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Most cells and tissues use the flow of electric current to help perform their
natural functions. The widespread use of electricity in the function of cells is nat-
ural from the physical point of view, since so many of the substances transported
in the body are charged and since electrical signals have properties suitable for in-
formation-transduction, transfer, and processing. The widespread use of electricity
is also natural from an evolutionary point of view. Cells, in most cases, must have
a resting potential across their surface membrane if they are to exist at constant
volume: the resting potential thus was probably present in the earliest cells in bio-
logical history. It seems that evolution is a highly conservative process: that is, if a
structure or property is present, it will be modified and used in diverse ways in
evolutionary development. Thus, one expects what one finds; most cells and tis-
sues use their resting potential and associated electrical mechanisms to help per-
form their natural function.

It is interesting to note that electrical processes seem to be used even where
they need not be used. Most systems that transport nonelectrolytes appear to
involve the obligatory transport of ions as well, even though physically there is
no need to transport charge when uncharged solutes are being moved across mem-
branes. One can rationalize this fact by imagining that the active transport of
ions was developed early in biological history to help maintain the volume of cells
in the presence of small but persistent leakage of “impermeant” ions. Then the
mechanism for nonelectrolyte transport developed as a modification of an ion-
transport system rather than as an entirely new, electrically silent mechanism.

The study of the mechanisms that underlie the electrical activity of cells is of
considerable biological interest. It is sometimes possible to study such mecha-
nisms by the simple observation of natural electrical activity and by observing the
change in natural electrical activity produced by ionic or experimental interven-
tion. But it is usually necessary to study such mechanisms by direct electrical
intervention; that is, by applying a perturbing current and measuring the respond-
ing voltage change. This paper is concerned with the study of the response of cells
and tissues to the application of current and illustrates with two examples some of
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the information that can be determined from the measurement of the voltage
response to applied current.

Our particufar interest here will be the construction and test of electrical
models of two preparations: the skeletal muscle fibers of frogs and the lens of the
eye. These models predict the voltage response to applied current and include as
the components of the model the electrical and morphological properties of the
cell and its component structures and organelles. The need for an explicit electri-
cal model may not be apparent but is, in our opinion, a general requirement for
the analysis of the electrical properties of anyv preparation. We therefore will
discuss the role of electrical models before we discuss the specific cases just
mentioned.

The first role of the efectrical model is to enumerate and describe the pathways
for current flow. Current applied to a preparation flows in many directions. It
leaves the current-passing electrode (in our cases a microelectrode inserted into
the cellyand flows in the cytoplasm to a membrane. crosses the membrane into an
extracellular space, and then flows in the extracellular solution 1o a collecting
electrode, an indifferent electrode in the external bathing solution. The flow of
currentin the extracellular space may be rather complicated, since in many prep-
arations some of the extraceliular space is a specialized compartment within the
cell. The flow of current in the intracelfular saline solution is also important. In
cylindrical cells like muscle fibers and nerve axons, most of the intracellular cur-
rent flows longitudinally, the flow of intracellular current in other directions.
both away from the microelectrode source and toward the outer membrane, pro-
ducing significant effects only under extreme conditions. The longitudinal flow of
current is significant because a longitudinal pathway of sufficient length (of a
length constant, namely millimeters) has a resistance equal to the impedance of a
similar length of outer membrane. Thus, the potential drop down the length of a
cylindrical cell must be analyzed. as well as the potential drops across the outer
membrane. In spherical cells there is no fongitudinal pathway, and so the impor-
tant intracellular potential drops occur in a different manner. As current leaves
the microelectrode source in the region near the microelectrode, the great density
of the lines of current flow causes signiticant potential drops. These three-dimen-
sional effects, as they are calied. since they involve the flow of current in all direc-
tions, are large in large spherical preparations, like the lens of the eye, for example.

Another role of an electrical model is to provide the relationship between the
observed electrical properties and the properties of the individual structures and
organelles that make up a cell. The measured response to applied current depends
on all the pathways for current flow, many of which are not involved in the bio-
logical process of interest. Thus, a model is needed to determine the properties of
the individual cell components from the observed properties of the whole prepara-
tion.

