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ABSTRACT The relation between the fine structure, electric field equations,
and electric circuit models of skeletal muscle fibers is discussed. Experimental
evidence illustrates the profound variation of potential with circumferential

position, even at low frequencies (100 Hz). Since one-dimensional cable theory
cannot account for such variation, three-dimensional cable theory must be used.
Several circuit models of a sarcomere are presented and plots are made of the
predicted phase angle between sinusoidal applied current and potential. The
circuit models are described by equations involving normalized variables,
since they affect the phase plot in a relatively simple way. A method is pre-
sented for estimating the values of the circuit elements and the standard devia-
tion of the estimates. The reliability of the estimates is discussed. An objective
measure of fit, Hamilton's R test, is used to test the significance of different fits
to data. Finally, it is concluded that none of the proposed circuit models pro-
vides an adequate description of the observed variation of phase angle with
circumferential location. It is not clear whether the source of disagreement is
inadequate measurements or inadequate theory.

'The flow of current in a cylindrical cell like a muscle fiber has often been

analyzed by representing the cell as an equivalent circuit of resistors, capaci-

tors, and wires (Bozler and Cole, 1935; Falk and Fatt, 1964; Eisenberg,

1967; Freygang et al., 1967; Schneider, 1970; see reviews by Jack et al.,

1973; Peachey and Adrian, 1973). The adequacy of the circuit model can

be tested by comparing, over a wide range of frequencies, the impedance

predicted by the model with the impedance actually observed. he values

of the circuit elements which give the best fit between the predicted im-

pedance and that actually measured are interpreted as the intrinsic electrical

properties of the corresponding structural elements of the muscle fiber.

'I.'here are several ambiguities in this kind of circuit analysis besides the

obvious ones produced by the limited range and accuracy of experimental
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data. There are a finite number of circuits with the same number of elements
which have precisely the same impedance at all frequencies and an infinite
number of such circuits with additional elements.' Most such circuits are
incompatible with the fine structure of a muscle fiber and so can be rejected.
It is much more difficult to distinguish between circuits with approximately
the same impedance, but the different values of corresponding circuit ele-
ments in such circuits can be exploited (see Valdiosera et al., 1974 b).

The relation between these circuit models and the structure of the muscle
fiber is less direct than it seems. In order to make precise predictions con-
cerning the expected electrical properties of a complicated structure it is
necessary to solve the partial differential equations which specify the electric
field in that structure. It seems unlikely that the full set of equations for a
muscle fiber will be solved in the immediate future. Indeed it is only recently
that the problem of a microelectrode source in a spherical cell has been solved
completely (Peskoff et al., 1972) and the cylindrical cell still has only been
solved in a restricted case (Peskoff et al., 1973). In order to make predictions
one must then resort to circuit models consisting of resistors, capacitors,
and wires and other heuristic and "irrational" approximations (irrational
in the sense that the approximations do not permit the calculation of a bound
on their own error: see van Dyke, 1964, Chap. 1). These approximations
cannot in general account for all the properties of the original set of partial
differential equations or of the muscle fiber, and one must expect difficulties
and anomalies from circuit models, especially in regions where the potential
may vary steeply, at source points or near boundaries. The approach that
has been taken is to make a series of circuit approximations to a muscle
fiber, each incorporating features to account for difficulties and anomalies,
with the hope that enough intuition and physical insight can substitute for a
complete solution of the partial differential equations.

We will consider in this paper a series of electrical models of a muscle
fiber, each one of which has a simple interpretation in terms of the structure
of frog muscle fibers as described by Peachey (1965). The essential simplifi-
cation which underlies our treatment was introduced by Falk and Fatt
(1964) and elucidated and extended by Adrian, Chandler, and Hodgkin
(1969) and Schneider (1970). These authors considered the muscle fiber
to be composed of essentially three electrical components: a longitudinal
resistance, r, residing presumably in the sarcoplasm, a shunt admittance
YT,2 representing the passive electrical pathways by which current can flow

1 It is not always realized that while the input-output relations of different equivalent circuits are
identical, the values of the circuit parameters are not identical. For example, the total capacitance
(the sum of the value of all the capacitors in the circuit) is not the same in different equivalent
circuits.

2 We use the standard convention of electric circuit theory and represent currents voltages, admit-
tance, and impedances by complex variables printed in bold-face type (Desoer and Kuh, 1969,
Chap. 7).
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into the tubular system and out of the fiber, and the shunt admittance of the
surface membrane itself. The arrangement of these electrical components
and their relation to the structure of the muscle fiber are shown in Fig. 1.

FIGURE 1. The relation between the circuit model and the structure of a muscle fiber.

The electrical properties of the muscle fiber are presumed to arise in three structures:

the surface membrane, the sarcoplasm, and the tubular system. The surface membrane

is represented as a parallel combination of the resistance r, and the capacitance c,. The

sarcoplasm is represented here as a resistance ri, although consideration of the circum-

ferential and radial variation of potential near the current microelectrode requires a

more complex representation (see text and Figs. 2 and 7). The tubular system is repre-

sented by an admittance yT, various models for which are described in the text. The

sarcoplasmic reticulum is not included in the figure or circuit since there is little evidence
that it has a significant effect on passive electrical properties. (In figure = m.)

The density of the components is quite high, at least in the longitudinal
direction, and so the repeating structure has been approximated by a con-
tinuous distributed transmission line, a one-dimensional electrical cable.
The separation of the electrical properties of a muscle fiber into these coin-
ponents considerably simplifies the theory since it circumvents the problem
of solving the complete set of partial differential equations.
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In all these circuit models the entire variation of potential is ascribed to
the unidirectional longitudinal flow of current down the resistance of the
sarcoplasm; there is assumed to be no radial or circumferential flow of cur-
rent in the sarcoplasm itself. In several of the circuit models of the tubular
system (Falk and Fatt, 1964, Appendix D; Adrian, Chandler, and Hodgkin,
1969, Schneider, 1970; Peachey and Adrian, 1973) radial, but not circum-
ferential, potential gradients are allowed in the lumen of the tubules, but are
not allowed in the sarcoplasm. Thus, one solves the equations for current
flow in the longitudinal direction by one-dimensional cable theory and then
one separately solves the equations which are supposed to describe the
radial flow of current in the lumen of the tubular system. The two solutions
can be obtained essentially independently since they are not intimately
coupled, the only relation being conservation of current; that is to say, the
current leaving the sarcoplasm in the longitudinal equations must equal
the sum of the current flowing across the surface membrane and the current
flowing radially in the tubular system.

