly soon becomes quite tedious. We continue as far as
necessary to calculate the constant C, and will discuss the results at that
point.

In order to obtain C, we must proceed in solving the problem for V3.

The method employed is identical to that applied to the V1 problem, namely,

a new potential, /DB, is defined which approaches zero for large lx‘ . Thus,
. _ le 2,2 . 2 2

where we have used the expressions (4. 13) and (4.37) for A and B in the
asymptotic form of V, given in (4. 6).

Substituting (4. 38) and the definition of -131, (4.15), in the problem for
V3, (4.6), yields the problem for ¢3,

2 _ 1 2

_ 2
\Y CDB =5 R+ r“-1)8(x)
8<D3
g = - <D1 (4. 39)
®3(ﬂ:oo, r,0)=0.

The source term in (4. 39) is a nonuniform distribution of current on the disc
at x = 0, plus the current crossing the membrane given by the r = 1 boundary

condition.
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It can be easily verified that the algebraic term in (4. 38) satisfies
Laplace's equation for ]xl > 0, as well as the r = 1 boundary condition in
(4.6). It has a discontinuous derivative at x = 0, however, and so is not a
solution to (4.6) at x = 0. The function @S, which has a source at x = 0,
must be added to the algebraic term to obtain a solution valid everywhere.
The discontinuity in the derivative of fIJS will be just the negative of the dis-
continuity in the derivative of the algebraic term.

As in the @1 problem, CDS is an even function of x, and we define the

Fourier cosine transform of <I>3 by

o0
¢3(k, r,H) = f cos kx @B(X, r, 0)dx, (4. 40a)
)
and
O
(I)S(X, r,0) = %— fcos kx d)S(k, r, 6)dk, (4. 40b)
0

so that the Fourier transform of the equation in (4. 39) is

9¢ 07 ¢
10 3 1 3 2 _ 1 2, 2
r- 20
Multiplying (4.41) by e—in@) and defining g[/gn)(k, r) by
27
e, r) :f e %,k r, 0)d6, (4. 422)
0
and
6.0, 6) = $ ()} 1yelnd (4. 42b)
gi\Bs 7 né_‘_‘l_oows srj)e 5 .

the Fourier transform of (4.41) with respect to 0 is,

(n)
0 811/3

ar | TBr

2
1 2 . n (n) _ 2, 2
- - (k +—r7) Yo' = - (R74r —1)6On\. (4.43)
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The constant B was determined by considering the volume integral of

the V, problem (4.6), and was seen to be related to the large—‘xl behavior

of V, and Vl’ and to (,/1(10)(0, 1). In exactly the same way, by considering the

3
volume integral of the V5 problem (4. 8), (without actually solving for V5),

we can determine C from our present knowledge of the large- |x| behavior

of V5 and VS’ and of ng)(O, 1). Having determined C, wé will then have

V4(X, r) and W2(X ,T).

The volume integral of (4. 8) is

b 1 27
lim f dxf rdrf de ‘\72\75 =0
| x| e -X 0 0
X 27 1 27 avs
= Iim -f dxf dé VS(X, 1,0) + 2frdrf do T(x,r, 6|, (4. 48)
| x| —
-X 0 0 0

where we have used the boundary condition in (4. 8) to obtain the first
integral on the right-hand side, and the evenness in x of V5 to obtain the
second.

The first integral in (4.48) can be evaluated by using (4. 38) for Vg and

(4.40b) and (4. 42b) for the inverse transforms of CDB,

X 27
- lim dxf d6é VS(X, 1,0)
- X 0

] = o0

"

-X 0 =-00

X 27 o0
. 2 S i
- lim fdxf d [%l (R2-§x2)+—1-2fdk cosix ), M, et
[x|—= 2m = Jy n=

2 2

(R

2
X
2

x5 - o, 1. (4. 49)

(O)(

We now evaluate l//3

0, 1) by expanding (4. 46) in a power series about k = 0.
All the singularities in (4.46) at k=0 cancel, as they must if the integral
in (4.47) is to converge. From (4.46),
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I.(kR)I_(k)
wéo)(k,l):—% {R2+i————-——0 0
k I,7(k)

2 4 2 4
R L BB e 1) L ) )

1 2,4 2
= R + -
2 2 2 2 4 2
k k k 1k 1 k
(7) {1+§ (—2‘) + —17 (7) +. . } |
12 o4y
"1—6 ('?—) R )+ (4. 50)

The second integral on the right hand side of (4. 48) is

g b 5 x2 x2r2 3r2 r4 x4 1 X2 r2

8
O .
2 4 2
0 49 oX X 3 x 1
4”?3‘;2[\/2—X{A('7%73'+'4§"€ﬁ)+]3(1—6'6—)'§CH

il

2 4 2
_ _ 49 0X~ X 3 _x7y_1
= 47 ¢2{A( 78716 " 12 T Bag -3 2C}
2 2.2 4
_ 41 _3R%, xR _x"_ I~

Substituting (4.49) - (4.51) in (4. 48), and solving for C,

‘)
Ciﬁ gé—3R“+R4. (4. 52)
64m |24
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5. SUMMARY AND DISCUSSION OF RESULTS

We have now calculated all the coefficients appearing in the first three
terms in the far-field expansion, and in the first five terms in the near-field

expansion. This permits us to write expressions for the potential (far- or

312y,

near-field) to O(e Substituting the results for A, B and C from (4. 13),

(4.37) and (4. 52) in the expressions for WO, Wl’ and W2 given in (3. 20),

(3.27) and (3. 33), and then substituting these plus §0 from (4. 1) in the expan-

sion (3. 34), we obtain the expression for the far-field potential,

W(X,*I‘, B;€) = 6-1/2 WO(Xfr) + 61/2 Wl(x:fr) + 63/2 Wz(x:::r)+- ..

