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MATCHED ASYMPTOTIC EXPANSIONS OF THE GREEN’S
FUNCTION FOR THE ELECTRIC POTENTIAL IN AN INFINITE
CYLINDRICAL CELL*

A. PESKOFF*, R. S. EISENBERG*t anp J. D. COLE}

Abstract. The potential is studied for a microelectrode current source inside a nerve fiber. The
problem is represented by a point source in an infinitely long cylindrical conductor surrounded by a
thin, low conductivity membrane bathed in a perfectly conducting medium. The potential satisfies
Laplace’s equation with a mixed boundary condition containing a small parameter ¢. As ¢ — 0 it
approaches a homogeneous Neumann condition and the problem becomes singular. Asymptotic
expansions are obtained in terms of ¢ by matching an inner expansion (valid at the source) to an outer
expansion (valid away from the source). The inner expansion contains algebraic switchback terms
whose orders are half-odd-integer powers of ¢, as well as terms whose orders are integer powers of ¢
which can be expressed as algebraic terms plus Fourier series with Fourier integral coefficients. The
outer expansion is made uniform by introducing a strained axial coordinate, which appears in an
exponential factor multiplying an asymptotic series depending on radial position and radial location of
the source. The asymptotic expansions are identical to results obtained directly from the eigenfunction
expansion of the exact solution for arbitrary «.

1. Introduction. It has become apparent recently that a number of problems
in biology require the solution of Laplace’s equation with a boundary condition
which describes the properties of the membrane surrounding a biological cell,
separating the interior from the exterior, and buffering the internal environment
from external disturbance [6], [1]. The membrane serves as an electrical buffer
because its resistivity is much greater than the resistivity of the cell interior. The
membrane boundary condition, therefore, contains a small parameter ¢, the ratio
of the internal resistance to the membrane resistance in appropriate units. The
presence of the small parameter suggests the use of perturbation expansions in the
solution of the problem and such expansions are particularly appropriate to
biological problems [6] since they display the dependence of the solutions on the
parameters of the problem and thereby provide physical insight. Both of these
qualities are frequently of more importance in biology than the precise dependence
of the potential on spatial coordinates.

. Here we consider a problem which arises when the electrical properties of
cyhindrical cells are investigated by the application of current to the interior of
the cell from a microelectrode, a glass micropipette filled with conducting salt
solution. The potential in the interior of the cell obeys Laplace’s equation. The
boundary condition is that the normal derivative of the potential at the inside
surface of the membrane (proportional to the normal component of current)
is proportional to the potential difference across the membrane. If the micro-
electrode is considered a point source of current, the solution to the problem is
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the Green'’s function for the electric potential in a cylinder with a membrane
boundary condition.

The analysis of the problem can be done by exact methods [3]. [5]. for
arbitrary ¢, or it can be done by asymptotic methods. Regular perturbation
expansions are not possible since in the limit ¢ — 0, the boundary condition
approaches a homogeneous Neumann condition in which no current flows
across the membrane. Since current is being injected into the interior of the cell.
a homogeneous Neumann condition on all boundaries is clearly impossible,
and the problem is singular. Asymptotic expansions have been obtained by
direct expansion of the exact solution {3], [5], and by the method of muitiple
scales [1]; the latter result has difficulties we discuss below. The present analysis
uses the method of matched asymptotic expansions which allows the interpretation
of each term in the expansion as the solution to a physical problem. This property
is important if one wishes to generalize the results to account for the effects of
nonlinearities, which are usually present in biological applications. In addition,
the singular perturbation solutions are easily generalized to irregular geometries:
e.g.,theleading term in the asymptotic expansions is valid for a cylinder of arbitrary
Cross section.

2. The mathematical problem and its singular nature. The problem for
determining the potential may be written, in cylindrical coordinates,

1 ¢f ¢V . 1 ¢2v éy 1 5x) o R) 50)
M B - — = S(x - )
Solr et g b oaa = o A — RO
¢V

(1) —(x.1.0) + eV(x,1,0) =0,
cr

Vito.r,0) =0,

where the coordinate along the cylinder axis is denoted by x (to conform to the
notation in the biological literature on one-dimensional cable theorv) and r and 0
are the usual radial coordinate and polar angle in the plane perpendicular to
the v-axis.

The problem posed by (1) can be solved exactly. for any ¢, in the form of a
double infinite sum or a single infinite sum of infinite integrals of Bessel functions
[5]. The behavior of these exact solutions for small ¢ can then be obtained by
taking appropriate limits of the solutions, letting ¢ — 0 in a region including the
source and in a region some distance {from the source.