In this paper we will first describe experimental results which indicate
the importance of the circumferential and radial potential gradients in the
sarcoplasm and will show how to include the effects of such gradients, at least
to a first approximation, in circuit models. We then will introduce a variety
of circuit models and illustrate their passive electrical properties; in order to
do this we introduce a new set of normalized variables. A method is presented
for determining the values of the parameters of a circuit model which pro-
duces the "best" fit between the theoretically predicted and experimentally
determined impedance; statistical estimates of the accuracy of the fit and of
the precision of the parameter values are also given. Finally, we discuss likely
errors in the electric circuit models themselves.

RESULTS

Circumferential Variation of Potential. Experimental Evidence

The electrical models of muscle fibers considered to date have used one-
dimensional cable theory to describe the spread of potential in muscle fibers.
There are a number of theoretical papers which claim, however, that cir-
cumferential and radial potential gradients should exist and be significant
in cylindrical muscle fibers (Eisenberg and Johnson, 1970; Barcilon et al.,
1971; Peskoff et al., 1972, 1973; a review of the literature can be found in
Peskoff and Eisenberg, 1973). There are some indirect indications of circum-
ferential and radial potential gradients in the experiments of Adrian, Costan-
tin, and Peachey (1969) and Costantin (1970) but there has been no direct
experimental evidence concerning the existence of these effects, let alone
their quantitative significance, and so we thought it worthwhile to seek such
evidence.
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Impedance measurements were made by the techniques described by
Valdiosera et al., 1974 a. Measurements were made at two different circum-
ferential positions of the voltage microelectrode, the longitudinal position
being constant, and the radial position being unknown. 'lhe results shown
in Fig. 2 are selected from many experiments which illustrate the existence

A

B

I* Corrected for
extracellular potential

o "Raw" data

LJ -- I 17 -

100 0)

Log frequency (Hz)

FIGURE 2. The circumferential variation of phase angle. The results of experiments on
muscle fibers in which the voltage microelectrode was moved circumferentially around
the fibers. The approximate positions of the electrodes and "diameter" of the fibers are
shown, although the depth of the microelectrode and shape of the fibers are not known.

Note that there is a profound radial variation of phase angle and thus potential even at
low frequencies. Since one-dimensional cable theory cannot account for such effects,
it is necessary to use three-dimensional cable theory even at quite low frequencies. (In
figure = m.)
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of a circumferential variation of potential; the criterion for selection was
stability of the resting potential and of the impedance observed at a frequency
of 10 Hz. The approximate positions of the microelectrodes are shown as
observed with a compound polarizing microscope at a magnification of
some X 375. The open points are the raw experimental data, corrected only
for phase errors in the recording apparatus. The filled points are data cor-
rected for the measured extracellular potential. The solid lines are theo-
retical curves discussed below. Note that in each case there is a profound
variation of phase angle with electrode location even at low frequencies. It
is necessary then to include the possibility of circumferential variation of
potential when the electrical properties of cells are measured by the appli-
cation of current from a microelectrode.

Circumferential Variation of Potential: Theoretical Model

The question then is how can one include the effects of the circumferential
potential gradient, which we will call a local potential for short, without
destroying the simplicity of a circuit model of the fiber. The original analyses
of the local potential (Weinberg, 1942; Falk and Fatt, 1964; Eisenberg,
1967; Adrian, Costantin, and Peachey, 1969) seem somewhat complex and
not amenable to physical interpretation, but the approximate treatment of
Eisenberg and Johnson, 1970, reduced the complexity of the pi oblem. Recent
results using singular perturbation theory (Peskoff et al., 1973) provide a
simple physical interpretation of the local potential and its interaction with
the potential given by the usual expressions of one-dimensional cable theory.
The local potential adds to the potential in the far field, the region away
from the point source, without interaction. The total observed potential
can then be written as:

V(r, R; a, y, r) - L(x; r, ri, y) + riaS(r, R), (1)
i,/2

where

L(x; r, ri, y) -= (ri/y)1/2e
-

x(,
i

Y)l
l
, (2)

where V(r, R; a, y, ri ) is the potential observed at position r with a point
source at R; io = the current applied (amperes); r = the shunt resistance
in a unit length of fiber, including the resistance of surface and tubular mem-
branes (ohm-centimeter); r = the resistance of a unit length of sarcoplasm
(ohm/centimeter); y = the shunt admittance, which depends on frequency
of a unit length of fiber (mho/centimeter); a = the fiber radius (centimeter);
x = the longitudinal position of the voltage microelectrode (centimeter);
S(r, R) is the variable defined by Eisenberg and Johnson (Eq. IV. 3-3, p. 24,
1970) to describe the local potential.
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This equation can be derived from the analysis of Eisenberg and Johnson
(loc. cit.) or from Eq. 5.3 of Peskoff et al. (1973) by the method described
in Appendix 2 of Eisenberg and Engel (1970). The equation can be simplified
in the case where the two microelectrodes are close together by expanding
the exponential in a Taylor series (Eisenberg and Johnson, 1970, p. 58):

V(= + r, R; a, X), (3)
i,/2

where the proximity variable is defined for computational convenience as

P(r, R; a, X) = X S(r, R) + x , (4)

where X = (r/ri)'2 .
The terms shown in Eq. 4 are sufficient if I x(riy)1l2 << 1. In a typical

case, as illustrated in Fig. 7, x(riy)l21 I w/2 x. (0.31 s/cm). Thus, at
t = 2r. 104, the terms are sufficient if x << 130 um.

The effect of the local potential is simply (to this level of approximation)
to add the proximity term P(r, R; a, X) to the usual expression of one-dimen-
sional cable theory. This term is independent of frequency and membrane
capacitance although dependent on the electrode positions, fiber radius, and
membrane and internal resistance. If one were quite confident that the fiber
had circular cross section, and if one knew precisely the location of the
microelectrodes, one could predict the size of the term. Our lack of such
confidence suggests that the parameter P(r, R; a, X) be considered as just
another circuit element in the circuit model. While the physical significance
of the parameter is somewhat unusual (it can, for instance, be negative even
though it describes a strictly passive resistive process), mathematically it enters
the equations just like any other circuit parameter. One can then determine
the parameter P(r, R; a, X) with the same curve-fitting procedures (see
below) used to determine the value of the other circuit parameters, for in-
stance, membrane capacitance. The addition of this extra unknown parameter
adds uncertainty to the analysis since it provides another "degree of freedom."

