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Summary

A derivation is given of the equation and boundary condition for determining the electric potential
in 4 cell. The potential is caleulated for all time. everywhere inside a spherical cell and in the external
bathing medium for the case of a point source of current inside the cell turned on abruptly at 1 =0.
The problem is solved by the singular perturbation technique of matching a short-time (inner) and a
long time (outer} asymptotic expansion. The model for the cell consists of a sphere of radius ¢ with
an internal medium of conductivity ¢, surrounded by a membrane of thickness 8, conductivity o,
and surface capacity C,,. bathed in an external medium of conductivity o,. The solution is discussed for
the physiologically interesting case of e=0,, a’g, 8 < 1, when the effective internal resistance is smalf
compared to the effective membrane resistance. In the most important physiological case, for times
much lJonger than C, a/o,. simple analytic expressions are obtained for the inside potential, the
outside potential and the (ransmembrane potential. The leading term in the expansion, the iso-
potential cell interior, is obtained for arbitrary finite-cell shape.

Introduction

Many experiments to determine the natural electrical activity and characteristics
of cells and tissues involve the application of current to the inside of a cell
and the recording of potential at nearby points also inside the cell. The current
is usually applied through one microelectrode and the voltage recorded with
another. In order to relate the observed potential to the properties of the cell —
particularly to the resistance and capacitance of the cell membrane and the
resistivity of the cell interior — an electrical model of the cell must be used. We
consider here the model appropriate for a finite cell (one which is roughly
spherical in shape) and analyze the electrical properties expected if a step
function of current is applied to the cell. Qur analysis differs from previous
work (Rall, 1969; Pickard, 1968; Eisenberg and Johnson, 1970: Eisenberg and
Engel, 1970; Hellerstein, 1968; Barcilon, Cole and Eisenberg, 1971) in that it
solves the complete problem including external resistance and time dependence
of the voltage; the solution is also presented in rather compact form, so that i
i$ easy to compare with experimental results.
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Most importantly, we solve the problem using the techniques of singular pertur-
bation theory (Murray, 1974; Cole, 1968; Eckhaus, 1973: Nayfeh, 1973), in
particular, the technique of matched asymptotic expansions. It has been argued
(Peskoi and Eisenberg, 1972) that this technique is particularly well suited to
biological problems which contain a small parameter, because it emphasizes the
physical meaning of the problem, and the way the solution to the problem depends
on the biological parameters (e.g., the membrane and internal resistance and the
membrane capacitance). Furthermore, the solutions generated by this technique
are often in neat form, easy to compute and compare with experimental results.
Finally, many of the properties of the solution can be deduced without detailed
assumptions concerning the geometry. For instance, in our case the general
properties of the solution can be predicted for cells of irregular shape provided all
the dimensions of the cell are about the same (that is, the cell must not be
too long).

The penalty paid for these advantages of singular perturbation is the length of
the analysis; a large number of relatively simple problems must be solved
instead of a single complex problem. We hope the reader will be patient with
the length of the analysis and agree that the physical insight afforded by
singular perturbation theory warrants it. The most relevant results for usual
experimental situations are summarized in equations (73 a), (73b) and (75).
These show that the potential inside the cell (with respect to a distant external
clectrode) consists of two components. One component builds up slowly with time.
is independent of position and of the resistance of the bathing solution, and
corresponds to the usual assumption of an isopotential cell. The second, established
quickly. is a local potential which near the current microelectrode is greater than
or comparable to the first component, but a short distance from the micro-
electrode is small. Only this second component depends on the resistance of the
bathing solution. At long times, and at distances far from the current micro-
electrode the isopotential term is dominant. The potential outside the cell
follows a simple inverse distance law and at physiological times shows negligible
dependence on angular position. The transmembrane potential has properties
similar to the internal potential. except it is missing the component caused by
the extracellular resistance. Thus. the transmembrane potential does not have a
significant dependence on the extracellular resistance under physiological con-
ditions.

The following paper (Peskoff and Ramirez, 1975) extends this analysis to include
the case where the sink of current outside the cell is not at infinity but is at a
finite distance from the cell. The solution is obtained by exact analysis and is
shown 1o reduce to the perturbation solution presented here for the range of
electrical parameters found in biological cells.

A report (Peskoff, Eisenberg and Cole, 1972)' is available which presents all
the details of the derivation, including the solution of the partial differential
cquations and the summation of the series of Legendre polynomials.

' Available from Reports Group, School of Engineering and Applied Science, University of
Californma, Los Angeles, CA 90024, U.S A.
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I. Cell Model

We consider the potential everywhere as a function of time for a point sburce of
current turned on abruptly at =0, somewhere in the interior of a cell. The
model taken for the cell is a sphere of radius a, enclosed by a thin membrane of
thickness 4, surrounded by an external conducting medium. We also obtain
some results for a cell of arbitrary shape in which all dimensions are of comparable
length. The current is collected by an electrode in the external medium. The
geometry and coordinate system are shown in Fig. 1.

Fig. 1. Coordinate system for spherical cell

The conductivities of the cell interior, membrane and outside medium are o, 0,
and o, (mhos/cm), respectively. The membrane thickness § and conductivity o,,
are considered to approach zero individually in such a way that the ratio
0/0,,=R,, the surface resistivity (chm-—cm?), remains finite. For a typical cell
used in physiological experiments, 6=10"°cm and a=10"2 to 5x 10~ 2 c¢m, so
that the limit $—0 will lead to no appreciable error on the scale of the cell. The
membrane is also assumed to have a capacity per unit area C,, (~ 1 ufarad/cm?).

The point source of current is a mathematical idealization of an electrolyte-
filled tapered glass pipette with a tip diameter much smaller than the dimensions
of a cell. In many cases, the electrical resistance of the pipette is large compared

to the effective resistance across the cell interior and membrane, so that the
source is naturally a current source. In other cases, the source can be made a
current source by external electronics.