:\4@” Vel xT [6_1/2+ %_ 172 @ -2+ r2)

1 3/2,25 2 2 4 2,2 4
t1g € Tigz - 3"+ R+ r +4r°RY+ R}
+O(€5/2):', (5.1)
where the far field axial variable is
W 1 5 72_ .
x = Je x(1 €t 38 € ). (3.32)

Similarly, if we substitute the results for A, B and C in the near-field
expressions for Vgs Vys and V, given by (4.9), (4.10) and (4. 11), and then
substitute these plus V, and Vg given by (4. 30) and (4. 47) in (4. 2), we

obtain the expression for the near-field potential,
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Vix, r,0€) = 6_1/2 VO(X, r,0) + Vl(X’ r,0)+ 61/2 V2(x, r,9)+ -
—1/22{7—7— J2—7T-l-+ (x +r2+R2—2rR cos 9)—1/2
[ee)
) . K' (k) 26
1 1n6f n On
- — e dk cos kx I (kR)I (kr)+
2772 nzl_oo 0 {Inl (k) n n k2 }
+ € 1/2‘/‘[ + 2x - (r2+R2)]
X 2 2 2
+ Elil}:ﬂ' ( +R, "-3- 1)
o0
1 ] ind coskx (IR D) 5 5y
e B dk == S -+ RE-14 )6
21 7 n=-c0 0 k (I, ()] k

3/2 V2 1
+ € W[ﬂ25+144x +64X)"(I‘ +R)(3+8X)

+rt 4 ar®r? 4 R‘{\
+O(e?). (5.2)
The two k integrals in (5.2) can be replaced by the equivalent representations
(4.31) or (D.14), and (C.9), respectively.

The leading terms in the far-field expansion (5. 1), and in the near-field
expansion (5. 2), are each of order 6_1/2. In the near field, the leading
term is a constant. Thus, near the point source, the interior of the cylinder
is raised to a large, constant potential, relative to the zero potential at
infinity. The physical basis for the large potential is that the membrane
permits only a small fraction of the current to leave the cylinder per unit
length. Consequently, most of the current flows a long distance before
getting out, and a large potential drop is required to force this current down
he cylinder. The existence of this large constant potential, and its magni-

—1/2)

ude of Olc , could only be deduced from considerations of the far field.
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The leading term in the far field decays as exp (-v2e IXI ).
Consequently, to lowest order, 1/e of the current leaves the cylinder in a
distance of 1/vV2e . The corresponding potential required to drive a current

—1/2), which is the physical basis for the order of the

this distance is of Ole
large potential in the near field. The precise numerical ratio of the leading
terms in (5. 1) and (5. 2) was determined by requiring in the limit |xl — 00,
x*» 0, that the two terms be identical to the lowest order in €. 8 In the far
far field, i.e., x = xNe (1 - % +...)—~, the potential is seen to approach
zero exponentially.

The leading term in the far-field expansion (5. 1) is independent of
r and 6. Thus, to the lowest order the far-field current is distributed
uniformly over the circular cross-section of the cylinder. The leading term
in (5.1) is the known result of one-dimensional cable theory. 16 The high-
order terms are all independent of the azimuthal angle §. They do, however,
depend on the radial coordinate r. The dependence is in the form of a poly-
nomial in r2, the degree of the polynomial increasing by one in each succes-
sive term. We also see that the higher-order terms also depend on R, the
radial distance between the source and the axis of the cylinder. The poten-
tial is seen to be symmetric with respect to an interchange of r and R. This
must be so because the potential is the Green's function (with source at x = 0,
6 = 0) for the cylindrical problem. 17

Successive terms in the far-field expansion decrease in powers of €,
whereas in the near-field expansion they decrease in powers of \/g

The second, O(1), term in the near-field expansion, as written in
(5.2), contains three parts. It is the solution to the problem (4.4), in which

no current crosses the membrane, i.e., 8V1/8r =0atr =1. The first

part of this term decreases linearly with increasing !x, . It corresponds to
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the potential required to drive a constant current parallel to the axis of the
cylinder in the interior of the cylindrical cell. It is the appearance of this
term in the expansion which led us to conclude that an expansion of the form
(5.2) could not describe the potential for all x, since we could not satisfy
the boundary condition at Ix} = o with such a term present.

The second part of the O(1) term is the free-space potential of a point
source. It is the only singular part of the solution, accounting fully for the
singularity at the location (0, R, 0) of the delta-function source. The third
part is more complicated. When added to the first two parts, it satisfies
the boundary condition at r = 1, and removes the discontinuity in the
x-derivatives of the potential at x = 0, arising from the first part.

1/2)

The third, Of(e » term in the near-field expansion is a polynomial

of second degree in x, r and R. In general, each term of O(€(2n+1)/2), n an
integer, are simply polynomials of degree 2n+2. The 0(61/2) term was

—1/2) term and the coupling between

required as a consequence of the O(e
orders given in the sequence of problems (4.3) - (4. 8), and matching to the
far field.

The fourth, O(€), term (specified by (4. 6)), and subsequently all higher

terms of O(e™), contain a polynomial of degree 2n + 1, in ,x , r, and R and
a more complicated infinite sum, infinite integral term. Higher order terms
are determined by solving the appropriate differential equation (analagous to
(4. 8)) and boundary conditions. |

The first two terms in the far field, WO and Wl’ and the first three
terms in the near field, VO’ Vl’ and V2, represent the physiologically sig-
nificant part of the potential. Higher-order terms are too small to be

detectable at any location in a cylindrical biological cell. The higher-order

terms Wz, V3 and V4 are given to illustrate their interesting mathematical
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properties, and to provide a precise measure of the magnitude of the error
introduced by using only the preceding terms.