A model should include all the important characteristics of the preparation and
should depend explicitly on the properties of the various structures that make up
the cell (the size and shape of these structures can be measured by morphometric
techniques). and it should depend on the electrical properties of individual mem-
branes and compartments of intra- and extracellular saline solution. It is usually
difficult to determine the individual electrical properties of cell components a
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priori. For example. if one is studying muscle fibers, it is not clear how one should
describe the nonlinear properties of the surface and tubular membranes. since
(for the most part) measurements are available only of the nonlincar properties
of the combined surface membrane and tubular system. If. however, attention 1s
restricted to strictly linear properties, it is much easier to specify the electrical
properties of individual membranes. since it is widely believed that the linear
electrical properties of individual membranes can be represented. to a reasonable
approximation, as a resistor and capacitor in parallel. The procedure we take in
constructing an electrical model is then to consider only the linear electrical
propertics of the cell and represent each membrane as a resistor and capacitor in
parallel, the unknown value of the resistor and capacitor depending on the un-
known specific value of the membrane resistance and capacitance and on the
known amount of membrane area. We represent the properties of the cytoplasm
and extracellular solutions as resistances, with arcas. volumes and shapes deter-
mined morphologically.

A quantitative description of the model an cquation is derived with use of
whatever method seems expedient. In the simplest cases a lumped equivalent
circuit can be directly written: in other cases. partial ditferential equations that
describe the continuous variation of potential are written (with boundary condi-
tions to describe the membrane): in still other cases, difference equations are
written to describe the variation in potential in a discrete number of locations:
and finally, it is occasionally necessary to combine all three types of analysis.
The equations are then solved: that is to say, an approximate solution is sought
that has phvsical meaning and @ known mathematical error. The requirement for
physical meaning is critically important since the qualitative properties of the
mathematical solutions are usually a particularly useful description of the physio-
logical properties of the preparation. Furthermore. the physical meaning of the
solution allows speculative extension of the mathematical approximation to cases
not strictly within the domain of the analysis. For example, one often guesses
that nonlinear effects will be confined to terms in the mathematical solution that
depend on membrane properties and will not effect terms that depend only on
intra- or extracellular resistances.

By following the procedure just described, it is possible to construct an elec-
trical model of a cell or tissue and be in a position to test the model and interpret
the eiectrical properties of the preparation. In this way a qualitative analysis of
mechanism is possible, and indeed a reasonably precise quantitative description
can be made.

FROG SKELETAL MuscrLE FiBERS

The clectrical properties of the muscle fibers of the frog have received a great
deal of attention over the years because of the intrinsic interest in skeletal muscle
and the important role of electrical properties in the initiation of contraction.
Interest is also aroused because skeletal muscle fibers probably represent the least
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complicated structure of excitable membranes except for nerve axons.t It has
been widely felt that the techniques and forms of analysis necessary to unravel
the electrical properties of skeletal muscle would be a guide to the methods neces-
sary to unravel the electrical properties of more complicated tissues of great bio-
logical and clinical importance, like smooth muscle, cardiac muscle, and the
various epithelia.

The overall model of the electrical properties of frog muscle utilizes one-
dimensional cable theory (see Jack et al.'® for an excellent review) to describe the
longitudinal spread of current and three-dimensional cable theory (see Peskofl et
al® for the most recent work and Eisenberg & Johnson'® for an early review) to
describe the flow of current near the microclectrode source (important at short
times or high frequencies). One-dimensional cable theory includes the longitudinal
and shunt (i.e., transverse) pathways for current flow. Since the longitudinal path-
ways are essentially resistive,?>?* we confine our attention here to the shunt path-
ways, the pathways by which current can leave the sarcoplasm in a single sarco-
mere. We are mostly interested in modeling the linear properties and so will not
discuss the recent work on asymmetrical capacity currents. We must emphasize,
however, the importance of that work in the understanding of the nonlinear pro-
cesses in skeletal muscle (Chandler er al’ describe and analyze the asymmetry
currents and give references to other work on the subject).

