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I. INTRODUCTION

Biological cells are defined by the membrane that shields their vital molecules
from the environment. The lipid bilayer of the membrane is an effective dielectric
shield (Parsegian, 1969; Andersen, 1978; Honig et al. 1986), preventing
penetration by charged molecules: the lipid presents a large electrostatic energy
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barrier because it cannot neutralize the charge of solute molecules nearly as well
as water. This energy barrier inhibits the permeation of solutes with local charge,
even metabolites. Of course, metabolites do enter cells, and so physiologists
have suspected (for a very long time, Hille, 1984, ch. 8) that the membrane shield
is pierced by aqueous channels, through which solutes diffuse (with their local
charge substantially neutralized) as they cross the membrane. These aqueous
pores now have molecular reality (e.g. Noda et al. 1984; Miller, 1986). Each is
formed by a specialized protein, integral to membranes, perhaps shaped like a
thick-walled pipe, called ionic channels. Channels control the movement of
many important molecules in and out of cells by the ‘gating’ mechanism that
controls their opening and closing and by the selective properties of their open
channel.

The macroscopic flux of solutes across membranes is then determined by the
average number of pores open at any time and the flux through each one. When
a pore is open, ions move through it by diffusion much as they move in free
solution, at least judging from qualitative properties and quantitative estimates of
diffusion constant, flux ratio, and so on (Hille, 1984, ch. 8). The classical theory
of diffusion was in fact used to describe ion permeation through biological
membranes almost as soon as the theory was created, which is less surprising than
it seems, given that Fick, the founder of diffusion theory, was a physiologist!
(Hille, 1984, pp. 153, 182). Classical theory of membrane permeation assumes that
ions move through just one type of permanently open channel. But classical
experiments (at their best) measured macroscopic fluxes through whole
membranes containing billions of channels of many different types, channels
which are open only a fraction of the time, as we now know.

Thanks to the techniques of reconstitution and patch clamping (Sakmann &
Neher, 1983, and Miller, 1986, respectively), experiments are finally able to
measure the fluxes analysed by the classical theory of the permanently open
channel. Using their gigaseal/patch-clamp method, physiologists can measure the
current through single open channels, without struggling to separate channel
types, channel gating, and open channel current from insufficient macroscopic
data. The ambiguity and confusion of earlier macroscopic analyses (with notable
exceptions: Fatt & Katz, 1951; Hodgkin et al. 1952) are bypassed by
experimentation, and unequivocal measurements can be made of ionic movement
in a single aqueous pore.

Measurements of open channels have been analysed in two distinct traditions,
that of continuum theory, using classical diffusion theory (in the form of the
Nernst-Planck equations: Sten-Knudsen, 1978; Levitt, 1982) to describe the
concentration of ions within a pore, and that of transition state theory (Liuger,
1973; Frehland, 1982; Hille, 1984), using the theory of gas phase chemical
kinetics (i.e. Eyring rate theory) to describe the movement of ions within a pore.
The traditions can be fused if discrete occupancy states are defined and the rate
constants between those states are interpreted with a continuum diffusion theory
(Hladky & Haydon, 1984; Levitt, 1986; Hladky, 1986).

This review presents a stochastic derivation of the diffusion theory of ionic
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movement within a pore, using the theory of Brownian motion found in the
literature of physical chemistry (e.g. Hynes, 1985; Hinggi, 1986; Weiss, 1986). It
uses the well established theory of first-passage times (Weiss, 1966) to derive
expressions for the rate constants of such motion. In this manner, we hope to make
available to membrane biologists the powerful results of the statistical theory of
diffusion and to forge links between statistical physics and membrane biology. For
example, the rate constants we derive from diffusion theory are analogous to the
traditional expressions of Eyring transition-state theory and so can be used in state
diagrams describing permeation through biological channels with complex
properties.

This review starts with the collisions between atoms of solvent, solute, and
channel protein, occurring in femtoseconds in the idealized case of hard spheres.
So many collisions occur in the shortest time interval of biological interest that
much can be derived independent of the details of the collision. In the case of
many collisions, the distribution of position of an ion around its starting point is
Gaussian (Gardiner, 1983, p. 53), a consequence of the central limit theorem of
probability theory (Parzen, 1960, ch. 10), if the displacement produced by each
collision is uncorrelated and the ion’s interaction with the channel protein can be
described in a simple way (by what is called a Markov process, Cox & Miller,
1965, ch. 5). Probability theory then yields an equation (called the Fokker-Planck
equation: Cox & Miller, 1965, pp. 208-215; Gardiner, 1983, ch. 5; Risken, 1984,
ch. 5) that describes the (stochastic) concentration of ions within the pore,
depending on the assumed potential profile within the channel and the boundary
conditions. The Fokker-Planck equation contains as its only parameters the
diffusion constant and gradient of potential energy determined by the applied
membrane potential and the structure and dynamics of the protein forming the
channel. The entire interaction of ion and channel is captured in these terms. The
classical Nernst—~Planck equation is recovered by integrating this Fokker-Planck
equation, but the independent variable of this Nernst-Planck equation is the
probability density function of concentration, not the macroscopic concentration.
This stochastic derivation shows the validity of the Nernst-Planck equation even
on the microscopic scale of Brownian motion. It is a complete description of the
microscopic random walk of ions, describing the stochastic concentration, the
thermal chaos resulting from the molecular nature of solutions and the kinetic
nature of heat. Its validity is not restricted to distances much larger than atomic,
as many have feared. Rather, it is an accurate description to the extent that the
interaction of ion and channel protein can be described by a potential function and
diffusion ‘constant’.

We then turn to the calculation of rates of ion flux over barsiers. The
Fokker-Planck equation for the stochastic concentration can be solved giving the
flux indirectly, but we use an alternative approach, first-passage time theory
(following Weiss, 1966), that gives explicit expressions for the rates. This theory
describes diffusive (i.e. Brownian) motion by the (distribution of) times an ion
takes to reach a given position, for the first time. In the steady-state, we show
(following Hardt, 1979, 1981) that the mean value of the first-passage time
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distribution is always equal to (the reciprocal of) the rate constant of unidirectional
flux, independent of the size of the potential barrier: this rate constant can be
determined simply by computing the ‘flux over content’ of a steady-state system,
without considering transients at all and without restriction on the barrier
shape.

2. STOCHASTIC MODEL OF fONIC MOTION

We seek a simple expression describing the flux of an ion diffusing across an
energy barrier in an ionic channel, related to the familiar expressions of transition
state (i.e. Eyring rate) theory. The path of each ion can be directly determined by
integrating the differential equations of motion for tens of picoseconds, using
techniques of molecular dynamics (Berne, 1985), but the equations cannot yet be
integrated for the tens of nanoseconds it takes an ion to drift (without diffusion)
in a constant electric field of 100 mV across 5§ nm.

Eyring rate theory (also called transition-state theory) has often been used in
place of extensive numerical analysis. In this theory ions are supposed to move
discontinuously, to jump distances of picometres in picoseconds from the bottom
of wells of potential energy to the tops of barriers. In that case, simplified state
theories of ionic movement can be derived, which have been widely used to
describe channels (Hille, 1984, ch. 7).

The chemical literature (e.g. the treatises of Miller, 1976 and Baer, 1985) shows,
however, that Eyring theory is appropriate only when reactions involve just a few
atomic collisions, as in the gas phase. Eyring theory assumes that atomic or
molecular motion over barriers occurs in (essentially) two hops, one from the
energy valley to the top of the barrier, the other from the top of the barrier to the
next valley. Energy barriers in channels are thought to be 220 A wide and so
Eyring theory applied to channels assumes that ions hop comparable distances.

But ionic motion in solutions does not occur by hops of this size. The
experimental evidence (also see Fleming et al. 1986) is summarized in Tyrrell &
Harris, 1984, Diffusion in Liquids which concludes (p. 286) that ‘There is now
rather direct evidence that diffusion in fluids does not occur by individual
molecular “jumps’ over distances of a molecular diameter.’ Simulations of
atomic motion (the most powerful theoretical tool in modern physical chemistry)
give the same result (Hoare, 1971; Murthy & Singer, 1987, p. 25): ‘ The free path
distribution shown is incompatible with theories which postulate activated jumps
of the order of magnitude of the interparticle spacing.’