The distinction between the two variables S(r, R) and P(r, R; a, X) re-
quires further discussion. Eq. 1, which includes the variable S, is the precise
and general form. It shows that the total potential can be written as the
sum of two terms: L(x .· · ) and S (r, R). It is important to realize that both
terms vary with longitudinal position. The term S is large and varies steeply
when the longitudinal electrode separation x is small but is almost zero if x
is larger than two fiber radii. For this reason one would expect there to be
no significant circumferential or radial gradients of potential when the
electrode separation is greater than a fiber diameter. The term L varies
gradually if x is small compared to X, but it accounts for almost the entire
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decrement of potential for large x. The additional variable P is defined so
we can easily analyze the variation of potential for the case in which both L
and S are significant. Thus, the variable P includes the effect of both one-
dimensional and three-dimensional decrement.

THEORY

Electrical Models of a Sarcomere

The circuit models which have been proposed to describe skeletal muscle
fibers are, for the most part, models of the shunt admittance of a sarcomere y
through which current flows from the sarcoplasm to the external solution.
The circuits have no explicit role for the sarcoplasmic reticulum, on the
assumption that, at least in the resting state, no significant current flows
from the sarcoplasm through the sarcoplasmic reticulum into the tubular
system and out of the muscle fiber (Leung, 1973; Ebashi and Endo, 1968;
and Franzini-Armstrong, 1970, 1971). These circuit models assume the
sarcoplasmic impedance to be resistive because of the paucity of contrary
experimental data (Schneider, 1970; Mobley et al., 1973).

We will now discuss several circuit models of a sarcomere and present
some families of curves which illustrate the expected behavior of a fiber with
these properties. In all the circuit models the surface membrane is repre-
sented as a parallel combination of a resistance and capacitance. The evi-
dence that this is an adequate representation is incomplete but measurements
on artificial membranes (Hanai et al., 1964), on squid axon at frequencies
below 20 kHz (Palti and Adelman, 1969), and on glycerol-treated muscle
fibers (Valdiosera et al., 1974 b) support the assumption. The total shunt
admittance is then

y = yT + g, + jwcm, (5)

where j = /- 1 and co is the angular frequency, 2r times the frequency
in hertz. The variables are defined for a unit length of muscle fiber (Table I).
Circuit models including a statistical distribution of circuit parameters (as
described in Appendix D of Falk and Fatt, 1964) are not used here since
the choice of the probability density function for each of the circuit param-
eters seems arbitrary and not subject to experimental test.

Lumped Model of the Tubular System

The lumped model of the tubular system, appealing because of its simplicity,
has received considerable attention (Falk and Fatt, 1964; Freygang et al.,
1967; Hodgkin and Nakajima, 1972 a; 1972 b; see Eisenberg, 1971; Jack
et al., 1973; Peachey and Adrian, 1973, for reviews). In this model the tubular
system is represented as a resistor in series with a capacitor. That is to say,
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TABLE I

SETS OF VARIABLES

Electrical property

Tubular
membrane
capacitance

Tubular
membrane
conductance

Tubular luminal
resistance or
conductance

Access resistance

Surface membrane
resistance or
conductance

Surface membrane
capacitance

Sarcoplasmic
resistivity

Structure itself

C, (F/cm2 )

G, (mho/cm2)

GL (mho/cm)

R, (ohm-cm2)
(often R,)

R, (ohm-cm2)
G,, (mho/cm2)

C, (F/cm 2)

Ri (ohm-cm)

Surface of fictitious
unfolded cylinder

C* (F/cm2)
(often C.)

G* (mho/cm2)

R* (ohm-cm2)

Ra (ohm-cm2)

Rim (mho/cm2)
G., (mho/cm 2)

C* (F/cm2)

Length of fiber

ck (F/cm)
(often c,)

g. (mho/cm)

rL (ohm-cm)

ra (ohm-cm)
(often r,)

rm (ohm-cm)
g, (mho/cm)

c,, (F/cm)

ri (ohm/cm)

Volume of fiber

C. (F/cm3 )

w (mho/cm8 )

AL (ohm-cm)

GL (mho/cm)

Ri (ohm-cm)

Dimensionless
variables for curve

fitting

cec

gwg

rer

rare

I-rer

l -cec

Most authors do not explicitly distinguish between the starred and unstarred variables since detailed
information concerning the shape and folding of muscle fibers is not available. The variables referred to
the volume of fiber and to the structure itself are defined and related in Adrian, Chandler, and Hodg-
kin (1969). The variables referred to the surface of a fictitious unfolded cylinder are used by Falk and
Fatt (1964) and Freygang et al. (1967); the relations of these variables to those of a unit length of mus-
cle fiber are discussed in those references and in Hodgkin and Rushton (1946) and Jack et al. (1973).
The dimensionless variables are defined in this paper.

all the resistance of the tubular system is supposed to arise at one place, most
likely the mouth of the tubules and this resistance is assumed to be in series
with the total capacitance of all the tubular membranes. Thus, we can write
(again using the variables defined in Table I)

1
YT = I I

r -j -

(6)

Reference to Fig. 1 will show that this model is distinguished by the absence
of a circuit element to represent the resistance of the solution in the lumen
of the tubules. The lumped model then predicts that there should be no
radial gradients of potential within the tubular system in disagreement with
the straightforward interpretation of the experimental results of GonzAlez-
Serratos, 1971; Adrian, Costantin, and Peachey, 1969; Costantin, 1970;
and Hodgkin and Nakajima 1972 a, 1972 b.

- �

_� --
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The lumped model does not explicitly include the resistance of the membrane
of the tubules because it cannot be identified by electrical measurements made
at one location, just as two resistors in parallel cannot be distinguished from an
equivalent single resistor (Eisenberg, 1965; Eisenberg, 1967; Schneider, 1970).

In order to predict the impedance of the lumped model it is necessary to
consider the particular form of the appropriate equations. Difficulties arise
if the circuit parameters are not normalized because changes in one parameter
have complicated effects on the whole curve even at low frequencies. We
describe the lumped model by the "normalized" variables r, c, rer, and cec.
Note that we follow the convention of computer languages and allow vari-
ables to be named by more than one letter; multiplication is indicated ex-
plicitly.

The variable r is the DC resistance of the membranes in a unit length of
muscle fiber.

cm is the capacitance of the surface membrane in a unit length of muscle
fiber.

c, is the capacitance of the tubular wall in a unit length of muscle fiber.
c is the sum of the capacitance of the surface membrane and of the mem-

brane of the tubular system in a unit length of muscle fiber, c = c + c .
Note that r X c is a measure of the overall "time constant" of the muscle
fiber.

cec is the ratio of the capacitance of the tubular system to the capacitance
c, both measured in a unit length of muscle fiber, cec = c/c.

rer is the ratio of the resistance at the mouth of the tubules r to the DC
resistance, both measured in a unit length of muscle fiber rer = r/r.