Since we are only interested in the small-¢ behavior of the solution, we can
alternatively by-pass the exact solution entirely and apply the techniques of
singular perturbation theory to (1). The procedure is to generate a sequence of
problems from (1). Each problem in the sequence is simpler than the original
problem its solution corresponds to one term in the expansion of the exact
solution in powers of ¢. We find one sequence of problems, and its corresponding
expansion of the potential, which is valid near the source, another which is vaiid
far from the source, and use the technique of matching [2] to join the two together
in the intermediate region where they are both valid. This mathematical approach
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is justified by the physical insight gained since each individual term in the expan-
sions is the solution of a relatively simple problem. It is also reassuring that in a
number of similar problems, the asymptotic representation determined this way
corresponds to a direct e-expansion of the exact solution.

Let us consider first the basis for the singular nature of the problem. When
¢ 1s small, the boundary condition at r = 1 in (1) implies that the current flow
will be predominantly in the axial direction, i.e., only a small fraction of the local
current O(g), crosses the membrane in an axial distance of O(1). We are tempted
to try to find an expansion in the small parameter ¢, in which the leading term is

the potential for ¢ = 0. Denoting this term by }(x.r, 0). we see from (1) that
V, satisfies

1 ¢ ¢V e % A1 1

- (-‘r(ﬁl + - {—Rﬁl + (, b= — - 3(x)d(r — R) (),

rcrl cr re co° Cx r
(2)

CV

'(, Yx, 1,0) = 0.

cr

The boundary condition at r = 1 in (2) implies that no current crosses the
membrane; all the current is confined to the interior of the cell. Consequently,
V, must contain a part which is linearly decreasing with increasing |x|. This would
lead to a potential of V;, - — x as |x| —» oc, making it impossible to satisfy the
boundary condition at |x| = x in(l). namely that V = 0O at |x|] = «. To avoid this
divergence, any expansion which contains V, can be valid only over a limited
range of x, designated the near field, which contains the source point. At large
distances from the source, we must look for another, far-field, expansion.

We expect that as ¢ — 0, the region of validity of any near-field expansion
of which V, is a part, becomes larger. If there is a linearly decaying potential over
a large distance, and the potential approaches zero as |x| — oo, then the potential
at x = 0 must be very large, i.e, V(0,r,8) — oc as ¢ = 0. Clearly, V, must be O(1),
and cannot be the leading term in the expansion. The leading term can be found by
matching to the far-field solution, and therefore we first solve the far-field problem.

3. Far-field potential. In the far field, a long distance from the source, current
flow 1s predominantly in the axial direction. Since only a small fraction of the
current within the cell, at any value of x, leaks out of the cylinder in an axial
distance of O(1), the variation in the x direction will be siow. We therefore, for
convenience in ordering the far-field expansion, write the far-field potential in
terms of a new slow variable x*. Denoting the potential in the far field by W,
we write the following expansion :

(3) Wix*, r,0;¢) = (ole)Wolx*, r, 0) + S (e)W(x*,r.0) + -,
where the slow variable is defined by
4) x* = xnle),

W,isof O(1),{,/(,_, — 0ase— 0, and in accordance with the physical argument
given above, it 1s expected that n - O as ¢ — 0.
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Substituting (3) and (4) in (1), and noting that the source is outside the present
domain, we have
W,
(5)  VW=0=1{n 7 +{m

5x*2

oW, . , .
25;“‘ o VAW + O VW,
where V? = (1/r)(&/3r)(r &/ér) + (1:r)(¢?,30?) is the transverse Laplacian, and on
the boundary, r = 1, we have

oW ) . CW, L W D v oy
(6) - + W=0="0 "+, — + o+ oWy + el WL
Cr cr cr

Requiring that (5) and (6) be satisfied to each order of «. the lowest-order
& problem is

V,ZWO = (0,
oW,

(7) o 1.0 =0,
cr

Wol+oc.r. 05 =0.

The second problem is

W,
Vi, = — -9,
t 1 (’:X*'
oW, )
() . (x* 1.0) = =W, (x*. 1.0),

Wi+tx.r,0)=0,
where we have set
(9) 15‘:0 =4

to obtain the r = 1 boundary condition in (8).
Writing an expansion for x(¢) in the form

(10) n(e) = nole) + my(e) + nyle) + -,

where the 5,(¢) are an ordered sequence, we further set

Lond = ¢,
to obtain the equation in (8). Thus
(1 e
We could take n = y,. with 5, =5, = --- = 0. and still obtain a sequence of

problems of increasing order in ¢. It will be seen below, however, that we would
not be able to maintain uniform validity of the asymptotic expansion for W at
large x*. Assuming n(¢) to have the more general form (10) makes it possible to
obtain a uniform expansion.
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The third problem is found by collecting terms of the next higher order in ¢
in (5) and (6) and is

-2
VIW, = — -~ (W, + 22, W,)
1 2 (»'57\,*2 1 1 0/»

"W
oo 10y = —wxt 1.0),
cr

Wi+ x.r.0) =0,
where we set
(13) EQy = ¢
to obtain the r = | boundary condition in ([2), and
(14) Ny = %€M,

to obtain the equation in (12). Continuing this process of collecting terms of equal
order in ¢ in (5) and (6), we obtain, for the fourth problem,

82
ViW, = e (W, + 2a, W, + (a2 + 22,)W,),
‘*W
(15) C23 10 = — W 1, 0),
cr

¢

Wi+ x.r,0)=0.