These statements are perhaps more understandable if they are put into the
context of an (oversimplified) analytical theory (see Berry et al. 1980, pp. 830-851).
It is possible to analyse the properties of a hypothetical ‘liquid’ made of spherical
atoms which collide only one pair at a time (McQuarrie, 1976, chs 16-19). In that
hypothetical case the frequency of collisions is high, 8 x 10! s™! for spheres with
mass and diffusion constant* of Na*. The thermal velocity is also very large
(Vems = 325 pm/ps), but there is very little room between spheres. Thus, we

® The diffusion constant for Na* is taken as 1'4x10™*cm?s™! (Dani & Levitt, 1981), the value
appropriate for the ion and its column of water in a gramicidin molecule.
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expect and find that the mean path A = 0'4 pm is much smaller than the radius
(~ 100 pm) of a sphere. The thermal velocity v, dominates the local motion of
these spheres, exceeding by ~ 3000x the purely electrical drift velocity
4 = o1 pm/ps of a singly charged ion in an electric field of 100 mV across § nm.
These conclusions follow from fundamental relations [Skinner & Wolynes, 1978,
equation (2.19); Frauenfelder & Wolynes, 19835, equation (11); Risken, 1984, p. 2].

__DoUx __y _kT ,_ /iﬂ = [RT
px) = kT ox '’ g-m—Dm’.A_D kT Ums = [0 (0

v is the friction coefficient (units in g s™!); m is the ion mass (g); A is the average
distance before the ion reverses direction (cm); U(x) is an electrical potential
function, really the ‘potential of mean force’ (Berry et al. 1980, pp. 842-851). It
is the sum of two terms. One term is the potential U (x) at position x within the
pore, resulting from the transmembrane potential. The other term is the
interaction potential U,(x) between the ion and the channel protein. The
interaction potential is assumed independent of U, because we do not consider
voltage dependent conformations (i.e. gating) of the channel protein in this paper;
RT is the temperature in units of energy (e.g. ergs, see Feynman et al. 1963,
Pp- 39-10): k is the Boltzmann constant and T the absolute temperature; D is the
diffusion constant (cm?®s™!). We use D throughout equation (1) to lessen the
chance of confusing absolute and conventional mobilities (which are correctly
defined in Bockris & Reddy, 1970, pp. 371, 376).

The picture we have of the motion of these hard spheres is thus exceedingly
chaotic, the result of large numbers of collisions. This picture, arising from kinetic
theory, fits well with the results of simulations and experimental data cited earlier.
The stochastic derivation of the diffusion equation proceeds from that ‘axiom’,
namely the motion of an individual ion is sufficiently chaotic that it is well
described by a Gaussian distribution in the smallest distance of physiological
interest.

Or to put the argument more formally, if each collision produces a stochastic
displacement in position (Skinner & Wolynes, 1978, pp. 2145-2146), the central
limit theorem (Parzen, 1960, p. 374) ensures a Gaussian distribution of the
running sum of these displacements. The sum of enough uncorrelated dis-
placements is a random variable X(¢) with a Gaussian distribution (Parzen, 1962,
pp. 22-24; Ricciardi, 1977, pp. 1-10). Define f,(x,+ Ax, t,+ At|x,,t,) (cm™)
as the probability density (i.e. probability per unit length) that an ion (moving
with constant drift velocity u because the field dU/0x, is constant) starting at
Xg, o is found at x,+ Ax at time t,+ At,. Then, the relevant Gaussian with drift
is written

2
_I___exp[_[ﬂ:éfﬂfo_ﬂ_], (2)
2+/[m At D(x,)] 4At D(x,)

This local Gaussian with drift is discussed in many references, for example, Cox
& Miller, 1965, p. 209; Ricciardi, 1977, p. 58; Risken, 1984, p. 73.*

Sa(xo+Ax, tg+ At x4, t) =

* In Cox & Miller, 0 = 2D, and their ¢ equals our At. Unfortunately, Ricciardi’s expression is written
in unconventional form and Risken’s equation (4.49) is in error, while his equations (5.3) and (5.4) are
correct,
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Surprisingly, the Gaussian distribution arises quite independently of the nature
of the collisions between atoms; indeed, it arises from models of diffusion which
do not satisfy the (Markov) assumptions used here to describe the diffusion and
interaction of ion and channel protein. Elementary analysis (Drake, 1967, p. 215)
suggests 10 collisions are enough to ensure this Gaussian, even if each collision
produces a binomially distributed jump in location. Many more refined analyses
give the same result: see the argument of van Kampen, 1983; the (Monte Carlo)
simulations of simple collisions of Hoare (1971, p. 209); and the simulations with
more elaborate models of collisions (Williams, 1966, p. 48; Skinner & Wolynes,
1979, 1980; Hinggi, 1986, p. 126), some even non-Markovian (Dygas et al. 1986;
Nitzan, 1987). 4

Equation (2) is only a local distribution function, valid in a region of constant
field, after an ion has had (say) 10 atomic collisions. In the hard sphere model, the
ion has then moved a distance of /2D At = /(2D X 10/g) = 1°9 pm in a time
interval of 10/g =~ 13 fs. The restriction to constant field means that equation (2)
is valid in a small time interval At < 7 and region Ax < £, in which the derivative
U’(x) of the potential (namely, the electric field) is nearly linear, with error

(&) = U(§)— U(o)—£U’(0) = 3£2U"(0), (3)

where the right-hand equality comes from a three term Taylor expansion and ¢ has
units of energy, i.e. of AT. The potential lies within €(£) of the linear
approximation in a region of width 2§ = 24/[2¢/U"(0)]. This distance can be
written in more familiar form if the potential is the parabola U,(£) shown in Fig. 1
with width 2A. In that case, the potential is linear in a small region that depends
on the acceptable deviation from linearity but is independent of the location
because U, is a“parabola, with constant second derivative. If the acceptable
nonlinearity is +¢/U,, the linear region extends over Ax = + £ = 2A+/(¢/ U,).

The range of validity of equation (2) is then established, given that the
narrowest structure relevant to ionic movement in channels is likely to be 500 pm =
2A. The central limit theorem shows that equation (2) is valid after the ion
diffuses some 1°9 pm (after some 10 collisions taking 13 fs). The linearity
argument shows that equation (2) is valid before the ion diffuses some £ = 50 pm
(before some 10 ps, which is At ~ £2/[2D]); £ = 50 pm is the edge of the nearly
linear region of potential, computed for a nonlinearity of |¢/U,| = 1% with A =
250 pm.

A general validity condition (well known in physical chemistry, see Hinggi,
1986, p. 111) can be similarly derived for non-parabolic potentials. The local
Gaussian formulation is useful if the mean displacement after n, collisions is
within the region § of nearly linear potential, where 7, is enough to ensure a local
Gaussian distribution: the maximum second derivative of potential |U”|,,, must
be less than (4¢/n.)(g/D). For the parabolic potential of Fig. 1, this becomes the
long known [Chandrasekhar, 1943 eq. (508)] criterion [n,kT]/[2m(gA)?*] < €/U,,
derived under more general conditions by Skinner & Wolynes, 1978: equations
(5.1), (5.5), 1980, equations (5.7)~(5.9)

The large frequency g of collisions fortunately ensures that the local
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A linear region

U, (§) (potential)

1
~-A 0 a

£ (distance)

Fig. 1. The figure shows a parabolic potential U, = U,[1 —(§/A)?] of width 24, depth U, and
second derivative U” = 2U, /A% The potential is linear in a small region around any point.
The size of the region is independent of the location of the point (because U, is a parabola,
with constant second derivative) but depends on the acceptable nonlinearity. If thatis +¢/T,
the linear region extends over x—x, = + £ = 2A+/(¢/Uj,). Although the potential function
shown is a well, with U negative, the discussion in the text is unchanged for a barrier, with
U, positive.

displacement of ions is Gaussian on the time/length scale of channel permeation.
Interestingly, g is also the rate constant of (exponential) equilibration of velocity
of an ion in a frictional medium (Eisenberg & Crothers, 1979, p. 701). Evidently,
ions reach equilibrium in velocity after 3 or 4 collisions and a Gaussian
distribution of displacement after 3-10 collisions (Hoare, 1971, p. 169),
maintaining both during the entire permeation process [Cooper et al. 1983,
equation (6)]. The collisions that damp the acceleration are enough to randomize
(i.e. to normalize) the motion of the ion as well.

3. DERIVATION OF THE FOKKER-PLANCK EQUATION

We wish to describe the movement of an ion through a channel when the
microscopic movement of the ion is Gaussian, described by equation (2), and the
effect of channel structure is described by the potential energy U(:) =
Un()+U("), often identified with the ‘potential of mean force’ (Berry et al.
1980, pp. 842-851), and closely related to the potential of Maxwell’s electric
displacement D (Purcell, 1985, p. 380). A differential equation can be derived
from equation (2) (and remarkably little else) that describes the probability density
of finding an ion in an interval Ax at any time, which we call the stochastic
concentration.

