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ABSTRACT

The potential is found for all time, everywhere inside an infinitely
long cyliﬁdrical cell and in the external bathing medium for the case of a
point source of current switched on abruptly at t = 0. The solution is
expressed as a Fourier series in the azimuthal coordinate, and a Fourier
integral (of functions of modified Bessel functions of the radial coordinate)
in the longitudinal coordinate. The cell is modeled by an infinitely long
cylinder of radiug a and conductivity Gi’ surrounded by a membrane of thick-
ness 0, conductivity o and surface capacitance Cm’ bathed in a medium of con-
ductivity GO. For the physiologically interesting case of € = Gma/Oié << 1,
asymptotic expansions are obtained for the two special cases of t = @ and
0 = o, The expansions are simplified by introducing synthetic independent
variables. In the steady state, t = ® case, a uniform expansion is obtained
inside the cell consisting of Fourier-series-integral terms identical to earlier
results for the steady state, perfectly conducting exterior medium problem
(GO = o, t = =), and exponential integral terms which are new. Outside the
cell a similar expansion is obtained for radial distances much less than ae_l/z.
The relation of the expansion to a singular perturbation analysis is studied.
The results are generalized to the sinusoidal steady state. Using the same
synthetic longitudinal coordinate and a synthetic time variable which depends
on spatial variables, time and €, an asymptotic expansion is obtained for
times much longer than Cm a/oi and a perfectly conducting exterior (Oo = @),
The expansion contains complementary error functions and the first term, in the
€ + 0 1imit, reduces to the result of classical one—dimensional cable theory.

Formulas are developed giving the initial jump and time-rate—of-change of the

+ .
potential, useful for times much shorter than Cm a/Oi. For the t = 0 potential,



which is the solution of a Dirichlet problem, a rapidly converging summation
representation is found for calculating the potential near the source-point
singularity. It is shown that the full time-dependent potential problem

simplifies considerably for the case of equal inside and outside conductivities.
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I. INTRODUCTION

Analysis of the natural electrical activity of biological cells and
tissues requires measurement of linear electrical properties, particularly the
properties of membranes. The membrane of a cell is a structure of very high
impedance since its evolutionary significance is to define the cell, to isolate
the cell interior from the extracellular space, and to protect the life of the
cell from external disturbance. In order to study the eleétrical properties
of cells it is best to apply current so that it all must cross the structure
with properties of greatest interest, usually one of the membranes of the cell,
It is best then to apply current inside the cell so that it must flow across
the membrane to an electrode outside the cell. Micropipettes filled with con-
ductive salt solution can be inserted into cells to allow the application of
such current. These microelectrodes have tip diameters very much smaller than
the size of the cells and can therefore be represented for most purposes as
point sources. Much of our recent work has been devoted to an analysis of the
potential induced by current flow from such a microelectrode inserted into a
cell.l’2 This problem also specifies the fundamental mathematical solution
for the geometry and boundary conditions (the Green's function) and so the
solution to the problem can be used to generate the solution to problems
containing sources with other spatial distributions.

In order to analyze this experimental situation and to determine the
Green's function for the problem, we construct a mathematical and physical
model for the cell in which the interior is represented as an homogeneous
isotropic resistive material, and a boundary conditiom is written which is
appropriate for a thin structure with both resistive and capacitive properties.
A complete derivation of the model is given in Reference 1. The boundary
condition arises in many problems desCribing membranes — not just the elec-

trical problems we discuss, but also in diffusion, water flow, and other



problems — and so is named the "membrane boundary condition". The boundary
condition states that the normal component of the current density which flows
up to one side of the membrane is equal to the normal component of the current
density which flows from the other side of the membrane and is equal to the
current which crosses through the interior of the membrane. The membrane
current is modelled by a capacitive current in parallel with a resistive
current.l The boundary condition written in dimensionless form contains a sma.
parameter, since the membrane conductance is small; the small parameter € con-
tains the ratio of the conductivity of the membrane to that of the cell
interio:, and the dimensions of the cell and membrane.

In Section II we obtain the exact solution of the problem of a unit
point source of current switched on abruptly at t = 0, at an arbitrary point
inside an infinitely long cylindrical cell surrounded by a medium of finite
conductivity. The solution is in terms of Fourier series and transforms. Solv
ing the problem this way is straightforward, but leads to an intractable
representation which permits little physical understanding and is difficult
if not impractical to compute. We exploit the small parameter € of the bound-
ary condition to comnstruct simpler representations, in the form of asymptotic
expansions in that parameter. These expansions can be constructed by the
techniques of singular perturbation theory or by direct expansion of the exact
solution. Singular perturbation techniques have the advantage that they pro-
vide considerable physical insight; they are, however, often laborious to apply
and in some cases it is not clear how they can be applied at all. Expansion
of the exact solution by direct methods is often complicated, particularly if
the resulting expansion is nonuniform; that is, if the expansion is only valid
for certain domains of the spatial or temporal variables. In the case of non-
uniform expansions, it is a difficult and sometimes hopeless task to determine

the region of validity of the expansion. It is possible, however, in the



present case to modify the direct expansion method by applying a common trick
of singular perturbation theory, which is to handle nonuniform expansions by
introducing synthetic independent variables. These synthetic variables are
functions of both spatial and/or temporal coordinates as well as the small
parameter of the problem. We use this trick by assuming an appropriate form
of the synthetic variables, with free parameters, and rewriting the exact
solution in terms of these variables. An asymptotic expansion is then obtained
for the rewritten form of the exact solution, and with a proper choice of the
free parameters, the resulting expansion is uniform in the region of interest.
Each synthetic.variable describes a natural physical coordinate of the problem
in some region, and expansions written in terms of the appropriate synthetic
variable are uniform in this region.

In Section III we apply this procedure to the exact solution of the steady
state problem. In Section V we generalize it to the sinusoidal state. In
Section VI we do it for the transient problem, with the simplification of
infinite conductivity of the medium surrounding the cell.

It is possible to develop physical and physiological insight into the
meaning of each term of the asymptotic expansion: physical problems (equation,
boundary conditions and initial condition) can be constructed which specify each
term and which have obvious physiological meaning. In this way one can use
physical reasoning to guess the properties of related situations which have not
yet been analyzed. 1In Section IV we set up the sequence of singular perturbation
problems corresponding to the expansion obtained in Section III, taking advantage
of our a priori knowledge of the expansion. The.actual form of the expansion
(that is, the particular sequence of functions of €) and the form of the

synthetic variables are not easy to understand physically, and it may be



necessary to comstruct a self-contained singular perturbation treatment to pro-
vide this physical insight.

In this report we consider a number of situations of some complexity which
have resisted analysis up to now. We consider the cylindrical cell, taking into
account the resistive properties of the extracellular space and the capacitive
properties of the cell membrane. It proves possible to analyze the effects of
the resistive properties of the extracellular space in the steady-state and to
analyze the time dependence of the potential when the extracellular resistance
is neglected, but it has not been possible to include both effects simultaneously.
Nonetheless, we are able to derive physiologically useful results, showing the
range of vélidiﬁy of earlier more approximate treatments, and predicting a number
of experimentally observable phenomena. It does appear likely that an asymp-
totic expansion including time dependence can be constructed for the experi-
mentally accessible special case of equal inside and outside resistivities,
but we present only the exact solution for this case in Section VII.

Some interesting problems remain to be explored. Mathematically, it would
be worthwhile to try a formal singular perturbation analysis of the problem,
assuming no prior knowledge of the exact solution and its asymptotic behavior.
The method we use in Section VI (and also in Reference 2) to make weakly con-
vergent sums rapidly convergent seems to have promise as a general technique;
we hope its basis and applicability will be studied. Interesting physiological
problems include the treatment of other cell geometries, for example, the thin
plane cell which might represent the properties of syncitial tissues like
epithelia or heart or smooth muscle., Furthermore, it would be most useful to
analyze the effect of current flow in the extracellular space on the transmembrane
potential, for a number of configurations of the extracellular space. This
problem might give insight into how the central nervous system can function with
each cell electrically isolated from its.neighbor even though the cells are

so close together.



II. MATHEMATICAL PROBLEM AND ITS GENERAL SOLUTION USING INTEGRAL TRANSFORMS

The derivation of the equation and boundary conditions governing the elec-
trical potential for a point source inside a cell has been given in an earlier
report.l The interior of the cell is assumed to be electrically homogeneous
and isotropic, with conductivity Oi. It is bounded by a membrane with conduct-
ivity Om, and immersed in a bath of infinite extent with conductivity OO. The
earlier reportl considered the case of a finite-sized cell, and in particular
a spherical cell with a point source switched on abruptly at t = 0.

A subsequent report2 considered the case of an infinitely long cylindrical
cell, but only in the special case of a perfectly conducting external medium
and a resistive, but not capacitive, membrane. An asymptotic representation of
the potential inside the cell was found using singular perturbation theory,
which led directly to an expansion of the potential in powers of the small
parameter € = Gma/Oié (a2 = cylinder radius, 6 = membrane thickness), and also
by expanding the exact solution itself in powers of €.

In the present report, we study the potential in an infinitely long
cyliﬁdrical ceil and consider the more general case, allowing time dependence
of the potential as well as finite external conductivity. In the general case,
it seems more convenient to first obtain the exact solution for arbitrary €
and then expand tﬁe result in powers of €. Here we go dirgctly from an
integral representation of the potential to the asymptotic expansion, whereas
in the earlier report2 we went from an infinite summation representation to the
asymptotic expansion.

The problem for the potential, V, due to a point source turned on at
t = 0, inside an infinitely long cylindrical cell immersed in a conducting
medium of infinite extent, is specified by the following Poisson equation,

boundary conditions and initial conditions:
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The spatial variables x and r are made dimensionless by dividing the

physical variables x', r' by the radius, a, of the cylinder (i.e., x = x"/a,
r = r'/a). The coordinate system is shown in Figure 1, The point source of
current located at (O,R,O), where R < 1, is represented by the three-dimensional
delta function in (2.1), and is turned on abruptly at t = 0, represented by
the unit step function u(t) in (2.1). As shown in Reference 1, if the units of
u(t) are amperes, then the scaling for V is V = aOiV', where V' is the poten-
tial in volts.

The first equality in the boundary condition (2.2) expresses continuity
of the normal component of the curfent density crossing the membrane (more
precisely, a2 times the current density). The superscripts ~ and + represent
the conditions just inside (r = 1 ), and just outside (r = 1+) the membrane,
respectively. The ratio of interior to exterior conductivity is denoted by
a = Oi/do. The second equality in (2.2) relates the current crossing the
membrane to the electrical properties of the membrane, which is assumed to
have a capacitance Cm per unit area in addition to the conductivity Om. The
time variable is dimensionless and is related to the real time t' by

t = (Om/cmé)t'. For a derivation of (2.1) and (2.2) the reader is referred

g
to an earlier report.
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Coordinate System for Cylindrical Cell.



The boundary condition (2.3) assumes the zero reference for the potential
is at infinity. The initial condition (2.4) requires a finite time for the
membrane capacitance to accumulate charge, that is, (2.4) implies that a charge
and hence a potential difference V+ - V_ cannot appear acréss the capacitance
instantaneously since an infinite current density at t = 0, would be required.
Such infinite currents are not possible because of the finite conductivities
of the interior and exterior media.