There are three systems of membranes that one might suspect would contribute
importantly to the electrical properties of a sarcomere of skeletal muscle: the sur-
face membrane, the tubular system, and the sarcoplasmic reticulum. The surface
membrane itself comprises a small part of the total membrane within frog muscle
fibers (some 1-29; for a fiber of typical diameter) but obviously is the location of
substantial current flows. The surface membrane, however. is not a simple
structure, since it has infoldings called caveolae® whose function is not known.
Indeed, it is not clear that all the caveolae behave ¢lectrically as part of the surface
membrane. I many caveolae serve as openings of the tubular system,” they would
modify the current flowing into the tubular system and so would act more as exten-
sions of the t-system than as components of the surface membrane. Unfortunately,
until the anatomical relationship of the opening of the tubular system and the
caveolae is settled, and until the function of the caveolae is known. it will be diffi-
cult to evaluate their contribution to the overall electrical properties of the muscle
fiber. At present we model the surface membrane as a simple resistance and capaci-
tance in parallel, assuming that the only effect of the caveolae is to modify the
amount of membrane that produces these electrical properties.

The clectrical properties conferred on the fiber by the sarcoplasmic reticulum
are customarily ignored in models, since it is widely believed that no current can
flow across the tubular membrane into this compartment. Certainly there is no

#The structure of the excitable membranes of skeletal muscle is not all that simple, of
course.27.2) But the membranes are highly organized in a reasonably periodic arrangement
with characteristics suitable for observation in the electron microscope (except at the open-
ings of the t-system to the extracellular space). Thus, the complications of the structure are
rather well known; indeed. the qualitative and quantitative organization of muscle mem-
branes is known at least as well as that of the much simpler, but less studied axon mem-
branes!
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convincing evidence of substantial current flow in that pathway, and the structure
of the junction between the sarcoplasmic reticulum and the tubular membrane
(reviewed in Franzini-Armstrong'®) is not reminscent of junctions that do elec-
trically couple adjoining cells. We follow the customary procedure and ignore the
contribution of the sarcoplasmic reticulum to the overall electrical properties of
the fiber, but we are painfully aware that some forms of coupling between the
sarcoplasmic reticulum and the tubular system might influence the electrical prop-
erties of the fiber in a sufficiently subtle manner to have avoided detection but in a
sufficiently substantial manner to have important effects.

The main determinant of the linear clectrical properties of skeletal muscle
fibers is the tubular system, since the great majority of the membrane which de-
limits the cell from the bathing solution is in the ¢-system. The tubular system of
muscle fibers is a branching network of tiny tubules that arise as invaginations of
the surface membrane and trap a component of extracellular space within the
fiber. The tubules contain solution that appears to exchange readily with the extra-
cellular bathing solution (see reviews’?*?). Because the cross section of the tubules
is small, and yet they have considerable length and membrane surface, there can be
significant radial potential gradients in the lumen of the tubules. It is the descrip-
tion of this potential drop--and concomitantly of the entire pattern of current flow
and potential distribution within the t-system— that we will analyze here.

The first description of the electrical properties of the r-system'? represented the
tubular network either as lumped elements—a resistance in series with the tubular
membrane—or as a distributed network, a pair of discs of membrane enclosing a
small extracellular space. The former description seemed sufficient to fit the experi-
mental results, but the data did not rule out the disc or distributed representation,
and a foreshortened theoretical analysis of the disc model was presented. A variety
of subsequent experimental results'>3311617.43334 chowed  however, that there
were significant radial potential drops within the t-system and ruled out a lumped
representation.

The central problem in modeling the f-system is then the correct representation
of the branching nature of the network and radial potential drop produced by the
network. This problem is sufficiently difficult that some'*?® have chosen prepara-
tions with unbranched tubules, and it is probably not coincidental that the clearest
results come from such preparations. Others'? have ignored the branching or have
analyzed the effect of branching in a few special networks with morphological
properties distinct from those of frog muscle.?’' We will discuss here models that
seck to include explicitly the structure of the r-system as reported by morpholo-
gists 272!