The stochastic concentration of ions at point (x,t) is described by the
conditional probability density function f(x, t| x,, t,) when all the ions started their
motion at the single point (x,, ¢,), that is to say, when the initial distribution of
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concentration p(x,,?,) is a delta function d(x—x,). We assume that diffusion in
channels is adequately described by a (time homogeneous, one dimensional)
Markov transition probability function and so the motion from (x,, ¢;) to (x, t) can
be written as the following sum of motions through all possible intermediate
points (x,,¢,) (Hille & Phillips, 1957, p. 634, 648; Karlin & Taylor, 1975,
p. 286).

"of
f(xv t l xo: to) = fg f(xv zl l xol to)f(xr t I xl) tl) dxl) (4)

where # and & are the physical boundaries of the system.

We introduce another variable p(x,2) (cm™) to describe the (stochastic)
concentration of ions at (x,t), because in general all the ions do not start at the
same place. This probability density function is not a conditional probability,
rather it is the sum over the motions of ions starting from the initial spatial
distribution p(x,,?,), which need not be confined to just one point (Gardiner,

1983, p. 118).

-4
p(x,t) = fg P(xm to)f(x: tlxov to) dxor (5)

f(x, t]x,,t,) will turn out to be the Green’s function Zauderer, 1983, ch. 7) of
the Fokker—Planck equation (9) and p(x, t) its solution, for a source distribution
D(xg, tg).

The concentration is obviously influenced by boundary and initial conditions as
well as its equations of motion [i.e. equation (2)]. Thus, a partial differential
equation and boundary conditions are needed to specify p(-) uniquely. Appendix 1
derives such an equation (called the Fokker—Planck equation) for p(-) using the
known [i.e. equation (2)] local transition probability f,(*) that is itself only valid
in a small enough region that U(x) is linear. The integral (5) is converted to the
differential equation by expanding the global transition probably function f(*) of
equation (5) into its (spatial) moments (defined in Appendix 1) and taking the limit
of X¥(-)/At as At =t—ty—~o0. The moments in that limit coincide with the
moments XY of the local transition probability f,(-), which are functions of the
diffusion constant and drift velocity of an ion, determined by equation (2). The
intermediate steps are presented in Appendix 1 since we could not find a
derivation at an appropriate level.

The first infinitesimal moment X\ (x,, At)/At, computed around the source
location x,, is just the average motion of an ion, namely the drift velocity u(x).

_D(x)3U(x)
RT 0x

The second infinitesimal moment X3 (x,, At)/At yields a combination of diffusion
constant and drift distance, which in the limit becomes the diffusion constant

D(x).

ﬁX‘A" (%9, AL) = p(x) = (6)

i X (x,, At) = 2D(x) + [u(x)]? At > 2D(x). )
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The third (and higher) moments (divided by At) are higher order in At and vanish
in the limit.

ALt XD (x,, At) = 6D(x) u(x) At + [u(x)]* [AL]2 0. (8)

All higher order moments vanish (Pawula, 1967, Risken, 1984, p. 70), and the
expansion (A 1—9) truncates into a second order differential equation, the
Fokker—Planck equation describing the density function p(x, t) for the position of
the ion,

op(x, t)
dt

The location of D(x) within the parentheses is a well known feature of this
derivation of the Fokker-Planck equation but not of other derivations (see van
Kampen, 1981, p. 291 and Gardiner, 1983, pp. 96 and 100 for extensive but
difficult discussion).

The initial and boundary conditions for equation (9) depend on the problem of
interest. Stochastic analysis requires that p(-) be a probability density function,
positive and normalized (at all times) to unity. Those requirements are not
satisfied by all the p(-) functions that satisfy equation (9) and meaningful
boundary conditions: only certain boundary conditions guarantee positive and
normalizable (i.e. the existence of time independent integrals over the whole
system) solutions (Protter & Weinberger, 1984, ch. 3). In this review, we follow
the custom of many others and consider only simplified boundary conditions
which guarantee the required properties. Analysis of permeation through real
biological channels requires quite different boundary conditions to describe the
processes by which ions move up to, enter, and leave the channel and explicit
treatment of the interaction of ions (e.g. with a model containing a discrete
number of occupancy states).

a 2
= = 2 () 5, 01+ (D) e, ). (9)

3.1 Relation to Eyring models

A great deal of work has been done trying to extend the diffusion model described
here to the case where only a few collisions occur while an ion crosses a barrier
(reviewed in Hiinggi, 1986; see Northrup & Hynes, 1980; Matkowsky et al. 1984;
Frauenfelder & Wolynes, 198s; Straub & Berne, 1986; Straub et al. 1986;
Mel’nikov & Meshkov, 1987). In these treatments, rate constants reminiscent of
those of transition state theory arise when the collision rate is small enough or
potential barriers large enough. But the physical meaning and temperature
dependence of the rate constants differ. In transition state theory, ions sit (at
equilibrium) in potential wells except when they hop across barriers. Friction (i.e.
collisions in the idealized case) is not involved and friction coefficients do not
appear in the rate equations. But in any non-equilibrium theory the pre-
exponential factor depends strongly on friction and temperature (Kramer, 1940;
discussed in Frauenfelder & Wolynes, 1985, pp. 340—-343).
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3.2 Nernst—Planck equation

The central equation of electrochemistry (Bockris & Reddy, 1970), the
Nernst-Planck equation, is a consequence of the Fokker—Planck equation, if we
introduce the flux ¥(x,t), the probability ‘current’ (see the long justification in
Ricciardi, 1975, p. 42; Gardiner, 1983, p. 119) through the so-called ‘continuity’
equation

op(x, t) - _0X=)
ot ox

We write the drift velocity u(x) in terms of the electrical potential V(x) = zqU(x),
where 2q is the charge on the ion (cou), using equation (1) and introduce the
concentration of ions n(x) = p(x)/A(x) (cm™3), where A(x) is the system cross-
sectional area (cm?). One spatial integration of the Fokker-Planck equation then
gives the Nernst—Planck equation

(10)

2zq dV(x)

—J(x) = D(x) [;7. ax

While this equation appears familiar, it differs in a significant respect from the
traditional Nernst-Planck equation of electrochemistry (Bockris & Reddy, 1970,
pp. 296, 414—416, 693—698). Here the concentration is treated explicitly as a
random variable, and so the equation is valid on an atomic scale. It describes
stochastic (spatial) variation in concentration just as well as it does the average
concentration, to the extent that our description of the ionic motion in a channel
(as a Gaussian Markov process) is accurate. Gardiner, 1983, ch. 8 analyses
temporal fluctuations in concentration.

]t + 22 (03 o ()
X

4. PASSAGE OVER BARRIERS

The Fokker-Planck equation provides a complete description of the movement of
ions driven by a deterministic time independent force U’(x) from an initial
location x,, restrained by frictional interactions (i.e., collisions} described by D(x).
It is a well studied parabolic (e.g. heat or diffusion) partial differential equation
(Carrier & Pearson, 1976; Gardiner, 1983; Risken, 1984) that can be solved
analytically for some potential functions. When analytical solutions are not
available, numerical integration is possible (Lapidus & Pinder, 1982, ch. 1.4).
Unfortunately, neither analytical nor numerical solutions are very useful without
a unifying paradigm to tie them together to experimental work.

A widely used paradigm analyses ionic movement across barriers with the rate
constants for unidirectional tracer fluxes, using the law of mass action to describe
dependence on concentration and Eyring transition state theory to describe the
dependence on potential. Although transition state theory is certainly an
inappropriate general description of a Gaussian Markov process (Kramers, 1940;
Chandrasekhar, 1943 ; Skinner & Wolynes, 1978, 1980; Frauenfelder & Wolynes,
1985; Hinggi, 1986, pp. 107-116) or physical diffusion, for that matter (Tyrrell
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& Harris, 1984; Murthy & Singer, 1987), it is a better paradigm for fitting data
than nothing (e.g. a table of numbers or a many-term eigenfunction expansion)
and is widely used in the experimental literature (reviewed in Hille, 1984),
probably for that reason.

Stochastic diffusion theory also can describe unidirectional tracer fluxes with
rate constants and the law of mass action (Szabo et al. 1980; Schulten et al.
1981) — thus maintaining contact with the experimental literature. But it describes
ions diffusing in picometer steps over barriers angstroms wide, whereas transition
state theory describes ions jumping angstrom or even nanometer steps over
barriers just as wide.