These are related to the variables used by Falk and Fatt and Freygang
et al. (1967) by the following equations:

cu. = ce; ra= r; c =Cm c r = rm;

cec rer -, (7)
C + Cm ra

where the variables on the right hand side of the equations are defined by
those authors. We can now generate plots of the phase angle between sinu-
soidal current and voltage expected for various circuit parameters using
Eqs. 1, 3, 5, and 6 to generate the impedance, and then determining the
phase angle of the voltage.

Figs. 3 and 4 show the effect of the variation in the parameters rer and cec,
the other variables being held constant at the values indicated in the captions.
The effects of the proximity parameter are quite similar to those illustrated in
Fig. 7 for another circuit model. In the other figures P(r, R; a, X) is unrealisti-
cally set to zero in order to facilitate comparisons with previously published
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ca,

-r
a

Log frequency (Hz)

FIGURE 3. The effects of rer, the ratio of radial to "membrane" resistance, on the phase

characteristic of the lumped model. The values of rer are indicated. The other variables

were held constant at the values cec = 0.6, P = 0, and r X £ = 0.0162 s.

a)

C

0

I0

Log frequency (Hz)

FIGURE 4. The effect of cec, the ratio of tubular to total capacitance, on the phase char-

acteristic of the lumped model. The values of cec are indicated. The other variables were

held constant at the values rer = 0.05, P = 0, r X c = 0.0162 s.

curves. The effects of r and c are not shown since the phase plot depends in a

simple way on the product of r and c; these variables simply translate the plot

left and right. The dependence on the variable rer, which specifies the radial

resistance to current flow, is as one might expect. If rer = 0, the resistance ra

at the mouth of the tubules is zero and the equivalent circuit of a sarcomere is

just a resistance in parallel with the capacitance c. The phase plot is then the

arctangent function shown. Similarly, if rer is infinite, the capacitance of the
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tubular system is electrically isolated from the rest of the admittance yr and
the equivalent circuit is just a resistor and capacitor c, in parallel, and the
phase plot is the arctangent function. Between the extremes, the main effects
of rer are to change the frequency at which the minimum in the phase plot
occurs and to change the height of the low frequency maximum.

The effect of the variable cec which specifies the fraction of total capacitance
on the tubular system, is shown in Fig. 4. When cec = 0, there is no capacitance
in the tubular system and the curve is a simple arctangent function. When
cec = 1, there is no capacitance on the surface membrane; all the capacitance
in the fiber is in series with resistance, and the phase plot must then approach
zero at high frequencies. Between these extremes, the main effect of cec is to
change the height of the maximum and the depth of the minimum of the
plase plot. The variable cec has little effect on the frequency at which these
extrema occur.

Hybrid Model of the Tubular System

It seems likely that the resistance of the lumen of the tubules has a significant
effect on the electrical properties of muscle fibers and so it is important to
include such a resistance in the circuit model of a sarcomere. Peachey and
Adrian (1973) have introduced such a model including both the luminal
resistance of the tubules and an "access resistance" at the mouth of the
tubules (see also Peachey, 1973). We shall refer to this model as the "hybrid"
model so as not to prejudge the physical location of the access resistance.

In order to describe this model we use the dimensional variables
r, = the DC resistance of the surface membrane in a unit length of muscle

fiber, equal to R*/27ra;
gw = the DC conductance of the tubular membranes in a unit length of

muscle fiber, equaling Gra2;
Gc = the total capacitance in the tubular membranes in a unit length of

muscle fiber, equaling C,0ra2;
cm = the capacitance in the surface membrane of a unit length of muscle

fiber, equaling C*27ra;
r. = the access resistance in a unit length of muscle fiber, equaling R*/

21ra;
rL = the radial resistance of the lumen of the tubules in a unit length of

muscle fiber, is defined as 1/8r GL so the low frequency behavior of a
hybrid model with total radial resistance r, is similar to the low fre-
quency behavior of the lumped model with radial resistance r = r.
(Adrian, Chandler, and Hodgkin, 1969, Eq. 14). The variables unde-
fined here are discussed in Table I, in Adrian, Chandler, and Hodgkin
(1969), and in Peachey and Adrian (1973). The radius of the hypo-
thetical right circular cylindrical muscle fiber used in the calculation
of the starred variables is taken as a centimeter.
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The normalized variables which seem most helpful (out of many possible
choices) in generating families of phase plots are

c = cm + c is the total capacitance of the tubular and surface membranes
in a unit length of muscle fiber

cec = c /C

r = [l/r, + /(ra + rL + l/gW)] - is approximately equal to the DC
resistance to the current flowing out of a unit length of muscle fiber;
it would be equal to this resistance if the length constant of the tubular
system were much larger than the radius of the muscle fiber (see Eq.
14 of Adrian, Chandler, and Hodgkin, 1969). This variable must be
distinguished from r, the resistance of the surface membranes in a
unit length of muscle fiber.

rer = r + r L/r;

gwg = r X g,;
rare = ra/(ra + rL).

The equation which describes the admittance of the tubular system in this
model is a generalization of Eq. 14 of Peachey and Adrian (1973), the generali-
zation to the sinusoidal case being made by the techniques described by
Eisenberg and Engel (1970), Appendix 2. The generalization essentially re-
places each membrane resistance with the corresponding membrane im-
pedance and interprets the resulting complex quantity as the impedance
defined by Laplace transform theory

1 _ 4rL lo0(ra) -ra, (8)
YT ra I1 (ra)

where r, a function of frequency, is the appropriate generalization of the
length constant of the tubular system:

r = 2 (2gwr,)l2(1 + jwcw/g,)' 2, (9)

and Io(z), Ii(z) are modified Bessel functions of the first kind (Watson, 1944).
In order to study the phase characteristics of the hybrid circuit model,
Eqs. 8 and 9 are written in terms of the normalized variables defined above
and then substituted into Eqs. 5 and 3.

Actual calculation of the phase characteristics described by 8 and 9 requires
the generation of complex Bessel functions for many complex arguments.
The calculation is tedious to perform by hand and so we have used the inter-
active computing language APL/360 (Gilman and Rose, 1970) in the
APL*PLUS implementation (Scientific Time Sharing, 1971). A most effi-
cient method of generating Bessel functions for real arguments is to use
rational approximations (Hart et al., 1968) but the validity of these approxi-
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mations has not been studied in the complex domain. We therefore generate
the Bessel functions by the appropriate asymptotic expansion when the
magnitude of the argument is large, and by the defining Taylor series when
the magnitude of the argument is small (Watson, 1944). Sufficient terms were
taken to guarantee accuracy of four significant figures in all cases. The rou-
tines used were extensively checked against tables of Bessel functions of real
arguments and the appropriate Kelvin functions (Abramowitz and Stegun,
1964) and against tables of the Bessel functions of complex argument. It
should be noted that the only table of Bessel functions of complex argument
available to us (National Bureau of Standards, 1947) uses a convention in its
choice of the location of the zero phase line of Io(z) which differs from that
used by Watson (1944, p. 77) and most other authors.