Mathias' numerically constructed explicit exact solutions for two-dimensional
branching networks of tubules of various structures. These exact solutions (and
unpublished solutions for a hexagonal r-system in a hexagonal fiber: Mathias,
personal communication) and the methods of deriving and computing them are
keystones to future analysis, since they are the only results that one can be certain
are correct, at least in a mathematical sense. All other analyses contain some form
ofirrational approximations; that is, approximations that do not permit complete
computation of their own mathematical error. However, the exact solutions are
s0 cumbersome as to preclude qualitative understanding. Furthermore, they would
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be difficult to compute and fit to a substantial amount of experimental data. The
fundamental reason that the exact solutions are cumbersome is that they use a
two-dimensional description of the structure of the t-system: they describe each
node of the tubular system with two spatial coordinates. For that reason, Mathias
et al.® constructed a model of the t-system that requires only one spatial coor-
dinate to describe each node. They classified the nodes of the f-system into con-
centric shells by a geometric construction that would tend to minimize the circum-
ferential variation of nodal potential within any shell. Mathias er al. then presented
a rather complex statistical derivation of a finite difference-differential equation to
describe the average potential in each shell. When the shell width is small com-
pared to the tubular length constant, the difference equation reduces to a differen-
tial equation that is of the same form as the disk model and could be easily and
exactly solved. Also, it is fortunate that a quite simple and precise approximation
to the solution of the difference equation for the admittance of the z-system could
be found, this solution being valid over the entire range of length constants. None-
theless, the complexity of their analysis is rather forbidding.

Here we shall present a physical analysis of the structural model of Mathias
et al. We do not seek as complete an approximation as they have presented, but
rather derive and solve an equation that is quite accurate within most of the
physiological range, to something like 1000 Hz under normal conditions. The
reader is referred to the original paper® for the more precise result and for a dis-
cussion of the applicability of the present more limited approximation.

Consider a random or deterministic network of tubules, each tubular branch
being of length L, having a resistance R, between nodes due to the lumen of one
branch, having Ng branches per node (note that the number of distinct branches
per node is N /2, since each branch spans two nodes), with circumferential spac-
ing 6y between nodes, and with a total length of tubule per unit cross-sectional
arca of fiber of Ly/A. Such a network enclosed in a finite boundary can usually
be decomposed into shells within which tubular branches can be defined as radial
(thatis, crossing a boundary of a shell) or circumferential (lying entirely within a
shell). The spacing between radial branches is called dg. The potential drop AU
in a shell of thickness Ar when there is radial current 7, flowing in the lumen of the
tubules is

_ (radial current) x (resistance of one tubular branch)

AU (1
(no. of radial tubular branches)
i, R
) o b (2)
2wr/bg
AU i, R /
== kD d—bas Ar — 0. 3)

Ar (QQwr/ég) - Ar dr

The effective radial resistance is therefore Ry(85/Ar), so that the factor dg/Aris a
network parameter that depends on the manner in which the nodes of the network
are connected and also on the degree of tautness in the network. For example, a
network with a small spacing between radial branches will have--all other
morphometric parameters being constant --a lower value of effective radial resis-
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tance than a network with a larger spacing between radial branches, since the
former network will have more parallel pathways in which radial current can
flow. On the other hand, a network with a small value of Ar will have a larger
effective radial resistance than one with a larger value—all other morphometric
parameters being constant - because the total amount of tubular system in the two
networks is the same, but in the former network the radial tubules that connect
shells must twist and bow. Thus, the effective path fength and radial resistance is
greater in the network with the smalier shell thickness, all other things being equal.