The description of stochastic flux is most easily done in the steady-state, when
transients in flux have damped away. And fortunately, a transient analysis is not
needed. Biological processes depending on channels are so slow compared to the
time scale of barrier crossing let alone the time scale of ionic collisions (10 us vs.
say o1 ps), that it is natural to assume steady-state current flow through the open
channel in a first analysis.® These (quasi) steady-state currents are observed
experimentally and are usually called single channel currents. The question is do
such measurements determine the apparent rate constant for barrier crossing?
Kramers (1940, p. 293) knew they do and so did many earlier workers in
compartmental analysis in biology and chemical engineering (see references in
Nauman & Buffham, 1983 ; Buffham, 1985; Jacquez, 1985, ch. 7). We present the
following stochastic analysis (following Hardt, 1979, 1981) to convince, if not
prove the point in general.

4.1 Steady-state flux

Consider a pore x, < x < & filled with non-radioactive ions (empty circle/spheres
in Fig. 2), which has a steady flow ¥ into it, through it, and out of it, so it is on
average filled with A47(-) ions, radioactive or non-radioactive. The potential energy
of an ion in this pore is U(x) and so the pore can contain barriers and wells. The
left hand side of the pore is idealized as a reflecting boundary: once ions enter the
pore they cannot leave to the left. This boundary condition must be made more
realistic in later work.

At time ¢,, the ions to the left of the pore (in the region x < x,) are replaced by
radioactive tracers (x’s in Fig. 2). We want to know the average time it takes the
o’s, the original non-radioactive ions, to leave, to flow out of the pore into the
absorbing boundary at x = &/. This time is called the mean time of first-
passage.

Now consider the pore with steady flow sometime later, at time ¢. The flux out
of the pore is made of both radioactive and non-radioactive ions. Those ions that
have been in the pore for a time less than 7 = t—¢, clearly entered after time ¢, and
so are radioactive, because only radioactive ions were allowed to enter after t,.

* The time course of channel opening, and the corresponding time course of gating current have not yet
been resolved, being clearly faster than 10 us (Stimers et al. 1987). In this review, such transient phenomena
are assumed not to be involved in conduction through an (already) open channel.
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Fig. 2. The steady flux through a one-dimensional channel x, < x < &/. At times before ¢,,
the ions entering the channel (from the left) are non-radioactive, shown as empty spheres.
Ions once in the channel cannot leave from the left (see text). At time ¢ = ¢,, the non-
radioactive ions, in the region x < x, only, are replaced by radioactive ions (shown as
spheres containing x’s) and from then on (i.e. for ¢ > ¢,), all the ions entering the channel at
x = x, are radioactive. After t,, the channel contains both radioactive and non-radioactive
ions, and so both radioactive and non-radioactive ions leave the channel on the right at the
absorbing boundary. The channel (and system) is assumed to be always at steady-state, so
the flux is the same at all places and all times. The stochastic derivation in the text [see
equation (18)] shows that A7/ #, the total number of ions in the channel (both radioactive
and non-radioactive) divided by the (steady) flux through the channel (carried by both
radioactive and non-radioactive ions), equals the mean first-passage time of the ions, as
defined by a related transient problem, namely, the ordinary differential equation (32) with a
reflecting boundary at x = x, = ® and an absorbing boundary at x = &.

Those radioactive ions no longer in the pore are precisely those ions that have been
in the pore for less than ¢t—¢,, i.e. that have taken time ¢~ ¢, or less to pass through
the pore and be absorbed at the right hand side, at /. The cumulative distribution
function ¢(z, & | ¢,, x,) (of the times of first-passage) is defined as the fraction of all
ions (radioactive and non-radioactive) that have taken time t—¢, or less to reach
&f and be absorbed. Thus, ¢(t, & |t,, x,) also describes the fraction of all the ions
crossing the boundary (at &) at time ¢t which are radioactive. Similarly, the
ions that are non-radioactive are precisely those that have been in the pore time
t—t, or longer, and so, the complement of the distribution function, namely

1—@(t, & | £y, x,), describes the fraction of all the ions crossing the boundary that
are non-radioactive.
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The formal development follows easily. A47°(T) is the mean number of ions in the
pore during time T, which can be written as

(T of
N (T)= ?f dr f A(x) n(x) dx, (12)
0 [}

where 7 = t—t, and the pore extends from x = o to x = & and has cross-sectional
area 4A(x) (cm?) and contains ions of concentration n(x) (cm™3). ¥ is the flux (s™*)
through the pore, which is independent of location and time at steady-state. The
total number of ions crossing the boundary & in time dt is ¥d¢. The number of
radioactive ions (all introduced after time t,) crossing the boundary is ¢ ¥dt.
And

Fde[1—¢(1)] =ydt(x —J:95(1) d‘r) (13)

is the number of non-radioactive ions that cross the boundary &. The time
derivative of the cumulative distribution function is written as ¢', and is, of course,
just the probability density function of the time of first-passage.

Eventually, all the non-radioactive ions that occupied the pore at time ¢, will be
flushed out of the pore (i.e. be absorbed at &), so, remembering that ¥ is a
constant,

N = N () =_7Jm [1—g¢(r)] dr =]Jm(x —J:qi(T)dT) dr, (14)

Now, we can do an integration by parts to describe the mean value of a random
variable in terms of its cumulative distribution function (Parzen, 1960, p. 211 see
also Courant, 1936, p. 245)

o] L]
f udvEu'vlg"—J‘ vdu (15)

0 0

identifying dv = dr, and

u=1—¢(r) = x—f¢(T)dT (16)
[\]
Then, du = —¢'(‘r) dr,v =17, and
—J}g = [r(1 —o(T)]7 + f Té(r) dr. (17)
L]

The first term vanishes at 7 = 0 and at 7 = because ¢(0) = 0 and ¢#(0) = 1, as
with any cumulative probability. The second term is just the definition of the
mean value of ¢, namely the mean first passage time

Y(oA | x,) Erfgﬁ(r)d1=§. (18)

0

Thus, the total number of ions in the pore, divided by the flux through the pore
is the mean first-passage time Y for steady flux through the pore.
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4.2 Rate constants and (mean) times of first-passage

First-passage times can be viewed as a stochastic generalization of rate constants
classically used to describe steady unidirectional tracer flux (Sheppard, 1962;
Jacquez, 1985; Bass et al. 1986): the mean value of the first-passage time is the
reciprocal of the rate constant. The rate constant of unidirectional tracer flux
describes the movement of tracer from a compartment of one concentration to
another compartment of zero tracer concentration, the zero concentration being
maintained despite any size flux, by rapid stirring, or rapid dilution by diffusion
into a bath of large volume. In the classical theory of tracers the flux of isotope is
absorbed into the bath just as the ‘flux of probability’ is absorbed into the
boundary condition in the theory of first-passage. In both theories the
unidirectional flux disappears without effect, back-flux being described by a
separate unidirectional rate constant. In experiments using this definition of rate
constant, the concentration of tracer must be kept negligible at the ‘target’ (i.e.
sink) of the flux. In theories using this definition, the concentration is kept zero by
the boundary condition [equation (35)].

Consider the flux of ions across a structure with well defined barriers and wells,
something like that shown in Fig. 3. Following tradition, we consider a closed
system in which the total number of ions does not change with time, in contrast
to the open system (with steady-state flows) shown in Fig. 2 and analysed in
equations (12)—(18). ‘Concentrations’ (more precisely occupancies of the total
region) N,(t) and Ng(t) (units: none) are generally defined in two regions, one
called A to the left of the maximum (at x = o in the figure) and one called B to the
right of the maximum. The concentrations are integrals of the probability density
f(*) in each region:

NA(tlxo) = J“ f(xa”xo: to)dx; Ns(tlxo) = J‘ fx, t,xoy t,), dx. (19)
- 0

The time derivative of the concentration in region A is determined by the
unidirectional flux ¥(t| 4 B) flowing from region A into B and the flux
J¥(t]| B> A) flowing from region B into A:

dNg(t]x,) _ _ dN,(2|xo)
dt dt

Each flux is described by the following equation, which, in a certain sense, is the
definition of the rate constant.

=Xt|A—>B)—-¥t| B~ A4). (20)

H(t| A~ B) =R(t| %) Na(t]%0);  J(t| B~ A) = kilt]x,) Ny(t| x,), (21)
giving
| A—>B)=Jt| B~ A) = ky(t|x5) N, (t]x5)— ky(t] %) Ng(t] x,). (22)

In traditional simple situations, (‘) and k(') are (time independent and
concentration independent) constants that can be measured experimentally as the
(reciprocal) of the time constant of the concentration change.
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Fig. 3. The symmetrical W-shaped profile of potential energy shown is described precisely
by U, (x) = (a®/4b)—(ax?/2)+(bx*/4), and has a minimum of zero at x = ++/(a/b) and a
maximum of a?/4b at x = o. Flux from region A to B is called }(A4 — B) and is described by
the forward rate constant X,; back flux is defined analogously.