Figs. 5-7 show phase characteristics of the hybrid model, computed for
parameters close to those of muscle fibers in normal Ringer. In Figs. 5, 6 the
three-dimensional parameter is set to zero. The effects of the variables r and
c are to shift the characteristic left and right. Similarly, the effects of rer, the
radial resistance variable, are qualitatively similar (although less marked
and occurring at higher frequencies) to the effects in the lumped model (see
Fig. 3). Fig. 5 shows the plots produced by variation of cec, the variable
which determines the capacitance of the tubular system. Again cec changes
the depth of the minimum and the height of the maximum, but the effects
here are less dramatic than in the lumped model. The difference between the
models is particularly striking for large values of cec. In the hybrid model

a,

0

a.
I

Log frequency (Hz)

FIGURE 5. The effect of cec, the ratio of tubular to total capacitance, on the phase
characteristic of the hybrid model. The values of cec are indicated. The other variables
were held constant at the values rer = 0.05, P = 0, r X = 0.0162 s, rare = 0.15, gwg =
0.182. The values of the variables are taken from the Valdiosera et al. (1974 b), except
that gwg is determined from the data of Eisenberg and Gage (1969).
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cec = 1 again implies that all the capacitance of the fiber is in the tubular
system, and so all the capacitance is in series with the resistance r, but now
this resistance is a much smaller value and so the decrease in phase with
frequency is more gradual and occurs at higher frequencies.

The effect of gwg, the variable which measures the conductance of the
tubular wall is not shown because the phase plot is hardly changed by this
variable. This property is to be expected (Schneider, 1970: Fig. 14) since for
these sets of circuit parameters at low frequencies there is little decrement of
potential in the tubular system, and the hybrid model behaves like the lumped
model (see indented text on p. 441). At higher frequencies, where there is sig-
nificant decrement in the tubular system, the conductance of the tubular
membranes is not very important compared to their capacitance. Since gwg
has a small effect on any of the passive electrical properties of the muscle
fiber, it cannot be determined from electrical measurements under one set of
conditions. On the other hand, incorrect estimates of the value of gwg will
have a negligible effect on the estimates of the other parameters which de-
scribe the linear electrical properties of the muscle fiber.

Fig. 6 shows the effect of rare, the variable which specifies the location of
the resistance to radial current flow. When rare = 1, the hybrid model and
the lumped model are identical and indeed we have used this property as an
overall check on our calculations. In this case the depth of the minimum in
the curve is quite large. If rare = 0, all the radial resistance of the tubular
system is supposed to arise in the lumen of the tubules, and the depth of the
minimum is quite shallow.

Fig. 7 shows the three-dimensional variation in potential, and in phase
angle, in some detail since similar curves have not previously been published.

I,

o,

a-
I

Log frequency (Hz)

FIGURE 6. The effect of rare, the variable which specifies the location of the radial
resistance, on the phase characteristic of the hybrid model. The values of rare are indi-
cated. The other variables were held constant at the values rer = 0.05, P = 0, r X _ =
0.0162 s, cec = 0.8, gwg = 0.182.
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I

C

In all cases Xdc = 1.9 mm

0oV

Log frequency (Hz)

FIGURE 7. The circumferential variation in potential expected at various microelec-
trode positions. The insert shows the coordinate system used throughout the paper:
the circumferential coordinate is 0; the radial coordinate is r; the longitudinal coordinate
x; the fiber radius is a. The heavy solid curve is the phase characteristic determined when
P = 0, that is when there is no increment or decrement in potential produced by the
one- or three-dimensional flow of current. This heavy curve is that predicted by one-
dimensional cable theory at x = 0. The heavy dashed curve is that predicted by one-
dimensional cable theory at the longitudinal separation shown. The thin curves are the
phase characteristics predicted by three-dimensional theory. Notice that the curves in
A are qualitatively similar to those shown in Fig. 2. Only in C, where the separation is
one fiber diameter, does the circumferential variation of phase angle become negligible,
but in this case the effect of one-dimensional decrement is large. The values of the circuit
parameters were r X £ = 16.2 ms; rer = 0.05; cec = 0.8; gwg = 0.182; rare = 0.15;
X = 1.86 mm; a = 42 um; the three-dimensional correction was determined from
Table 3 of Eisenberg and Johnson (1970) for the case where both electrodes are just
under the surface membrane. (In figure /A = pm.)

The calculations were made from Eqs. 1, 8, and 9 using the values of S(r, R)

given by Eisenberg and Johnson (1970) for microelectrodes located just

under the surface membrane. The size of the correction is influenced by the

depth of the microelectrodes but not sufficiently to change the implications of

the figure. Fig. 7 A is similar to the experimental results shown in Fig. 2.

Fig. 7 B is computed at the electrode separation recommended by Falk and
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Fatt (1964), Eisenberg (1967), and Eisenberg and Johnson (1970). It can be
seen that at this electrode separation the circumferential variation of phase is
reduced but not negligible. While it might in principle be possible to find
some locations in a right circular cylindrical fiber at which P = 0 and there
were no three-dimensional effects, it would be difficult to place microelec-
trodes in that location since methods to observe and control the radial position
of microelectrodes have not been worked out.

Fig. 7 C shows the phase characteristic at an electrode separation (a fiber
diameter) at which the circumferential variation of potential is unimportant.
This figure is reminiscent of the results of Freygang and Trautwein (1970) on
the impedance of cardiac muscle. At these electrode locations it is possible
to neglect the variation of P and membrane potential with circumferential
and radial position: P varies significantly only with x, see Eq. 4. It may seem
that measurements made at this or larger electrode separations would avoid
three-dimensional effects and so would be simpler to interpret than measure-
ments at smaller electrode separations. This is not the case, however, since P
is important at large separations because of its one-dimensional component
-x/X (see Eq. 4) and must be taken into account when computing the im-
pedance or phase characteristics.