In general, then, it is necessary only to determine the shell thickness from the
measured morphometric parameters of the network. This can be done by equating
two expressions for the total number of tubules (both radial and circumferential)
in a shell

(no, of tubules in shell) = (no. of tubules of length L per unit area)
x (area of one shell) (4)
(no. of tubules in shell) = (no. of distinet tubules per node)
x (no. of nodes per shell) (5)
WLr/ ARV 27arar) = (Ng/2)2wr/dy) (6)
or
Ar = L(Ng/2)/(op L1/ Ap). (7)

In a gencraf expression it is preferable to write R, in terms of resistivity of the
lumen of the tubules R, and the morphometric parameters of the network.] Then,
Ly/Ap St V,
Ry = LR /Ay = LR, Lr/Ar Sy Ve (8)
Sypldp Ve Vr
It should be noted that the expression is more useful than it is awkward, since all
the morphoiogical parameters on the right-hand side have been experimentally
measured.
To complete the derivation we write Kirchoff’s Current Law

di,

3 > [, 2nr = U(G, + jwC ) (Sy/Ar)2xr) 9)
,

where J,, is the density of current crossing the tubular wall, G, and C, are the
specific conductance and capacitance of the tubular wall, and S7/ Ay is the surface
arca of tubular wall per cross-sectional area of fiber.

Equations 3 and 9- using (7) and (8) if desired—can be combined to give a
differential equation for the potential within the wbular system. This resulting
equation is of the same form (but with different parameter values) as that used by
virtyally all workers in the field 2311600725326

fWhere 45 s the cross-sectional area of the tubule, S /.4, 15 the surface of tubular wall
Per unit cross-sectional area of fiber, S/ ¥, is the surface of tubular wall per uni volume of
fiber, and V5 /¥ is the volume of fiber per volume of tubule,
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be difficult to compute and fit to a substantial amount of experimental data. The
fundamental reason that the exact solutions are cumbersome is that they use a
two-dimensional description of the structure of the f-system: they describe each
node of the tubular system with two spatial coordinates. For that reason, Mathias
et al.®® constructed a model of the -system that requires only one spatial coor-
dinate to describe each node. They classified the nodes of the t-system into con-
centric shells by a geometric construction that would tend to minimize the circum-
ferential variation of nodal potential within any shell. Mathias er al. then presented
a rather complex statistical derivation of a finite difference-differential equation to
describe the average potential in each shell. When the shell width is small com-
pared to the tubular length constant, the difference equation reduces to a differen-
tial equation that is of the same form as the disk model and could be easily and
exactly solved. Also, itis fortunate that a quite simple and precise approximation
to the solution of the difference equation for the admittance of the r-system could
be found, this solution being valid over the entire range of length constants. None-
theless, the complexity of their analysis is rather forbidding.

Here we shall present a physical analysis of the structural model of Mathias
et al. We do not seek as complete an approximation as they have presented, but
rather derive and solve an equation that is quite accurate within most of the
physiological range, to something like 1000 Hz under normal conditions. The
reader is referred to the original paper® for the more precise result and for a dis-
cussion of the applicability of the present more limited approximation.

Consider a random or deterministic network of tubules, each tubular branch
being of length L, having a resistance R, between nodes due to the lumen of one
branch, having Ng branches per node (note that the number of distinct branches
per node is Ny /2, since each branch spans two nodes), with circumferential spac-
ing 6, between nodes, and with a total length of tubule per unit cross-sectional
arca of fiber of Ly/Ap. Such a network enclosed in a finite boundary can usually
be decomposed into shells within which tubular branches can be defined as radial
(thatis, crossing a boundary of a shell) or circumferential (lving entirely within a
shell). The spacing between radial branches is called dg. The potential drop AU
in a shell of thickness Ar when there is radial current i, flowing in the lumen of the
tubules is

B (radial current) x (resistance of one tubular branch)

AU - (1
(no. of radial tubular branches)
av = LR 2)
2wr/og
AV LRy Lias Ar — 0. (3)