A single expression which is uniformly valid in x can be written down.
We saw in Section 4 that the polynomial parts of the near field are exactly
equal to the respective terms in the expansion (3. 35) of the far field in
near-field coordinates. The two complicated infinite-sum and infinite-
integral terms in the near field are exponentially small in the far field.
Consequently, the potential everywhere can be obtained from the single
representation,

€ 2
V(xree)-—e 1+5{7 -+ R}

€ 2
V2 -Vee [x[ a- g 384 - Ole ))6-1/2[ 5 2

2
€” ;25 2, 52\, 4, 2.2 _4 3
+E{2—4’3(r +R)+r +4r° R+ R} +O(e ):I

+711? (x2 +r2 +R2 - 2rR cos 0)

1/2

o0
. K! (k) 26
1 > inb ) n On
- — Z e f dk cos kx [—Irrl—m In(kR)In(kr) + 5

27r2 n=-o 0 k
I (kR)I_(kr)
+§_2.£_._n—2_(r2+R2- l+-—f}—2—)60n'+0(€2)J, (5. 3)
k [I;](k)] k

which is asymptotic to (5. 1) in the limit e— 0 with x/gheld fixed, and to
(5.2) in the limit €— 0 with x held fixed. Again, we can replace the two
integrals by (4.31) or (D.14), and (C.9). Equation (5.3) is more compact
than (5. 1) and (5. 2), but the latter two have the advantage of clearly separat-

-1/2

ing the terms according to their order in € in the regions x >> ¢ and

-1/2

X << € respectively, and each order of € is related to a simple physical
problem. This solution is closely related to the solution derived by

. . 9 .
Barcilon, Cole and Eisenberg wusing another technique of singular

perturbation theory, maultiple scaling.
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6. RELATION OF PERTURBATION EXPANSIONS TO EXACT SOLUTION

A. Exact Solution

The exact solution to the problem defined by (1.10) - (1.12) can be
obtained directly in the form of an eigenfunction expansion. It is of some
interest to show how our asymptotic expansions can be obtained directly
from this eigenfunction solution. This serves as a check on the singular
perturbation procedures used, and as a bonus, gives us a closed-form

expression for the sum over € in the far-field expansion (5.1).

The eigenfunction expansion for the solution to (1.10) - (1.12) islo
sl
1 > in6 Jn(anr)Jn(anR>
Vx,r,0) =5 ) e Z
2T oo s=1 B 2.2y 2 J 2(B )
n "ns
“Boolx
1 Poe® TnBoom Bt
B t e J “(Ban)
00 n 00
in which an is a nonzero root of
‘ = —
Brs Ip Bpg) = - €3, B ) 6. 2)
The roots are arranged in ascending magnitude with s =1,2,3,... for n # 0,
and s = 0,1,2, ... for n = 0. The n = 0 case is distinguished by the fact that

in the € — 0 limit, the smallest root, '800’ approaches zero. All other roots
an approach finite values. With this definition of s, we have, except for
n=s=0,

lim an = }‘ns

€— 0
where Ans is an eigenvalue of the perfectly insulated cylinder problem, that
is, the nonzero roots of J' (7& ) = 0, which appear in the eigenfunction

expansions of V, (x,r, 8) and Vo (x,r, 6) in (4. 31) and (4.61), respectively.
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We will now show that the n = s = 0 term in (6.1) is equivalent to the
far-field expansion (5. 1) and also gives rise to the algebraic terms in the
near-field expansion (5.2), and that the double sum in (6. 1) can be expanded
in the €— 0 limit to obtain the nonalgebraic part of the near-field expansion
(5.2)

B. Far-field limit of exact solution

~Vanlx|

The far-field expansion (5.1) has a factor e For compact-

ness, we define

Ble) =2 nle) (6. 3)
If we let
V(x, r) = e—BIXI Y(r) (6. 4)

and substitute (6.4) in (1.10) and (1.11) for V, we obtain the equation

T =0 6. 5)

and the boundary condition
W)+ ewt1) = 0 (6. 6)
dr

which must be satisfied by the r-dependent part of the far field, ¥/(r). The
solution to (6. 5) is

Y(r) = u(e) JO(BR) JO(BI‘) (6.7)

where we have utilized the requirement that ¥/ be invariant to an interchange

of r and R to obtain the R dependence. From (6.6), 3 must be a root of

BI,(B)
. - (6. 8)
JO

where we have used Jl(B) = - Jé(B). For the smallest root of (6.8), we see
that § — 0 in the limit of € — 0. All other roots of (6. 8) have finite limits.
Thus, in the far field, which is defined by taking the limit of the potential as

€ — 0 for a fixed value of xf(€), the other roots all give exponentially small
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contributions to V in comparison to the contribution of the smallest root.
This is also true of all the roots of (6.2) for n # 0. It explains why only a
single value of B survives in the far-field expansion. Comparing (6. 8) to
(6.2), we see that B = Boo-

We now find an expansion for this root, B, useful for small e. Using
18 .

the power series expansion of the Bessel functions around 8 = 0~ ° in (6. 8),
we find
1,2 1 .4 1 .6
C-—-Z—B +'1—6-B +§€B + ... (6.9)

From (6. 9) we see that we have —/2€ in the limit € — 0, and B8 can be
represented by an expansion of the form

B=vae 1+aesa@ 24y, (6.10)
Substituting (6.10) in (6. 9), collecting terms in each power of €, we evaluate

D@

a( . and thereby obtain the reversion of the series (6. 9),

B:\/2€(1—%e+§%62+...), (6.11)

which, as is no great surprise, is identical to the series for \/Z_X*/X
obtained from (3. 32). Thus, in the far field, the x-dependence of the poten-
tial as given by (5. 1) is identical to the x-dependence of then = s = 0 term of
(6.1). The remaining task is to show that the form of u (€) required to make
(6.7) equivalent to (5. 1) is just the form prescribed by the n = s = 0 term in

(6.2). That is, the expansion of

- J J
W(x™, r;e€) :21— 56261};' O(Br)ZO(BR) s (6.12)
T B4 Jo B)

the n = s = 0 term of the exact eigenfunction expansion, in powers of €, in
the limit € — 0, for fixed fx, is identical to (5.1). In anticipation of the

result we have designated this term W(X:F, r;e€)in (6.12).
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The procedure for showing that this is true is simply to substitute the
power series (6.11) for B in (6. 12), expand each term in (6.12) in a power

series and perform all indicated multiplications and divisions. We find:

B -1 . 3.,25 2
B2+52 .26 (1 g € +m€ e ) (6.13a)
_ € 3 2
JO(B)"‘ ‘-2-+T6'€ - e (6.13b)
3 2 2
JO(Br)=1—-€2—r+—1-66r—--- (6.13c)

€R ;3 2R2.... (6.13d)

and, substituting (6.13a - d) (6.12) and doing the indicated operations in
(6.12), we find that (6. 12) does indeed yield (5. 1).