Typical values for o, and o, are 3x1071°

respectively. Hence the quantity

mhos/cm and 7 x 10”2 mhos/cm,

p=— = (1)

is small (<1073 and although a solution valid for arbitrary « can be obtained
(Peskoff, Eisenberg and Cole, 1972; Peskoff and Ramirez, 1975), we discuss in
detail the physiologically interesting case of small ¢ in which simpler analytic
expressions are obtained.
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We assume a point source of current of strength 4 amperes, at a position
¥ =R inside the cell, where 7 is the position vector for the observation point,
and primes denote quantities measured in physical units. Unprimed quantities
will be in nondimensional units, defined below. In addition, there is a current
sink of equal magnitude at a point #' =R} outside the cell. The equation for
continuity of current is then

. dp o
VTS an (6 (- Ry -5 (7 Ry u0), 2

where ¢ ('r*’AR”) is a Dirac delta function, u(f) is a unit step function
[u()=0for ' <0 and u(t')=1 for ¢'>0] indicating that the source and sink are
switched on abruptly at ' =0, J' is the current density in amps/m?2, and p’ is
the charge density in coulombs/m?. According to (2) the 4 = amperes flowing into
the source electrode divides between current flowing into the cell from the
electrode and the charge accumulation at the electrode tip.

The potential V" is assumed to be related to the current density by Ohm’s law,

J=—aVV, (3)

where ¢ is g, 0, or g, in the respective regions. From Gauss’ law, the potential
may be related to the charge density by

’

V’Z V/:__ p , (4)

K &

where ¢, is the permittivity of free space, k is the dielectric constant and
K=K; K, or k, inside the cell, within the membrane, and outside the cell,
respectively. Equations (3) and (4) assume that the electric field is minus the
gradient of a potential, and hence ignore magnetic field effects, which are
negligible (Pickard, 1968). In addition, the simple proportionality (3) between
current and electric field leads to charge neutrality and hence ignores effects
on a scale comparable to a Debye length (~ 4 A).

Using (3) and (4) to eliminate J’ and p’ from (2), we obtain

N

&, O 4 = -
<1+ﬁﬁ) ) vip =" (7" —RY) u (), inside cell,
g

;. Ot ag;
Knéo O 2 1o .
1+ - | V' =0, in membrane, > (5)
g, Ot

6 % 4 > .
(1 4 Fofo ”/) vip =" (F'—R}) u(t"), outside cell.
g, Ot o

o 4

These first-order linear differential equations in ¢ may be integrated to obtain
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4 , .
VQl”:—mzi(l—e”“mﬂw)5(?~R{)u@}hmﬂech
V'2 1'=0, in membrane, (6)
o, 4m o syt I , )
VoV =—— (1—e %/ ") § (7 —R}) u(t'), outside cell.

a

The effective point source and point sink of current and charge increase ex-
ponentially in time to their final value imposed by the external current source.
This occurs because during a short transient period after the source is switched on
at =0, charge accumulates at the tips of the microelectrodes. Taking k; =80, the
time constant for this transient is found to be 1 nanosecond inside the cell, and a
comparable value outside. Consequently, for times much longer than a nano-
second the transient is over and we may ignore the exponentials in (6), so that
we have

4 - 4 -
viy- —[U" (f’—R;)—G—”(S(f'—R»J () ™

i [

We now derive the boundary condition appropriate for our membrane model.
According to (4) and (6) the volume charge density is zero everywhere within
the interior of the cell, the interior of the membrane, and outside the cell,
except for the infinite charge density just at the source and sink. At the interface
between the interior of the cell and the membrane — and at the interface of the
exterior solution and the membrane — there is free charge. Letting ¢~ and ¢’ *
be the charge per unit area on the inner and outer surfaces of the membrane,
respectively, and J,, be the component of current density within the membrane,
normal to the membrane surfaces, we have from conservation of charge,

oq'~ oV
fl/ :—ai ’ _J;rl’
at on
" . (@)
oq av LT
—_—=0, .
a[! [ an/ m

We assume that the membrane is thin (§ < a) and according to (6), no volume
charge density exists in the interior of the membrane. The electric field within the
membrane is then constant, and Ohm’s law leads to

J= ==y, 9)
1)
where (+) and (—) superscripts denote quantities in the extracellular medium
immediately outside the membrane, and in the intracellular medium immediately
inside the membrane. Conservation of charge (8) then becomes

aq~ v N O
21 gl Om
ar 'oon 0

oq" ov't o,
: =g, —— "

at on é

V=V,
(10)

(V' =y
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Using Gauss’ law we can obtain another pair of equations relating the normal
derivatives of the potential to the charge on each membrane surface:

q/* an— V/+_V/~
=K, T Ky < ’
&g cn 0
(11)
q/— Vr+_V/— + (‘/’V’
—=—K - K;
£ " ) ton

Taking the time derivative of this pair of equations we obtain

1 g SVt ok, ¢

m ’+ -
PO PO e s el V),
& Ot >aron 6 dt
, (12)
1 Cgq~ [N . L Ve
L LA N R VRS
g Ot Ot crcn

Equating these two equations to the two charge conservation equations leads to
two equations relating the potential on either side of the membrane,

d\ oV~ N\ VT=Vv-~
SRR T A P S ) R B

4 g\ oVt 4 o\ V=V~
g K, & — — = ‘o <> | ————.
o 0“0 ot an; Om T Ky €0 at/ 5

The time derivatives on the left-hand side of these two equations, as was found
for the corresponding terms in (5), lead to transients which occur on a nanosecond
time scale, and will therefore be neglected. The derivatives on the right-hand
side correspond to a much longer time constant. During the rapid transient
period when charge is building up at the tip of the source (sink) electrode a
charge of equal magnitude and opposite sign builds up at the inner (outer)
surface of the membrane. For our purposes, henceforth, we will consider this to
occur instantaneously and at =0+ this transient is over. Making the change
of variables