Observing that V(x,r,0,t) must be an even function of x, we can solve for
the potential by first taking the Fourier cosine-transform in x of Equation

(2.1). Defining the Fourier cosine transform by

¢ (k,r,8,t) =f coskx V(x,r,6,t) dx (2.5)

e o)

the Fourier transform of (2.1) is

2

1 8/ L R YO
Lo () + R K% = - L 6z-r)6(8) (2.6)
Letting
2m 6
v_(k,r,t) =f e ¢(k,r,6,t) db (2.7)
0
equation (2.6) may be transformed to
oY 2
1 9 n 2 n 1
‘;'5; (T)— (k + ;—2-) l[)n = - T S(r-R) u(t) (2.8)

This is a doubly transformed representation of our original Poisson equation.
Using the transforms (2.5) and (2.7) on the boundary conditions (2.2) and (2.3)
and on the initial condition (2.4) for V(x,r,6,t), the corresponding conditions

on wn(k,r,t) are

- _n ___°n _  + - n .
A T (2.9)



wn(k,r,t) =0 at. r = (2.10)
(2.11)

; - +
Integrating (2.8) across the delta function, from r = R to r = R, shows that

there is a discontinuity in the derivative of wn given by

+ -
3y (k,R ,t) 3y (k,R ,t)
o o ’ ol s _ u(t)
or - or - 7R (2.12)

The inhomogeneous equation (2.8) may be replaced by the corresponding homog-
eneous equation plus the jump condition (2.12) on the r—derivative at r = R.

In each of the three'regions 0<r <R, R<r<1land 1< r <, the right
hand side of (2.8) is zero. The solution to this homoggneous equation in each
region is a linear combination of the modified Bessel functions In(kr) and
Kn(kr). The solution which is finite at r = 0 and which satisfies the boundary

condition (2.10) at r = © is of the form

an(t) In(kr) O<r<R
wn(k,r,t) = bn(t)In(kr) + cn(t)Kn(kr) R<r<1 (2.13)
dn(t) Kn(kr) 1<r<e
If the first derivative has the finite discontinuity (2.12) at r = R, wn
itself must be continuous, Thus, from (2.13),
[anm - bn(t)] I (R) = c_(£) K_(kR) (2.14)
Substituting the form (2.13) in the jump condition (2.12), we obtain
[b (©) - a () | T'GR) + c_(t) K'(R) = - 2O (2.15)
n n ., n n n kR

and substituting (2.13) in the r = 1 boundary condition (2.9), we obtain

the two equations
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(d +d ) K () - (cn+én) K (k) - (b +b ) I (k) (2.16)

where a dot denotes differentiation with respect to time.
Equations (2.14) - (2.16) are four equations which may be solved to obtain
the functional form of an(t), bn(t), cn(t) and dn(t). If we solve (2.14) for

a - bn, substitute the result in (2.15) and solve for c s using the Wronskian

al t = ‘_l_.
I GR) KI(kR) - K (kR) I'(kR) = - —=,

we obtain

Cn(t) = u(t) In(kR) (2.17)
and consequently
2 (e) = b (£) - u(t) K_(R) (2.18)

Substituting the result (2.17) for L in the first of Equations (2.16) we
obtain an expression for dn in terms of bn’

I'(k)
n
dn(t) = abn(t) §17E7~ + au(t) In(kR) (2.19)

Substituting (2,17, (2.18) and (2.19) in (2.13), we obtain an expression
for the double transform of the potential in terms of only a single unknown

function bn(t).

I (kr) K _(kR), O<r<R
b(t)I(kR)+u(t){n n
n n I_(kR) K_(kr), R<r<l
b (k,r,t) = n n , (2.20)
I' (k)

ab_(t) RIoN K (kr) + cu(t) I_(kR) K_(kr), 1<r<e,

i0



In order to obtain the potential V(x,r,0,t) we now need to determine the func-

tional form of bn(t) and then take the inverse transforms

1 - in6
¢ (k,1,8,t) = 77?,1;, v (k,r,t) e (2.21)
and
V(x,r,0,t) = %—{(~ coskx ¢(k,r,8,t) dk (2.22)
of (2.20).

Using (2.17) and (2.19) in the second of Equations (2.16) leads, after

some algebraic manipulation, to the following differential equation for bn'

Ky o
o s 217 GOK! (k)
n I_(KK'(k) - aI'(k)K (k)
n n n n

+ 1 bn(t)

"1 (k)xfr(ILiL)CR)K;IG:) [(G-DK ) - R @)u(e) + (@-1)K_®)8(t)
0 - - aIn(k)Kn(k) n € m } n
(2.23)
Equation (2.23) is of the form
Bn(c) +p b (c) = qu(t) +s &) (2.24)
for which the solution is
b_(£) = u(t) [§+ (s - -;}) e_pt] (2.25)

Using the appropriate form of p,q, and s which appear in (2.23), in the solution

(2.25), we find after more algebraic manipulation and use of the Wronskian of

I and K,
n n

11



u(t)I_ (kR)K' (k)
b _(t) = i n :
n kIé(k)K;(k) + EIn(k)Ké(k) - EaIn(k)Kn(k)

1 1
. kIn(k)Kn(k) e t
In(k)K‘ (k)-aI' (k)K (k) €
K;(k) e n n n
*fe(@-1)K (k)-kK'(k).- T T
n n In(k)Kn(k) - aIn(k)Kn(k)
(2.26
Noting that3’a )
@ - I (kr)K (kR), O<r<R
1 v/r in6
— dk kx
on? Jo °F 5% n;;;re L (RIK Cler),  Rer<d
= _15 f dk coskx KO (k/rz+R2—2chosﬁ)
2T
0
= XZ + r2 + R2 - 2rR cose)_l/2
A ( ’ (2.27)

we can take the inverse transforms (2.21) and (2.22) of (2.20), with bn(t)

given by (2.26).

Inside the cell, for 0 < r < 1, t > 0, the potential is

V(x,r,6,t) = Z%-<x2 + r2 + R2 - 2rR cosS)_l/2

0 * 1
+ 1 S eine./” dk coskx In(kr)ln(kR)Kn(k)
2 L [F’dl T '
ot e 0 kInKn + €InKn eaInKn
kI'K'
n o + € t
K; InK;—aI;Kn €
— —'—_——_—
£(a-1)K —kK) I KI-oT'K e

n
(2.28)

where for brevity we have deleted the argument of In and Kn whenever it is k.

12



For the outside region, 1 < r < «, t > 0, we substitute (2.26) in (2.20),

and do the following manipulations for the time independent part of wn:

Il

abn(m) K (kr) + al (kR) K (kr)

l\'

I'[e(-1)K ~kK']

n
kR) K
cLIn( ) I\n(kr) kI'K'+eI K'-eal'K + 1
nn nn nn

-€K I' + €I K'
n nn

ol (kR) R (kr)* {97 et Roeal 'R
nn nn o n

eQ
" In(kR)Kn(kr)

kI'K'+eI K'-eal'K
nn nn nn

The inverse transforms (2.21) and (2.22) of (2.20), with bn(t) given by (2.26)

yields, for the outside region, 1 < r < «, £t > 0,

@ K (kr)I (kR)
o inB n n
V(x,r,0,t) = —5 Z f dk coskx T T KT —eal 'K
nn nn nn

ZTT N=oc0
kI'K'
f——_mmn |t
'K’ I K'-aI'K €
__E___n_g_e nn o nm (2.29)

I K'-0I'K
nn nn

Equations (2.28) and (2.29) express the general solution for the potential
inside and outside the cylindrical cell, respectively, for a point source of
current inside the cell. In most of the remainder of this report, we will
consider the special case of small €, which is the case of greatest physiological
interest. In this case, great simplifications of Equations (2.28) and (2.29)
are obtained by studying the asymptotic behavior of these integrals in the

€ + 0 limit.

13



ITTI. STEADY STATE: ASYMPTOTIC EXPANSION FOR HIGH MEMBRANE RESISTANCE

In this section, we investigate the steady state behavior of the
potential for small €. Letting t = © in the formulas (2.28) and (2.29) for

the inside and outside potentials, respectively, we obtain for 0 < r < 1,

I

V(x,r,06) Z%(xz + r2 + R2 - 2rR cose)~l/2

1 - 1ned/.
n p; Z e di coskc I (kr) I_(kR)

n=-xx
- - 1 4
‘ [e(a l)Kn(k) kKn(k)] Kn(k)
kKI"(RKK'(k) + €I (k)K'(k) - eal' (k)K (k) (3.1)
n n n n n n
and for 1 < r < =
°° * K_(kr)I kR)
r
N . n n
VGx,T,0) = - =5 PIRS f dk coslax * y * LTTKTreT Ki-eal’® 3.2)
2T n=— non nn nn

where we have defined the steady state potential by V(x,r,8) = V(%x,r,0,).

A, Potential Inside the Cell

First, we will consider the inside potential, (3.1). It consists of an
algebraic term which is just the free-space potential of a unit point source
at (0,R,0), and a complicated term which is an infinite sum of integrals
(Fourier transforms). We would like now to study the small € behavior of
(3.1) by expanding the integrals in powers of €, and interchanging the order
of integration aﬁd summation over powers of €. This results in an asymptotic
representation of (3.1) in the € + 0 limit. The procedure is straightforward
for the integrands with n = O, In the n = 0 integrand, however, the expan-
sion in powers of € diverges at the lower limit of integration, k = 0, Hence

we must treat this case with special care.

15



We start by expanding the fraction appearing in the integrand in (3.1)

in powers of €, treating € as a small quantity. We find

=

1 - g(@1) . n
[E(Q—I)K - kK']K' K! k “K'
n nt n - __n, n
KI'K' + €1 K' - eal'K I ‘ K
o n n n nn n 1+ Ef_n _ o —2
k\I' K'
n n
K' El\n_itl
_ n k Ké Ié
= - —F
In 1+ E- In Kn
T\t ew
n n
k' [
=——I—Iil“ ].""2g ® Il K
n k“I'K! 1+&8(m_, B
Il Kl
n n
SO el K
= - l+'2———' I—E -I—'-—G.-I—(T + ... (3.3)
n k I;K; n n

The third equality in (3.3) follows using the Wronskian of In(k) and Kn(k).
For sufficiently small €, and & ~1, the expansion (3.3) converges for
k ¥#0. If k+ 0 and n = 0, we have for the expansion of the function in the

integrand in (3.1) whose inverse Fourier cosine transform we must calculate,

K! . c /L K 11
-I (kr)I (RR) = * |1+ —— {1 - (= -a = )|+ ...
n n In kZII,lKI,1 k In K

= E%_[ — %E-{l - g(l +-%)+ ...}] (3.4a)

16



which converges absolutely if € < (1 + a/n)_l, so that the expansion (3.3)

may be used even when k = 0 if n = 0.

we have
K' [
-I (kr)I (kR) — |1 + —=— |1 - £
0 0 I W21 k
- 00
2 VAS 2¢
vl B EEE s R S
k0 k2 k2 k2 J

which diverges at k = 0.

We can, however, get around this difficulty by determining an explicit
expression for the remainder, for any finite number of terms in (3.3).

will now do this for the first two terms in the expansion (3.3).

On the other hand, if k - 0 and n = 0O

bl

(3.4b)

The expansion (3.3) thus may not be used when n = 0.

We

We begin

by separating the fraction in the integrand of (3.1) into its € - 0 limit and

the remainder:

[e(a-DK - k&' ]k’ K' X'
n n n =___n+__n

KI'K' + €I K' - eal'K ' I
nn nn nn n n
K

i

n n

K'

=_—£_E‘

I'  k

€(0-1)K I' - kK'I'
1 n' n n' n

TITK ¥ el £ - eal'K
nn nn nn

- 1 - 1
E(KDIn InKn)

kKI'K' + €I K' - ealI'K
nn nn nn

n 1
kI'K' + €I K' - eaI'K
nn nn nn

We can continue this process, and now isolate the 0(g) term as well.

this, we write

\} 1
1 - 1 + 1 . kInKn _
kI'K' + €I K' - eal'K kI'K' kI'K' kI'K' + €I K' - gal'K
nn nn nn nn nn n n nn nn
' _ 1
1 1 OLInKn InKn

TR TR MK el ¥ - al'®
nn nn nn nn nn
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(3.5)

To do



and substitute in (3.5) to obtain an O(1) term, an O(g) term, and the

remainder:
— — t &l 1 2
[E(u l)Kn kKn] 1\n - EE., € _ € . 1 (3.6)
kI'K' + €I K' - gal'K 1! 2_42 2_,2 kI'K! .
nn nn nn n k In k In nn - e

al'k - I K
nn nn

Note that the first two terms in (3.6) are identical to the first two terms
in (3.3).