Thus we have found that the far field may be represented either by
(6.12) and (6.11), or by (5.1) and (3. 32). The form of (6.12) is more
compact, and demonstrates that the r (and R) dependence is given by a zero-
order Bessel function, which is a consequence of the simple exponential
dependence on x. For small €, however, the expansion (5.1) is more useful,
and demonstrates the form of the potential more clearly. That is, the
potential is independent of r (and R) to lowest order in €; the dependence on
r (and R) appears only in higher-order terms.

C. Near-field limit of exact solution

We have just shown that the n = s = 0 term in (6. 1) is equivalent to the
far-field expansion (5.1). By taking the limit e— 0 with x fixed, as was done
in going from (3. 34) to (3. 35), we also find that then = s = 0 term in (6. 1)
yields the algebraic terms in the near-field expansion (5. 2).

We will now show that the e— 0, x fixed limit of the double sum in (6.1)

accounts correctly for the remainder of the near-field expansion (5.2). We

will obtain the near-field expansion in its double-sum form of (4.31) and (4.61).
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The procedure we use is to find the expansion in powers of € which
expresses an, the eigenvalue of the exact problem, in terms of Ans’ the
eigenvalue of the insulated cylinder problem, to substitute this expansion in
the double sum in (6.1), and then expand the double sum in powers of €.

We write (except for the case n = s = 0 which has already been

analyzed),

an - >kns ¥ Hns (6.14)

where we have Hpg — 0 in the limit € — 0. Writing the Taylor series for

the Bessel functions in (6.2) around an A where J'n()kns) = 0, we have

2

_ 1 n
Jn(an) N Jn(xns) T Hns Jn O‘ns) T (6.15a)
JE D=u IOl ) +ELZ am ) (6. 15b)
n''ns ns n ns 2"ns "n ns ‘
Using Bessel's equation,
J" (A)=—1J'(A)+ ﬁ- 1} J (W)
n A °n ‘AZ ] “n

and its first derivative,

> =

J1!1" (a) = - n 2

2 .
J" () +(n 1 ) Jr'l()\) '%J;{ (n)
py

we have, letting x =2x_ _, and J"(x_ ) =0,
ns n’ ns

2
" = n -
Jn O‘ns) = <—;2—— 1) Jn(kns} (6.16a)
ns
Jm (X )= 1 3n2 -11J O ) (6. 16b)
n ns Ans Az n'“ns .

ns

Substituting (6. 16a,b) in (6. 15a, b) we obtain

2 u2 2 ug
- (n~ _ ns 1 [3n" _ ns _ ... )
3B =T () {1 +(A2 1) oS ( 2 1) 8s } (6. 172)
: ns \A
ns ns
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2

‘)
' - n 1 (3n” Hns L
TnPns) = Ipng) Hng [(12— ] ) ] T—(T ] )"2"‘ * J (6.170)
ns \ A
ns ns

which, when substituted in (6.2) yield the equation

A 4 ) n® )L (3 \Hns, (6.18)
ns ' Mns™ns 2 A 2 2 )
>‘ns ns \A
ns
2
2 v
- [1+(I; -1) s J
A
ns
Letting
o o=aM ey 2 2 (6.19)
ns ns ns
in (6.18), we obtain
2
(1)
2 2 a 2
P T T P WUl () S By - WU PR BFPCVAE
2 ns ns ns ns\.2 2 2
b X A
ns ns ns
= - € +0(e?) (6.20)
Equating coefficients of each power of €,
A
e ns (6.21a)
ns 2 2
AL -n
ns
2 2
A AT +n
(2) _ _ 'mns ns
*hs 2 2 2.3° (6.21b)
(A~ _-n")
ns

so that, substituting (6.21a,b) in (6.19) and (6. 14), yields the relations
between the eigenvalues of the exact problem and the eigenvalues of the

insulated cylinder, 2 9

€ (Ans+n2)€
Pos s 1T 3 - 2_n23+"' (6.22)

AT 2(kns )
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Substituting (6.22) in the double sum in (6. 1), we obtain, finally,

-8, x| Te
1 % elnG o ane Jn(anr) n<an
on o ~ 2 2, 2 2
n=-co s=1 an n+e€ Jn(BnS)
- IX’ 1+ € e
© , 0 by Kz +n2 ns ( Kz —n2 )
-1y 1nOZ ns 1-¢ ns +.o.ee ns
oy L € N ) 9 2.2
n=-o s=1 A_ -n (X~ -n")
ns ns
d
J (A _r)J (A _R) €N dx {Jn(xnsr)JnmnsR)}
n'ms “n'"ns + 5 nsg ns 5
2
Jn(kns) Aas ™D Jn(hns)

) Ans I Xl Jn(hnsr)Jn()‘nsR)

__1__ i ein6 io Kns o 1-¢ ns
T2 L LT 2 ) 72
n=-o s=1 A~ -n J7(W ) A7 -n
ns n ns ns
d
>tl%ls+nZ ] t a_XnS {Jn(knsr)Jn(knsR)}
x| - , (6.23)
A ()C2 -n2) Jno‘nsrmn(knsR)
ns ' ‘ns

which is identical to the two double sums in V, and Vg appeaiﬂing in (4. 31)

and (4.61).
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APPENDIX A
The integral over k in (4. 30) can be replaced by an equivalent sum, by

considering the contour integral

d iz|x| | B I (zR)I ( )+260n =0 (A. 1)
zZ e W n Z n zYr 2 = .
C n Z ‘

where C is the contour in the z =k + iX plane shown in Figure 2. The contour
integral is zero because all the singularities of the integrand, which occur at
the zeroes of I;l(i)\) = - i_n‘lJ‘n(—A) along the imaginary axis are outside the
contour. Furthermore the integral along the circular arc vanishes as the
radius becomes infinite. Therefore, the integral in (4. 30) may be replaced

by the principal value of an integral along the imaginary axis plus the sum of

71 times the residues at the poles of the integrand along the imaginary axis;