(13)

V=ao V',
t=(0,/Km&o) t,
and letting a =0¢,/0,, Poisson’s equation, (7), becomes
ViV=—4n[8(Ff-R)—ad(F—R,)]u() (14)
and, the boundary condition (13) becomes

oV 1 evt P
on _a én :g[P e

¢Vt ov-
(15
ot ot ] (15)

or, in terms of physical variables



Potential in a Spherical Cell Using Matched Asymptotic Expansions 283

oV
L —=0
‘on ° on

g

vt o [m/ v ] 15)

_‘ﬂ V/~¢_ ’ = .
S N T

where C,, =k, £,/ is the capacitance per unit area. The physical interpretation
of this boundary condition is that the normal component of current density is
continuous across the membrane and is equal to the sum of the resistive and
capacitive currents crossing the membrane. We shall call this the membrane
boundary condition since it arises in many problems involving membranes.

In this paper we will consider the case for which the current sink is a long distance
away from the cell in the extracellular medium. We therefore take R, = « and let
R, =R so that (14) becomes

VEV=—4nd(F—R)ult). (16)

In the following paper (Peskoff and Ramirez. 1975). the solution is obtained
for a sink at an arbitrary location outside the cell.

There is an arbitrary additive constant in the potential V (r, t) which we choose
so that the potential is zero at | 7 |= 3. This implies the boundary condition at
infinity,

Vi, t)-0 as |F|—=. (17)

We have assumed that there are no sources for <0. i.e.. the right-hand side of
(16) 1s zero for 1 <0. Consequently, at t=0—. before the source is switched on,
V=0 everywhere. There is a finite jump in ¢ V'~ /¢n between t=0— and r=0+
and from (15) we see that there must be a corresponding finite jump in
CV'ict—aVT /0t but VT — V7T must be continuous. Hence there is no potential
difference across the membrane at t=0", and we have the initial condition,

VE(E 0=V (F0+). (18)

In Section 2, the problem defined by (15), (16), (17) and (18) is solved using the
singular perturbation technique of matched asymptotic expansions.

I1. Singular Perturbation Analysis Using Matched Asymptotic Expansions

There are two approaches that may be used to solve the problem specified by
(15—(18) in the case of physiological interest when ¢—0 and t/e—«. First, we
may find the exact solution to (15r-—(18) for arbitrary ¢ and ¢ and then study
the limiting behaviour as ¢—0 and t/¢—c. The exact solution is derived in
Peskoff, Eisenberg and Cole, 1972, and Peskoff and Ramirez. 1975, for a spherical
cell and its asymptotic expansion in the ¢—0 limit is obtained.

A second approach, which is taken here, is to solve the problem by singular
perturbation theory. Rather than considering the limiting behaviour of the
solution, we may apply a limiting process directly to (15)-+18) and bypass
the exact solution, going directly to the solution in the form of an asymptotic
expansion. This procedure has a number of advantages. The equations to be
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solved are sometimes simpler (although there are more of them). In the case
of the spherical cell under consideration, it is possible to obtain the exact solution
to the problem in fairly simple form; in more complicated problems this may
not be possible. For example, if we allow the cell to deviate from a spherical
shape, we cannot directly see what changes will occur in the exact solution.
We will see, however, that using perturbation theory, some knowledge of the
solution may be obtained without any specification of the shape of the cell. The
leading term in the asymptotic expansion is independent of the shape of the
cell. We also will see that it is possible to gain greater insight into the physical
process corresponding to each term from the boundary value problem which leads
directly to the corresponding term.

A. Long-Time Expansion

First, we will obtain the solution valid for long times, i.e, t> ¢ The initial
condition (18) does not apply since t=0 is outside this period. We will therefore
be left with some unknown constants in the solution which can only be evaluated
by requiring that the long-time solution match to a short-time solution which does
satisfy the initial condition.

We expand the potential in a series of the form
VIt e)=Co(e) Vo (FO+C (8) Vi (F 0+, (19)

where (,, | (¢)/(, ()0 as ¢—0, and V,, V,, ... are each independent of ¢. Con-
sequently, for small ¢, each term is smaller than the preceding one. Equation (19)
is an asymptotic expansion for V(F,t,¢) in the sense that each successive term
improves the approximation, in the limit ¢—0. Substituting the expansion (19)
in (16) yields,

VEV=(0(e) V2 Vo+0,(e)VEV, +...= —4 76 (F—R). (20)
Substituting (19) in the boundary condition (15), and grouping terms of successively

decreasing magnitude yields the following set of boundary conditions for V,, V',
and V,,

avy L avy

o gt Lo

“n oA “hn

Vi _edole) () o 0Ve Ve Loy 1)
én Sy (e) 0 O ot ot « on

Vi B0 (e, OV SV 1 ers

on 5 ) ! ! ot ot o on

So that all terms in each equation in (21) have the same dependence on ¢, we
require that
Cn+ 1 (8)
Ca ()

=z (22)
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The boundary condition for V,, in(21)implies that no current crosses the membrane.
Consequently there can be no current source in the equation for V,. The con-
clusion is that the second term in the expansion (20) of V2 V, rather than the
first, must have the same dependence on ¢ as the current source, the delta
function. This requires that {, (¢)=1 and hence, by (22). {, (¢)=¢ '. We therefore
obtain for the expansion of the potential

Vi, z;m:f}‘, Vo (P 01+ V()4 Vy (F D)+ (23)

and for the first three members of the sequence of problems

V21, =0. '
N cV,

== (24)
n én

Vo—0 as {F{— . J
VIV, =—4nd(i—R), )

cVy vy ovy 1 eV,

= :I/+ —_ Vv+ Y - = s (25)
‘n 0 0 Cl at 2 in

Vi—=0as |F|—x,
Vi, =0,

o, vyoocveootav;

A R R 26

‘n ! ! ct ct % Cn (26)
Vy—0as [F|l—-=.