We could obviously continue this process indefinitely and thus obtain an
asymptotic expansion for V to any desired order im €, but we will stop at
this point aﬁd be content with an expansion correct to 0(€).

Substituting (3.6) in (3.1) we obtain an expression for the potential
inside the cylinder,

/2

V(x,r,8) = Z%v(xz + rz + R2 - 2rR <:os;6)—l

- -{’:2. Z o1ind f dk coskx T_(kr)T_(KR)
TT n:-oo 0

; € 62 1
I A T R S 5 S g (3.7
nn

n k I; k12
B3Ik - I K
nn nn

- €

It is not permissible to discard the last term in the square bracket in
(3.7), which at first glance appears to be of 0(82), because when n = 0 its
contribution to the integral is of lower order. We knew in advance, from the
divergence of (3.3) at n = 0, k = 0, that this must occur since the first two
terms [0(1) and O(e)] in this case do not correctly represent the integrand

in (3.1).

We now derive this point directly from (3.7). Note that as k > 0,
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-f‘z-k ifn=0
I'()K' (k) ~
n n
—-l ifn=20
2
l —
I' (KK (k) ~ g ko o=
n n
- %—k log k if n = 0

—%k—l if n= 0
I (KK' (k) ~
n n

xtifn=0
Consequently we have for the limiting behavior of the function whose

inverse Fourier cosine transform is to be calculated in (3.7), for n = O,

k>0,
Kr'1 € 62 1
I (kr)I (kR) - - + + * T 1
n n In k21.,2 k21'2 kInKn .
n ol'K_ - I K
n n n n
2
n 1 £ € 1+«
-—;rrLR Y _‘___+ —_— .
k>0 [ ]
2n 4n2 4n2 n + e(1+x)

The last term is 0(62) for n= 0, k + 0. Since kI'K' « (aI'K - 1I K')—l is
nn nn n n

also nonzero for any k > 0, the third term is 0(82) for all k and may be

omitted in the 0(€) calculation of the potential.

The corresponding term for n = 0, however, cannot be omitted. It is

T €1 |
I_(kr)I.(kR) -—Kl+ e __0. 1
0 0 T 7.2 7.2 KT
1 K12 K 1
1 1 + eI
I.K 0
L 1%0
+0.IK
o¥1
L _

in which each term diverges as k + O:
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Il(k) k=0

2
€ IO . 1 862
252 kI 0 402 4 26
I + €1
1 IlKO 0
1 + o T K
01

Retaining terms up to and including O(g€), the inside potential (3.7) becomes

V(x,r,8) = Z%-(xz + r2 + R2 - 2rR cose)_llz
1w dne [
- eln'J/. dk coskx I_(kr)I_(kR)
2 n n
27 n=-c 0
t
. fﬂ;_f R (3.8)
I k21;2 kzli kI
—_—— 4 eI
1K, 0
Lo ==
L 0K1 .

The first two terms in square brackets in the integrand are independent
of a and are the same terms found earlier2 for the o = 0 case. We would like
to evaluate the integral of the third term in the € + 0 limit, but we cannot,
of course, separate it from the first two terms and do the integrals separately
because of the singularities in each of the three terms when n = 0, k = 0. We
can, however, remove che.singularities by subtracting the divergent small-k
behavior from the first two terms and adding it back to the third term. Doing

this, (3.8) becomes
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V(x,r,0) = Z% (x2 + rz +-R2 - 2rR cose)_l/2
N © K' 28
i 0
S > eln6f dk coskx | =F I_(kr)I_(kR) + —=
2 I n n 2
2n n=-—o 0 n k
In(kr)ln(kR) 2 2 4
+ = 5 +(1—r—R——-2 éon
k 1’ . k
n
o €21 I_(kr)I,(kR)
1 0.0 0 2 € 2 2 4
+ — dk coskx . + —+4+ —{1-r-R 5
2 2.2 kI 2 2 K
21° g kI 1 Kk
1 + €1
I.K 0
1+ L0
IOK1
(3.9)
4 aee

and all integrands in (3.9) are well behaved at k = 0.

The first two terms in (3.9), the inverse distance term and the infinite
sum, appeared in identical form in Equations (5.2) and (5.3) of our earlier
report2 for the a = 0 case. In that report it was demonstrated that for large
X, the sum of these two terms was exponentially small. The rest of Equation
(5.3), which survives for fixed Ve x in the limit & —+ 0, was called the
"far-field potential," and designated by w(x*,r), where x© = YE x (1L - /8 + ces)
is the far field longitudinal variable in the a = 0 case. The last integral
in (3.9) will similarly be the only survivor in this limit, and is therefore
the generalization to arbitrary o of the earlier far-field result. Designat-—

ing the last term in (3.9) by U(x,r), we have
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2

@ €°1 I (kr)I.(kR)
1
UG,r) = == [ dk coskx |——0 + 20 w2y Efi 2.2 4
2 2.2 kI 2 2 3
2" % S WS S X
I.K 0
lig 20
To%y (3.10a)
2
© 2 l+—k——(r2+R2)+...
1 4e 4
=7 dk coskx " T3 5 3 7
2 S SN zc_.)+e( S
7\t + S|y lee ) el )+
+%+—§'(1—-r2-R2--—g)
k k k
(3.10b)
2,2 2
e 1+ E{Z - 2R afy+iog ’i)}+'12{-{-i:+a(Y+logE)}+...
=——2-f dk coskx 3 0 5 5 .
2o €l+l(- +—k—{l+l(- +a-13(y+log'—k—->}+...
[A 2 8 2 2
(3.10c)
2 k
® ( 2 2) € [1—4a(y+log —)]
-r - 2
=._1_2 dkcoskx2+€§rR + 5 + ...
27 0 k™ + 2¢ (k2+2€)
(3.104d)
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In (3.10b) we have replaced the modified Bessel functions by their expansions
around k = 0; Yy is Euler's constant; in (3.10c) we have combined the three
terms over a single denominator, and the asymptotic result of (3.10d) follows
since in the € + 0 limit the integral comes increasingly from the vicinity of
k = 0 and hence k2 may be treated as a small quantity.

That (3.10d) is the asymptotic representation of (3.10c) in the € = O
limit can be seen most easily by making the change of variable k2 =€, so

that (3.10c) becomes

2 2 2 2
o 1+ g3 iR _ a(‘y + l.’Loge + log —C—)( - C—)'i' C—}'*' 0(52)
1 yA 2 2 2 2 8
—— dr cos (Ve x) > 5 7 '
2nve “o 1 + %_ + E%.[l + %- + agz(y+%-log € + log %)}+ 0(62)

Expanding the expression in square brackets in ascending orders of € and
converting back to the original variable k, we obtain (3.104).

As k » 0, the denominator-in (3.10c) approaches €; it is 0(g) if
k < €l/2. Consequently, the integrand is large, O(E_l), if k < 61/2. In the
€ > 0 limit, the integrand becomes increasingly large in the vicinity of k = 0,
but this behavior is confined to an increasingly narrow range of k. As a
result the major contribution to the integral itself, in the € + 0 limit,

l/2).

comes from a range of k between zero and a small value which is O(e
Replacing the expression in square brackets in (3.10a) by its expansion
around k = O therefore leads to an asymptotic expansion for the integral.
This is Laplace's method for obtaining an asymptotic representation of an
integral.S From this discussion, it is clear that in making the expansion,

1/2

k and ¢ are to be treated as small quantities of the same order of
smallness.

It is now possible to evaluate the integral in (3.10), using tabulated

integrals. The result is
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U(x,r) = 8T -[‘_d -
4mv2e

2 + e(-r’-r%) o TXV2E | QY2E [e’x 2’5{(1 Y - 3 log %)(1 + x/E) + 1}
_ %~{ex 2€ <1-x ZE)Ei(—x 26)— e—x/fg (l+x/§€)lﬁ.<x¢§€)¥] (3.11)

To obtain (3.11) we have used6

/‘ cozs b2k dk 23% e—bB
0 R +k

. . 7
to obtain the first term and

J/ﬂiog ak cos bk Bdk  _ E-e—bs log af +~% [eb8 Ei(-bB)- e.—‘DB Ei(bB{]
A B2+k2 2

to find the second term, where Ei(£) is the exponential integral. Differenti-

. -1 . ; . )
ating B times the last integral with respect to B, we obtain

dk

d log ak cos bk = — 28 log ak cos bk
dB 2.2
0 B +k 0

dk
(2+82)°

L [_” ™" log a8 + 7 {ebB Ei(-bB) - e OF Ei(bB)}]

2

-2 [_“ e 10g aB +7 {ebs Ei(-bB) - e 0P Ei(bB)H

[g (b 10g ap + %) Py T b{ebB Ei(-bB) + e P Ei(bB) }]

so that

J/.log ak cos bk dk 5 = W3 [;-bB {logaB (1+bR) - l}
A (k2+82) 48

%{ebs (1-bB) Ei(-bR) — e P(1+b8) Ei(bB)} :,
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Letting

log a = - Zé + v - log 2
b = x
82 = 2¢

we obtain the last term in (3.11).

Regrouping the terms in (3.11) according to their order in €, we have

S

( ) 1 =X
U ,T)= e
2¢€ 21v'2¢e

v2e -x {5 2 2 Q € ~(1 Qa €)}
—8—11' e [—4— - r -R —Ct('Y—l) -3 log 5 + x(z‘ - Qay - 2 log 2
-5 e (1-%) Bi(-%) + 3 e (1) Ei(?oJ + ... (3.12)
where we have defined a far field coordinate by x = v2e€ x. It may be seen

that for large X, (i.e., if the product X * € is not small) the expansion

(3.12) is not asymptotic because the second term [0(51/2)] is not small com-

pared to the first term [O(Eml/2

)]. This nonuniformity for large X can be
removed by making a change of variable to

X=x (1L +ne) + ...)

I

il

X=X @ -n) +...) (3.13)
where n will be chosen to make (3.12) uniform in X. Expanding the expomential

integrals in a Taylor series around #* X, we have

E1(+5) = Ei(#X(1-nt...)) = Bi(£X) - ne'X + ... (3.14)

and doing the same for the exponentials in (3.12), we have

H K-k | X

e (1 £Xn+...) (3.15)
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Substituting (3.14) and (3.15) in (3.12), retaining terms up to and includ-
ing 0(81/2), and defining the far field potential W in terms of the far field

axial variable X we obtain

ue 2 x@-nt...), 1)
T WX,r) = 1 e_X(l+Xn)+ Zg% [é—k {2—— r2 - R2 - a(y-1) - %—-log %
2mv2¢

1 Q £
+X(Z— OLY—flog 5)2

X (1-X) Ei(=X)

NIR

+ -2 e 14x) Ei(X)] (3.16)

2
where we have used the first two terms of (3.15) in thé 0(8-1/2) term of
(3.12) but only require the leading term of (3.14) and (3.15) in the O(El/z)
term of (3.12). In order to make the coefficient of X e—X vanish in (3.16),
we choose

and, substituting in (3.13), X is given by

= _efl_xw_ o .E)
X = V2€ x [1 e(s 5 -7 log 5 )+ ...] (3.17)
and consequently W becomes
W= L e_X + 1%% [e—x{%-— r2—R2—a(Y—l) - %-log %—}
2mv2e
- %-ex(l—x) Ei(-X) + %-e"x(1+x) Ei(X{]

+ ... (3.18)

M *
If we let a = 0 in (3.17) we obtain X = V2 x (L - €/8 + ...) = V2 x ,

where x* is the far field variable used in the report:2 discussing the a = 0

case. Our present variable X incorporates the V2 factor and therefore sim-

plifies the formula (3.18) for the potential. Comparing with formula (5.1)
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JOf Reference 2, we see that (3.17) and (3.18) reduce to that formula when

a = 0. A second, and perhaps more important reason for redefining the far
field variable is that v2e x, the leading term in X, is a variable often used
in the physiological literature. Thus X is the direct generalization of the
common physiological variable to higher orders of €.