2 1k|x| K (k) 26,

| R
©o {(F Iy 26
- Refid A x| o . n 7203 (“ar)J_(-AR)- —9n
n n 2
1
o ] GiTHI (oHY (]}
+ Re 7 Z Res A!Xl d)t }i 21QJ (-ar)J (-2R)
s=1 {1 J (- 2} n n -
an A=A

ns
(A.2)

where Ans is the s-th zero of J;l(k), excluding the zero which occurs at A = 0
when n # 0.
Noting that Re{i¥ (-0} = - 2 J_(-0'? in the integral in (A.2) and that

J'(-2_ ) = 01in the sum, (A.2) becomes
n ‘ns

%fdke_”xl J_(w)J_(XR) - Re 17”2 5 Res |eMx] —?}—((__%)J (Ar)J (AR)}
0 ; : s=1 - 7\=an
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—» — Kk

Figure 2. Contour for Converting k-Integral in (4.30) to a Sum over ?\ns .
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: ' - . : : . -
The Taylor series for Jn(x) around X Ans is, noting again that Jn()tns) 0,

J;’I(k) = ()\-lns) JH(AHS) oo

2
—_— n - TR
= (l-?\ns) (-——2— 1) Jn(xns) + (A. 4)

A
ns

and from the WronskianZ® of J_ () and Y_ (1) we obtain

' _ 2
ne! = Ty (4. 5)

ns“n ns
To evaluate the residues in (A. 3) we multiply by (i)x—ihns), substitute (A. 4)

and (A.5) in (A. 3), and let A = Kns' The result is that (A. 3) becomes

x|

R -Ansi J (x_r) (A _R)
o e r
gfdxe‘”xl 3,003 OR) + 7 ), oS 25— (AL6)
0 s=1 (l-‘-— )J‘?(k )
ns )LZ n''ns
ns

which may now be substituted for the integral in (4. 30). The first term in

(A.6) leads to

27r2 n=-o 2 0
P
1 -Alx in6
Hfd?te _Z e™ J_(Ar)J_(AR)
n=-o0
0
o0
- L d)\e_llxl J (>»\A'2+R2 - 2rR cos 8)
47 0
0
= - 'Z]}E(XZ + r2 + R2 - 2rR cos 9)—1/2

where we have used a known summation formulazl and a tabulated integral. 22
Equation (A. 7) exactly cancels the second term in (4. 30). Substituting (A.6)

in (4. 30), utilizing (A.7), therefore results in (4. 31).
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APPENDIX B

In this appendix, a second alternate form is developed for (4.30). The
linear term, - |x| /27, in the expressions for Vl’ has a discontinuous first
derivative at x = 0. Since 8V /9x must be continuous at x = 0 [except at the
point (0, R, 0)], the integral in (4. 30), or the sum in (4.31), must have a
discontinuous derivative of equal magnitude and opposite sign. By extracting
the free-space potential of a uniform disc source at x = 0, we obtain an
integral which has continuous derivatives everywhere inside the cylinder.

By adding and substracting the same quantity from the integrand in

(4. 30) we obtain

III L\ﬂ 8

1 inf i Ki’l(k) 26011
- —i e dk cos kx —I-‘—(B- In(kl")ln(kR) + 5
2T n=-o 0 n

) 1 0 11’19 A K' (k) 26011
" ; dk coskx ‘P‘TET I_(kr)L (kR) + —2 K, (k)T (kr)
0

2601’1
- — 1K ()T (k) - } (B. 1)

The integral in curly brackets can be treated as was the integral in

(A.2), using the same contour as in Figure 2, except that in the present case

there are no poles on the imaginary axis. The integral of the expression in

curly brackets in (B. 1) is

O

K, (k) 1
=264, | dkcos kx{ I,(kr) - 7}
0 k
Q0
. K, (k)
_ 1klx{ 1 1
=- 26, Re fdke k) - —
0 k
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_ Y 'Y I I U i 1
= - 25, Re fld?ue {555 [9(-0HY, (01T () + xz}
0

o J, (N
. -alx| 1
= 7r<5On fdke —— JO(Ar)

0

where we use Re in(—h) = -2J1(—>x) to obtain the last equality. 1

Noting that2 3

1 NG
fJO(AR)RdR -1,
0

and performing some further manipulations, (B.2) becomes,

1

o0
- ar e M=l [(Rar 7 ORI Or)
On 0 0
0 0

T S 1

9
e L g 3 im0 [ oMl [Rar s ORI 0w
On 27 o m m

0

m==e® 0 0

5 2T 1 o0
_ gnf d@[RdR fdke MXI JO(A\/rz +R2 - 2rR cos 6)
0 0 0
5 27 1
:_gﬂf a6 fRdR (x> + r? + R® - 2rR cos 6] /2
0 0

k4

where two previously used formulas2

(B.2)

(B. 3)

(B. 4)

2 were used to obtain the last two

equalities. Multiplying (B. 4) by the factor - 1/2 7r2 appearing in (B. 1) yields

the negative of the integral over the disc at x = 0, of the free-space Green's

- 2 -
function, (4w) 1 [X2 + r2 + R” - 2rR cos 6] 1/2, divided by the area of the

disec, .
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The expression (4. 30) for V1 may therefore be written as

_ lxl 1 2 2 2 -1/2
Vl(x,r,é)— 27{+Z7—T(x +r” + R - 2rR cos 6)
27 1
" f a6 fRdR (x2 + r2 + R2 - 2rR cos 8)-1/2
47 0 5

o . ~ I (kR) 26
___1_2. > elnd fdk coskxl:%}(k-) - 18“ K! (k)1 (k)
217 n=- D n
(B.5)

which decomposes the potential into a linear term, the free-space potential
of a unit point source, the free-space potential of a unit disc sink, and an
infinite sum of an infinite integral which has continuous derivatives every-
where in the interior of the cylinder. The distinction between (B. 5) and

(4. 30) is only in the n = 0 term.
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APPENDIX C
It is possible to obtain an alternate representation (analogous to (4. 31)
for Vl) for VS’ in terms of a double sum of Bessel functions. The k integral
in (4.47) can be expressed as an integral over the range -« <k < :