Rate constants have been measured experimentally for many years even when
time courses are not exponential, using a definition arising from measurements of
so-called ‘unidirectional’ tracer (isotope) fluxes (e.g. Jacquez, 1985, pp. 100-104),
the tracer flux in a particular situation, when isotope is only present in one
compartment. If a is one isotope, and the concentration of « is negligible when x
is contained in region B, we write N, (t|x) =~ o for xe B. In that case, the rate
constant for unidirectional flux of isotope a« from x,€4 to x€B is defined
experimentally by

(23)

kt)xg) =2 1@ A= B) { N,(t|x,€ A) = N,, }

N(t|x,) N, (t|xoeB) = Ng =~ o,

where we measure the flux J(¢|«, A - B) of the isotope «, remembering that its
concentration is nearly zero in region B, so it does not produce back flux and the
second terms (on both sides of) equation (22) are zero. This method allows easy
determination of &, (or analogously k) for flux from x,eAd to x,€B from
experimental measurements of ¥(¢t|a; A - B), when suitable isotopes are available
and experimental techniques can keep the isotope concentration N, negligible for
x€ B. (Incidentally, this is a preferred experimental method for measuring rate
constants because it does not depend on measuring the time course of a
concentration, and thus is not sensitive to the well known errors of determining
rate constants from the sum of exponentials.)

If we now compare the expression for the flux through a steady-state
probabilistic system [equation (18)] with the unidirectional isotope flux computed
in this traditional rate constant model [equation (23)], we recover the relationship
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of rate constant and mean first-passage time used widely in the literature of
phyvsical chemistry (e.g. Hinggi, 1986, p. 116; Weiss, 1986, p. 12):

1 - _ I
;f(—xs, Y,(xo) = Y(xEA)'xOEB) = —'——"kr(xo).

Yi(x,) = Y(xeB|x,e ) = (24)

The appropriate extension of this definition of rate constant to the non-steady
state is not known to us (but see the treatment of Szabo et al. 1980; Schulten
et al. 1981; Cox & Miller, 1965, pp. 252—253). Fortunately, the steady-state
suffices for problems of channel permeation.

Although the rate equations (20)—(23) seem similar to those of traditional
membrane theory (Hille & Schwarz, 1978), their meaning is quite different. In
particular, the rate constants of a diffusion theory depend on the starting position
x,: ions diffusing through solutions take time to cross wells and barriers and so the
rate constants depend on how far the ion moves; they depend on the starting

position x, (see Hladky & Haydon, 1984, p. 347).

5. FIRST-PASSAGE TIME

Fortunately, a complete theory is available to describe the time needed for a
stochastic process to (first) reach a certain value (Feller, 1950; Parzen, 1962,
pp. 226-247; Cox & Miller, 1965; Ricciardi, 1977, ch. 3; and as a problem in
combinatorics, Andersen, 1953, 1974). The theory of first-passage times describes
the time #* an ion released at x, takes to reach & for the first time. The ion diffuses
in a potential field, according to a local probability density [like equation (2)]; the
ion is confined to a definite region of space (so the first-passage time is not infinite
or otherwise ill defined); but the diffusion process is unrestricted in other
respects; it is as general as the Fokker—Planck equation (9) itself. The phrase * first-
passage’ means an ion is counted only the first time it reaches &/ ; if the ion moves
past &/, reverses direction and returns to & a second time, it is not counted.
Obviously something at &/ must select from all the trajectories of ions just those
representing the first-passage to &. A boundary at & that absorbs an ion (and thus
removes it from the system the first time the ion reaches /) performs this
selection. Thus, the diffusion of an ion from x, to an absorbing boundary at &/
defines the first-passage time from x, to &. Without such an absorbing boundary
the passage time is not so well defined and is perhaps a less useful construct. An
ion found at &/ could have been there many times before.

In this review, first-passage times are described by the random variable,
indicated by the asterisk, t*(.& | x,, #) (units in seconds) for an ion starting at time
zero, at location x,, moving to &. The ions are confined to the system (in our
discussions) by a physical reflecting boundary at #, a boundary which the ions
cannot cross. t*(.&/|x, #) is most intuitively described by its cumulative
probability distribution function ¢@(t, &, x,) = ¢(t, & | x,, #), giving the
probability that an ion starting at x, takes time ¢ (or less) to reach & for the first
time, i.e. to be absorbed at position &/. The time ¢ is, of course, a function of x,,
& and (perhaps) other parameters of the system. When an ion reaches a position
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x, for the first time, that position is a maximum in the excursion of the ion
(Lindenberg & West, 1986) and so, interestingly, the statistical theory of extremes
(Blake & Lindsey, 1973), also called the theory of reliability (Gumbel, 1958), is
closely related to the probability theory of first-passage times.

Probability functions describing the first-passage time can be derived from the
probability density functions already used to describe the stochastic concentration
of ions, using a conservation law. Consider an ion starting at (x,, t,) and moving
to an absorbing boundary at &. If # is the other boundary of the system, then the
number of ions between & and & is simply the integral of the probability density
function between # and &, i.e. [ f(x, t| x,, t,) dx. The ions in the system are either
in this interval or they have reached the boundary &, been absorbed, and left the
system. The cumulative probability function ¢(time < t|x,,t,) defined above
specifies the probability that an ion has reached the boundary & by time t—t¢, (or
before). The conservation law is (Cox & Miller, 1965, p. 230) then

o
1= @(t]x,, ty) +J- Sfx, t]x,,t,) dx. (25)
R

An integral expression for the first-passage time is derived by substituting
the consistency equation (4) into equation (25), using the dummy variables
X, 5(R <x, <ol;ty<t <t) to describe the interior intermediate location
required by equation (4). Interchanging orders of integration gives

of of
I —¢(Z | Xg, L) = J f(xp 4 | Xg, to){ J; S(x, t| X1s t),) dx} dxp (26)
E 4

which is just

"o
I —¢(t I Xg, tg) = J‘ f(xp t ' Xgs to){I °¢(t| X, tl)} dxp
R
(27)

of of
= f Sxy, 2] x4, 25) dx,—J- D(t]xy, t,) f(xy, ] xg, tg) dx,.
F) 2

The first integral on the right hand side can be rewritten using equation (25),

o
¢(t I X, to) = ¢(t1 | Xo» to) +f ¢(t I Xy, tl)f(xl, t l Xg, to) dx‘ (28)
2
If ¢, is close to ¢,, then

¢(t1 | Xo» to) ~o0, and f(xp t | Xy to) ”fA(xp t, | Xy, to),

the local Gaussian, equation (2), provided x, is not too close to the boundary
x = o/. We then have a local consistency relation for ¢(*), originally presented in
Weiss, 1966, p. 11 (see also Mandl, 1968, p. 129; Karlin & Taylor, 1981,
p- 217).

"o
B(t| Xps to) = f P(t | X1, tl)fA(xp 4 | Xo, ty) dx1 (xl > Xy, Xg < o). (29)
R
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The derivation proceeds by expanding ¢(t|x,, ¢,) in equation (29) about x,, ¢,
and factoring the x, independent part out of the integrals.

of
¢(t l xoy to) = ¢(t ‘ xm tl) J; f(xl' tl I xO’ to) dxl

= of
6¢(t | x‘;x Xo, t1) f (% = %) fx5, £, | o, t5) dx,
1 X
a’ 1= ~0hH
+2 ¢(th¢;x e )J’ (%1 —x0)" f(2y, £ %, £) dxy + . (30)

The first integral is identically 1 from equation (28) above. We pass to the
differential equation by subtracting ¢(¢|x,,?,) from both sides of the equation,
dividing by ¢, —t,, and letting ¢, - t,. We use the infintesimal moments (1/A#)X}’
of the Gaussian diffusion process X(¢) derived and discussed earlier (equations
(6)—(8)) to derive

6¢(t, x,) = X0 (x 6¢(t 0g(t, xo) ,Xma o(z, xo)

at % A axo (31)
0t 5) _ )0 32, x,
¢(attx ) = ¢(t x0)+D( o) ¢(t°x )' (32)

Equation (32) is of the same form as the ‘backwards’ Fokker—Planck equation
(e.g. Gardiner, 1983, p. 128) which can lead the unwary to forget how different it
is from the (forward) Fokker—Planck equation presented here (9). The physical and
probabilistic meaning of the dependent variables are quite different: equation
(32), with an absorbing boundary condition, describes the cumulative probability
function (dimensionless) for the first-passage time while equation (g9) describes the
probability density [with respect to distance, (cm™)] of the ion concentration.
Mathematically, the equations are adjoints in form (Siegert, 1951, p. 621;
Coddington & Levinson, 1955, ch. 12) but physically they describe different
variables with different meanings and different units, related by equation (27).