Using the asymptotic formula for the exponential integral

X
! !
Ei(X)w%(l+—}lz+2—:‘)_+—3—‘3+ >
X X

the combination of Ei (X) and Ei (-X) in (3.18) is, for large X:

e (1X) Ei(-X) - e ¥ (14X) Ei(X) ~ - %(2 + 2"2”3’ + ’*’25’ + ) (3.19)

X X
Thus, for sufficiently large X, the far field potential W will be domin-
ated by the exponential integral expression in the 0(81/2) term, rather than

/

by the leading O(E"l 2) term. This is not a nonuniformity in X, in the same
sense that the form (3.12) is nonuniform in %. It merely means that the far
field W is composed of two parts: an ordered sequence of exponential terms,
and an ordered sequence of exponential integral terms. The former begin with

6—1/2 1/2). If we continued the expansion (3.18) to

0( ), the latter with 0(e
higher order, we would expect the exponential integral terms to be of increas-
ing order in €, uniformly in X. Thus, each of the two ordered sequences is
uniform in X but one depends on X exponentially, the other as an exponential

integral.

For X of 0(1), the far field decays exponentially. However, if

%e_x << g (3.20)

the exponential integral terms dominate and according to (3.19) the decay

becomes algebraic, inversely proportional to the axial distance variable X.
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In a typical physiological case, say € = 10—3, o = 0.3, the two sides of

(3.20) are equal for X = 10. For X = 5 the left hand side is 100 times the
right hand side. At this point the potential (3.18) has decreased to 7 x 10“3
times its X = 0 maximum. Consequently, at any position where the exponential
integral is of significant magnitude relative to the exponential, the total
potential is so small as to be of no experimental significance, and we con-
clude that the exponential integral terms are of no practical importance in
the interior of the cell for typical experimental situations. We will see
below that the situation is somewhat different outside the cell, where there

1/

is no 0(e” 2) term, and the exponential integral can be the dominant term.
In addition, in Section V we will discuss the sinusoidal steady state, in
which case a complex "effective" € can be defined which is a function of
frequency, and whose magnitude can be much greater than 10—3. In this case
the exponential integral can be important inside the cell.

Using the definition (3.16) of W and (3.10) of U, we can substitute the

expression (3.18) for W in (3.9) to obtain an asymptotic representation of

the potential which is valid for all x. It is

1 ~-X 1 -
V(x,xr,0) = e + ZE—(x2+ r2+ RZ— 2rR cosB) 1/2
2m/2¢
@ * K! 26
1
- — Z ein@f dk coskx __r'_1_ I (kr)I (kR) + —On
2 2 I n n 2
i N=-—00 0 n k
av2e log € =X
16w
v2e -X[5 2 2 a a X
+ —8‘7? e {Z - r - R'- O.(Y-—l) + 'E lOg 2 }— 7 e (1—X) Ei(—X)

+ %e_x (14X) Ei(X)

©

_ €2 E eine fdk cozkx
0 k

217 pe—o

I (kr)I_(kR) [
n n 2 2 4 .
+\l—r R~ ——k2> GOn S

1'2
n

”g (3.21)



with X related to x by (3.17). In (3.21) we have arranged the terms in

-1/2 /2 1/2

), 0(1), 0™ ? 10g €), 0%y, 0(e),...].

ascending order of € [viz., O(e
This is the generalization to arbitrary @ of Equation (5.3) of Reference 2.

—1/2), term, as well as each term whose

It is noteworthy that the leading, 0O(e
order is an integer power of €, are independent of a. There is no effect of
the external medium conductivity until the third term in the expansion.

The two terms in (3.21) which are infinite sums of inverse Fourier trans-
forms are identical to the corresponding terms in Equation (5.3) of Reference
2. The sum in the O(1) terms can be computed most efficiently for x > 0.5 by
converting the integral to the sum given in Equation (4.31) of Reference 2, or,
for x < 0.5, to the more complicated sums given in Equation (D.14) of Reference
2. The sum in the O(g) term can be computed, for any x, by converting the
integrals into the sums given in Equation (C.9) of Reference 2.

We would now like to obtain an asymptotic representation of the inside
potential which is useful in the "near field." More precisely, we seek an
expansion arranged in ascending orders of € when x is held fixed as € ~ O
[rather than holding X fixed as € -+ 0, as was done in (3.18)]. Using (3.17)
to express X, the far field variable, in terms of x, the near field variable,
the Taylor expansion of the exponential yields

3
e-—X=1_ Zex[l—e %——%X—%log%>]+ex2+(2€)3/2 }6(—+0(€2 log €)

and the Taylor expansion of the exponential integral yields

- 3
e X(@4x) E1() - X (1-X) Ei(-X) = 2/7 x + 0(e>'? 10g €).
Substituting these expansions in (3.21) and arranging the result in ascending

orders of €, the near field expansion of the inside potential is
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V(x,r,6) =
2m/2e
. -1/2
- %? + Z%—(x2+ r2+ Rz— 2rR cosB) /
1 j;: elne J/' dk coskx * K' I (kr)I (kR) + 260n
-— —— '
_ av2e log €
lém
V2¢e
—5% % —:r2— R2+ 2x2—a(Y—l- %'108 2)
£x 2 2. 2
4W(l T-R+3x )_ ) 2:
27 Nn=—00
coskx In<kr)In(kR) 2 2 4
. e 1-I‘—R—’—— 6
j[ 2 2 2 On
I k
0 n
. (3.22)

Equation (3.22) is the generalization of Equation (5.2) of Reference 2 to
arbitrary a. As in that case, it is not uniform in X, but fails to be
asymptotic for large x.

B. Potential Outside the Cell

We now return to Equation (3.2) for the outside potential and proceed to
obtain an asymptotic expansion in powers of €, using the same approach as was
just applied to Equation (3.1). Separating the integrand into its € + 0 limit
Plus the remainder [see the equation preceding (3.6)], we obtain from (3.2),

for the potential in the region 1 < r < &,

[e ] (oo}
v ( 6) = £Q in6 dk Kn(kr)ln(kR) €
o5 == ) e 2 e T |t T
217 p=-w 0 k n n _nn____ ¢
oaI'K -T K'
nn nn
(3.23)
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As we have found above when considering the corresponding terms in
(3.6) — (3.8), the second term in the square brackets in the (3.23) integrand

is 0(¢) unless n = 0, k” < € , in which case it is 0(1) and must be included

in our calculation of V. For n = 0, the integrand in (3.23) is

KO(kr)IO(kR)

_ _cos kx . i1 - €

k2 Il(k)Kl(k) kIlhl Y

aIlKO+IOI\l

_coskx | KpUmIoUR) L 1o

kz Il(k)Kle) kIl

el + ————
0 IlKO
l+a

I

kr)
cosin | KoGOI OB 2¢ (y + log 5X

= - - + S (3.24)
kz Il(k)hl(k) e + 2

.
2

where we have expanded the Bessel functions around k = 0 and deleted terms

of higher ordgr than O(g) or O(kz) to obtain the last term in the square
brackets. Note that since there is an overall factor of € multiplying (3;2),
we need to retain one less order of € or kz than we did for the corresponding
step for dealing with the potential inside the cell. Substituting (3.24) in
(3.23), we obtain

e e]
V(x,r,6) = ~ EEZ :E: elneJ/. Q% coskx

I—Kn(kr)In (KR) (
2 " I.Kt'l(k)xr'l(k) lzc_

~o

(3.25)
Once again, we wish to separate this integral into two parts but

cannot without first removing the singularities at k = 0. Doing this, we

obtain
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e . *® K (kr)I (kR)
£Q inB dk n n ( kr
v = - £ - XL
(x,r,6) 5 :Z: e ’/f 5 coskx TTOOKT () 2(y + log 3 )énO
2 n=-— 0 k n n
ca @ Y + log,kg
- Jf dk coskx —5————— + ... (3.26)
m 0 k™ + 2¢

With this separation, the first term is clearly 0(€) since all e€-dependence
has been removed from the integrand. The second term, however, is 0(81/2) as
will be shown below. The term log (kr/2), which originates from the expansion
of KO (kr) in (3.24) restricts the validity of our asymptotic expansion to
values of r which are not too large. In order for the first term of the

expansion to approximate K. (kr) adequately, the product kr/2 must be small.
xp P e K, q P

2
Since the last integral in (3.26) originates mostly from the range 0 < k < El/

(the integrand being negligible for k > > ¢ 1/2), if r satisfies the condition

1 <r << 6-1/2,

kr/2 will be small for values of k contributing significantly to the integrand.
Our asymptotic expansion will only be valid for this restricted range of r,
which is adequate for essentially all experimental situations. Letting

Y + log %

2

log a
2¢ = B
in the tabulated integral7 used to obtain (3.11), the last integral in (3.26)

can be evaluated:

bl Y + log %E
f dk coskx - B
k7 + 2¢

0

= 2e 2e x (y + log Vv %-r) + eVEE x Ei(—/ig x)— e—V}E_é x Ei( 2e x)
4V2e
(3.27)
Substituting (3.27) in (3.26), replacing v2€ x with X, which as a

consequence of (3.14), (3.15), and (3.17) is correct to 0(e), we obtain for
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the outside potential the asymptotic representation uniform in x, for the

radial variable in the range 1 < r << 8_1/2,

V(x,r,8) = a\/g_[Ze_X (Y + log Vv —E-r>+ eXEi(—X) - e-XEi(X)]

T4 2
ol zz: ind ” dk coskx Kn(kr)ln(kR) -2 + lo RE—) S
o2 e J/. 2 s ) (Y €27/ °no
T fe—w 0 k n n
+ ... (3.28)
1/2

Because of the absence from (3.28) of a term of 0(e ), as was present

in (3.18) for the inside potential, the exponential integral is relatively
more important in the expansion of the outside potential. 1In the first line
of (3.28), the exponential integral terms dominate the exponential for values

of X greater than about 1.5 if € = 10_3. It should be remembered that since

-1
the 0(e /2) and O0(l) terms are missing from (3.28), the outside potential is

much smaller than the inside potential. Compared to the inside potential,
the exponential integral terms would again be less important.

Substituting V2€ x for X in (3.28) and expanding in the limit € + 0, we
have

e_X =1-+V/2ex + e

2X log X - 2(1 - v) X + ...

L Ei(-X) - RS Ei (X)

V2e x log € + 2V2e x (log x + %—log 241-7)+ ...
which, when substituted in (3.28) leads to the near field expansion of ‘the

outside potential,
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V(x,r,8) = - -ﬁ V2e log €

o 1 r2
- ————-‘77&:(*{+—-log———)

4 2 2
- 2XE 2 ae N ind . coskx
o (l - 2"{+10g jr—)— ""“5‘ Z e f dk 7
27T p=-x 0 k
K (kr)I (kR)
n n kr
_ =18
TP (0K (k) 2<Y * tog 3 ) n0
n n
+ ... (3.29)
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IV. RELATION OF THE STEADY STATE EXPANSION TO A SINGULAR PERTURBATION ANALYSIS

A. Far Field Potential

It is interesting to see how the present problem might be approached
using singular perturbation theory. The problem specified by (2.1) - (2.4)
can be decomposed into a sequence of problems each with physical meaning, cor-
responding to a single term in the expansion of the potential in orders of €.
It will then be seen that each term in the expansion obtained in Section III
is the solution to one of these physical problems.