[ce}

I (kR)I (kr)
1
A k 1 (k)] k
C ikx |I (KR)I (kr)
J k [I;l(k)] k "

The integral in (C. 1) can be considered a portion of a contour integral
along the real axis in the complex z = k + iA plane. Closing the contour
along the large semicircle in the upper-half plane adds nothing to (C. 1)
since the integrand vanishes exponentially on the semicircle. The integral
can therefore be replaced by 27i times the sum of the residues at the second-
order poles of the integrand, which occur at the zeros of I;l(z) along the

imaginary axis, where
ran=-i e ™o =o (C.2)
n n n ) )

Asin (4. 31), the roots of (C.2) are denoted Ans’ where s runs from 1 to <o,

excluding the zeros at X = 0. To evaluate the residues we must determine

e {eiz ‘X| In(zr)ln(zR):]

2 1 2
z In () z = 1A
ns

d(in) 2

{ . (m_mnsﬂe-klx} In(iAr)In(iAR)}
5
A 1% (@) NN

ns

(C.3)

2 -a|x|
{11 (-2 )% : J_Or)I_(OR) }
dn ¥
27350 =
ns
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Writing the Taylor series for J;I(K) about A = >\ns’ we have

1 - 1 - 1 (BRI - 2 ¢ o
LI CV AN VENRPEPSRE 2= AL PSR [0 EO At (C. 4)

From Bessel's equation,

2
1" 14 _n =
Jn (x) + 5 JH(K) + (1 ?)Jn(k) =0,

and the vanishing of J' (X ), we have
n' ‘ns

2
1 = n__
J'n (kns) 5 1 Jn(KnS), (C.5)

A
ns

and differentiating Bessel's equation and setting A = Mg

2

_ 1 _3n
JH' (Ans) T L 2 Jn(kns) (C.6)
ns Ans

Substituting (C.5) and (C. 6) in (C. 4):

T = - )J () n’ 1)+ (1 - 3n” }j—@ + (C.7)
n’’ " ns’“n "ns ;2_ ;2—) 20 T :
ns ns ns

Finally, using (C.7) in (C. 3):

e [eizlxl In(zr)ln(zR)}

2 L 2
z In (z) zZ = 1A
ns

x| x|
e Jn(hr)Jn(AR)

. 0
= 1_
OAX 2 2 2 2 2 2 2
2.2 (n "an) (n —Ans)(hns_sn )O‘-Ans)
A Jn (Ans) 4 + 5
Ans >k][’lS k = >\I'IS
- |x|
ix J (X r)J (A _R)e B8 3n2 -2
___ns n'ns ""n'ns 242 IX‘ _ ns
I 22
n ns ns ns
.2 0
1>‘ns ﬁns {Jn(xnsr)Jn(AnsR)}
+
2 2 2 .2
Jn (AI’IS) (n _AHS)
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RE

ir e n +>\
ns . S x|} 300 rJ (v R)
(A ) ns n ns n ns

R 53
( an) Jn ns n _XI’IS
9
g Cr (J (A, O R)) (C. 8)

Substituting 27 times (C. 8) for the integral in (C. 1), and then

substituting the result in (4. 47) yields the alternate expression,
_Ix 2, 2 2 2
V3(X, r, 6) =4 (R tr —l—g-x)

2 —Anslxl

1 S inf @ nse
- 5= e
27 n=Z-°0 szl =22 )71 20 )
(n +AI215)
el [l 3,00g) 1,0y R)
n“ =" )
ns ns
3
+ o {3,007 Jn(anR)}J (C. 9)

for the O(e) term in the near field.
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APPENDIX D

When Ix! << 1, the sum in (4. 30) converges very slowly, and
actually diverges for x = 0. It is only a convenient representation for
calculating the potential for x £ 1. For Ix l << 1 it would therefore be pref-
erable to do a numerical evaluation of the integral in (4. 31) or (B. 5) to
determine the potential. However, there is a superior method for calculat-
ing the potential in this region near the source. We now develop a formula
for the potential, which contains a free parameter for adjusting the rate of
convergence. The method for obtaining this formula, which starts from the
integral representation of the potential (4. 30), is an extension of a method
used previously24 for a similar integral which did not contain a branch
point.

We consider the contour integral

1 K (2) 260 z
_2% dz cos zx m In(ZI‘) In(ZR) + 5 5 5 Tz <D. 1)
C n z (z“-t7) cos (_B—>

in which 8 and t are real parameters, 8 > 0 and cos(rmt/f8) =0, so that the
poles introduced are distinct. The integration path is shown in Figure 3.
The branch cut is taken between the origin and infinity somewhere in the
left-half plane. If ] x|<7r /B, the integrand along the semicircular arc is
exponentially small when the radius increases to infinity. Thereare no
singularities within the contour so the integral (D.1) is zero. Therefore
we know that the sum of the principal value of the integral (D.1) up the
imaginary axis, the residues on the real axis, and one-half times the

residues on the imaginary axis is zero.
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Figure 3. Contour for (D.1).
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First we consider the integral on the imaginary axis. We separate it
into a piece over - w < X =0, for which we take z = l )\] e—M/ , and a piece

over the range 0 =X < for which we take z = I )\’ el"r/z. The integral up

the imaginary axis is thus:

5= 1idX cosh Ax - I_(ixr)I_(ixR) -
2T G nom 22 | (-x2-t2)cosh (ZE&)
0 . .
; _/ K! (e /215 1]) 26, ix
—5—J idX cosh Ax . I (ixr)I (ixR) -
+2m) N EVY n'"A 2 |(hEef Cosh%
[« o] .
ﬁ—{dl cosh Ax ™ 1x In(-1>xr)1n(-1)\R)
- K (e 1712y i
e I (iar)I_ (ixR) > —
I e n n (7\2+t2) cosh (EB_ZL) (D. 2)
O o0
where we have used /dk ) = f dx £(-1) and have been careful to keep

track of the phase of the argument of Kn’ which has a branch point at z = 0.
Using the identities25
_no .
In(Z) =1 J (iz)

K (2) = 73" +1 [Jn(iz) +q Yn<ei”/2z)]
B n
TN = 0T

Yn(xei'"‘) = (-1)" [Yn(x) + 2i Jn(x)]

»
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(D. 2) becomes

~ 1 . m . . 1n
L f dx cosh(x x)(il> Jn(k);(jﬁm i J(e™ ) + in(e A):]
2r 4 2 M TR

ix J (Ar) J (AR)
(K +t ) cosh(ﬂ>

B

< J )+ Y00 - T )+ 1Y ()

=—l fd)\cosh)xx n 1 - 2 n
4 0 J n()&) J n(?\)
. XJn(Ar) Jn (AR)
(>\2+t2) cosh(%)
AJ_(ar) J_(AR)

=--% fdk cosh \x ; 5 n =~ (D. 3)

0 (X“+t7) cosh (?)