We now proceed to obtain the solutions to these three problems. The solution
to the lowest-order problem (24} is:

L. fo (1), inside,
VolF,0)=1" . 27
olh 1) { 0 . outside. (27

There 1s no dependence on 7 in the inside or outside solution and the outside
potential must be zero to satisfy the boundary condition at |7 |= x. To deter-
mine the functional form of f,, (1) it is necessary to go to the problem for V.
Performing a volume integral of the Laplacian in (25) over the volume enclosed by
the surface S just inside the membrane,

([[V2V dr=—4n= H LS. (28)

Using the boundary condition of (25) for ¢V, ¢n, and the result (27) for V,,

(28) leads to
. ¢ fo Cfo
4dn= foly+ -==)dS=A | fo(t)+ =), (29)
ct ct

Journ. Math. Biol. 2:3 20
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where A is the surface area of the membrane. Solving the first order linear
differential equation (29) for f, (1), we obtain

4z Lo
[—A—%—ao e~ !, inside,

Vo (P, t)=<
l 0, outside.

The constant a, can be determined by requiring the initial condition (18) to
be satisfied, leading to

V()(':Q[):T’ (30)

4 { 1—e ", inside,
0, outside.

Although we are able to satisfy the initial condition for the leading term in the
expansion, ¥, we will not be able to do so for higher order terms. In other words,
while the first term in the expansion is valid for all ¢, we will see that the entire
expansion (23) is only valid for 1> ¢. Note that (30) and (23) demonstrate that
the cell interior builds up to a large potential V'=4r/¢ A, which is just the reciprocal
of the small parameter ¢. times the total current of 4 amperes, divided by the area
of the membrane. This result is obtained independent of the shape of the cell.

In physical (primed) units, this potential is V' =1V/g,a(d/s,), the potential
necessary to drive a current density 4 /4" across a surface of surface re-
sistivity 8/, There is no current crossing the membrane in the ¢ ' problem
of (24) but the voltage jump V,=4m/e A across the membrane in the ¢ '
problem is just the potential needed to drive the current in the &° problem
across the membrane.

Substituting the potential }, from (30) in (25) yields

VI, =—~4nd(i—R),
oVy dm 1 avy | an
‘n A x én’ ’

for the &° problem.

By performing a volume integral of V2V, and using the ¢ V5 /dn boundary
condition in (26) we obtain

. oV
”J VIV, dr=0= H 2 gs
Vo “hn
oVi av;
— V+* V# A 7717_ 1

This is an integral constraint on V|, which combined with (31) determines V.

(32)
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The potential V| (7, t) may be written as the sum of two functions
ViR O=G R+ fi R 1), (33)

where G 1s a time-independent Green's function satisfying

V2G=—-41d(f-R),
(’G"_ 4 1 oGt

on A X on - (34)
F TG =G )ds=0.
G0 as |F|->x.
G 1s the steady state solution of (31) and (32). With the definition of G given by
(33) and (34) we find. by subtracting G from ¥, i (31) and (32), that f; must

be the solution of
N

Vz_f.]:()‘
N gl n
Cn x n

(35)

11—0, as |F|>o,

R AP
J\J\(f\ _',1 + (A'[ (ﬁ[ ) dS——O

This problem (35) is identical to that of (24) and (29) for V,, except that the
surface integral in (35) is zero rather than 4 n. The problem (34) has a physical
interpretation. It represents the potential of a point source of current inside the
spherical cell subject to the boundary condition that the current leaves the cell
across the membrane with uniform current density. 4 n/A4, and the average intra-
cellular potential just inside the membrane is constrained to be equal to the
average extracellular potential just outside the membrane. The uniform distri-
bution of current flux across the membrane occurs because the ratio of the voltage
drop between two points in the interior of the cell to the voltage drop across the
membrane is proportional to e and consequently small. If the interior con-
ductivity were infinite, the uniform interior distribution would be precise: in our
case the interior conductivity is large, so that this is only an approximation which
will be corrected by the higher-order terms in our solution for V' (7. t).

The problem (34) with z=0 is identical to a problem which has been solved in
connection with a special case of the present analysis {Barcilon, Cole and Eisen-
berg. 1972) in which the steady state solution is obtained when the outer
surface of the membrane is constrained to zero potential (i.e., the x=0, t—>
limit of our solution). The solution to (34) can be expressed in terms of elementary

functions:
G(F)=(r+R?=2rRcos0) "?+(1+r*R*—=2rRcos0) '? o)
36a
—log [1—rRcos+(1+r2R*=2rRcos ) *]—241log 2+,

20*
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forr<1, and
G(F)=uo/r, (36 b)

for ¥>1. The solution for r<1! also may be expressed as an expansion in

Legendre polynomials,
1 r\" <R
. A 1\ & R\R) "™
G(FH=x—14 Y P,(cosO)(r R\ 1+— )+ l P, (cos 0) R
n=1 n n=0 l R
| [NLI—
’

The most direct way to obtain the solution to (34) is to assume a general form
in terms of an expansion in Legendre polynomials with unknown coefficients.
Substituting the form in (34) then determines the coefficients, yielding (36 b) and
(37). The latter can then be converted to (36 a) using known summation formulas.
Equation (36 a) is clearly more useful than (37) for numerical calculation; the
alternate (37) is given here because it is useful in calculating higher-order poten-
tials, for which there are no known closed-form expressions.

(37

The solution inside the cell consists of the free-space potential of a point source
of strength 47 at #=R, an image source of strength 47/R at i=R/R% a
logarithmic function of position and some constant terms. The solution outside
the cell (r> 1) is inversely proportional to the radial distance. At t=o0c, G is the
complete part of the potential independent of .