We consider the far field limit first. The singular perturbation analysis
begins by expanding the far field potential in orders of €, the particular
orders of € being chosen here because they appear in the exact solution. In
an a priori analysis using singular perturbation techniques, it would be
necessary to show that this is the appropriate expansion and to consider the
physical origin of the log € terms. Using the knowledge we have already gained
from the exact solution, however, we can write the expansion:

1/2 1/2

1/2

WX,r) = € WO(X,r) + € logeW X,r) + ¢ Wl(X,r)

1/2

3/2
+ € log€w3/2

X,r) + 63/2W2(X,r) + ... (4.1)
The terms with integer subscripts correspond to the notation introduced in
Reference 2 for the far field potential. The intermediate terms containing a
log € were not present in the a = 0 case of Reference 2 and we use the half-
odd integer subscript to indicate between which two integer terms the term
falls. The far field coordinate X is related to the coordinate x by the
transformation

X = ne)x

where n(e) is given below in (4.8).
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The Equation (2.1) and the boundary condition (2.2) can then be broken

down into the sequence of equations and boundary conditions

2
Vt WO =0
AW~ oW
o0_1-0 _
3r o ar =0 (4.3)
2
Vt wl/z = Q (4.4)
- +
W 1 W, L
3¢ a dar B
2
rv?‘w = Zawo (
T T TS 4,5
t 1 52 )
- +
L 3u) ) 13 .
or o dr 0 0
2 2
3w oW
(2 0 1/2
Vo w -40y —_— -2 ——= (4.6)
t 3/2 1/2 EXZ 8X2
+
oW
_1 " 73/2  _+ o
My =@ 3 = Y10 " Yo
, azwl 32w0
\Y% w2 =« 2 5 - 4al —5 4.7
8X oX
- +
T o oar 1 1

where Vi denotes the transverse Laplacian and n(e) in (4.2) has been taken

equal to
ne) = Ve (1 +ap,, € log e+ e+ .o.). (4.8)
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If the solutions (3.18) and (3.28) are used for the far field potential
inside and outside the cell, respectively, and are decomposed in the manner

indicated in (4.1), the result inside the cell is:

V2 =X
WO = —H e (4.9)
av2 X
wl/Z =~ Jer © (4.10)
2 {5 | -x
wl = g IZ-- r - R —Q(Y -1 -+ log 2) e
-2t a0 B0 4 — X @ Ei(X)] (4.11)
and, outside the cell:
= .12
WO 0 (4.12)
W _ a2 X
1/2°- 7 78w ©
a’2 -X
Wl = - 8ﬂ!}2¥ —log 2 +21logr)e

+ et Ei(=X) - X Ei(X{] (4.14)

By direct substitution of (4.9) - (4.14), it may be verified that these
expressions are solutions of the problems (4.3) - (4.5). 1In order to verify
that (4.6) and (4.7) are satisfied [with the coefficients al/Z and ay given
in (3.17)], one would have to obtain W3/2 and WZ'

In a self-contained singular perturbation analysis, the far field poten-
tials (4.9) ~ (4.14) could be found only after matching to the near field and
repeated use of the divergence theorem as was done in Reference 2. Here we
are just verifying that the solutions obtained in Section III satisfy the

singular perturbation problems.
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B. Physical Interpretation of the Far Field

The boundary conditions in (4.3) and (4.4) are homogeneous Neumann condi-

1/2

tions on both sides of the membrane. Consequently to O(E—l/ ) and 0(e log €),

no current crosses the membrane. The solutions (4.9), (4.10), (4.12) and (4.13)

for W, and W indicate current flow only in the longitudinal direction. The

0 1/2

potential W, inside the cell has simple exponential decay in the longitudinal

0
direction. This is the classical result of one~dimensional cable theory,
except for the higher order corrections in the spatial variable X. To Jowest

order in €, however, X is equal to V2€ x, and to this order, WO is precisely

the classical result.
-1/2 . . .
To lowest order, 0O(€ ), the outside potential WO’ is zero so that the

inside of the cell is raised to a large potential relative to the outside. The

-1/2

potential difference across the membrane in the 0(€ ) term is the driving

force, Wg - wa which forces a current to flow across the membrane in the prob-
lem (4.5) for the 0(61/2) term.

Substituting the potential WO from (4.9) and (4.12) in the boundary

condition (4.5) results in the boundary condition for Wl,

- +
Bwl 3Wl ~ ﬁ e_X
or or 4w

- X
a
In order to satisfy this boundary condition, which requires current flow
across the membrane, an r-dependence appears in the potential Wl given by
(4.11) and (4.14).
Continﬁing the process further, it is seen that for a higher order

component of the potential, Wv, the driving force is the transmembrane

+ —-—
otential, W - W two orders earlier.
P > Wo_1 -1’ o rlier
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In the far field potential expansion (4.1) and (4.9) - (4.14), the lead-
ing term, WO, is independent of «. The o dependence first appears in the

-+

second, W term., The transmembrane potential wl/2 - WI/Z’ also has an ¢

1/2°
dependence which first appears in this order.

It should be noticed that there is a jump by a factor of 2 in the value
of wl/z upon crossing the membrane. This factor of 2 might seem to be an
error and so we have carefully checked this result physically and mathematic-
ally. There seems to be no physical reason why this jump should occur; how-
ever, there is also no physical reason why wl/2 should be continuous. Indeed,
if Wl/2 were continuous, there would be no membrane current in the W3/2 prob-
lem, which seems unlikely.

The mathematical derivation of the W1/2 term shows the origin of the
jump in Wi/z at the membrane. Although wl/2 appears separately in (4.13), it
originates from the same term as does wl [see steps leading to (3.28)], and
Wl in (4.14) could not be changed by a factor of 2 without violating the
boundary condition of continuity of current in (4.5). Finally, if we exam-
ine the other terms we see that the jumps in the values of WO or Wl across
the membrane are much more significant than the jump in Wl/Z' If we are
content with the jump in the WO and Wl, terms, perhaps we should also be

content with the jump in wl/Z'

C. Near Field Potential

We now consider the singular perturbation analysis of the near field.
We will show that the individual terms in the expansions of the potential in
the near field, (3.22) and (3.29), satisfy the equations and boundary con-

ditions in a sequence of near field problems.



Expanding the near field in powers of g, we write

1/2 1/2

V(x,r,8) = € Vo (x,7,8) + ¥, Gx,1,8)+ € log € V., (x,r,8)

3/2

+ 61/2 Vz(x,r,B) + €V3(x,r,8) + ... (4.15)

Once again, the orders of € which appear in the expansion (4.15) are
motivated by our prior knowledge of the expansion of the exact solution.

The sequence of equations and boundary conditions is

2
VVO-O
~ +
oV v
0 1°%0 _
% “as O (4-16)
Vo 1 oas x o ©, r <1
2m/2¢e
VO +0as x>, r>1
2 1
Vv, = - 28 S(x-R) §(8)
r
- +
JAETN Skl
T o or 4.17)
Vl T as Xx e, r <1
‘Vl +0as x o, r>1
2
v V3/2 0
~ +
3V3/2 £-8V3/2 o
or a dr B
(4.18)
a
> -
V3/2 T6r 25 ¥ + o ¢ <1
a2
V3/2 -~ gy a8 X > r > 1
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v V2 =0
8V2 ) l_aVZ ) V+ -
ar adr 0 0 (4.19)
2
V2 *’!C;T(-g-— rz— R2+ 2x2 -afly -1 - %*log 2]) as x + o, r <1
' 2
V2+—i§(y+—log§)asx*m r >1
2
v V3 =0
- +
EXE = l.EXE - v o vT
r Q or 1 1
(4.20)
X 2 2 2 2
V3 > R <r + R -1 - S»x ) as x > ¢ <1
V3 »—5__(2Y -1 - log __) as x + o, r > 1
The boundary conditions at x + « in (4.16) - (4.20) are made to conform

to the known solutions (3.22) and (3.29), or, in a self-contained singular

perturbation analysis, would be found by matching the near field to the far

field (4.9)- (4.14).

Decomposing the near field potential (3.22) and (3.29) according to the

prescription of (4.15) yields, inside the cell:

V2
V0 T 4T
v, o= - 5%—-+ Z%—-(x2+ 2+ RZ - 2R cose> -1/2

1 o [ K
1 X in f .| o
5 L, e - dk coskx I In(kr)In(kR) +
v . _ w2
3/2 ° T 16w
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k

On
2

J

(4,21)

(4.22)

(4.23)



1
T2 e (s ) 2

2 8w} 4

x 2 2 2 2 1 in6 L1

V3 = - ZF_(I - r - R,+»§~x ) - ——E-:Z: e J/ﬁ dk coskx 5

n=—o 0 k

I, (kr)K (kR) 2 2 4
. 5 + (l - -R-— 60n
I' k
and outside the cell: n (4.25
Vg =0 (4.26
Vp =0 (4.27
v _ av2 .
3/2° 7 T&n (4.28
_ av'2 1 1 r2 h
Vo = =y + 5 log 5— (4.29;
ax = in8 coskx
v3_-~2?(1~2y+10g ) Z f dic S22
n=-~ k
K (kr)1 (kRr)
n n kr
.[ I'K‘ - Z(Y + log T) 61’10] (4.30)
o n

Direct substitution of the potentials (4.21) - (4.30) in the sequence
of problems (4.16) - (4.20) demonstrates that the potentials do indeed
satisfy the respective problems.

D. Physical Interpretation of the Near Field

It may be seen from (4.21) - (4.30) that the first two orders of the
solution, 0(61/2) in (4.21) and (4.26) and 0(1) in (4.22) and (4.27), are
independent of a, the ratio of conductivities, The resﬁlts are therefore
identical to the a = 0 results of Reference 2, up to O(1). To this order,
the cylindfical cell behaves precisely as if the outside medium were a per—
fect conductor; that is to 0(1), the entire outside surface of the membrane

is at zero potential. The physical interpretation of the first two problems,
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and (4.17) for V is therefore identical to that in Reference 2

(4.16) for V 10

0
for the a = 0 case.

/

2
) problem (4.16) for V., contains no source and has no current

-1
The 0(e 0

crossing the membrane. The solution, (4.21) and (4.26), is a constant inside
and zero potential outside the cell. There is no current flow in this order.

The 0(1) problem for V (4.17), contains the source, but again, the bound-

1’
ary condition at r = 1 requires no current crossing the membrane. Since there
is a source, but no current leaves the cell, all the current must flow toward
x = * ©, Consequently, there must be a term in the potential (4.22) inside
the cell which decreases linearly with increasing x. Since no current flows
outside the cell, the potential (4.27) outside must be zero.

The O(El/2 log €) problem (4.18) for V is similar to the problem for

3/2°
VO' There is no source, no current crossing the membrane, and the potential
approaches a constant as x * £ ® for both r > 1 and r < 1. The solution,
(4.23) and (4.28), is a constant potential inside, and a different comnstant
potential (twice as large) outside.

In all subsequent problems there is no source, but there is a current
crossing the membrane equal to the transmembrane potential in an earlier

1/2 .

problem. In the O(e ) problem (4.19) for V2, the current crossing the mem-

1/2

brane is the transmembrane potential in the O(e ') problem. Substituting
(4.21) and (4.26) in the r = 1 boundary condition in (4.19), the boundary

condition becomes

- +
v, vy,
4

-1 -
dr a -

or

’

. . 1/2
so that there is a constant current crossing the membrane in the O0(e / ) prob-

lem.
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Similarly, substituting (4.22) and (4.27) in the r = 1 boundary condition
in the 0(e) problem (4.20) for vy, we obtain a current crossing the membrane,
which is a2 function of x.

It is interesting to compare the results in the near field given by
(4.21) - (4.30) with the results of a similar analysis of the spherical cell
in Reference 1. In the sphere, the leading term is also a finite constant
inside and zero outside, but the inside potential is O(E—l) rather than
8—1/2

0( ). In the sphere, the second, 0(l) term in the inside potential con-

tains an additive constant equal to a (in nondimensional units). The second

term immediately outside the membrane, at r = 1+, is a. Consequently, in the

sphere, as in the cylinder, the second term in the transmembrane potential
expansion is independent of a. In both the spherical and cylindrical cell,
then, the transmembrane potential is independent of o until the third term.
The significant difference, however, is that the comsecutive terms in the
spherical case increase in order by €, so that the third term is 0(82) times
the leading term, and is almost always negligible. In the cylindrical case

the third term is O(g log €) times the leading term and so may be significant.
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Similarly, substituting (4.22) and (4.27) in the r = 1 boundary condition
in the O(€e) problem (4.20) for V,, we obtain a current crossing the membrane,
which is a function of x.