Combining (3), (9)-(11). (13), (14) and the additional requirements on ¢ ; and
n, needed to obtain (15), we have. for the far-field expansion of the potential,

(16)  WI(x* r 0:8) = {o(e)[Wplx*, r, 0) + eW, (x*,r,0) + ;;sz(x*‘ r.0) + -,
where the axial coordinate variable is
(17 ,\‘*:\/;X(1+118+1282+ ).

So far {yfc). the order of the leading term in the W expansion, is unknown.
It will be determined by matching to the near field. The constants «,, «, - - - in the
expansion of x*, which couple different orders of W in the sequence of problems,
will be determined by requiring uniform validity of the W expansion (16) for all
values of x*.

We now return to (7) and begin to solve the sequence of problems. The solution
to the first problem (7) is independent of r and 6. Thus we have

(18) Wo(x*, r, 0) = F(x*),

where F(x*)is an as yet arbitrary function of x*. We must go to the second problem,
(8), to determine its functional form.
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From (8) and (18) we obtain

1¢f ¢ Wl)

r ﬂr( Cr
oW

(19) —Yx* 1.0) = — F(x*).
ar
VV](i wTLr. 7 = 0.

where prime denotes differentiation with respect to x*.

Since the inhomogeneous term in the equation, and the boundary condition
at r = 1, are both independent of 6. clearly, W is independent of #. Examining
(12) and (15) the same reasoning then implies that W,, W;, - - - are all independent
of .

Integrating the equation in (19) twice (noting that ¢*W,/00? is zero), we
obtain, for the solution which is bounded at r = 0,

2
(20) W, (x*.r) = *%F"(x*) + G(x*),

where G(x*) is an, as yet, arbitrary function of x* which cannot be determined
until we go to the next problem, (12), for W,.
Substituting the result (20) in the r = 1 boundary condition of (19) yields

2h F"—2F =0,
and hence
(22} WO(X*} = F(X*) = A ef\rzrh’),

where 4 is a constant to be determined by matching to the near field.

Substituting W, and W, , from (18) and (20) in (12) and using (21) to eliminate
derivatives of F, and deleting the 0-dependence in accordance with our findings,
we obtain

16 éw, ) .
;E;(VE—) = (r — 4&1)1? -G N
oW. |

23 Z2(x* 1)y=-F —

(23) 3 (x*, 1) 2F G,
Wy(toc,r)=0

for the next problem.
Integrating the equation in (23) twice and requiring the result to be finite at

r = 0, we obtain

+ H(x*),

ré 1.,
(24) Wy(x*,r) = EF - rz(alF + 5G

where H(x*) is an arbitrary function of x*.
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Substituting the expression (24) for W, and (22) for F in the r = 1 boundary
condition in (23) yields”

(25) G = 2G = —4A(x, + e 2,

The right-hand side of (25) is a homogeneous solution of the equation. Therefore
the particular solution contains a term proportional to x* times exp ( —\/5 Ix*).
If such a term appears in G, then for sufficiently large |x*| (i.e., [x*| 2 ¢~ ') the
equality
. sW
lm ——

£=0 /0

=0

will not be satisfied and hence the expansion (16) will not be valid uniformly in x*.
To avoid this we require the right-hand side of (25) to vanish, which occurs if

(26) 1= — %
It 1s now clear why we could not assume the simple relation x* = \/;x but
required the more general form (17). The freedom to choose «,, 2,. - - - allows us

to force all of the x*-dependence of W into exp(—\/E x*), eliminating non-

uniformities in the expansion.
With the choice (26) of %, the solution to (25) i1s

(27) G(x*) = Be V2,
where
(28) X* = V*L(l -~ % + o,

and B will be determined by matching to the near field.
Substituting (22) and (27) for F and G in (20) we obtain for the second term
in the far-field expansion

(29) Wix* 1) = (—3A4r? + B)e Y2~

We shall now continue the same procedure in the next problem (15), to
obtain an expression for W, and to find x* to one more order in ¢.