5.1 Boundary conditions

The first-passage time is completely specified by its cumulative distribution
function ¢(-), which in turn is specified by equation (32) and the boundary
conditions required to ensure that the solution of the differential equation is a
cumulative probability distribution [always positive, satisfying the conservation
relation, equation (25)]. The initial condition is that an ion takes no time to move
from x, to x, or equivalently no ion has been absorbed at time ¢t = o:

#(0,x,) =0, R < x,< & is the initial condition. (33)

The conservation relation for ¢(-) implies that ions must be confined to the system
by a ‘reflecting’ boundary condition, a physical boundary condition involving the
spatial derivative 0¢(t, x,)/0x,. If this derivative is zero at x, = &, the cumulative
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probability is at a maximum there (remembering that ¢ is a cumulative probability
function and so is monotonic), so the time to absorption is maximal. That time,
the first-passage time, is maximal if the boundary does not allow ions to leave the
system, if the ions are reflected from the boundary. Thus, one type of reflecting
boundary condition is (Goel & Richter-Dyn, 1974, p. 58)

G(t, %) _

0x, °

is a reflecting boundary condition at . (34)

Zo=R
Cox & Miller, 1965 (p. 223) give a more general form of the reflecting boundary
condition.

The other boundary condition defines the absorbing barrier at x, = & :

P(2, x,) =1 (t=o0). (35)

Zomaf

Because the cumulative probability is unity at &/, an ion starting there, at any time
t + o, is certain to reach & immediately, and be absorbed and removed from the
system. In the classical theory of tracer fluxes, the absorbing boundary condition
is an inhomogeneous Dirichlet condition describing the infinite dilution (or
infinitely rapid mixing) of the tracer when it reaches x, = .

5.2 Moments of first-passage time

Ion conduction through an open channel reaches steady-state long before we can
measure it, so ton conduction requires only a steady-state analysis of the first-
passage time, which is equivalent [as we have shown, equation (18)] to the mean
first-passage time, the first moment T\ = Y.

(o <]
Y=TY(x,) = J‘ t (¢, x,) dt. (36)
0
Appendix 2 presents most of the steps involved in determining the mean first-
passage time Y from equation (32), yielding the result

'of T
Yot | %0 R) = T (x,) = f Q(‘x)[ —ggg dx] dx; (R < 5, < ), (37)
Z @2

which in general includes three integrals, given the definition of the ‘integrating
factor’ (see Appendix 2) Q():

O = exp [ f ¥ %)/ D() dx}. (38)
R

But
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so the integrating factor simplifies

oU U
o = exP{_J:Z!T‘ a:(cx) dx} = eI, (39)

to an expression with simple physical meaning, namely the (exponential of the)
difference in potential energy between the boundary # and location .

If we define our zero of potential by U(®) = o, and let D(-) be independent of
position,

=_1 _1 ' Um/"(,r ~UQ/kT )
Y (oA |xy, R) = ) =5 . e Qe VT dy | dx. (40)

Equation (40) is perhaps the key result of the diffusion theory presented here.
It gives the rate constant k(x,— &) for an ion moving from position x, to &,
through a potential profile of shape U(y) extending from & to &, and is directly
comparable to the rate constants of Eyring transition state theory. It differs from
the Eyring expression becausé it depends on the entire shape of the potential
profile, as one would expect from a theory in which ions diffuse, in which they
toddle back and forth across a barrier, instead of hopping to the top in one
step.

For some potential functions the integrals reduce to quite simple expressions.
In particular, if the potential well (at x,) and barrier (at x,) are both large and
locally parabolic, the rate constant for crossing depends asymptotically on the
height of the barrier AU = U(x,)— U(x,), the second (spatial) derivative of
the potentials at x, and x,, namely U"(x,) and U"(x,), and no other feature of
U(x) [Kramers, 1940; Schulten et al. 1981, equation (1.4); Hinggi, 1986,
pp. 112-116].

D ” ” -
Ky ™ v/ (U (3) | Ul ) €807, (s1)

This expression is similar in form to, but distinct from the rate constant K, of
transition state theory [e.g. Hill, 1960, pp. 194-200, particularly equations
(11)~(16); Frauenfelder & Wolynes, 1985, equation (7)] for (ballistic) barrier
crossing from an equilibrium distribution in a well

K, =~ z—;-\/(U’(xl)/m)le"w”‘T. (42)

The similarity of form in these expressions should not hide the drastically
different physical models they describe. The transition state model assumes in
essence a gas phase with ballistic crossing of potential barriers, with no significant
collisions in the process (see, for example, Frauenfelder & Wolynes, 1985;
Hinngi, 1986, pp. 106—109). The diffusion model assumes a liquid phase
dominated by a large number of collisions in any time or region of interest,
including barrier crossing. Diffusion theory is dominated by frictional, not
ballistic processes and is in some sense the opposite pole from transition state
theory. Thus, the rate constants of diffusion theory involve the parameters which
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determine diffusive motion, the diffusion constant, and the path length for
diffusion, determined in the general diffusion model by the entire shape of the
barrier (determined by the maximum curvature of the barrier in the Kramers
special case), whereas the rate constant of transition state theory involves the
parameters which determine ballistic motion, the mass of the ion (not its diffusion
constants), and the height of the barrier. The rate constants [equations (41) and
(42)] both depend on the shape of the potential well, because ions in both models
start in the same equilibrium distribution determined by the well shape.

In the simplified case of equation (41), one may apply diffusion theory directly
to state diagrams constructed to fit experimental data from channels, which is a
considerable advantage, given the large experimental literature (reviewed in Hille,
1984) and powerful theoretical techniques available from theoretical chemistry
(Hill, 1977, 1985) and electrical circuit theory (Sandblom et al. 1982). The
topology of the models (and inferences that depend only on the topology) are
unchanged. One simply can replace K., of state models with K, taking care to
remember the different functional dependence of the parameters. The diffusion
expression depends on parameters describing Brownian motion over barriers,
namely D and the second derivative of potential U”(x,). These parameters have no
effect on K,,,, and so one may expect more complex behaviour from an ion
diffusing over a barrier than from an ion jumping it. Indeed, when barriers are
smaller, and the K, approximation no longer holds, one can expect still more
complex behaviour, with the rate constant reflecting the fine structure of the
potential profiles, with finite contributions coming even when U"(‘) is
identically zero [see Appendix 7.3.3, Constant field (p. 359)]. Appendix 7.3 gives
explicit expressions for the mean first-passage time for a variety of potential
functions and starting locations of ions.

6. PROBLEMS AND POTENTIALS

This review is only a step in the development of a diffusion model of channel
permeation. It tries to acquaint the community of membrane biophysicists with
the relevant results of statistical physics, particularly the literature of stochastic
diffusion theory. But the only problem confronted here is that of ionic movement
across a potential barrier. A theory of ion permeation must describe ionic
movement into a channel and it must deal with ionic interactions determining the
occupancy of a channel (Jakobsson & Chiu, 1987). These issues will be the subject
of future work and publications.

The most serious approximations in our treatment of barrier crossing concern
the description of the interaction of ion and channel wall by D(x) and U(x), which
are supposed to be functions only of position. Simulations of atomic motions,
using nonequilibrium molecular dynamics (Bitsanis et al. 1987), show that the
D(x) function is a valid description of frictional phenomena and viscosity in
liquids under a surprisingly wide range of conditions. On the other hand, the U(x)
function cannot be so robust. A single U(x) function, independent of all parameters
except location, cannot be expected to describe all channels: for example, one can
clearly imagine types of channels in which ionic interactions depended on other



352 K. E. Cooper, P. Y. Gates and R. S. Eisenberg

variables, e.g. the velocity of ionic motion. A single U(x) function should suffice
to describe the interaction of ion and channel in many cases of biological interest;
for example, a single function would suffice if the conformational changes of the
protein occur on time scales distinct from that of ion diffusion and the average
(rms) velocity of ions permeating the channel does not vary too much under
conditions of experimental and biological importance (i.e. if thermal velocity is
much greater than drift velocity).