It is interesting to compare the results in the near field given by
(4.21) - (4.30) with the results of a similar analysis of the spherical cell
in Reference 1. 1In the sphere, the leading term is also a finite constant
inside and zero outside, but the inside potential is 0(8_1) rather than

8-1/2). In the sphere, the second, O(l) term in the inside potential con-

0(
tains an additive constant equal to ¢ (in nondimensional units). The second

term immediately outside the membrane, at r = 1+, is a. Consequently, in the

sphere, as in the cylinder, the second term in the transmembrane potential

expansion is independent of a. In both the spherical and cylindrical cell,
then, the transmembrane potential is independent of « until the third term.
The significant difference, however, is that the consecutive terms in the
spherical case increase in order by €, so that the third term is 0(82) times
the leading term, and is almost always negligible. In the cylindrical case

the third term is O(e log €) times the leading term and so may be significant.
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V. SINUSOIDAL STEADY STATE
The results of Section IV for the steady state potential can be easily
extended to the sinusoidal steady state by generalizing the small parameter
€ to a complex parameter £€*. In the sinusoidal steady state, using complex
notation, the potential may be written in the form
V(x,r,8,t) = v(x,r,0) o lwt (5.1)
Replacing u(r) in (2.1) by eiwt, and V by (5.1), the equation and boundary

conditions for v are then:

% %(r%)+:§§-‘:;—‘z’ +§%=--—%6(x) 8(x~R) §(6) (5.2)
g%:.z é.%%j = g% (v+~v—) (5.3)
v(x,r,0) = 0at x = * ®orr = (5.4)

where, in (5.3)
ex = ¢(1 + iw) (5.5

The problem represented by (5.2) - (5.4) is identical to the t - « limit
of (2.1) - (2.3), except for the replacement of € in (2.2) by e*. (Note that
€ is the real part of €*.) The real part of €* is independent of frequency
and is simply the parameter € which appeared in the preceding sectiomns; the
imaginary part increases linearly with frequency. The asymptotic expansions
already obtained are valid if'le*} is small and the phase of €* is less than
T in magnitude. In Equation (3.10d), for example, if the phase of €* is T
there are poles aon the integration path at k = /5TE;T, resulting in a Stokes'’
phenomenon.S The dependence of €* on the frequency w, will limit the results
to frequencies for which

ew < <1 (5.6)

We assume, as above that € < < 1.
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In order to see what this frequency limitation is numerically, we must
transform back to dimensional units. Recalling that the real time t' is
related to the dimensinnless time t by t = (Om/CmG)t', the dimensionless

frequency w therefore is related to the real frequency w' (rad/sec) by

c 6
w=2 .y (5.7)

o
m

Substituting (5.7) and the expression for € in terms of cell parameters,
€ = Oma/oid, in the inequality (5.6), we obtain the requirement on the fre-

quency
ag

w' < < 1 . (5.8)
aCm

Using typical values of the parameters:

o =3 x 107" mho-cn”
oi = lO_2 mho—cm_l
a=5x10" ca

Cm = 10—6 farad—cm—-2

6 = 10—6 cm

3 w'. Above w' = 300 rad/sec (w = 1), the fre-

(5.7) becomes w = 3 X 10
quency dependent part of €* becomes dominant in (5.5), that is, €* becomes
pure imaginary. The restriction (5.8) on the angular frequency becomes
w< < 2X 106 rad/sec or, dividing by 2w, the frequency f' satisfies

f' < <3 x 105 Hz. With the same choice of parameters, we have [8*[

6 f', so that, for example, at 3 klz, ]E*I = 10—2.

=3 x 10
Now let us examine what effect a complex value of € has on the solutions
already obtained in Sections III and IV. First, it should be noticed that

for complex €*, some reordering of the terms in the expansions (4.1) and

(4.15) is necessary.
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If we write

€x = }E*l ei¢
then the second term in the far field expansion (4.1), for example, can be
separated into two parts,

L1/2 1/2 em/z

€ log €* W X,r) = ]e*l log ]E*] wl/2 X,r)

1/2
1/2 i¢/2
*
+ 1¢ |e*| e wl/2 X,r)
where the second part is of higher order than the first part and actually
belongs with the 81/2 Wl(X,r) term in (4.1). This occurs for all the terms
in (4.1) and (4.15) containing a log €.

The transformation (3.17) from near-field to far-field longitudinal

coordinate is now complex

o T w921 e (g g Ll e ) LT

If this is substituted in the first term in the far field potential expansion,

(4.9), the real part of X produces an exponential decay in the magnitude of
WO, and the imaginary part of X produces a linearly increasing phase delay
with increasing x. The same applies to Wl/2 in (4.10) and (4.13), and the
behavior of Wl in (4.11) and (4.14) is similar, but more complicated because
of the presence of the exponential integrals.

Let us now consider an experimental measurement of the near-field
potential in a cell with the parameter values given following Equation (5.8),
at a longitudinal distance x = 0.2 from a sinusoidal source of frequency
w' = 21 x lO4 rad/sec. To get some idea of the relative importance of the
terms in the near field expansion, we calculate the ratio IE*‘Vz/VO. Sub-
stituting the value of y and log 2, we have

lex] v,/ = 3 ym[% —rPe R% 2% 4 .m] .
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2 -
Taking r = R2 = 0 to obtain an upper bound, o = 1/3 and Ie*[ =3 x 10 2,

yields

lex| v,/v, = .02

or, the correction in the magnitude of the potential due to V2 is equal to

it

4
2% of the magnitude of V_, and since €* is pure imaginary at w' 2m x 10,

0’
there is a 2° change in the phase of the potential (i.e., .02 x 90° = 2°).
Since the asymptotic expansions break down as w - ®, it is not possible
to obtain the solution for an arbitrary time dependent source directly by
Fourier transforming the expansions valid in the sinusoidal steady state for

finite w. In the next section we will consider the case of a source which

is a step function in time using a different method.
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VI. TIME DEPENDENT POTENTIAL FOR INFINITE EXTERNAL CONDUCTIVITY

A. Long time expansion

In this section we will develop an asymptotic representation of the time
dependence of the potential for the special case in which the cell is sur-
rounded by a perfectly conducting medium, that is, 0, =®oras= Oi/O = 0.

We will obtain an expansion which is asymptotic to the potential for any fixed
value of t, in the limit of € - 0. The expansion will thus be useful for
obtaining the potential in cases where the ratio t/e is large. 1In addition,
the validity of the expansion will be restricted to positions where the axial
variable satisfies the inequality exz << l6t2.

Setting @ = 0 in (2.28), we obtain for the inside potential, for

0<r<1,t>0,

V(x,r,6,t) = ~l-(x2+ r4 Rz— 2rR cos@)_l/2

4
® i I (kr)I (kR)
- —lf EE: elnéjf dk coskx n' L
KI' (K)+el (k)
2T p=-— 0 n n
. —{(kl'/el ) + 1} .
. [EKR + KK+ e non (6.1)
R )

Setting @ = 0 in the formula (2.29) for the outside potential, because of
the multiplicative factor o, we obtain V = 0 for 1 < r < ®, This, of course,
must be true because there can be no potential drop in a perfect conductor
with finite current density. The entire external medium is therefore an
equipotential; zero potential, to conform to the boundary condition at
r = ® and at x = ®,

We see that (6.1), except for the last term in the square brackets, is
just the steady state potential for a = 0, which was studied earlier.2 To

extend our earlier work on the steady state potential to the transient case
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we have the additional task of studying the asymptotic behavior of the additive

time dependent part of the potential (6.1),

® * IR
Lt o6 I (kr)T (kR) ~KI't/el_
v(x,r,B8,t) = - e dk coskx SRS e
27 n[ n n]

n=-o O

(6.2)

The quantity kIé(k)/In(k) in the exponent in (6.2) is nonzero for all
real k when n ¥ 0. In the case of n = 0, it is nonzero for k # 0, but we have
for small k,

ka(k) ) kIl(k) kZ

T,0 T I,® T T,
so that in the k + 0 1limit the exponent vanishes. 1If we consider now the
"long time" behavior of (6.2), that is, the limit as € > 0 for fixed t, all
terms with n > 1 are exponentially small, (the exponents go to minus infinity)
and hence are absent from the asymptotic expansion. On the other hand, in
the vicinity of k = 0, more specifically, 0 < kz < €, the n = 0 term is not
exponentially small. The long time behavior of the potential, (6.1) or (6.2),
is therefore determined entirely by a consideration of the n = 0 term in the

vicinity of k = 0. In the limit t/e ~+ <, the time dependent part of the

potential (6.2) is given by the asymptotic representation,

v(x,r,t) = ~§ J/. dk coskx Io(kr)lo(kR) .« o [(kIl/EIO)+1] t .
2 e 2 o
12 (k) [(kll/e_:IO) + 1]
(6.3)
and furthermore we have noted that the major contribution to the integral

comes from a small range of k; 0 <k < 81/2. Because of the absence of

n # 0 terms in (6.3), the long time asymptotic expansion has no 6 dependence.

From the expansion of the modified Bessel functions around k = 0, it

follows that
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o R (6.4)

Defining a new variable [ by

kI, (k)
2 1
= — 6.
€L O] (6.5)
0
reversion of the series (6.4) yields
2 2.4
_ €T 5L )
k(C)—/Z_E_C(l-P et gt - (6.6)
and
2 2_4
_ 3er 25€7L
dk—/ch<1+ s + 38z +) (6.7)
Substituting (6.6) in the power series expansion of IO results in
2 4
k k
Io(k)—l+4—-+'gz‘+...
2 2 4
- Eg 3e L
=1+ =+ =g+ ... (6.8a)
and
2 2 2.4 4
_ €T r 30 r
Iykr) = 1 + =5 + =% + ... (6.8b)
2.2 2.4 4
_ £EC R 3e"C R
Io(kR) = 1 + = + =3¢ + ... (6.8¢c)
Substituting (6.4) - (6.8) in (6.3), yields an asymptotic form for
v written in terms of an integral over the new variable Z,
* 2 2. 4 2 2 4
v(x,r,t)=2—"l_f d;(l+3§C +25§82 +...>cos {:VZe C(l +§-g—+-§-§-£—+...>>’
TV2e 4 L

2 2 4 '
. {1 + %—<r2+ R? - 2) + elg [3<r4+ R4)+ 4rPR%- 8 (r2+ R2>+ 6J + ]

2
e (C°+1)t
21 (6.9)
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Multiplying the two series in (6.9) and replacing the cosine by complex

exponentials leads to

ad 2
v(x,r,t) =—2~1—de . l+£§_~—(r2+ R2- -[57)
21V 2¢e

-00

2.4
+ Elg [3 <r4+ R4) + 4r2R2 -5 (r2+R2>]-+ ...}
2 2. 4
1 igv2e x (1 + eg + 5282 + ...) - (H)e
. . e :
g2+ 1

(6.10)

We now truncate the first series im (6.10) after the 0(e) term, and the series

/

in the exponent after the O(€3

(V2e x fixed as € + 0) we truncate both series after the 0(e) term. This

results in the asymptotic relation for t/e + o, £ + 0,

2 : .
3 2..25
1 ) 1 +——%—-(r +R ~Z> igv2e x (l + EL
- 8
vix,r,t) = f

—— dz 5 e
2w 2¢e ro41

-0

+ ...

We would now like to evaluate the integral in (6.11) in terms of tabulated

functions. First it should be observed chat8

' “r 2
d/-dE (C2+1)~l el”X - @+DT = g-[e—x erfc (/T - —:ﬁ%ﬁ
a 2/T

+ eX erfc (/T +-~2£—-)]
/T

2) term. Equivalently, in the "far field"

(6.11)

(6.12)

is a known integral. The most straightforward procedure would be to remove

the €C2/8 term from the exponent by using the expansion

2
ig/2e x .E%—

2
e =1 + i0/7E x _E%. + ...