Substituting (18). (20) and (24) in (15) and using (21), (25) and (26) we obtain,
for the next problem

18] cw, ol i
- = |-+ 4+~ +da,|F+ |rP+ |G- H",
r(?r(rc?r) (8+2+32+ T R L
oW, 3 1
30 —3(x* 1)= - F+ -G — H.
(30) cr (1) 16[+2
Wi+, r) = 0.

Integrating the equation in (30) once, setting r = | in the result, and substituting
this in the r = 1 boundary condition yields the equation

(31) H" — 2H = (g — 4a,)F.
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Repeating our earlier arguments, we require the right-hand side of (31) to be
zero in order to maintain uniformity of the expansion in x*. This yields

S
32 -
(32) L= e
and -
(33) H(x*)= Ce¢ 2,
where C is to be determined by matching. and we now have x* to one more order:
- £ 5

(34) X* = X\/ & 1 — 8 + 3’&’4222 - )

Substituting (22),(27)and (33)for F, G and H and (26) for x,, in (24) we obtain

Ar? ré Br? s

(35) Wz(x*, r) = [~g—~(l —+ —2—) — A.i_ + le e 2|x 1'

Substituting (22), (29) and (35) in (16) we obtain, for the far-field expansion

- Ar?
Wi(x*,r;e) = [yle)e ~ 21 [A + J}( '—; + B)

(36)
Ar2 rZ BrZ
— Al + =] —— 4+ C} + 0} |,

+ ¢?

8 2 2

where x* is given to O(?) by (34). The three constants 4, Band C, and the function
{ole) are to be determined by matching the x* — 0 limit of W(x*, r;¢) to the
|x] > o limit of the near-field expansion, V(x,r.6:¢). We accomplish this by
writing both W and V in terms of x and requiring that the x - o« limit of the
near-field expansion be identical to the far-field expansion. This procedure is
discussed in detail, with many examples, elsewhere [2].

Substituting the expression (34) for x* in (36), expanding the exponential to
0O(£%'?), multiplying by the expression in square brackets, and arranging terms in
ascending powers of ¢, we obtain

— L 52
W(xv/z: (1 — % + 3;2 — “-),r;c)

= Co(s)[A — 242 1x| + e:[A(xz ~ %

+ &322 x| Ao
’ 8 3 2

2 4 2.2 2 4
Y ] . I S N A A
+ ¢ [A( i + 6 + -+

(37)
2 8 16
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The expansion (37) of W in near-field coordinates contains integral powers
of _ . whereas the expansion (36) in far-field coordinates contains only integral
powers of «. The powers of (¢ arise from expanding the exponential in (36).
It should be noted that an individual term of O(¢") in (36) contributes to all orders
equal to or greater than &" in (37). Consequently, although each term in (36) is
the solution to a particular problem in the far-field, each term in (37) is not related
in any simple way to a physical problem in the far-field.

4. Near-field potential. In the vicinity of the point source the potential is a
rather complex function of position, and there is no simple mathematical repre-
sentation in terms of elementary functions. as there is in the far field. The potential
has a-singularity at the source point; the current diverges from this point, half
going toward x = + o, and half toward x = — oc. Close to the source, the lines
of current flow are diverging outward, equally in all directions. Those lines which
are directed toward the membrane must curve to avoid the membrane as, again,
only a small fraction of the local current leaves. the cylinder. As the current flows
down the cylinder. the lines become predominantly in the axial direction, and the
potential joins smoothly onto the far-field potential calculated in § 3.

In terms of the asymptotic expansions representing the near and far fields,
this behavior requires that the near-field expansion increase in powers of /¢ so
it can join to the expansion (37) of the far field. Furthermore, in accordance with
the arguments following (2}, which concluded that the O(1) term in the near field
has a linear dependence on |x| as |x| — o, we see that the second term in (37) must
be O(1) in order to match the near field. Consequently,

(38) cole) = —=,

Nz

and the near-field expansion must be of the form

“ Vix,r.0:¢)=¢ “V(x,r,0) + V,(x,r,0)
(39)
' + 2V, 0+ eVile, r, 0) + -

Substituting (39) in (1), and requiring the large-x behavior in each order to
conform to (37}, we obtain the following sequence of near-field problems:
Vv, =0,

v,
(40) —%x.,1,6) =0,
or

Volx.r.8) > A as|x|— oc,

I
V2V, =~ 3(x)é(r — R)(0).