Ar Qur/dg) - Ar dr

The effective radial resistance is therefore R, (65 /Ar), so that the factor 5/ Ar is a
network parameter that depends on the manner in which the nodes of the network
are connected and also on the degree of tautness in the network. For example, a
network with a small spacing between radial branches will have- -all other
morphometric parameters being constant -a lower value of effective radial resis-
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tance than a network with a larger spacing between radial branches, since the
former network will have more parallel pathways in which radial current can
flow. On the other hand, a network with a small value of Ar will have a larger
effective radial resistance than one with a larger value—all other morphometric
parameters being constant becausc the total amount of tubular system n the two
networks is the same, but in the former network the radial tubules that connect
shells must twist and bow. Thus. the effective path length and radial resistance is
greater in the network with the smaller shell thickness. all other things being equal.

In general, then, it is necessary only to determine the shell thickness from the
measured morphometric parameters of the network. This can be done by equating
two expressions for the total number of tubules (both radiai and circumferential)
in a shell

(no. of tubules in shell) = (no. of tubules of length L per unit area)
x (area of one shell) (4)

(no. of tubules in shell)

(no. of distinct tubules per node)

x (no. of nodes per shell) (5)
(Ly/Ap)A /DI 2mrAr] = (Ng/2)Q2mr/by) (6)

or
Ar = L(Ng/2)/(yL1/AF). (7

In a general expression it is preferable to write R, in terms of resistivity of the
lumen of the tubules R, and the morphometric parameters of the network.f Then,
Ly/Ar Sy V,
Ry = LR, JA; = LR, Lr/Ar Sz Ve (8)
Sr/dp Ve Vr
It should be noted that the expression is more useful than it is awkward, since all
the morphoiogical parameters on the right-hand side have been experimentally
measured.
To complete the derivation we write Kirchoff's Current Law

di,

T 2w = UG+ jwC)(Sr/Ap @) (9)
r

where 1, is the density of current crossing the tubular wall, G, and C, are the
specific conductance and capacitance of the tubular wall, and S7/ Ay is the surface
arca of tubular wall per cross-sectional area of fiber.

Equations 3 and 9. -using (7) and (8) if desired --can be combined to give a
differential equation for the potential within the tubular system. This resulting
equation is of the same form (but with different parameter values) as that used by
virtually all workers in the field 231161723328

I Where A is the crossssectionul area of the tubule. Sy /4 g is the surfuce of tubular wall
per unit cross-sectional area of fiber, Sy/ Vy is the surface of tubular wall per unit volume of
fiber, and Vg / V7 is the volume of fiber per volume of tubule.

FLYT p
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2 ;
U 1dU g, (10)
dr? rodr
The propagation constant of the tubular system I, is a generalization of the
reciprocal of the usual tubular length constant, more casily applied to sinusoidal
and transient problems. The propagation constant of the tubular mesh is related
1o the propagation constant ol a single tubule T’

dp Ng\!'"?
I, = = =2} ©v(L/Ar 11
b 2> (L/ar) (1Y

and the tubular propagation constant can be written in terms of the specific prop-
erties of the tubular wall and tumen

I'2 = R (S;/VilGy + juC). (12)

Itis also useful to write (from {3) and (9)) the propagation constant of the tubular
network in terms of the properties of an effective radial resistivity of the fumen
and the effective wall conductivity and capacitance per unit volume of fiber:

U, = Rba% %Ff G, + jwC,]
I'n? = (effective radial resistivity in units of ohm-cm)

x (wall admittance per unit volume of fiber in mho/em?) (13)
where o is the sarcomere spacing and ¢ 87/ Ve = Syp/Af.

The previous differential equation (10) can be trivially solved and has been
applicd to a wide range of situations involving the tubular system. Indeed, it serves
as an adequate electrical model of the tubular system. The substantive difference
between this model and carlier results is the explicit dependence of the propaga-
tion factor on the measured morphometric parameters of the tubular system. No
tortuosity factors computed from deterministic models of the f-system appear in
our result.