’
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multiplying this expansion by the other expansion in (6.11) and then evalua-
ting the resulting integral by relating it to the appropriate derivatives
of (6.12). This is a lengthy procedure and leads to an asymptotic expression
which is not in the most convenient form, but can be shown to equal (6.19).

It is preferable to begin by making a change of variables in (6.11) to
new space and time coordinates. Doing this it is possible to transform (6.11)
into precisely the form (6.12), so that no differentiation of the complementary

error functions in (6.12) is necessary. Let

V2€ x = X (1L + fe + ...) (6.13a)

T (1 +ge+ ...) (6.13b)

t
where f and g will be determined to cause the greatest simplification of
(6.11). Substituting (6.13a) and (6.13b) in (6.11), expanding the 0(€) term

in the exponential, and rearranging terms, we obtain

™ . 2 .3
- /-aﬁa"(gﬂn 27X | srve - rcing)

v({x,r,t) = )
212 V7E / ¢ 9
€L 2 .2 5
. l+—2—-(r+R -—Z)
r,2 + 1
+ ...
. 2 2 2
N w  iTX - (CTTHDT § 4 ¢ [im(% + f) _ Tg(C2+1) +%__(r2+ 2 %)]+
=—>— [ dze
2'”2\/75_'[ ‘ C2+l
=1 [1 - _E_(r2+ R? - E)Jf dg igX - @)1
2ﬂ2V§E' 2 4 Yo §2+1
= irx - (21T [irx c+sf 1/2 2 5
*g.[ aze © '[77'“7‘*T8+5F+R‘zﬂ T
o - T4

(6.14)
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A judicious choice of f and g will now make the last integral in (6.14)

vanish. 1If we let

£ =-§ (6.15a)
1 2 2 5 X2

g=-2—T'—<r+r -—-Z;) - (6.15b)
16T

2
igX . XD AX
5 tTeT - " Ter (X - 2T
B GO
=~ 167 I [iXz (z7+1)7T]. (6.16)

Since this is proportiomal to the derivative of the exponent in (6.14),

the last integral vanishes. Therefore,

oo 2

- 1X=-(Z7+1)T _

v{x,r,t) = ——El——“ . [l - %‘(r2+ R2~ g)} ./P dge . (C2+l) Iy B,
ZTT/EE o0

S S I O - A1) B _ X, X X
= me [l -5 <r + r éi}&a erfc (/h_ 2/T)+ e erfc (/f + 2¢T)]+ ces

J17
where from (6.13) and (6.15) it follows that the new variables are (6.17)
€
X = 2€X(l-'§+..‘> (6.18a)
€ 2 2 5 € 2
T=+t 1-—“*—'(1‘+R——>+~3{—- b (6.18b)
2t 4 l6t2

X is the same far field longitudinal coordinate that was found earlier for the
steady state problem.

Substituting (6.17) for the time dependent part and Equation (543) of
Reference 2 for the steady state part in (6.1), the asymptotic expansion of the

time dependent potential is
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V(x,r,8,t) = —L— . [1 - %’(r2+ R%- g') +’-.i]- [e—X erfe [ -2 - T)
4m/2e 2/T

(x2+ r2+ R2— 2rR cos@>_l/2

[se]

. @ K'(k) 28
1 § : 1n8J/~ n On
- e ; dk coskx IAT)— In(kR)In(kr) + -3

2T n=-® k
I (kR)I (kr)
+-€—2{ a 7 n -(r+R2—l+—g)GOn} + ... (6.19)
k I; (k) k :

with X and T given in (6.18a) and (6.18b).
The first term in (6.19) results from combining the far field part of

Equation (5.3), Reference 2, with the first erfc in (6.17):

1
—_— e-X (l+§{-§—r2-R2})———l——(l+§{-§-—rz—Rz})
2m/2e 4mv2e

. erfc(/_— ——X—>
2/T

= —£ 1+%(—Z——r2—R2)}2—erfc /f-i) ,
4mvIE 2/T

and changing the sign in the erfc argument leads to the result in (6.19).

The combination of exponentials and error functions in (6.19) is
identical to the classical result of one-dimensional cable theory.9 The
space time variables given by (6.18a) and (6.18b), however, contain higher
order corrections to the classical variables. With (6.19), we can now state
precisely the range of validity of the classical one—-dimensional cable
theory. This was not previously possible because of the nature of the
one-dimensional approximation, which did not give any clue to the errors in

the approximation, or how the higher order terms might be obtained.
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As was concluded in Reference 2, by converting the last three lines of
(6.19) to the equivalent double sums (4.31) and (C.9) of Reference 2, we find
that this part of (6.19) decays exponentially with increasing x. Consequently,

for

X or 2 » ©, as € + 0, (6.20)

Ve

which defines the "far field," the last three lines of (6.19) are exponentially
small, and only the error function terms survive in the far field. The far

field potential is therefore given by

(6.21)

- _ \
x| e X erfc (_2&_ - ]T) —-e Xerfc (—22— + /E?
2T
with X and T related to x and t by (6.18a) and (6.18b). If we let
T + « in (6.21) we recover the steady state result given in Reference 2,

Equation (5.1).

If we only retain the leading terms in (6.18a), (6.18b) and (6.21), we

obtain
._/2—5 X 2e x
W= L e erfc(/igx—ft_)-—e erfc( 26x+/€> (6.22)
4mv/2e 2/t 2/t

or precisely the result of one~dimensional cable theory. Thus we see that in
addition to the far field restriction (6.20), it is also required that
E§—~+'O as € + 0 (6.23)
t
for validity of the one-dimensional cable theory formula.
It should also be recalled that to obtain (6.3) from (6.2), it was

assumed that
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t (6.24)

- @
b

which is what we defined as the "long time" in Reference 1.

In summary, the classical result of one-dimensional cable theory, given
in (6.22), has been shown to be valid in a well defined range of the independent
variables x and t. It is valid under three constraints:

1. Away from the point source in the far field, defined by (6.20).

2. For long times, defined by (6.24).

3. For longitudinal positions and times, related by (6.23).
with these constraints on x and t, we have been able to extend the classical
result (6.22) to include correction terms, as given in (6.21).

Equation (6.19) is not subject to the far field limitation (6.20), but
is restricted to the long time condition (6.24), and to the constraint (6.23).

B. Short Time Behavior

We have shown that Equation (6.19) for the inside potential follows from
(6.1) if € ~ 0, t/e > =, and ExZ/t2 + 0., We would now like to investigate
the "short time" period, for which it is convenient to define the short time

variable

t ==t 6.25
€ (6.25)

Making this change of variable, (6.1) can be written

1 2 2 2
v (x + r’™+ R™ - 2rR cosb

)—1/2

V(x,r,6,ct)

1 (kr)In(kR)

1 inGJ/-m n
-— E, e dk coskx ;
21r2 i 0 kIn (k)+e:In (k)

- {(klr'l/In) + E}E 626

€K + kK' +— e
n n In

For small t, we expand the exponential in (6.26) so that the bracketed

expression becomes
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kI' +EIH
e+ kK' + = -2 T . ¥4 .,
n n I 2

n I
n

€Il K + kI K'+1 kI' + €I
nn nn n n

= - st 4+ ...
In I2
n
K ~
o ——-; (kI' + el ) + ... (6.27)
T T n n
n n

and substituting (6.27) in (6.26), we obtain

V(x,r,B,ct) Z%~(x2+ r2+ R2- 2xR cosH

)—1/2

@

1 ~~ inf
_ ;:2_ Z e f dk coskx I (kr) I_(kR)
n=-%

0
Kn(k) £

+ (6.28)

1) Ii(k)

~ +
From (6.28) it is easy to see that at t = 0, the potential at the

- ~ +
inside surface of the membrane, r = 1 , is zero. Setting t =0 and r =1

in (6.28), yields

V(x,l_,6,0+} = Z%—( 2y 1+ R%- 2R cos 6)
1 < in6 ”
- ___-:E: e dk coskx K (k)I_(kR)
2 n n
=0

where we have used (2.27) to obtain the equality to zero.

Thus, (6.28) with t = 0, [or (6.1) with t = 0] is the solution of the
Dirichlet problem of a point source inside an infinite cylinder surrocunded
by a perfect conductor held at zero potential. This should be constrasted

with the 0(1) term in the asymptotic expansion of the near field potential
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when t = ®, Equation (4.30), (4.31) or (D.14) of Reference 2, which satisfies
the Neumann problem (4.3) of Reference 2. The physical basis of this behavior
is that for very short times (tf + 0) the membrane capacitance acts as a short
circuit (to all orders of €) whereas for very long times (t =+ =) the large
membrane resistance appears as an open circuit [to O(1)].

According to (6.28), at t = 0+, immediately after switching on the cur-
rent, the potential everywhere inside the cell instantaneously becomes equal
to that of a conducting cylinder surrounded by a grounded perfectly conducting
boundary. The current lines initially are normal to the membrane. The initial
time derivative is given by the second term in (6.28). It is interesting to
note that € does not appear in (6.28). This means that both the potential
and its initial time derivative are independent of the membrane resistance.
Higher derivatives, of course, will depend on €.

Equation (6.28) is useful for times t smaller than O(e). For inter—
mediate times (of order between € and 1) the exact expression (6.1) must be
used to obtain the potential; for long times (of order 1 or larger) the
asymptotic form (6.19) is applicable, subject to the additional constraint
that Exz/lét2 be small.

C. Computable Representation of the Short-Time Potential

We will now derive infinite sum representations of the two Fourier cosine

transforms appearing in (6.28),

f ® K_(k)
Fl = . dk coskx In(kr)In(kR) E;zzy (6.29)
and
o I (kr)In(kR)
F, =/ dk coskx -—n—é————— (6.30)
0 ‘ In(k)

59



By considering the integrals in (6.29) and (6.30) as portions along
the real axis of contour integrals in the complex z = k + iA plane, (6.29)
and (6.30) can be related to the infinite sum of residues which occur along
the A axis wherever In(z) has a zero. This will be done for (6.30). 1In
order to obtain expansions for (6.29) and (6.30) which converge at x = 0,
however, it is necessary to consider a modification of the integrands. This
is analagous to the treatment necessary for Equation (4.30) of Reference 2
in order to avoid the divergence of (4.31) at x = 0. We will do this for

(6.29), but not for (6.30) which is of somewhat less interest,

We consider the contour integral

1 Kn(z) z
o J/-dz cos zx In(zr)In(zR) In(z) (22_T2) Cos(lﬂi% (6.31)
B

in which B and T are real parameters, 8 > 0, and cos (mt/B) # 0 so that the

poles introduced by the modification of the integrand are distinct. The
integration path is shown in Figure 2. The branch cut can be taken between
the origin and infinity, anywhere in the left half—plane. If le < 7/B, the
integrand along the semicircle vanishes exponentially as the radius tends to
infinity. Since there are no singularities enclosed by the contour, the
contour integral (6.30) is zero. Therefore, the sum of the principal value
of the integral up the imaginary axis, the residues on the real axils, and
one-half times the residues on the imaginary axis is zero. The method here
is exactly analagous to the method introduced in Appendix D of Reference 2
and the reader is referred to that reference for the intermediate steps and
discussion, some of which are omitted from the present derivation.