(-1’/( - - )*0~
—(X 0
4]' 7

Vix,r, 0)— —A\/E x| as|x]— o,
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Vi, =0,

v,
(42) 2 1 0) = — Vy(x. 1.0),
«r
2

Vyx,r,0)— A(.‘CZ — % + B as|x| - x,

Viy, =0
v
(43) 3010 = —Vi(x. 1.0,
cr
) - 1 x* 72
l‘,(,\'.r.(?)a\/thl A g--} +§ - B as '\|—* x,
Vi, = 0.
(Al;‘
(10 = = Vy(x, 1. 0),
cr
(44) 2 4 2.2 2 4 2
Ad X rex- r r -
Vilx,r. 0) > A —- — — —+ —| +B{x* = =| + C
Wx,r. 0) (4+6 5 8+16)+(\ )
as 'X‘ — X
VY, =0,
av.
2, L0 = —Vi(x, 1, 0)
ar
‘4 ‘/ 0 2 A 2 Y2’,2 3r2 r4 \4
S — - T . - _
’ stx.r ) = 2 1x] T8 T 6 16 16 30

as |x| — oc,

The delta function source appears in the V, problem, consistent with the
linear decrease with x as {x| — oc. All other orders of the potential are source free.

Each even(odd) order problem (except for the first two) is coupled to the
preceding even(odd) order problem via the boundary condition on the r = 1
surface. The physical interpretation of this coupling is that the current crossing
the membrane in the nth problem is proportional to the membrane potential in
the (n — 2)nd problem. The even order problems are coupled to the odd order
problems by their asymptotic behavior as |x| — oc, i.e., the constants 4, B, C, - - -,
appear in both even and odd order problems.

It should be noted that the V,, V;, - - - terms alone are sufficient to satisfy (1)
at small x. It is only from considerations of the large-|x| behavior required of the
near-field potential in order to match the small-x* behavior of the far-field
potential, that we conclude that V), V,, - - - terms are even necessary. These terms
are thus known as ““switchback” terms.

By direct substitution of the (x| - o asymptotic forms of V,, V, and V, In
the respective equations and boundary conditions (40), (42) and (44). it is seen
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that the |x| — oc forms are the solutions valid for all x. Thus

(46) Vo= A,
2
(47) V, = A(‘cz - %) + B,
x? Y4 rZKZ rZ 4 ’,2
48 Vi=Al -+ -~ 4+ — + | 4+ B[x* - =
(48) a 1 2+8+16)+(X 2)+C

Now we evaluate the constant A. Integrating (41) over the large volume of
the cylinder between —x and x, |x| — oo, and using the divergence theorem, we
obtain

2n Al x
lim dBJ rdrf dx Vv,
0 -x

Ixl=x Jo

|
—
I

I

2n 1 V ]
lim dG‘[ rdr E’/q——l(x,r,(i)—o—l/l(—>c,",9)
0 0 0x 0x

|x]— x
= —?.nA\/E,

where in accordance with the r = 1 boundary condition in (41), the integral over
the surface of the cylinder is zero, leaving only the integral over the discs at +x.
The last equality follows from substitution of the asymptotic behavior of V,,
as |x|] — oc, obtained from (41). Solving for 4, we obtain

(50) A= 2/(4m),

Substituting in (41), we obtain the large-|x| behavior of V,,

(51) lim Vi(x.r, 0)= —|—x—|,
Jxf = 2r

which completes the specification of the problem for V,. In order to solve the
problem, it is convenient to decompose the near-field potential V| into two terms,

(52) Vi(x,r,0)=®,(x,r, 0) - |_X_l
2n
Substituting (52) in (41), we obtain the problem for @,
) R 1. . 1
V20, = —&(x)| - o(r — R)&(6) — - |,
r n
o
(53) —(x,1,0) =0,
or

D (+oc,r,0)=0.

The source term in (53) is the unit point source at (0, R, 0) plus the uniform disc
sink in the x = 0 plane. The net current source for @, is zero, i.e., all the current
which enters the cylinder at the point (0, R, 0) is removed uniformly in the cross
section (0, r, 8). Unlike the problem for V,, which contains unit current flowing
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outward as |x| — oo, the problem for ®, contains no current flow as |x] » x.
The boundary value problem (53) may be solved by Fourier transformation
in the 0- and x-coordinates. Defining the double Fourier transform of ®,. by

Wk ) :f“d(ae""""f dx cos (kx)D,(x. r. )
(54) 0 o "

1~ .
O x.r.0) = ,?f dkcos(kx) Y "Y'k, r)
- 0

n= X

noting that @ is even in x and 6, we see that the problem (53) becomes, in Fourier
transform space,

N/, (1) nZ 1 .
(Uj/ ) (’24—7)‘9(1"': —-o(r = R) + 20,,.
rﬁr r r

{n)
Y10 =0
cr

(55)

The solution to (55) is

280, K, (k) { KA kRM (kr), 0 =r <R,

Wk p) = — - — I (kR)—2—1 (k
DD = e LRI )k kLR, R<r <1

Taking the inverse transform (54) of (56) and substituting the result in (52), we
obtain

1
Vilkx, r, 8) = _Iix—rl + i;(xz +r? + R? — 2rRcos )" 2
(57)
. mO O
*znznz f dk cos (kx)[l i KR (k) ]

The integral over k in (57) can be replaced by an equivalent sum by considering
the integral in (57) as a portion of a contour integral, so that

b 1 & J AR (4
(58)  Vix.rf)= - _ P Z il LRl
2t 2, . |n 20
ns I{ -1 Jn('{ns)

where /,; is the sth zero of J,(/) excluding the one at A = 0. Using (58). we can
see that as |x| - oo, V| —> —|x|/(2n) plus terms which are exponentially small
in |x|, and hence the solution (57) or (58) is the required solution to (41).