The residue at z = t is

K (t)I ( )I ( R) + 2601’1 cos tx
COS(F)

The residues at z = + D‘ns are evaluated in the same way as were the residues

leading to (A.6), except for the additional factor

+ Ix
— 'ns

A
2 2 ™ ns
\ nstt ) cosh( B )

and a factor cosh )\nsx instead of e

A x]
ns The sum of the two residues

at z =+ ix are
— ns

o8



K' (2)
(Z - 1>L —-—-—(—-)'I (Zl") I (ZR)

z cos (zx)

(z°-t )cos(%z) . = ein/z

K (z)
+ (z +1>\ ﬁ—YI (zr) I (zR)

z cos (zx)

2 .2 A .
(z"-t%)cos (—B—) e—ln/ZAnS

e <rt im
ns’ 2 Jn' (-X)

A cosh Ax
J (-xr) J_(-aR)
n n (A2+t2) cosh(m) N

B :KHS
T a0y o)

ns) T T J,0r) I OR) (A C05h Ax

(k +1 ) cosh(?—) Y

ns
d : imy\\
. (\- ?L )A cosh Ax — 4T (-0 + 1Y _(e™N\)
_ 17 Jn(; ) Jn(XR) dk{ % n J

A7+tT) ¢ osh('gk) 0

9—{J )+ iy A} ‘

A n 1 A=A
i ns

J (=2

[y

Using the same relations as we used in (D. 3), the bracketed expression

becomes

AR v ) & {0 v b 2y o)

“dx n + dx n N
d d JU )
'ﬁ Jl’l(k) d—Jn(X) n
Using (A. 4) and (A. 5) this becomes, as A=A
> 1
21 Y n()\) N 4i
J nb\ n2 2
(X=X )—2—— - DI )
N n'ns
ns

so thatthe sum of the two residues at z = + i?\ns is
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- 2 cosh (anx) Jh()kns r) Jn(XnSR) ©. 5)

2 | .2 T s\ [ n? 2
(AnSth )cos( ) -1} J n()ns)

B >k2
ns

The residue at z = (v+1/2)8 is

v K, [(w+3) Bl 26
A 1 1 On
_;L (-1) T TwF DA I [w+2)pr] I [ (w+3)BR] +(~——y+%>252
cos [(w+3)Bx ] w+3)B (D. 6)
(v+3)2p-t

Equating the negative of the integral up the imaginary axis, (D.3), to

the sum of the residue at z = t, (D. 4); one-half of the residues at z = iixns,

(D. 5), and the residues at z = (v+1/2)B, (D.6), we obtain

0

AJ_Or) J_(OR)
% fdx cosh ax —2 n
)

(A%+1%) cosh (%l)

K' (t) 26
Ty L) 1 (tR) + 0B | €08 tx
I n v n n t 2 cos (-BWI)
®  cosh (anx) Jn(hnsr) Jn(hns R)
) szjl 2, .2 ™ ns\fn? 2
- (Ans +t7) cosh ( g )(;——-—2 - l)Jn ()Lns)
ns
* v | K' [(w+3)B] 26
B Yy | 2 LIw+HBr]L [w+BR] + —28
=g I [(vH2)B] w+3)°B
cos [ (w+3) Bx] w+3) B
(1/+%)2 Bz—tz ( )
D.7
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The left-hand side of (D. 7) is analytic everywhere in the finite right-
half complex t-plane. So far we have shown that it equals the right-hand
side everywhere in this region, except perhaps at the points t = (u + 1/2)p;
u=0,1, 2,... Att=(u+ 1/2) B, however, the residue of the first term
on the right-hand side is minus the residue of thev = u term in the last sum
and hence the right-hand side is also analytic everywhere in the right-half
t-plane. By analytic continuation, (D.7) must therefore be valid even when
t=(u+ 1/2)8.

If we multiply (D.7) by 2cos(@ t/B) and integrate over t from 0 to o, the

first term on the right is just the integral we wish to evaluate. Using the

formula52
[<%) o0 1%
f cos(m t/B)dt _ 7 e—ﬂA/B, cosgt/ﬁ dt :ﬁ_q__ (D. 8)
2 2 2 ’ =
g A tt * 0 (v+-§—) 212 2vt 5
yields
- K' (1) 25 g
dt cos(tx) | 57~ L (tr)l_(tR) + O“J ) e /B
_{ [I;l(tj n n _Tt 5 {dk cosh(Xx) CoSEG TR Jn(Ar)Jn()\R)
—nAnS/B
o Jn(AnSr)Jn(anR) e cosh()\nsx)
T —Zl 2 5 cosh(ﬂknsfﬁ)
ST (%—1).} X )
sly n'ns
ns
(=] 1 gK' [(V +%—)B] 1 1 2601.1 2
+ B Z cos [(v+§)[3x] ——r-l——-—i—-——— In[(v +'2‘)BT]IH[(V+§)BR] +'———2'— '
" (i v )
(D.9)
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-2 in6
To obtain the potential V,(x, r, 6) we multiply (D.9) by (2m) = e, sum

over n and substitute in (4. 30). First, let us consider the result of doing

this to the first term on the right-hand side of (D.9). We have
o0
1 in6 e "
- .4_; ;oo e fd)t cosh Ax m Jn(M)Jn(m) (D- 10)
n 0
Noting that
cTME o 1
2 cosh{mA/f) 1+627r)\/3 1+e 2T A
o0 o0
-1 - Z (-1)™ o"2TmA/B Z (-1)™ o2mmx/B
m=0 m=1