First, we consider the integral up the imaginary axis, which is separ-

ated into two pieces:
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i[J.nZ < )

i[.ln-] L )

-36/2 - B2

Figure 2. Contour for (6.31).
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—-in/2
e

n
I (i))
n

0 K
idA cosh Xx

A i

(~=A —Tz) cosh(

I (iAr)I (iXR)
n n

A
ﬂB )

1 © K ei’n/2l l)
- *—*'J/. id\ cosh Ax I ({Ar)I_(iAR) 5 1)
n n

n
2mi 0 In(ik) (=X -Tz) cosh (E%)
1 [ 5 (e—iﬂlzk)
= I J dA cosh Ax T (=il In(—ilr) In(—llR)
0 n
Kn <eiN/2 A) iA
- ~___—Y_X7__- I (idr) I (i)XR) .
In 1 o n ()\2+T2) cosh( ——TBTA )
Using the properties of the Bessel functions:
.—N .
In(z) =i Jn(lz)
_ T .o+l . in/2 )
Kn(z) =51 [ Jn(lz) + ian(e z ]
J (=)= D" I )
n n
the integral becomes
m . im , im
. INEINCSIEvAeN Jn(ke )+ i_Yn()\e )
5 dX\ cosh Ax (-—E) 700 - i
n Jh»(le )

ikJn(kr)Jn(kR)

(XZ+T2) cosh (%A—) )

Using the relation

¥_ ( xei“) = (-1)™ [Yn ) + ZiJn(A)]

the integral up the imaginary axis finally becomes

kJn(Ar)Jn(kR)

lfm

- = dA cosh Ax .
2 2. 2 mA
0 (A"+17) cosh (_E_)
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The residue at z = T is

K (1)

n cOs TX
i;:(;y In(Tr)In(TR) —_— (6.33)

2 cos (E%f)

The residue at the zeroes of cos (7z/B) which occur at z = (v + %D R is

cos [(\H%)Bx] (\H%‘)B

(V+%0282—T2

(6.34)

) 1
_.% (—l)v in {i:iii:% In [(v+%98r]1n [(V+%)BR]
“n 2

The zeroes of In(z) occur in pairs, along the imaginary axis at z = % iuns
where A = uns is the sth root of Jn(l) = 0. The residue at z = iuns is obtained

by noting that near z = iuns we can expand the Bessel function in a Taylor series,

.- _ 0 _ =« 1 2
In(ik) =i Jn(—K) =i J Q) =1 A=y ) I )+ 0Q-u_ ),

where the leading term is missing because Jn(uns) = 0. From this we obtain
z - iu
Res { Ty o =
: _ '
n 7= i uns)Jn (uns) toee. z=i
s Yns
.1-n

_ 1

- 1
SERCD

To obtain the residue of the integrand in (6.31) at the simple pole,
z = iuns’ the above residue is to be multiplied by the rest of the inte-

grand evaluated at z = iuns. The Kn(z) term is

)

T ,n+l im
Kn(iuns) —2— i [Jn(—uns) + iYn (e uns)jl

]

T .-n
27 Yn(uns)

g 84
1

=TT T
uns Jn (UHS)

which follows using the Wronskian of Jn and Yn and noting again that Jn(uns) = 0.

Consequently, the residue of the integrand in (6.31) at z = iuns is
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cosh (u  x) J (u 1) J (1 R) (6.35)

2 2 ““ns) 2
+ 1
<Uns T ) + cosh <—8 Jn (uns)
Equating the negative of the integral up the imaginary axis, (6.32), to
) 1
the sum of the residue at z = T, (6.33), the residues at z = (v + 308, (6.34),

and one-half of the residues at z = * iuns’ we obtain

(e o]

1 AJ (Xr)Jn(AR)
3 f d\A cosh Ax 2

0 <k2+ TZ) cosh(E%>
K (1)
B TET¥7-In(Tr)In(TR) == ?THT)
n 2 cos
B
®. cosh CIY J G 1) I G R)
+ Z 2 Ty '2
) s= (u + T )+ cosh( an> J (u
g S, K [(v8] L L cos [(W)Bx] (w8
IR T L Looer]r [v5)8R] ——5 2 '
v=0 1 [(45)8] (v5) B -
(6.36)

The derivation now follows exactly the steps on pp. 61-63 of Reference 2.
We repeat the arguments for completeness.

The left hand side of (6.36) is analytic everywhere in the finite
right-half complex T-plane. It equals the right hand side everywhere in
this region, except perhaps at the points T = (u + %)B, U an integer, which
were excluded originally, to make the poles introduced in (6.31) distinct.
At T = (p + %)B, however, the residue of the first term on the right hand
side is seen to cancel the residue of the v = U term in the sum over v,
and hence the right hand side of (6.36) is analytic everywhere in the
finite right-half T-plane, By analytic.continuation, (6.36) must then be

valid even when T = (p +-%)B.
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If we multiply (6.36) by 2cos(mT/B), and integrate over T from 0 to «,

the first term on the right is just the integral Fy in (6.29) which we wish

to evaluate.

Using the formulas

fmcos (n1/8) 4 _ T -TA/B

T2X
0 X2+ T2

fmcos /) o DV

1
0 (wh? pi? 204708

yields
© KH(T)
~4: dT cos{(Tx) T;T?) In(Tr)In(TR)

I

m °° e_ATT/B
'i‘ v/.;dk cos (Ax) m Jn(}\r)Jn(}\R)

—Wuns/B

-
o1 Unsjéz(uns) cosh(ﬂuns/ﬁ)
1 _
+ 8 :ii [(v+3)8x ] % L)) T [(v+5)8r ] T [(W2)8R]
cos X | ——— r
= 2 In[(v+%)8] n 2 n 2

We now substitute (6.37) in the formula (6.28) at T = 0, using the

result (Reference 2, page 62)

= in6 *® e_m\/8
- Z e f dX cosh Ax m Jn(Xr)JnO\R)

n=--o 0

o -1/2

= ( _Zl + Z)(_l)m [(x _ %Ig_)z + r2+ R%- 2rR cose:, ,

m=-® p=]1
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and obtain

) 2 -—1/2
+ 1 2 2 2
V{x,r,8,0 ) = Zg'mEL; -1)* [(x - —%EJ + r“+ R"- 2rR cos?}

L - eine = 2C05h(unsx) Jnwnsr)‘]n(unsR)

2n o s=1 l+ezmjns/8 unsjéz(uns)
1

SN K_[(v5)8]

- —-8-5 Z elne Z cos [(\}%)Bx] -—r—l—-—-—%-——-

2 e e I_[(v5)8]
1 1

- I [(vBr] T [(H5)8R] (6.38)

For large Vv, the Fourier coefficients in the V sum approach
1 .- () BQ-rR)

(2v+1) BYTR
so that the terms in the V sum decrease exponentially with increasing v,
and the sum converges rapidly, unless r = R = 1, For fixed v, the terms
in the sum over n approach ran/Zn for large n. Consequently the sum over
n is absolutely convergent unless r = R = 1.

The sum over m converges everywhere except the points (2mm/8, R,0),
when one term in the sum is infinite. When m = 0, this divergence describes
the infinite potential at the location of the point source,

The double sum over n and s coﬁverges for !xf < 2n/B, in which case the
terms decrease exponentially with increasing n and s. This is twice the
range of {x[ implied by our derivation; however, by analytic continuation
(6.38) must be correct over this larger range of [x[.

When B +~ 0, all but the m = 0 term in the first sum vanish, the second

sum vanishes, and the third sum approaches the integral in (6.28) with
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t = 0. Hence for B = 0, (6.38) reduces to the integral form (6.28) for
V(x,r,8,0+).

When B = ﬂ/lxl, the sum over m vanishes because of term by term cancella-
tion of the m = 1, 2, 3,... terms with the m = 0, -1, -2,... terms; the sum
over V vanishes because of the factor cos[ (Vv + %Jﬂ], and noting that in this
case,

2 cosh(unSx) ) —u IXI
1+ ezmlns/B

(6.28) reduces to

V(x,r,B,O+ = f% :E:Ae;?e :Z: >
A
=00 s=1 s Jn (uns)

-u__|x|

e "ns Jn(unsr)Jn(unSR)

(6.39)

which is the well known eigenfunction expansion of the Dirichlet problem of
a point source inside a conducting cylinder surrounded by a grounded perfect
conductor., Equation (6.39) is preferable to (6.38) for calculating the
potential for large values of x. However, as x = 0, its convergence becomes
increasingly poor, and for small x, with an appropriate choice of 8, (6.38)
can be made rapidly convergent and is far superior.

Returning to the integral F, in (6.30), which determines the time
derivative of the potential immediately after the initial jump, we derive
an equivalent eigenfunction expansion for FZ' Since there is no branch
point in the integrand of (6.30) [as there was at k = 0 in the integrand
of (6.29)], it is convenient to write an equivalent integral with k ranging
from —~ to 4+, and consider the contour which follows the real axis from
—» to 4o and then traverses counterclockwise along the large semicircle in

the upper half plane, back to —~. Thus, since the integral along the
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semicircular portion of the contour approaches zero as the radius approaches

infinity, we have

© . I (kr)I_(kR)
F2=-]2:Re-/‘dkelkx_n_2___n___
/.. 1’ ()
e i I (zr)I (zR)
= Re {Ti j{: Res elZX L L2
2
s=1 In(z)
Z:iuns_
® J (Ar)J (AR)
= -7 2{: Res e Ax 2 7 I (6.40)
S:l JH(A) A=u
ns

In the vicinity of A = Moo

1 2
= — \l = — Tt
Jn(k) (A “ns) Jn(uns) + > 0N “ns) Jn (uns) + ...
: 1 s _ Tty
Using Bessel's equation and Jn(uns) = 0, Jn (uns) can be eliminated, yielding

>&_UHS

_ _ Tt -
Jn(k) = (A uns) Jn(uns) 1 y + ...
ns

Taking the reciprocal and squaring, we have

21 - — 1 . 1 , + 1 4.
1
Jn(X) Jl (uns) A-p_ ) uns(k—uns)

(6.41)

In addition, near A = y

Jn(lr)Jn(kR) Jn(unsr) Jn(unsR) + G-y )

s duns

[Jn<unsr>Jn(ﬁnSR)J (6.42)

and

e_>\x = e_uns X [l - (}\—uns) x + -c.] . (6~43)
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Multiplying (6.41), (6.42) and (6.43) together, and taking the coefficient

of the (A - Uns)—l term for the residue in (6.40), we have

1 d . Jn (unsr)Jn (unSR) _ (6.44)

nus ns

Equation (6.44) is a convenient formula for computing the Fourier transform
(6.30) which determines the initial time rate of change of potential in (6.28),
except near x = 0, where its convergence is slow. A formula analagous to (6.38)

could be obtained to compute F2 near x = 0.
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VII. SPECIAL CASE OF EQUAL INTERIOR AND EXTERIOR CONDUCTIVITIES

It is possible experimentally to adjust the conductivity of the bathing
solution outside the cell in order to achieve equal conductivities inside and
outside. In this case, the ratio a is unity, and considerable mathematical
simplification of the exact solution (2.28) and (2.29) is attained.

Letting @ = 1, and using the Wronskian of In(k) and Kn(k), the potential

(2.28) inside the cell (0 < r < 1) can be reduced to:

V(x,r,0,t) = Z%—(x2+ r2+ Rz— 2rR cose)_l/2
o w K2T (kr)I (kR)K'Z (k)
1 inb n n n
+ — Z e f dk coskx 5
2717 p=—o 0 € - k Ié(k)K;(k)
2 1 t
'[% - e(k InKn—E)t/EJ (7.1)

and the potential (2.29) outside the cell (1 < r < ®) can be reduced to:

Kn(kr)In(kR)

2 T 1 .
e = KI! (X! (K)

2n2

nN=~=00

(o] (¢ o]
V(x,r,6,t) = L h elne./r dk coskx
0

2 v
2, ' (k InKn - g)t/e
e - k In(k)Kn(k) e (7.2)

Letting @ = 1 in the asymptotic expansions in the steady state, (3.21)
and (3.28) results in no significant simplification. However, comparing the
complexity of (7.1) and (7.2) with the complexity of the exact solution (6.1)
for the case a = 0, it appears that the same type of analysis as used in
Section VI on (6.1) could be applied to (7.1) and (7.2) to obtain asymptotic

expansions for the time-dependent potential when o = 1. We have not attempted

this.
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