The question then arises, how is the model checked? What experimental inter-
ventions can be made that can be compared with the predictions of the model?
First, one can determine if the model fits the impedance data measured from mus-
cle fibers. Second, one can determine if the model describes the variation of
impedance with the diameter of the fiber. Third, one can determine if the values
ol the parameters of the model agree with independent evidence. Fourth, one can
determine whether a nonlinear extension of the model allows prediction of the
shape and conduction velocity of the action potential. Fifth, onc can determine
whether the parameter values of the model change as they should with the change
i fength of the fiber. Sixth, one can determine whether the parameter values of
the fiber change as they should with changes n the resistivity of the external
bathing sofution.

In this contextit is important to point out that one essential check has already
been performed. Exact solutions of networks of branching tubules similar to the
t-system have been simulated with digital computers, and the present model has
becen shown to fit the propertics of the exact solutions closely. The experimental
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checks are not really necessary to determine whether the present model describes a
branching network of tubules; rather, the experimental checks are important to
see if the assumptions from which the model is constructed are reasonably correct:
to see if the circuit elements in the model are reasonably apt descriptions of the
structural components of muscle, to see if the division into longitudinal and shunt
pathways is correct, even in the presence of a spiral r-system,? and, most impor-
tantly, to check if the model is reasonably complete (to check if any significant
pathways of current flow have been omitted).

We shall refrain from elaborate discussion of each of the experimental checks,
since the data is incomplete in most cases. Mathias er al.® show that the model
well describes experimental data taken in a variety of conditions in which the mem-
brane is reasonably linear. The values of the components of the model and the
variation of the values, however, often do not agree with preconceptions. Some of
the problem is undoubtedly caused by experimental error, particularly in the
morphometric parameters which are subject to change by fixation and other
preparatory procedures. However, these problems may also derive from some in-
completeness of the model, the result of some structure or process not presently
included. To cite a few obvious possibilities, it may be important to include ex-
plicitly the properties of the sarcoplasmic reticulum, the junction between the
sarcoplasmic reticulum and the tubular system, the caveolae, the openings of the
t-system, the asymmetrical capacity currents, and perhaps even the longitudinal
components of the ¢-system.

As our knowledge of the structure of muscle increases, and as exciting new
techniques such as the optical recording of membrane potentials become avail-
able, we anticipate that a much wider range of precise experimental data will be-
come available to describe the electrical behavior and properties of muscle. We
hope that theoretical models will develop hand-in-hand with the experimental de-
velopments so that the electrical behavior and properties can be properly analyzed.
Perhaps in that way all the components of current flow important in the processes
of excitation-contraction coupling can eventually be both measured and analyzed.

CRYSTALLINE LENS OF THE EYE

The lens of the eye is an interesting organ because of its clinical and biological
properties: clinically it i1s the source of many impairments of vision, cataracts
unfortunately being quite a common occurrence. Biologically, the question of how
the lens is able to perform the normal metabolic maintenance functions of any tis-
sue and still preserve its transparency is of considerable interest. The electrical
propertics of the lens are of interest for at least two reasons: first, the electrical
coupling between cells may well be importantly invoived in the processes that
maintain the transparency of the lens; second, the transport processes in the sur-
face of the lens, which clearly are important to the metabolism of the tissue, in-
volve the flow of current. An extensive critical review of the electrical properties
of the lens develops these themes in some detail (Rae’®) and should be consulted.

The models of the electrical properties of the lens are much less complete than
those of skeletal muscle primarily for historical reasons; the preparation has been
studied by only a few workers for a rather short time. Thus, the role of the model
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presented here, approximating the lens as a giant spherical cell, is analagous to the
role of cable theory in the historical development of an electrical model of muscle
fibers; it allows the gross analysis of the voltage response to current flow into a
membrane component and an internal component. The model ignores the complex
structure of the extracellular space within the lens, however, and it also ignores
the specialized layer of cuboidal epithelial cells on the anterior side of the lens.
Surely, the model will need to be extended, and revised, to deal with these impor-
tant structural complexities. But just as in skeletal muscle, the original oversimpli-
fied model of one-dimensional cable theory has served as the foundation for later
complexities, so in the lens of the eye the spherical cell model may still be of use
as newer, more precise models are developed.