If a single U(x) function is enough to describe a channel’s interaction with
ions, the role of a diffusion theory of permeation expands. The Fokker-Planck
equation can then be viewed as a transform, a functional operator, that converts
the structural model U(x) into predictions of the behaviour of channels, in
particular, into predictions of current-voltage curves at different concentrations,
or current—concentration curves at different membrane potentials. The U(x)
function can then be determined, and the Fokker-Planck equation tested, by
fitting its predictions to experimental data describing open channel current under
a variety of conditions or by solving the appropriate inverse problem (Attwell &
Jack, 1978) using the powerful new techniques of the general theory of inverse
problems (Gladwell, 1986) which allowed complete well determined solutions of
other problems, at least as difficult (Barcilon, 1986).

Simple modifications of the U(x) function might also account for selectivity
between ions. Selectivity in a diffusion model arises from the (doubly) integrated
difference of the exponential of two U(x) functions, one for each type of ion, and
so a highly selective channel could be one with a long region in which AU(x) was
rather small. If AU(x) for different ions could be rationalized, let alone predicted
from independently measured physical properties of the ions, one might develop
some confidence in the utility, if not reality, of diffusion theory. Interestingly, a
diffusion theory may easily be able to account for the seemingly paradoxically
large conductance of channels with very high selectivity, without invoking ion—-ion
interactions. The double integral [equation (40)] defining the rate constant
probably can be made small enough to ensure a large open channel conductance
while the corresponding double integral of the difference of two exponentials
(responsible for the permeability ratio and conductance difference between two
ion types) is also kept large enough to give substantial selectivity.

The path ahead is clear in direction, if not outcome. Before diffusion theory can
be applied with confidence to problems of selectivity or to the (inverse) problem
of determining the potential profile within a channel, it must be tested
experimentally. The theory must be extended to predict the current-voltage
relations of many types of channels, measured under many conditions. If it is
flexible enough to account for most experimental results, but rigid enough to do
so using only a plausible class of U(x) functions, the theory will have made a
significant contribution to our understanding and issues of selectivity and channel
structure will be worth pursuing.

Only experiments, suitably analysed, will tell, and then only for one channel at
a time.
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7. APPENDICES
7.1 Appendix 1. Derivation of the Fokker—Planck equation

To begin, we introduce the characteristic function ®(w, t|x,,t,) (Parzen, 1960,
pp. 215-225, 395-413; Stratonovich, 1963, pp. 8-10) defined by the pair of spatial
Fourier transforms, with i =/ —1:

®f(w: tlxoy to) = f f(xr tI Xo0» to) elu(z-x.) dxr (A I.l)

0
flx, t] xq, t) = anf Q¢ (w, t] x4, t,) e™E) de, (A1.2)

The analysis (following Stratanovitch, 1963, p. 57) uses an expansion of these
transforms into the moments of the underlying random variable, a technique
widely used to derive partial differential equations of probability functions. When
the probability functions depend on more than one independent variable,
moments can be taken with respect to each independent variable. Moments (with
respect to each independent variable) are often computed after subtraction of
some special value of the variable; the dependence on the special value is
substantial and must be kept in mind. Finally, moments are sometimes studied in
the limit of small increments in variables, like the infinitesimal moments
appearing later in the appendix. Each type of moment has its own identity and
meaning and must be kept distinct. Confusion is best avoided by treating the word
‘moment’ as a generic term, and using a specific formula as the definition of the
moment of interest.

In this Appendix we start with spatial moments of the random variable X*
computed from f(*) around the initial position x,.

X(j)(xo’ to, 1) = J-w (x"xo)jf(x: tlxox zc|) dx. (A l-3)

These moments are global functions in the sense that they depend on the entire
domain of space and time; in particular, they depend on the boundary conditions
for f(x,t|x,t,) and so cannot be written explicitly until the corresponding
Fokker-Planck equation (with boundary conditions) is solved.

A Taylor expansion of the exponential in equation (A 1.1) gives the standard
expansion for the characteristic function

@, t] xg, ) = 1 +iw XD (x, 2o, £) + (1w)* G 1) XP (x4, tg )+ .-, (A1.4)

giving the moment expansion for the global transition probability

flx, tlxq,20) = 2%' jm [1+iwXV + (10) XP/2!1+ ...] e dw. (A 1.5)
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We use the Dirac delta function and its derivatives (Papoulis, 1962, pp. 36—43,
269—282; Zauderer, 1983, pp. 365-382) defined implicitly

© \
g(x) = f g(xo) 6(x_xo) dxo»
(A 1.6)
* g(x) _ e [ F8(x—xp) .
F (-1) . —_ax"k——'g(xo) dxoyJ
or defined explicitly here [in view of equations (A 1.1) and (A 1.2)] as
p (= )
d(x—x,) = —f e~ ==z d¢y,
27 ) _o
. (A1.7)
*o(x—xy) 1 [ ok —ie(z-z0)
— _;;J- (—iw)*e dw.J

-0
Moments are introduced into the fundamental equation (5) by substituting from
equation (A 1.5). The terms (—iw)* can be rewritten using the explicit definition
of the delta function (A 1.7). Then, remembering that the moments are not
functions of w, we write

p(x,t) = f p(xo: to) 8(x_xo) dxo"f P(xoa ty) XW (x4, 2o 2)

-0 -

! ox?

d 1 [® 02

X -a;[&(x-—xo)] dxo+—2—f D(xq, te) X® (24, o, 2) o [0(x—x4)] dxg— .... (A 1.8)
-0

Since p(+) and X () in the integrand are not functions of the final position x, we
can interchange the order of integration (with respect to x,) and differentiation
(with respect to x). We then introduce and divide by At = t~¢, (in anticipation of
passage to the limit) and use the implicit definition of the delta function (A 1.6) to
derive

plx, t+At)—p(x,t)
At -

XV (x, ¢, At)] 1 0°
it e + —
At

o X (x,t, Ar) _
At 2! 0x?

—a% [p(x, ) [p(x, t)

(A 1.9)

This Kramers—-Moyal expansion (Gardiner, 1983, pp: 246—249; Risken, 1984, pp.
67-81) is an infinite sum of indefinite convergence and a partial differential
equation of undefined order and validity (van Kampen, 1981), which has
nonetheless a central role in stochastic physics.

The expansion (A 1.9) is usually used in the restricted case At—o0, x—x, In
which the global transition probability f(x, t| x,, ¢,) and its moments XY (x,, t,, ?)
become the local transition probability f,(x, t, + At|x,,¢,) and its ‘infinitesimal’
moments, here called XY (x,, At). These moments depend only on the
microscopic mechanism of motion from point to point (e.g. local electro-diffusion
in our case, as described by equation (2). They do not depend on the boundary
conditions. . The infinitesimal moments are determined (Papoulis, 1984, p. 115)
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from the derivatives (with respect to w) of the characteristic function ®,y of
equation (2), the Gaussian with drift

® @, At) = exp [DAL(jw)? + (jw) uAt] (A 1.10)

as described in the text.

7.2. Appendix 2. Moments of the first-passage time : differential equation and
solutions

7.2.1 Moments
When studying the first-passage time, we use moments with respect to time 79
(units in §’) of the first-passage time probability density namely,

T (x,) = J.w ? d(t, x,) dt, (A 2.1)
(1]

where we remember that ¢(t, x,) is a cumulative probability function: thus its time
derivative @(¢, x,) is the probability density function (s™?) of the first-passage time.
A differential equation for the moments is derived, following many earlier authors,
by differentiating equation (32) with respect to t; multiplying by # and
integrating; and interchanging the order of integration (with respect to t) and
differentiation (with respect to x,)

. t’a¢(t *o) dt = (xo)—[j P d(t, x,) dt:l-i—D(x‘,)a ‘[J ? (2, x,) dt] (A 2.2)
The integral on the right of equation (A 2.2) is obviously the jth moment as
defined by equation (A 2.1). The left hand side can be expressed as a moment after

integrating by parts:
fm 2 a¢(¢;;‘x°) dt = —¢ ¢$(O, xo)+ 1t é(c0, xo)-J.mjtj—l 95(" x,) dt. (Az2.3)
° (1]

The first term on the right hand side is zero because ¢(t, x,) is the probability
density function of t*(x,) and so goes to zero t—o. The second term is zero
because gﬁ(i, x,) =0 as t—>c0. (Note that ¢ qS(t, x,) remains finite as t >0, because
it is the integrand of the jth moment 7Y, which is finite for all reasonable
distribution functions.) The third term is just —j7Y"?, so we have the recurrence
relation

2 () )
Dy ZE +utep 22

0 X9

= —jTY-D, (A 2.4)

Equation (A 2.4) is a set of (recursive) ordinary differential equations for the
moments, the partial derivative sign ¢ being used only to emphasize that all
physical parameters are constant during the differentiation. Because TV appears
only as a derivative in equation (A 2.4), a simple change in variable yields a first-
order inhomogeneous linear ordinary differential equation. The equations can be
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solved starting with T, TV = 1 Because the integral (A 2.1) for j = o is just the
normalization condition for the density function ¢ Higher order equations can be
solved one at a time, i.e., recursively and not simultaneously, because 797V is a
known function when the equation for 79 is examined. For example,

azT(z) aT(z)
D(xo)—ax—:-‘*'#(xo)-g; =-—1I. (A 2.5)

The explicit solution for equation (A 2.5) requires two boundary conditions for
the moments, because it is a second order differential equation. The boundary
conditions for the moments are derived from the boundary conditions for the
probability density function ¢ at a reflecting or absorbing boundary, equations
(34) and (35) (see Goel & Richter-Dyn, 1974, p. 58; Weiss, 1966).
0TV (R, x,)

R (A 2.6)

Absorbing boundary, at &: 0 = TY (o, o).