For finite 1, the solution f| (1) to (35) must be added to (36 a) and (36 b). The
first three of equations (35) imply

1, (7. t):{f‘ (t), inside,

0, outside.

Substituting this in the fourth of (25) yields

. of .
fi +7‘/—‘—=0. inside,
ot
so that

oo a, ¢!, inside,
)= 38
St { 0. outside. (38)

The constant ¢, is undetermined. Trying to satisfy the initial condition (18) would
require «, to be equal to AG=G" (/)= G~ (), but since AG is a function of
position and a, 1s a constant, this is not possible for all points on the membrane. The
conclusion is that the expansion (23) is not valid at 1=0. In Fig. 2 the solid
curve represents the first two terms in the long-time expansion for the trans-
membrane potential. It can be seen that as t—0, the long-time expansion for
the transmembrane potential, A(V,+ V', +...), approaches a nonzero value,
violating the initial condition A V=0 at t=0. In the next subsection, we will define
another expansion, valid at short times, including t =0, which joins smoothly to
the long-time expansion. The short-time expansion is shown as the dotted curve
in Fig. 2.
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TRANSMEMBRANE
POTENTIAL TAv (SHORT TIME)
| /¢
!
|
AG +q, '
ot 1
‘:‘ O ~e ~I
TIME (t)
Fig. 2. Matching of short-time und long-time expansions

Continuing the procedure one order higher. we obtain for the ¢ problem, by
substituting (33) and (38) in (26)

V2, =0,

cvy 1 oV,

SE=GT -G = (39)
chn o d ch

V,-0 as |F|—-ac,
and by integrating V2 1, over the cell interior.

o CoVy vy ovi
[TV 1, ddr=0= [ €73 ys= _H<V; L e ) ds (40)
JJ ¢n ct ct

As in the preceding problem, we break up the potential V, into two parts,

Vy,(F, )= (F)+ [, (F. 1) (41)
and require the two surface integral constraints
[f(@"—@7)dS=0, (42)
N e 0 Ay
2 5$=0. 43)
V=t = as=o ‘

The problem for f, is identical to (35) for f|, which leads to

{az e ', inside,

. (44)
0, outside.

L=

where «, is a constant to be determined by matching to the short-time solution,
and @ is a solution of the problem

V2 @ (7)=0,
P . 1 éoT
0n =0 +6 T én (45)

i@ —@")ds=0,

&0 as |F|— .
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The boundary value problem for @ may be solved by assuming a Legendre
polynomial expansion and evaluating the expansion coefficients. The result is

2n+1

nZ

D(r,0)=— ) r" R" P, (cos 0) (46 a)
n=1

for r<1 and

o & (R\''! 2n+1
D(r,0)=— — i
(r. 6) R ,,;<r) nn+1) n(c0s0)

R R RZ 1/2
:% [log {7—0050+(1—2—r—0050+7> }—108(1—0059):' (46 b)

R R? R 12
—% [1+Iog{1——cos()+<1+—z—2—cos()) }—logZiI
r r r

for r>1. For the potential @ outside the cell a closed-form expression has been
obtained for the Legendre polynomial expansion, but inside the cell this cannot
be done.

B. Short-Time Expansion

Initially, the membrane capacitance is uncharged, and the transmembrane poten-
tial is zero. However, the time derivative of the transmembrane potential need
not be small. If we (incorrectly) extrapolate the long-time solution back to t=0
we see above and in Fig. 2, that there is a finite discontinuity in the trans-
membrane potential, A ¥, between t=0— and t=0+ That is, the time derivative
is infinite at t=0. We therefore look for an initially valid, short-time expansion
which satisfies the initial condition and joins smoothly to the long-time solution
(the dotted curve in Fig. 2). In the limit of ¢ —0 we expect the region of validity of the
long-time solution to get closer to t=0 and the time derivative of A ¥ to approach
infinity at t=0. Hence we see that the reason for the breakdown of the long-time
cxpansion near t=0 is the assumption that ¢ V,/é¢ and V, are both independent
of & We therefore expect that in the initially valid expansion for V(7 t),
(0V,/et—aV, /ot) is much greater than (¥, — V7). There is another time va-
riable, t=1t/u(¢), for which (3 V; /0T—0a V7 /d1) is comparable in magnitude to
(V, —V.), and the short-time solution should be written in terms of this variable,
for convenience in grouping terms of comparable magnitude. We write the
expansion for ¥ in the form

VIFEO=V(FuD=vF D=y, () v, (F, D)+, (€)v, (1) +.... (47)
Substituting (47) in (16)
VEV=v (&) V20, +v, () Viv,+...=—4n 5 (F—R) u(d), (48)

and substituting (47) in (15)
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ovy Ty ov; N
an T on T

Vi

v, Ov) v, dvg

+ ...
o On a On

R
‘;;vl(u;—vlmﬂ‘—(a”‘ —a”~'>

I ot 0t
. . &vy [0vy Ovy

+ev, (U, —U + —_———= |+
2 (12 ~02) u ( or a1

We make the following separation for v, and v,,

Cop L vl e (f’iﬁvx‘)

en a on o1 ot

cry; 1 Cuv; v . ¢ [ovS ov,
o 2o L o)) +— 22

an a On v, u ot ot

This separation requires the choices
~ 1
iie)=¢ or tz—g,

and
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(50)

(51)

Unlike in the long-time expansion, here the lowest-order potential has a nonzero
normal derivative, and so placing the delta function source in the lowest-order
problem leads to no inconsistency. If this is done, we must require v, (¢)=1.

The first two of the sequence of problems then become, for t 20,

vy (c,)=0

2 7

Ver,=0

v, . 7+6L; dv, 1 dvg
v -t L= -

on ! ! ot dt o« On

(52)
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In the v,, problem, only the membrane capacitance enters; in the v, and higher
P y p _ 2

problems, the resistance enters also, via the potential in the next-lower-order

problem.