Equation (58) is useful for computing the O(1) part of the potential, except
for small values of |x|. As x — 0, the convergence rate becomes progressively
slower. A more general expansion has been obtained elsewhere [S]. which contains
an adjustable parameter for making the convergence rate rapid at any x, including
x = 0, and for two special values of the parameter, reduces to (57) or (58).
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We now turn to the V; problem and evaluate the constant B. Integrating
the Laplacian in (43) over the volume of a large cylinder extending from — x to x,
and using the divergence theorem, we have

x 1 2n
0= lim dxf rdrf do vy,
[x] = - x 0 0
(59] PIRY 2n ‘\V 1 2r ‘*V
= lim D dxf d(')(’—,i(x.l,())+f rdr dOC—-J(x,r.H)}
- o e N o o Cx

Using the boundary condition in (43). and (52), and the transform (54) for I,
we see that the first integral in (59) becomes

- Iimf dxf 40 Viix. 1. 6)
[x] =« - X 0
5 1 M~ ~
(60) =\ ‘J d,\'J dk cos (kx 'Ok, 1)
n - 0
— .\_2 _ d/‘lm(0~ 1)

From (56), we obtain, using the Wronskian of I/, and K, and the power series
expansion of I (k).

, 2 I, kR)
(0) _ i LSkl
o vit0.h = 1’3’)( 2t kI,(k))
(61)
= XR* - }).

Using the asymptotic form for large |x| for V; from (43), we see that the second
integral in (59) becomes

1 2n 2
(62) f rdr d02\/2_A1—x2+r— — B :27!\/6,4}—4\'2 — B
L 8 2 8

Combining (59) -(62) and using (50) for 4 yields an equation which may be solved
to give

(63) B=YZ>

As a consequence of (63). W, and V, depend on R, the distance from the source
to the axis of the cylinder, whereas lower order terms do not.

Having evaluated 4 and B in (50) and (63), we have now obtained the near
field and far field up to terms of O(¢''?), i.e., we have obtained V,, V,, V,, W,
and W,. These terms represent that part of the potential which is numerically
significant in a physiological experiment: all higher order terms are too small to
detect anywhere in a cylindrical cell. Nevertheless, it is of some mathematical
interest to carry out the calculation further in order to demonstrate that the
process can be continued indefinitely, although it clearly soon becomes quite
tedious. We continue as far as necessary to calculate the constant C, and will
discuss the results at that point.
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In order to obtain C, we must proceed in solving the problem for V;. The
method employed is identical to that applied to the V|, problem, namely, a new
potential, @, is defined which approaches zero for large |x|. Thus

2
(64) Vi(x,r,0) = Dy(x,r,0) + bl |R2-+-rz—l—fx2
4n 3
where we have used the expressions (50) and (63) for 4 and B in the asymptotic
form of V, given in (43).
Substituting (64) and the definition of &, (52), in the problem for V5, (43)
yields the problem for @,
1
VI, = ——(R? + r? — 1)d(x),
2n
od,

65 S _0
(65) or s

@3(i00, r,0)y=0.
The source term in (65) is a nonuniform distribution of current on the disc at
x = 0, plus the current crossing the membrane given by the r = 1 boundary
condition.

It can be verified easily that the algebraic term in (64) satisfies Laplace’s
equation for |x| > 0, as well as the r = 1 boundary condition in (43). It has a
discontinuous derivative at x = 0, however, and so is not a solution to (43) at
x = 0. The function ®;, which has a source at x = 0, must be added to the algebraic
term to obtain a solution valid everywhere. The discontinuity in the derivative
of @, will be just the negative of the discontinuity in the derivative of the algebraic
term.