Reflecting boundary, at #: o =

7.2.2 Explicit representation of mean first-passage time

The expression for the mean first-passage time (and thus the rate constant of
barrier crossing) involves three different integrals of deceptively similar
appearance, integrals central to diffusion models of membrane permeation (e.g.
Levitt, 1986).

The first integral arises in an integrating factor defined in text equation (38),
which assumed a simple form in a channel with a diffusion constant and/or electric
field independent of position (see text). The moments of the first-passage time
with TY/0x, = 0 at x, = R are the solution of a first order linear differential
equation (see the unusual and excellent presentation in Apostol, 1967, pp.

308-313)

oT? _ 1 * O(X) .ops-
Ge = OG Ja D' T 9 (42.7)

Then, the solution of T9(x,) of equation (A 2.4) with the absorbing condition
T9 = o at the position x, = & is

;[ 2% ry-n } A 2.8
T9(x,) JJ;,Q(X)[ aD(X)Tu dy|dy (£ <x,< ). (A 2.8)

The mean first-passage time for an ion starting at x,, absorbed at &/, with a
reflecting boundary at & is then, remembering that T® = 1,

Y(A | %0, B) = T (2,) = rﬁzﬁ[ ,% dx] dx (R < x, < ). (A 2.9)
EN X

which in general includes three integrals, given the definition of Q(*), equation
(38). Equation (A 2.9) can be significantly simplified, see text.
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7.3 Appendix 3. Examples of first-passage times

7.3.1 Equilibrium initial distribution

If ions are initially spread out in space, the mean time of first-passage depends on
the initial distribution. Consider, for example, ions starting from a (normalized)
equilibrium Boltzmann distribution pe.(x,) between # and & with probability
density

e BU(x,)

e~V dy,
E

Deq(%0) = att=o. (A 3.1)

The mean first-passage time is determined by integrating over the source location
x, in equation (38) with source function (A 3.1), because equation (38) is the
Green’s function (Coddington & Levinson, 1955, p. 192) for the differential
equation (A 2.5),

o
V(o | pugla)) = L Peolite) V(| 20, R) dy (A 3.2)

of N o
j =AUy d-"of U@ de” e~ AU dx
IR Zq Ed

- of
D f e AU dy,
2

(A 3.3)

The notation used here in the numerator means the following: first intégrate with
respect to ¥, giving a function of x (and &) as a result. Then, integrate with respect
to x, giving a function of x,%(and # and &) as a result. Finally, integrate with
respect to x,, giving a function of # and & as the result, the value of the entire
numerator. Following this plan, we write

» »
numerator = f [e"w“d f U@ g(x) dx] dx,, (A 3.4)
R EN
where
'z
SF(x) = f e PUW dy. (A 3.5)
2

The double integral in the numerator can be simplified to a single integral as
described in Courant, 1936, p. 245, using a technique of considerable power,
needed quite often in the application of diffusion theory (and so presented in detail
here). The double integral is a surface integral, with area element dS = dxdx,,
computed over a triangular region TRI (see Fig. (A 3.1)) extending along the
horizontal x axis from x = # to x = & and vertically along the x, axis from x, = #
to x, = &, with vertices at the set of points {x,, x} = {®R, #}, {R, &}, {, L}:

numerator = -U e AU U@ £(x)dS. (A 3.6)

TRI
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S - @ /
+/
+
+
+

RE-

L 1 » X

R o

Fig. A 3.1. The integration method for equation A 3.6: the surface integral is over the
triangular domain shown. The integral can be performed by two iterated one-dimensional
integrations. The first integration is horizontal and is represented by the horizontal arrow.
The second integration sums the results of the first: it is the vertical sum of the horizontal
arrows and is symbolized by the + signs in the figure. Further details of the integration can
be found in the text.

This area integral can be evaluated by repeated one dimensional integrations in
which the horizontal integration (with x ranging from x, to &) is done first,
followed by the vertical integration (with x, ranging from £ to &), as in equation
(A 3.3) and (A 3.4); or the surface integral can be evaluated by repeated
integrations in which the vertical integration (with x, ranging from Z to x,) is done
first, followed by the horizontal integration (with x ranging from % to &):

ot
numerator = f [e‘"”“’ F(x) {J’ e AUEY dxo}] dx. (A 3.7)
2

*

Now, the integral over x, is simply #(x) because the name of the dummy varible
of integration is immaterial, so we can write equation (A 3.3) as

I dEﬂU( | [* —sue zdx
—_— £9 ~ X,
DL Uae dx]
— . (A 3.8)

e UK dy,
X

Equation (A 3.8) is much easier to compute than equation (A 3.3) because it
replaces a double integration with a single integration and multiplication!
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7.3.2 ‘Pure’ diffusion
We consider the diffusion of a solute which does not interact with the channel, that
is to say, the case U = constant. In that case, an ‘ion’ starting from x,, first reaches
&/ at a mean time of

o[ 'z _ _
Y(xo,d)':j [J‘de=;—!5[dz—x§]—%[d—xo]=(d xo)(.;dl;-xo za).

(A 3.9)

If the absorbing boundary is at & = o, but the reflecting boundary is anywhere
and the ion starts anywhere between the boundaries, we recover Berg’s result
[1083, eq. (3.13), p. 44] Y = (2&x,—x3)/(2D). If the absorbing boundary is
anywhere, but the ion starts its motion at the reflecting boundary at 2 = x, = ¢,
we have the familiar formula Y = &/%/2D.

Uncharged particles starting from their equilibrium distribution p.(x,) =
1/(f —R) have as their mean first-passage time

» 2
Y(oA | peg(x,)) = B(.ﬂ_l——gT),L U: dx] dx = SLD[.M—-Q?]’. (A 3.10)

7.3.3 Constant field

The potential in a uniform electric field is defined here by
x=-R

BU(x) = mx+b = U, + | ——=|AU, (A 3.11)
A—~R

where # = 1/kRT, m and b are defined in the above expression, U,, is any offset

potential, and AU is the transmembrane potential, i.e. the potential at one side of

the region minus that at the other.

If the ions start at one location x,, we have

1 (¥ ¥
Y = 5 eMT+b [J e~mx=d dx] dx, (A 3.12)
z, 2,
which becomes
_1[(A—=R)? AU AU (24—R)/ (A —R) A = %,
Y‘D[ BAU ][eﬂ ¢ ~AVaal B

Note that the offset potential has no effect on the calculated first-passage time,
which is gratifying because we know, from fundamental properties of the electric
field, it must not influence the motion of the ion.

If the ions in the constant field start from an equilibrium distribution (in space)

Deqs

e—mz,—b
Deq(x,) = , (A 3.14)
e-mz—b dx
R

we eventually derive

"of
Y(A | Peq(x,)) = Dm(e"";—e""")J; [e"‘“"“" —2e"""+e""’] dx, (A 3.15)
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which gives from equation (A 3.11)
(o _g)z [eﬂAU(J—M)/(J—Q) — e AAUA (A=) _ ZﬂA Ue—ﬂAUQ/(d—Q)]

Y( | peq(x0)) = D(BAU) o PAURNT—@) _ o~ PAUH | (A~) .
(A 3.16)
If the reflecting boundary is at £ = o,
At AU —e AU _aBAU
Y("d Ipeq(xo)) = (AU)’ 1 _e_ﬁAU »
(A 3.17)

_ 2o/*sinh (AU) - JAU
"~ D (BAU)[1~eUY
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