We crudely represent the entire lens as a spherical cell, or more precisely, as a
finite cell, one with dimensions of the same approximate size in all directions.
Eisenberg and Rae'' have applied the three-dimensional theory of a number of
authors (see Ref. 1 for references that describe the assumptions and analysis of
the theory) to the fens and have shown that the overall potential recorded by a
microelectrode in response to a step of current is given by

R _ s
V = IR, (1 — e I/R”'("') + - F(Ri,a,r,,R,0) + |- G(Rg,a) (14)
4xa?
where
F(-- )_i ’127:1?12~ 2r Ry cos(}—m
4rwa a? a?
R 2p.2 2r R -1/2
+ — l+r'—R—'——rl—lcos(} -2+ 1in2
4ra a* a?
R R 2R2 R 12
- ’Inl—rl—,'c050+ 1+’—1————'——g£'——'c050 (15)
4ra a* a* a
. R
G(-+) = — (16)
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and where V is the potential measured, 7 the current applied. a the radius of the
lens, ¢ the time after onset of current, C,, (in F/cm?) the “specific’” membrane
capacitance, R,, (in ohm-cm?) the “specific membrane’ resistance, R; (ohm-cm)
the “‘resistivity’ of the lens interior, R, the radial location of the current elec-
trode measured from the center of thelens (as is ry the radial location of the voltage
clectrode), 8 the angular separation of the electrode tips, and Ry (ohm-cm) the
resistivity of the extracellular bathing solution.

The important characteristic of this equation is the separation of the response
into three components: one, which depends on membrane properties, is indepen-
dent of spatial location and has a slow time course governed by the time constant
R, C,,; the second, which depends on internal resistance, is independent of mem-
brane properties, is highly localized, and has so fast a time course that it appears
to be established instantaneously; the third is a component that arises in the extra-
cellular bathing solution and is small and of little interest.
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Experimental results show the qualitative behavior predicted by the equation:
the potential can be separated into two components either by analyzing the varia-
ton of potential with position of the microclectrode or by analyzing the time
course of the potential. The components then have the properties predicted by the
model; namely, the spatially uniform component of potential is established slowly,
while the local component of potential 1s established essentially instantancously.

The structural complexity of the lens, not included in this model, precludes
too much further analysis. Although the local potential can be analyzed to give a
figure for the effective internal resistivity of the lens, the figure is undoubtedly a
composite of the properties of the coupling between cells, the properties of the
cytoplasm, and perhaps the properties of the trapped extracellular space within
the fens. Itis better to have such a composite figure than none at all, but it would
be better yet to have a more complete theory to allow the separation of the effective
internal resistance into its components. Analysis of the slow, spatially uniform
component of potential is even more complicated: experimentally, it is found to
have a time course quite distinet from that described by the model (Equations
14.16), and the parameter values necessary to crudely fit the model to the data are
wildly different from the properties of an isolated membrane. Pursuing the analogy
with frog muscle, we suspect that the cause of the discrepancy is the failure of the
model to include the properties of the trapped extracellular space within the lens.
The membranes lining this internal extracelular space would certainly be expected
to contribute to the slow component of potential, to modify its time course, and
to modily enormously the apparent parameter values. Thus, we look forward to
the development of a model that will explicitly include current flow in these
trapped extracellular spaces, and that will deal perhaps with the epithelial coating
of cells on the anterior surface. Such a model might even help resolve the essential
paradox of the electrical properties of the lens— its extremely long time constant.

It secems then that at least in the case of these two preparations—-the lens of
the eye and skeletal muscle fibers of the frog— the construction of linear electrical
models has fulfilled many of the criteria we described earlier. The models are
necessarily incomplete, both for theoretical and experimental reasons, but the
general success and utility of the approach in the understanding of the electrical
function of the tissues seem clear. Perhaps similar success can be expected in the
application of this approach to other preparations.
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