As in the @, problem, @, is an even function of x and 6, and we define the
double Fourier cosine transform of 8, as in (54), with subscript 1 replaced by 3.
The problem (65) thus becomes, in Fourier transform space,

a (n) R
P P
(06) cw"” d I (kR)
(n)(1, . On alK /
(k, )= —yk, 1) = 2 kLK)

where we have substituted for '™k, 1) from (56) and used the Wronskian of I,
and K,. The solution to (66) is

4 I (kR) (kr)
67 (,,)k — On R2 _ 1 Sy _In n )
(67) Yk, r) ( + r? + kz) —_[kl;(k)]z
Taking the two inverse transforms of (67), and using (64), we obtain
Vilx. r, 0)
Ix| 2
RZ - T2
4Tt( 1 3x )

(68)

o ...of 1 08 kx[l KR (kr)

R? 4+ r ~1+4)o].
wAJZ k2| o
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By relating the integral in (68) to a contour integral, the integral can be
converted to a sum. The result is given elsewhere [7] and from it we can show that
Vy = (R* + r* — 3x% — 1)IxI(4n) plus terms which are exponentially small as
x| = .

The constant B was determined by considering the volume integral of the
Vy problem (43), and was seen to be related to the large-|x| behavior of V; and V.
and to ¢'(0, 1). In exactly the same way. by considering the volume integral of
the V5 problem (45), (without actually solving for V;), we can determine C from
our present knowledge of the large-|x| behavior of V5 and V5, and of %'2(0. 1).
Having determined C, we will then have Vilx,r) and Wy(x*, r). The details are
given elsewhere [7]. The result is

(69) C=Y32 _3gegpe
C64nf24 I

5. Summary and discussion of results. We have now calculated all the coeffi-
cients appearing in the first three terms in the far-field expansion, and in the
first five terms in the near-field expansion. This permits us to write expressions
for the potential (far- or near-field) to O(=*'?). Substituting the results for 4, B
and C from (50). (63) and (69) in the expressions for W,, W,, and W, given in (22),
(29) and (35) and then substituting these plus {, from (38) in the expansion (36)
we obtain the expression for the far-field potential,

Wix* . r.0:e) = e 12Wo(x* r) + 2 2W(x*. ) + 32 W5 (x*, r) + 0(2)

2 | 5
70 — VT -2 12 Set2)T 2 2
(70) o ¢ l:f + 22 {4 (r~+ R )}

1., (25 R , ,

+ 1—64:3 ‘{? =30 + R + r* + 4r°R* + R“} + O(;;S’z):, :

where the far-field axial variable is
34 k[ 1 L . 5 2 o3
(34) = ex —'gé,+§84b + 0(Y) |.

Similarly. if we substitute the results for A, Band C in the near-field expressions
for V5, 15, and ¥, given by (46), (47) and (48) and then substitute these plus V,
and V, given by (57) and (68) in (39) we obtain the expression for the near-field
potential,

Vix,r,0;¢)
=c7 2V (x,r, 0) + Vix, e 0) + £ 2V(x, 1, 0) + eVi(x, r, 0)
+ &3V, (x.r, 0) + O(e?)

/2 x| i
— 2NV e 2 2 2 _ 9 - 12
¢ Ar + 4n(.x +r "+ R rR cos 6)
LR = K, (k) 25,,
Sy X L dk cos kx{l;(k) LR (kr) + =5

mz\/ﬁ2 5 232 2, R?
MRS i (cont’d.)
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2 4+ R? 2 |
2 2%
’ 3

[ -‘,J' cos kx (I (kR (kr) R , 4\
— in k R P - S G P
=, 0, * e { k) ' k2] o0
21
FAVE) D05 4 144x + 64x%) — (r + RA(3 ~ Ky
(7h(cont’d.) i 647:[24‘ 3t X XT) = (r7 + { N

+r* + 4r’R* + R‘} + 0%

The two k integrals in (71) can be replaced by the equivalent representations
{58) and (C.9). of {7]. respectively.

The leading terms in the far-field expansion (70) and in the near-field expansion
(71) are each of order ¢~ "2 In the near field. the leading term is a constant. Thus,
near the point source, the interior of the cylinder is raised to a large, constant
potential, relative to the zero potential at infinity. The physical basis for the large
potential is that the membrane permits only a small fraction of the current to
leave the cylinder per unit length. Consequently, most of the current flows a
long distance before getting out, and a large potential drop is required to force
this current down the cylinder. The existence of this large constant potential,
and its magnitude of O(¢~!'?), could only be deduced from considerations of
the far field.

The leading term in the far field decays as exp(—\/Z-s; |x]). Consequently.
to lowest order, 1/e of the current leaves the cylinder in a distance of l/\/ZtI.
The corresponding potential required to drive a current this distance is of O(¢ ™ '/?).
which is the physical basis for the order of the large potential in the near field.
The precise numerical values of the leading terms in (70) and (71) was determined
by requiring in the limit {x| = oo, x* — 0, that the two terms be identical to the
lowest order in ¢. In the far far field, ie, x* = x/e(1 — ¢/8 + ---) = o, the
potential is seen to approach zero exponentially.