Disk or "Distributed" Model of the Tubular System

This model attempts to describe the tubular system as a disk of membrane
with a resistive interior. The only resistance to radial current flow is in the
lumen of the tubules. The disk model was introduced by Falk and Fatt (1964)
and modified and elucidated by Adrian, Chandler, and Hodgkin (1969)
and Schneider (1970). It has been extensively used (Hodgkin and Nakajima,
1972 a, 1972 b; Adrian, Constantin, and Peachey, 1969; Costantin, 1970,
among others) since it seems a plausible representation of the electrical
properties of the tubular system.

While historically the hybrid model arose as an extension and generaliza-
tion of the disk model, it is more convenient here to view the disk model as a
special case of the hybrid model, with the variable rare constrained to zero
(Fig. 6). The effects of the variables r, c, rer, and gwg are as described above.
The effect of the variable cec, the variable which specifies the capacitance of
the tubular system, is different, however, (Fig. 8). At low values cec sets the
minimum in the phase plot; at higher values however, there is no longer a
minimum at all. Indeed for cec = 1, in which case all the capacitance of the
muscle fiber is in the tubular system, the curve approaches 22.5 ° at high
frequencies. This is to be expected (Falk and Fatt, 1964) since at such high
frequencies the tubular system behaves as one distributed network distributed
along another network. Each network is in itself described by a square root
function and so the overall phase shift at high frequencies is (2) X (2) X
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T0

a,
0,

a

0I

Log frequency(Hz)

FIGURE 8. The effect of cec, the ratio of tubular to total capacitance, on the phase
characteristic of the disk model. The value of cec is indicated. The other variables were
held constant at the values rer = 0.05, gwg = 0.182, r X = 0.0162 ms, P = 0 and,
because we are dealing with the disk model, rare = 0. Note the limiting value at high
frequencies in the case of cec = 1.

(-90°). The properties of the phase characteristic when cec = 0 and when
cec = 1 serve to check our calculations.

Determination of Circuit Parameters

The passive electrical properties of muscle fibers can be determined by fitting
one of the circuit models described above to the impedance data recorded
experimentally from a muscle fiber. The procedure of fitting the data should
satisfy several criteria. The results of the procedure should depend on the
experimental data at all frequencies, emphasizing the midfrequency data
which is usually most accurate. The procedure should provide an objective,
statistically defined measure of fit and the standard deviation of the estimates
of the circuit parameters. (This will amount to a measure of how sensitive the
theoretical phase characteristic is to each of the circuit parameters). It should
provide an indication of the correlation coefficient between the circuit param-
eters so that one can determine if two circuit parameters are closely correlated
and cannot be evaluated independently. It should be possible to determine
the best fit with any of the variables constrained to a particular value. Finally,
the procedure should be convenient and not too expensive in computer time,
since a large number of curve fits will certainly be necessary in the analysis of
experimental results.

We have used the curve-fitting method derived and analyzed by Hamilton
(1964, 1965) for the determination of molecular structures from crystallo-
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graphic data and are indebted to Professor David Eisenberg for bringing this
work to our attention.

A discussion of the curve-fitting method requires the definition of the fol-
lowing variables. Precise definition is necessary here since different authors use
different notations for the same quantities. ibi(w ) is the phase angle experi-
mentally observed at the known angular frequency wi . The index i = 1, 2,
3, M where M is the number of frequencies at which data is recorded.
0 (wi ; B,) is the phase angle theoretically predicted at the angular frequency
w for the values of the circuit parameters d . Each i is a different parameter
and j = 1, 2, 3, · · · N where N = number of independent circuit parameters
whose values we wish to determine. The procedure to determine the best
values of the circuit parameters ij and their variance depends on the distribu-
tion of the experimental data. The recommended procedure (Hamilton,
1965, Chap. 4, 5) for data with a Gaussian distribution is to seek the values of
j3, which minimize the mean square error between the theoretically predicted
and experimentally observed phase angles.3 The function minimized is:

M

i/= ow,*ti; 0), (10)
i-1

where the weights wi are defined and discussed below and

Fi(i ; 0i) = i(wi) - i(wi ; ,). (11)

There are a number of methods for finding the minimum of the function Ab.
We have used the Levenberg-Marquardt algorithm (Marquardt, 1963) as
implemented by Brown (Brown and Dennis, 1972) because it is convenient,
efficient, and converges quite well.

The choice of the weights w i (which are positive numbers between zero and
one) depends on the particular situation. If we fit the data from one muscle
fiber, we set the weights to unity, although at times lower values are chosen
for points contaminated by systematic error. If we fit the data from many
muscle fibers in the same solution, the phase 4, is taken as the mean of the
data from all the fibers at that frequency and the weight is chosen as the
square of the reciprocal of the standard error of the mean of i (Hamilton,
1964, p. 146-149) although again lower values are chosen if the data is
contaminated by systematic error. The standard deviation of the parameters

3 The distribution of our phase data is almost Gaussian. We have constructed standardized histo-
grams of experimental phase data at each frequency and then have standardized the sum of these
histograms to form a final histogram of our measurements (2,640 observations from 98 muscle
fibers in 7 solutions). This procedure has been adopted to remove from the final histogram the
dependence of phase angle on frequency. The final histogram is fit surprisingly well by a Gaussian
distribution.
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(the square root of the variance) is computed from the following formula

M

E WFi
var lj = -l Ft 2 (12)

(M - N) 28i
i-1

where the value of the derivatives are estimated from their finite difference
approximations. The standard deviation of each parameter is seen to be the
reciprocal of the derivative of the theory curve (in the mean square sense)
with respect to the parameter. Thus, if the curve significantly changes shape
for changes in the value of the parameter, the derivative is large and the
standard error of the parameter is small. If the curve does not change shape
significantly for changes in the parameter (for instance, if the parameter were
gwg of the hybrid model), the derivative is small and the standard deviation
is large. The correlation coefficient of the parameters is computed as described
by Hamilton (1964, p. 129-132).

An objective measure of fit is Hamilton's R test (a form of the F ratio test
used in the analysis of variance), with

M

w, WiF
R= =i-l (13)

i-I

The value of R can be looked on as a dimensionless measure of fit. Thus, a
value of R = 0.01 would imply that theory and experiment fit within 1%.
The distribution of the random variable R has been studied and so tables are
available (Hamilton, 1965) which allow one to determine whether two values
of R, and thus two theoretical curves, are significantly different.

The R test takes into account the number of adjustable parameters in the model used
to generate the theoretical curves. If one of the models has more adjustable parameters
than the other model, it must fit much better (have a much smaller value of R) if the
difference between models is to be significant.