(D.10) becomes

) oiné fdk{Q-A(XJrZﬂm/B)+e+>\(x'2”m/3):lJn(Ar)Jn(>\R)

n=-o 0

1 S m
= Z_ (-1)
m=1

:'4%7’( Z + Z)( 1™ (—2”m)2+r2+R2—2chos9]'l/2, (D. 11)

B

=-0 m-=1

where we have used (A.7) to obtain the right-hand side of (D. 11).
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Substituting (D. 9) in (4. 30), using the results (D. 10) and (D. 11), we

obtain
S 2 -1/2
1 2 2, .2
Vi, 0) = - %XEL T o m;_oo('ﬂm [(x- <3 +r®+ R-2rReos6]
1 oi eme o 2 cosh(hnsx) Jn(AnSr)Jn(AnSR)
T4 _ oTA__IP D
n=-« s=1 ns n- 9
1+e s (}\2 1) I (}‘ns)
ns
- _% _Z ein@ Z cos[(v+ %—)BX]
217 n=-o V=0
K! [(v+1/2)8] . . 2, )
. T [(V'*‘I/Z)B] In[(V'*‘?)Br] In{(V+-§)BR] + ﬁ__ . (D' 12)
n 1,9,2
l (U+'2-) B 5

(D.12) is an alternate to formulas (4. 30) and (4. 31), which is much
more suitable for calculating V1 near x = 0. The sum over v converges for
all x; the sum over m converges everywhere except the points (27m/3, R, 0),
when one term is infinite; the sum over s converges for lx|<27r /B. Thus
(D. 12) converges over twice the range of convergence of (D. 1), and although
its proof was limited to |x| <7 /B, by analytic continuation (D. 12) is valid
for |x|< 2m/B. Because the parameter B is arbitrary, we can choose it to
make the sum over s converge rapidly in the vicinity of x = 0. The rate of
convergence and the value of each sum in (D. 12) depend on 3, but the value
of (D. 12) is, of course, independent of S.

Similar to what was found by Bouwkamp and de Bruijn, 24 our sum over
v can be considered as a rectangular approximation to the integral in (4. 30),
with spacing 8. The sum over s (again similar to theirs) and the sum over
m excluding the m = 0 term (which has no counterpart in their analysis) then

represent the correction to this approximation. The sum over m is the
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potential of an infinite number of "image" point sources located at

x =1 2rm/B, with alternating sign. These are the images obtained by
reflecting the source at x = 0 in the planes x = t 7/8, then reflecting the
two images in these two planes, and so on.

In the limit 8 —0, the sum over v becomes the integral in (4. 30). In
this limit, the sum over s vanishes because of the 8277 /\ns B in the denomin-
ator. In addition, the m # 0 terms in the sum over m vanish as the images
retreat to infinity, leaving just the required point source at x = 0.

When 8 = ﬂ'/i x{ , the sum over s becomes identical to the sum in
(4.31) since in this case

2 coshO\nSx) i} e_knsl xf
2T )\nS]B

1+e

The sum over v vanishes because of the factor cos[(v+1/2) ] and the sum

over m becomes

o0
E (-l)m[xz(l—Zm)2+ 24 R2- 2rR cos 6]-1/2
m=-c0
which vanishes because the m = 1,2, 3,... terms cancel the m = 0,-1,-2,...

terms, respectively.
Noting that the sum over v of the algebraic term in the curly brackets

in (D. 12) is just the Fourier series representation of a periodic sawtooth

wave:
cos v+ 1/2)8x] _n2<1 EJ&L) x| < 2
_T _ , < , (D. 13)
v=0 (y+1/2)? : 7 l' B

we can simplify (D. 12) somewhat to



m=-o

Q0

), (-1)m[(

(:osh(kns

2Tm 2

9 -1/2
T) +r"+R"~2rRcosf

nsn IlS

x) A__J (X r)J ()& R)

lte

[(v+

21 06T (02252 )32

)

ns n ns

K! [(v+—)ﬁ]
)Bxl -—.2—__.—?'-—_.—
[+ 3)8]
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ABSTRACT

The potential is determined everywhere inside an infinitely long
cylindrical cell, for a point source of current at an arbitrary location in the
cell interior. The mathematical techniques used are applicable to a wide
variety of physical problems with mixed boundary conditions in cylindrical
geometry in which a small parameter appears in the boundary condition.

The model for the cell consists of a cylinder of radius a, with an interior

of conductivity 05 surrounded by a thin membrane of conductivity Sm

and thickness 6. The cell is bathed in a highly conducting external

medium which maintains the outer membrane surface at zero potential.

The problem is solved by obtaining asymptotic expansions for

the potential in terms of the small parameter € = omafci 6. One (inner or
near-field) expansion is valid in a region including the point source, and a
second (outer or far-field) expansion is valid in a region away from the
source. Usging the singular perturbation technique of matching, the near-
field and far-field expansions are made to coincide in an intermediate over-
lap region. A relatively simple form is obtained for the far-field expansion,
consisting of the known result of one-dimensional cable theory plus correction
terms. The near-field expansion is more complicated. However, its leading
term is shown to be merely a large constant potential proportioned to 1/Ne.
The higher-order terms are obtained as eigenfunction expansions, double
infinite sums of Bessel functions, or alternatively as single infinite sums of
infinite integrals of modified Bessel functions. In the latter case the singu-
larity, which is present at the location of the point source, appears separately
in a simple algebraic form. It is also shown that these expansions can be
obtained directly from the exact solution of the problem, but this procedure

does not yield the physical insight into the behavior for small ¢ as does the
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singular perturbation analysis. The double sum eigenfunction expansion is
useful for computing the potential except when the axial distance from the
source is small. In this case an alternative, rapidly converging series
representation is obtained consisting of a rectangular approximation to the
above integral, a double sum closely related to the above double sum, and

a sum of the free-space potentials of an infinite number of alternating image

sinks and sources located within the cylinder at uniform axial separation.
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