Integrating the first of equations (52) over the cell volume,

”j V2o, dPr=—4 nzﬂ Cﬁv'; dS:% ”(r: —v7)dS. (54)

Integrating over t, and using the initial condition in (52), we find

ff —r)dS=—4nt. (55)

This implies that there is a part of v,, which increases linearly with t. The
potential ¢, can therefore be broken into the following three parts,

v (=G (A +w, (R D+h(F)T, (56)

where G is the same Green’s function that was defined in (34~), (36 a) and (36 b)
and accounts completely for the singular part of v,. and w, (F, t) is bounded.

Using (34) to eliminate G from the boundary condition in (52),
Ow( Oh” - 4m dw[ dw, 1 ow] 1 oh” -

-+ ht—h = — t. 57
(?n+ﬁntA ot 6t+ oz(in+oc(3n (57)

The only way (57) can be satisfied is if the coefficients of 7 are zero, so that

on~  on* /
an " on O (58)

Since V2 h=0and h («0)=0,

. constant, inside,
h(F)= .
0 , outside.

Using (55) to evaluate the constant, we have
. 4 1/A, inside,
h( )*{

= ) (59)
0 ., outside.

The remaining part of v, (7 7), that is, w, (7, 7), can be expanded in a series of
eigenfunctions in a spatial coordinate system F appropriate for the particular cell
shape. The problem for determining w, (7, f) is obtained by substituting (56)-—(59)
in (52) and is

Viw, =0
dwy _ow{ Jwy 1 dw/
on 01 ot a on . (60)

Wi F0+)—wi FO0+)=G" (H—G (7

wy (e, t)=w, (F, x)=0.

For a spherical cell of unit radius, the solution to (60) is
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L~ +1)1\ (n+1)(2n+1)
D =— % R _ i P, (cos 0 1
Wi R 1) n‘;‘lr exp< n+an+l) nn+an+1) n(cos 0) (61)
for r<1,and

L~ S nn+ 1)1 2n+ |
) = Ay n—1 R" _ ooy o= P
Wi 1) 1,,‘:1r CXP( n+xn+l) n+an+l n(cos 0) 62)

for r>1. This completes the solution for v, (F, ). We now continue by finding
vy (F 1)
Substituting the expressions (56), (59), (61), (62), (36 b) and (37) in the membrane

boundary condition in (53) for a spherical cell of unit radius the boundary
condition becomes

or, - & 2n+1 nn+ 1)1 dv;  0Ov;
2 5y PTIRP (cosO) | 1—exp [ — ST DL 2 00
or = on n(cOS )[ e"p( ntoantl or ot

(63)

p]

1

-

Lt
/1/%

X or

Proceeding in a manner similar to the way we treated v, (7, 1), the solution to
the boundary value problem (53) and (63) can be decomposed into a term
quadratic in r, and an eigenfunction expansion bounded at t = :

2 X (n+1)(2n+1) nin+ 1)1
e —tyry T ) g p (cos 6 T
200 2 ,,; nn+ton+l) n (cos )exp( n+o¢n+l>
i 2n+1 nn+1)t (64)
~ Y R TP (cosO) | 1 — AT
nglr n? "(COS()[I exp< n+an+l)}

forr<1, and

. o 2n+1 nn+ 1)t
X ’.I:’.\ .—n anP 1_ !
vy (7 1) Jn:II "(Cosg){n(rwl)[ exp( n—rwrl)}
2n+l - ( n(n+1)?)}
-t eXp| —————
n+an+l n+on+t1

for r>1. It should be noted that the 7—oc limit of the eigenfunction expansions
in v, (7.1) is just @ (r. 0) given by (46 a) and (46 b).

Summarizing the results for the short-time potential inside the cell we have,
for r<1,

(P O=1+(r’+R*=2rRcost) ' 2+ (1+r* R*=2rRcos ) 2 =2+ x+log2

—log [1—rRcos8+(1+r* R*—2r Rcos §)"/?]

n(l+n) 7 n+1DHR2n+1)
l+n4an

P
nin+1+oan) (cos 6)

1

(r Ry exp<v

n=1
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N . n(l+n <\ n+1HQ2n+1)
+e {_‘AH ; (r R) e)(p<«l+n+mn [> nn+1+an) Pateos 6)

ki n 3 i 3 B n(l+n) -
"Z::l(rR) (n+n2>P,,(cos())<l exp( —1+n+an[)>:l+"' (66)

and outside the cell, for r>1

~ 2 a XK [/RY\ 2n+1 g
l‘(':. [):*«-)-7; S <v> Pn (COS g)m PERELEST
1

x o R n 2n+l R nllJnl T>
. . — - {1 - l+n+an 67
+e [r Zl<r) P"(COSG){n(n-H)( e , (67)

n=

R B
—_— te I+n+an +
l+n+an

We see that the first (independent of &) term in the short-time expansion of
v in the cell interior, (66). has a linear growth in 7. This behaviour is shown by
the dotted curve for Av, in Fig 2. Thus we see that although the first term
in the short-time expansion does satisfy the initial condition, it does not
correctly represent the solution for long times, ¢ > 1. Equation (66) also indicates
that the second (proportional to ¢) term in the short-time expansion is quadratic in
t. The effect of adding this term would be to make the dotted curve a parabola
which more closely follows the solid curve as t increases. In fact, we can see
that these are just the first two terms in the Taylor series for (1 —e™)/e, and if we
continued the expansion indefinitely to higher powers of ¢, we would recover the
term proportional to 1/¢ in the long-time expansion (30).

C. Matching

When t—0 in the long-time solution and f— <c in the short-time solution, the two
potentials, written in some intermediate time variable, must be equal, to all
orders of & This requirement permits evaluation of the constants a,, a,, d,, ...
appearing in the long-time solution. The value of a, must be consistent with the

value of a, determined previously in (30). An intermediate time variable can be de-
fined by

ty=1/n(e),
where
n(e)—0 as ¢—0

but x approaches zero less rapidly than ¢ does, so that
n(e)e—aoc as ¢—0.
Thus the limiting behaviour of 1, as ¢—0 is intermediate between t and 7.