The leading term in the far-field expansion (70) is independent of r and 6.
Thus. to the lowest order, the far-field current is distributed uniformly over the
circular cross section of the cylinder. The leading term in (70) is the known result
of one-dimensional cable theory [8, eq. (14)]. The high order terms are all inde-
pendent of the polar angle . They do, however. depend on the radial coordinate r.
The dependence is in the form of a polynomial in r?, the degree of the polynomial
increasing by one in each successive term. We also see that the higher order terms
also depend on R, the radial distance between the source and the axis of the
cylinder. The potential is seen to be symmetric with respect to an interchange of r
and R. This must be so because the potential is the Green’s function (with source
at x =-0, f) = 0) for the cylindrical problem [4, p. 808].

Successive terms in the far-field expansion decrease in powers of ¢, whereas
in the near-field expansion they decrease in powers of\/g.

The second, O(1), term in the near-field expansion, as written in (71) contains
three parts. It is the solution to the problem (41) in which no current crosses
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the membrane, ie., ¢V,/Cr =0 at r = 1. The first part of this term decreases
linearly with increasing [x|. [t corresponds to the potential required to drive a
constant current parallel to the axis of the cylinder in the interior of the cylindrical
cell. It 1s the appearance of this term in the expansion which led us to conclude
that an expansion of the form (71) could not describe the potential for all x,
since we could not satisfy the boundary condition at |x| = >« with such a term
present.

The second part of the O(1) term is the free-space potential of a point source.
It 1s the only singular part of the solution, accounting fully for the singularity at
thelocation (0, R, 0)of the delta function source. The third part is more complicated.
When added to the first two parts, it satisfies the boundary condition at r = 1,
and removes the discontinuity in the x-derivatives of the potential at x = 0,
arising from the first part.

The third. O(''?), term in the near-field expansion is a polynomial of second
degree in x, r and R. In general, each term of O(¢'*"* V'?), n an integer, are simply
polynomials of degree 2n + 2. The O(¢''?) term was required as a consequence of
the O(¢” '?) term and the coupling between orders given in the sequence of
problems (40)+45), and matching to the far field.

The fourth, O(z), term [specified by (43)], and subsequently all higher terms
of O(c"), contain a polynomial of degree 2n + 1, in |x|, r, and R and a more com-
plicated infinite sum, infinite integral term. Higher order terms are determined by
solving the appropriate partial differential equation [analogous to (45)] and
boundary conditions.

The first two terms in the far field, W, and W, and the first three terms in the
near field. V,, V;, and V,, represent the physiologically significant part of the
potential. Higher order terms are too small to be detectable at any location in
a cylindrical biological cell. The higher order terms W,, V; and V, are given to
illustrate their interesting mathematical properties, and to provide a precise
measure of the magnitude of the error introduced by using only the preceding
terms.

A single expression which is uniformly valid in x can be written down. We
saw in §4 that the polynomial parts of the near field are exactly equal to the
respective terms in the expansion (37) of the far field in near-field coordinates.
The two complicated infinite sum and infinite integral terms in the near field are
exponentially small in the far field. Consequently, the potential everywhere can be
obtained from the single representation

V(xr()'r)—\/—erx ﬁljl C+582 o)
xX.r.0:8) = -~ p € |x 2 T 334 (e

S
-a""2[1 + %{‘—‘ —(r* + Rz)}

e? 25 2 2 4 2p2 t 3
) +1'6{§E—3(r + R*) + r* + 4r°R* + R* ; + O(¢”)

1
(y2 2 2 - 1/2
+ 4n(,x +r*+ R 2rR cos 0) (cont’d.)
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A K (k) 26,,
- Z, ¢ HJ; dk cos kx[l;,(k) T(kR) (k) + kz”

2n* =

& [L(kR) (kr) , - 41 i
e = [ R e o oun],

which 1s asymptotic to (70) in the limit ¢ — O with ,\'V';i held fixed, and to (71) in
the limit ¢ — 0 with x held fixed. Again. we can replace the two integrals by using
(58) and (C.9) of reference [7]. Equation (72) is more compact than (70) and (71).
but the latter two have the advantage of clearly separating the terms according to
their order in ¢ in the regions x >« '? and v « ¢ ' 2 respectively, and each
order of ¢ is related to a simple physical problem. This solution is closely related
to the solution derived by Barcilon, Cole and Eisenberg [ 1] using another technique
of singular perturbation theory, multiple scaling.! It can also be obtained from
the eigenfunction expansion of the solution to (1) for arbitrary ¢, by expanding
in powers of ¢ [5].

{72)(cont’d.)
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! The result of the multiple scale analysis [1] differs from (72) because [1] contains a sign error and
a secular term in V® which has not been removed. If these errors are corrected, and the infinite sum
over Bessel functions is written in closed form, the multiple scale result, the expansion of the exact
solution, and the present results are identical.