Reliability of Circuit Values

There are two ways to evaluate statistically the significance of the value of a
parameter. The obvious method is to use the mean value and standard devia-
tion of the parameter in Student's t-test. This method allows the comparison of
two values of a parameter, assuming all other parameters are held constant.
There is another more severe statistical method to compare two values of a
parameter. In this method the best fit of the theory is determined twice, in
each fit the parameter is constrained to one of the two values being compared.
Comparison of the goodness of fit (the value of R) in the two cases allows
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determination of the significance of the difference between the two values of
the parameter. This test has the important advantage that the values of all
the other parameters are free to take on their best values.

It should be clearly recognized, however, that the important conclusions
concerning goodness of fit and the significance of parameter values must be
made on the basis of human judgment. The statistical theory does not include
the effects of covariance of experimental observations, covariance of theoreti-
cal variables, or indeed the nonlinearity of the equations describing the circuit
model. It cannot include the effects of unknown systematic errors. The sta-
tistical theory then can serve to reject hypotheses: it can clearly show that two
models or two values of a parameter do not differ in their ability to fit data.
However, the decision that two parameter values, or the fit of two models,
are significantly different must be taken by the investigator, with due weight
to all sources of uncertainty, known and yet unknown.

The most serious difficulty concerning the reliability of the estimates of the
circuit parameters is not clearly shown by the above statistical discussion.
Fig. 9 illustrates the problem. The synthetic "data" plotted was generated
from the hybrid model. The theoretical curves shown are the best fits of the

o,

a
II

Log frequency (Hz)

FIGURE 9. Fits to synthetic data. The data shown were generated by the hybrid model
for the parameter values r X c = 16.2 ms; cec = 0.8; rare = 0.15; gwg = 0.182; rer =

0.05; and in A, P(r, R; a, X) = -0.01, in B, P(r, R; a, X) = 0.05. The two values of P
correspond to two different electrode locations as shown in Fig. 2. The data was fit by
both the hybrid and disk models but the fits cannot be distinguished by eye. The best
parameter values for the hybrid model were the values which generated the curve
(within the rounding error of the routines used to generate the functions). The param-
eter values which gave the best fit of the distributed model are r X c = 16.0 ms; cec =
0.88; rer = 0.046; and P(r, R; a, X) = -0.016 for curve A, and P(r, R; a, X) = 0.044
for curve B.
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disk model and the fits are quite satisfactory. The best values of the circuit
parameters of the disk model are given in the caption; these are significantly
different from the corresponding values of the hybrid model which generated
the data. Thus, an incorrect model can fit data quite satisfactorily but with
incorrect parameter values. In this case independent knowledge of the correct
parameter values is needed to determine the correct circuit.

It might be conjectured that the ability of an incorrect model to fit synthetic
data is peculiar to models which contain the proximity parameter P. This con-
jecture has been refuted by performing another mock experiment, similar to that
discussed above, but in this case using data generated from the hybrid model with
P = 0 and then fitting the data with the disk model with P constrained to zero.

DISCUSSION

Circumferential and Radial Variation of Potential

The experiments described in Fig. 2 seem to show a marked circumferential
and radial variation of potential and so it is important to discuss both possible
errors and implications of the experiments. The most likely source of error
in the experiment is the local damage produced by the microelectrode. This
damage could produce a shunt in a small region around the current electrode
and so produce a circumferential variation in membrane potential and con-
commitantly in membrane resistance. It seems unlikely that this is a major
source of error here for several reasons. The fibers showed no sign of damage,
even observed at high magnification with polarizing optics, and the resting
potentials were of normal magnitude and stable. Most convincingly, the low
frequency measurements of phase, which are very sensitive to small changes
in membrane resistance and so to membrane potential, are quite stable during
the experiment. Of course, such is not always the case; indeed, Fig. 2 is the
result of weeks of experimentation in which the great majority of fibers did
show measurable damage and drift and so were rejected.

It is interesting to compare the size of the three-dimensional effect observed
with that predicted from the theory of Eisenberg and Johnson (1970) and
Peskoff et al. (1973). Assuming the fiber to be a right circular cylinder, for
the sake of this crude approximation, the angular coordinate of the micro-
electrodes can be calculated from the observed locations and fiber "diam-
eters." The theoretical value of the proximity parameter for that position can
be determined from Eq. 4 and Fig. IV. 4-2, 3 of Eisenberg and Johnson, 1970,
assuming the microelectrodes to be just under the surface membrane. Table II
compares the theoretical values with those which produce the best fit to the
experimental data. Since the location of the microelectrodes is not known and
since the fiber is unrealistically assumed to be a circular cylinder, it is not
surprising that there is not very good agreement.
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TABLE II

ANALYSIS OF EXPERIMENTS ON THE THREE-DIMENSIONAL EFFECT SHOWN
IN FIG. 2

Parameter values

P(r, R; a, X) P(r, R; aX)
rX cec rare rer (observed) (predicted)

ms X10 -' X 10- X 10 X O-a X 10-

Fiber A
Position 1 18.8 6.77 5.65 3.62 -9.36 -5.0

(0.3) (0.04) (1.60) (0.13) (0.19)
Position 2 18.3 7.92 3.57 4.04 4.72 20.0

(0.4) (0.05) (1.55) (0.15) (0.43)
Fiber B

Position 1 14.1 7.79 25.5 7.01 -10.7 -2.0
(0.2) (0.02) (1.6) (0.15) (0.3)

Position 2 16.3 8.74 14.6 5.73 48.7 40.0
(0.3) (0.04) (1.5) (0.15) (0.9)

The theoretical curves shown in Fig. 2 were computed with the above parameter values and
gwg = 0.182 (Eisenberg and Gage, 1969).
The numbers in parentheses are the standard deviation of the parameters.

The experiments shown in Fig. 2 provide a most critical test of our experi-
mental procedures and results and indeed of the theoretical models of the
muscle fiber. Each theoretical curve was generated by a set of parameter
values for the hybrid model, the set of parameter values which give the best
fit. Since the proximity parameter P(r, R; a, X) is the only variable in the im-
pedance equations which depends on a circumferential or radial position;
it is the only variable which should be different in the two sets of best values.
The best parameter values and their standard deviations are given in Table II
and it can be seen that while the proximity parameter is by far the most
sensitive to the circumferential position, some of the other circuit parameters
vary as well.

The conclusions to be drawn from Fig. 2 are important and so the curve-
fitting results have been carefully checked. Use of the R test reinforces our con-
clusion. Fitting the disk or lumped model to the data has no effect on our conclu-
sions; that is to say, there is still a profound circumferential variation of some
parameter values. Application of corrections for the phase shift in the tip of the
microelectrode or for possible phase shift in the longitudinal impedance of the
muscle fiber also does not change the circumferential variation of circuit parame-
ters, although, of course, the absolute values of the parameters do depend some-
what on the corrections.