If we hold ¢, fixed at some value in the overlap region of Fig. 2, say t¥, and take
the limit ¢—0, the point t} remains in the overlap region while the lower
extremity of the overlap region approaches t=0. The corresponding limiting
values of t and 1 are
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t=n()t,—~0 as -0,
and
= [n(e)/e} t,— % as £—0.

In order to match the long-time and short-time expansions in the overlap region, it
is convenient to write the t—0 limit of the long-time expansion and the i— oo limit
of the short-time expansion both in terms of 7, and require that the two limits be
identical, that is,

1

lim |:?, Vo+Vi+e V2+...j' lim [v,+ev,+...].

t—=0 g 7=«

The long-time solution given by (23), (30), (33), (38), (41), and (44) is, for r< 1,
Vi =L [1-e 146G P+a e T+e[®P+ae 1+ . (68)

Letting t =« [ in (68) we obtain

Lo~
Vil et)= —

&

272
Lf:!—s,’t +..}+[G(?)+a1(l—s?-&—...)]+e[<b(r)+a2(l—£?+...)]

B 72 _ (69 a)
=t+G(F)+a, +¢ <?+(D(f)-—al t+az>+...

by cxpanding the exponentials in powers of ¢, and for r> 1,

V(7 ):%+g¢(f)+.., (69 b)

Ignoring the exponentially small terms in the short-time solution (66) and (67),
as [ — «, the short-time solution becomes, for r < 1,

lim v(f,?)=?+(;(f)f—2[i+g<p(f)+... (70 a)
and for r>1, o
lim e (7T =4 e D ()4 (70b)
Comparing (69) and (70) we find that our earlier choice of ay= —4 /A= —1is
satisfactory, and in order that (69) and (70) be identical we must have
a,=a,=...=0. (71)

Using these values of aq, a,. ... and (33), (36), (38), (41), (44), (46), the long-time
expansion for the potential is consequently
VI(F )= (1 [1—exp(—~t)]+(r*+R*—=2rRcos @) Y24+ (1+r>R*—=2rRcos )~ '/?
~log [1—=rR cosO+(1+r*R*—=2rR cos0)V'?2]—2+log2+a (72a)
Z 2n+1

n=1

2 " R" P, (cos )+ ...
for r<1.and
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el 2n+1
V(?,t):%—soc > rn iR +

2 n(n+1)P"(cos(9)+... (72 b)

for r>1.

Examining (72a) and (72b) we see that the only time dependence in the
long-time expansion is in one term in the inside potential. The outside potential
is independent of time during this epoch. The time-dependent term (1 —e )/¢
in (72 a) represents the transient buildup of the cell interior to a large potential
in a time r~1. This term by itself is the “isopotential approximation™ to the
potential of the cell. In physical units, the potential builds up to this large
value in a time t'~R,, C,,..

All other terms in (72) switch on abruptly at =0, and thenceforth are independent
ol time. As noted before, this abrupt change does not satisfy the initial condition.
but does represent the potential at successively smaller values of ¢ as ¢—0. The
short-time expansion correctly extrapolates the long-time expansion back to
1=0.

We also can see from (72 b) that in the long-time epoch, the outside potential
approaches an inverse-r potential. The outer surface of the membrane becomes an
equipotential surface, at potential ¥'=aq, plus terms containing higher powers of
¢. The deviation of the outside surface from isopotentiality is given, neglecting
terms proportional to ¢ and higher powers of ¢, by the sum in (72 b).

Neglecting terms proportional to ™. m=1,2,3..... (72 a) yields the closed form
expression, for r<1,

Vi, t):% [1—exp(=0)]+(r*+R*—2r Rcos ) '/

+(14+r*R*—=2rRcos0)" "2 —2+log2+ux (732)
—log[1—rRcos0+(1+r* RZ—2rRcosH)''?]+...

and (72 b) yields. for r> 1.
, %
V(F, t):~;~+..‘ (713 b)

Equations (73 a) and (73 b) represent the entire part of the interior potential that
is normally within the current realm of measurability in physiological experiments.
The terms containing higher powers of ¢ are too small to detect; the transient
terms in the short-time expansion (66) and (67) are too rapid to detect.

If the outside conductivity were infinite, g, = o0, then we have a=0. Also,
infinite outside conductivity would imply the outer surface of the membrane, as
well as the entire external medium, is at a constant potential of ¥'=0. Thus, the
assumption a=0 is equivalent to the condition of isopotentiality (to all orders
of ¢) of the outside surface of the membrane. This condition has been used in the
literature (Barcilon, Cole and Eisenberg, 1972).

Examination of Equation (72 a) shows that the effect of the finite conductivity
of the external medium or, equivalently, the removal of the isopotentiality
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assumption, is merely to increase the inside potential by an additive constant,
a. relative to the potential a long distance away from the cell.

Equation (72 b) shows that the deviation from a simple inverse distance potential
in the external medium is hardly detectable. This is an extremely interesting
result. Tt indicates that to a good approximation the external potential is
independent of the position of the source inside the cell. The membrane,
because of its high resistance, shields the external world from the events occurring
inside the cell. The dependence of the exterior potential on 6 and on the location
R of the current source first appears in the term proportional to & whereas for
the interior potential it appears already in the term which is independent of .
On physical grounds, we would expect the opposite to be true as well, that is, that
the membrane shields the interior of the cell from electrical events outside the
cell. This will be seen in the following paper (Peskoff and Ramirez, 1975).

Itisalso possible to write down a single expansion which is valid for all ¢, i.e., except
for exponentially small terms. it reduces to the long-time solution when s—0 and
tis fixed and it reduces 1o the short-time solution when ¢—0 and 7 is fixed. This
expansion is

1
Vik = (1—e”

)
z . M+ 2n+1) nin+1)t
; nn+on+1) P, (cos 6) exp (—(n+an+1)£>
(74a)
i . X , B nn+1)¢ 2n+1
+z,{¢(r)+'§lr"R P,,(cos(?)exp( (n+<xn+l)g> e

nn+1)t
Al 4.
(n+an+1)e
for r<1, and

. 2 1 Dt
Vi n="4a ¥ VR, (cos 0) - exp<_z_'i'f+_)_)
,

fong) n+an+1 n+an+l)e
o 2n+1 nin+1)r
; F) — "1 R 74b
+¢ {(D(r) angl r R" P, (cos 6) PYEET [ (n+an+1)e} (74b)

(_J’_‘”f“‘ N
p . (n+an+1e

for r>1. Tt is obtained by adding the short-time and long-time expansions
and subtracting the common part, [1 —exp (=1)]/e+ G (F)+¢ @ (7)+

D. Transmembrane Potential
Defining the transmembrane potential by
AV=V" -V~
we obtain from (74a) and (74 b)
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l—e ‘
AV=-"5—42(1+R?~2Rcos6)”"?~log[1~ R cos 0+(1+R?*~2Rcos §)"]
= 2 1 +1)t
—2+log2— ) cnrl R"P,(cost)exp | — nin+r
n=1 N (n+an+1)e (75)
 2n+1)(1+n+an) nn+1)t
D) n - _
f"‘2‘1 n?(n+1) R P"(COSG)[I exp< (n+an+1l)e

{ nn+1)t }:l
l+——> 1+
(n+xn+1)e

for all ¢. For long times, t/e— ¢, (75) becomes

-t

1-—- ; ;
Av=-—%_ +2(14+R?*<2Rcosf) "2 —~log[1—RcosO+(1+R*—2Rcos )]
&

—2+log2+... (76)

Thus, neglecting terms proportional to ¢ and higher powers of ¢, for long times
A Vis independent of the external conductivity. Almost all experimental measure-
ments are taken in the domain in which (76) is valid. Equation (76) can be converted
to physical units using the change of variables defined above, Eq. (14). The solution
is for a current source of 4 T amperes.

E. Physiological Significance of Extracellular Fields

Previous analyses of the potential inside spherical cells have assumed the
external potential to be zero and so it is interesting to investigate the validity
of that assumption now that the external potential can be explicitly determined.
Equation (73 a) shows that the external conductivity (and thus the external
potential) enters into the second term V, (the local potential) of the expression
for the potential inside the cell. It might seem then that the potential recorded
inside the cell depends in a significant manner on the external conductivity and
thus the external potential.

This 1s not the case for two reasons. First. in many cases ¢<0.005 and so in
most locations the entire V| term is insignificant compared to V (7, 1), the total
potential. Close to the point source (at distances less than the cell radius times &)
V, is at least equal to the leading term (proportional to 1/¢) and so there the
local potential is important. However, at such locations the relative contribution
of the external conductivity to the V| term is small. Thus, even when the local
potential is important, the a-dependent part of it is not very important. Secondly,
the most important potential for physiological purposes is the transmembrane
potential A ' and this potential is independent of the external conductivity to
two powers of ¢; that is, both AV, and AV, are entirely independent of «;
only the third term A V,, which is almost always negligible, depends on «.

It is rather interesting to analyze physically the dependence of the transmembrane
potential AV on the external resistance. The reason that the transmembrane
potential does not depend significantly on the external resistance is that the
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external potential, produced by current flow through the external resistance, is in
the first approximation independent of the angular coordinate 6. The external
potential then changes the internal potential by a constant amount, independent
of position, and the difference of the external potential and the internal potential
(the transmembrane potential) is essentially independent of the external resistance.
This result may be restated: the primary effect of the external resistance is to
uniformly raise the potential immediately outside the cell; redistribution of
current outside the cell (which creates circumferential gradients of external
potential) is a secondary effect. Thus the effect of the external potential on
transmembrane potential is neghigible.

This result is of some use in understanding the role of small extracellular spaces
in excitable tissues, including the heart and the central nervous system. Although
the local internal potentials which are independent of ¢ are not terribly important
under resting conditions in nerve cells, they do become important during fast
phenomena and phenomena characterized by large values of membrane con-
ductance (and so by relatively large values of ¢). Since the action potential, and
some synaptic potentials, are states of high conductance and rapidly changing
potential. the local potential does become important in normal physiological
states. If the external resistance were to be important in the local component of the
transmembrane potential A V,, then the external resistance would influence the
local potentials during an action potential and the shape and properties of the
action potential would be expected to depend on the detailed properties of the
extracellular space. This would seem to be an unfortunate situation from the
teleological point of view, since the detailed properties of the extracellular space
are quite variable and not well controlled. One would hope that the properties and
shape of the action potential would be insulated from the effect of changes in the
extracellular space.

Our analysis suggests then that the effects of external resistance (and thus
external potential) even on a nonlinear membrane phenomenon like the action
potential would be small. occurring only as a small correction. Thus, during an
action potential the cffect of external resistance would be expected to be small,
even If the cxternal potential itself is not negligible. This relative independence of
transmembrane potential from external potential might well be significant in
allowing the nervous system to function with so little extracellular space and thus
with such a high density of information processing and transmitting units.
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ERRATA

"The Time-Dependent Potential in a Spherical Cell Using
Matched Asymptotic Expansions'' by A. Peskoff & R.S. Eisenberg

Page 278, paragraph 2, line 6 should read "(76)" not
H(75)H.

Page 286, line beginning with "In physical (primed)
units..." should read as follows:

"In physical (primed) units, this potential is
AARES V/Gi a = (4W/A')(6/Gm), the potential..."

Page 289, line 2 of equations (45) should read as
follows:
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