The variation in these parameters with circumferential position serves as
an upper bound on the total error in our procedures and experiments since it
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includes the effects of experimental and theoretical errors as well as imper-
fections in the curve-fitting procedure. There are, however, other more
interesting potential sources of the variation of circuit parameters with
circumferential position. If there were, for instance, a circumferential varia-
tion of potential across the tubular membranes, all the electrical models of the
muscle fiber would be incorrect since they do not permit such variation. One
would then expect to find a variation in the values of the circuit parameters
which produce the best fit of data taken at different circumferential positions.
Possible source of circumferential potential gradients across the tubular
membranes are discussed below.

Any other error in the circuit models could also, at least theoretically,
produce an apparent circumferential variation of parameter values. An
incorrect theory might still be able to fit the data with incorrect values of the
circuit parameters; and since the choice of these incorrect values would be
somewhat arbitrary, they might even depend on the circumferential position
of the microelectrodes. However, in the mock experiment shown in Fig. 9 the
only circuit parameter which varies with position is the proximity parameter,
as it should be, and so this theoretical possibility seems unlikely to be im-
portant in practice.

We conclude then that the apparent circumferential variation of circuit
parameters is most likely the result of two effects: the errors in our measure-
ments and experimental procedures and errors in the circuit models them-
selves, produced by circumferential variation of potential across the tubular
membranes. Further experiments, in which the experimental errors are
reduced to negligible values, are needed before it can be concluded that the
circuit models are in error.

Approximations in the Disk Model of the Tubular System

In this section we consider several of the approximations used in the deriva-
tion of the disk model of the tubular system (Adrian, Chandler, and Hodgkin,
1969). The discussion can be immediately generalized to the hybrid model
since the two models are closely related.

In the disk model the geometry of the tubular system is represented as a
regular branched network of tubules, with diameter small compared to the
mesh of the network. The mesh spacing is considered to be small compared
to the diameter of the fiber and to the electrical length of the tubular system.
The tubular system is supposed to be symmetrical and bounded by an outer
membrane of circular cross section.

The precise analysis of the electrical properties of a muscle fiber would
require consideration of the variation of potential within the tubular system
and within the sarcoplasm of the muscle fiber. The potential across the tubular
membrane has been calculated by assuming that there is no circumferential
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variation of potential in the tubular lumen and that the radial variation of
the potential across the tubular membranes arises entirely because of the
radial variation of the potential in the tubular lumen. Mathematical diffi-
culties force us to follow this approach and ignore the component of tubular
membrane potential produced by the three-dimensional spread of potential
in the sarcoplasm although we do include the current flow across the surface
membrane produced by three-dimensional spread of potential.

Thus, there is an obvious source of circumferential variation of potential
across the tubular membranes which the disk theory ignores: the potential in
the sarcoplasm is known (Fig. 2) to vary significantly with angular location
and so the potential across the tubular membrane must be expected to show
such variation as well. Indeed there is experimental evidence (Adrian et al.,
1969) that the local potential around a current-passing microelectrode can
cause contraction, perhaps by depolarizing the nearby tubular membranes.
Another obvious source of circumferential variation of potential is the ir-
regular shape of the muscle fiber (Blinks, 1965). If current were applied to
such an irregular fiber from a disk source, there would be almost no circum-
ferential variation of potential in the sarcoplasm, but the potential in the
lumen of the tubules and across the tubular membrane would still vary
around the fiber. Since the disk and hybrid models do not permit circum-
ferential variation of tubular membrane potential, it is not surprising that
the values of the parameters of those models necessary to fit experimental
data show a variation with circumferential position.

Another difficulty with the disk model is the assumption that the electrical
length of the tubular system is much larger than the spacing of the mesh. At a
frequency of 500 Hz the electrical length of the tubular system is about 10 Mm
in our experiments (Eisenberg et al., 1972, Eq. 11; Eisenberg, 1970, Eq. 2).
Since the mesh spacing is about 1 gum (Peachey, 1965), the assumption that
the electrical length is much larger than the mesh spacing will begin to fail at
quite low frequencies (well below the reciprocal of the rise time of an action
potential), and will be in serious error at higher frequencies. Indeed, at
10,000 Hz the electrical length of the tubular system is just 2 im !

Hybrid Model as a Modification of the Disk Model

It is interesting to discuss the nature of the errors introduced into the disk
model by the approximations just analyzed. As the electrical length of the
tubular system approaches the mesh spacing one would expect deviations
from the disk model for two reasons. First, the breakdown of one of the as-
sumptions of the disk model would most likely produce deviations. Second,
the structure of the tubular system is specialized just under the membrane
(Peachey, 1965; Peachey and Adrian, 1973; Peachey, 1973) and this spe-
cialization should become important as the electrical length of the tubular
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system becomes short. These deviations might appear as a frequency de-
pendence of the two parameters a and p (a tortuosity factor and the volume
fraction of the tubular system) treated as constants by Adrian, Chandler,
and Hodgkin (1969).

The hybrid model of the tubular system attempts to remedy these problems
by introducing another resistance, the access resistance, into the electrical
model of the tubular system. This resistance is supposed to limit the flow of
current into the tubules, especially at high frequencies. The access resistance
may be the property of a real structure or may represent the properties of the
specialized geometry of the tubules just below the surface of the fiber.

It is important to remember, however, that the hybrid model has one more
adjustable parameter than the disk model and so it should come as no surprise
that it can account for the electrical properties of muscle fibers (Peachey and
Adrian, 1973; Valdiosera et al., 1974 b) somewhat better than the disk model.
The hybrid model may represent the electrical properties more satisfactorily
only because it has an extra adjustable parameter which can compensate, in
some subtle way, for the approximations inherent in the disk model. An
evaluation of the significance of the access resistance, including its anatomical
correlate, awaits further evidence, hopefully direct, concerning the radial
spread of potential in the tubular system.

We are indebted to Drs. F. Rasmussen and S. Hagiwara who made it possible for us to work together.
Drs. Adrian, Freygang, Mobley, Nakajima, Y. Nakajima, and Peachey kindly sent us unpublished
manuscripts and made useful criticisms of the text. We particularly thank Drs. Costantin, Leung,
Mobley, Peskoff, and B. Eisenberg for their illuminating discussions and searching review of the
manuscripts.
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tion by NSF grant GB24965. Dr. Valdiosera was supported by NIH training grant GM 00448.

Note Added in Proof Mobley, Leung, and Eisenberg (J. Gen. Physiol., 1974, in
press) have recently shown that the longitudinal impedance of skinned muscle fibers
is purely resistive.

Received for publication 30 July 1973.
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