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SYMBOLS AND ABBREVIATIONS
Greek symbols

é Length of the channel

A¢ Difference in dimensionless potential across the membrane

& Dimensionless length defined in Fig. 3, panel 5

T Mean first passage time with an initial position and reflecting boundary at x= —4/2 and an

absorbing boundary at x =4/2

Mean first passage time with an initial position and reflecting boundary at x=46/2 and an
absorbing boundary at x= —§/2

Dimensioniess potential energy

T,

?°(x) Dimensionless ion—channel interaction potential
Ady), Dimensionless voltage at which J,, reaches 1/2 its saturation value
Ag® $°(6/2)— ¢°(—3/2)
B, Defined in eqn (A35) in Appendix 1
153
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B Defined in eqn (A36) in Appendix 1

7p Defined in eqn (A35) in Appendix 1

Vn Defined in eqn (A36) in Appendix 1

English symbols

A Cross sectional area of the channel

D Diffusion coefficient (m?/sec)

G Small signal conductance of a channel (Siemens)

G, Small signal conductance in the independence case

G, Small signal conductance in the saturation case

J Flux through a channel (ions/sec)

J; Flux through a channel under the assumption of independence
Jias Small signal independence flux

i Independence flux with access limitations

K, Affinity constant for ions entering the left end of the channel
K, Affinity constant for ions entering the right end of the channel
ky Boltzmann’s constant (1.38 x 10~ 22 joules/kelvin)

n Density of ions (ions/m?)

n Vn(—oo)n(w)

n(oo) Concentration of ions in right bath far from channel mouth
n(—o0) Concentration of ions in left bath far from channel mouth
n(6/2) Concentration of ions at the right mouth of the channel
n(—6/2) Concentration of ions at the left mouth of the channel

R! Electrodiffusive resistance between points a and b (sec/m?)

R, Electrodiffusive resistance of the left bath

R, Electrodiffusive resistance of the right bath

R, Electrodiffusive resistance of the channel

R, Total electrodiffusive resistance of system

T n(c)/n(— )

r tinr,

T Absolute temperature

t Average time spent in the channel by an ion entering from the left bath
t, Average time spent in the channel by an ion entering from the right bath
z Valence of an ion

List of abbreviations
MFPT  Mean first passage time
MOT Mean occupancy time

I.INTRODUCTION

In recent years, the study of channels has become a vast and varied field of study. Our
knowledge of channel function has increased at all levels. At the tissue level, it is now
recognized that channels are involved in several important disease processes (reviewed in
Andreoli et al., 1986), with cystic fibrosis being a recent notable example (Frizzell, 1987;
Welsh and Fick, 1987; Riordan et al., 1989). At the cellular level, channels are now known to
be involved in everything from cell volume regulation to the control of mitogenesis
(Hoffmann and Simonsen, 1989; Pandiella ez al., 1989; Frace and Gargus, 1989). At the
molecular level, channels are being studied with sophisticated new biophysical and
molecular biological techniques (Numa, 1989).

We recognize three fundamental aspects of channel function: gating, permeation, and
regulation. Our theoretical understanding of the first two processes is changing rapidly. The
theory of channel gating has reached new levels of sophistication and new approaches are
being developed (Liebovitch et al., 1987; Millhauser et al., 1988; Lauger, 1988; Levitt, 1989).
In the area of permeation theory, recent developments include the reintroduction of diffusion
theory to describe ion movements through channels (Levitt, 1986, 1987; Jackobsson and
Chiu, 1987; Cooper et al., 1988a,b; Gates et al., 1990).

Ever since the work of Hodgkin and Keynes (1955), it has been recognized that ions
interact strongly with each other as they move through a channel. Since that realization, it
has become customary to classify channels (and models of channels) in two categories, single-
ion channels and multi-ion channels. The number of channels that do not show some
deviation from single-ion behavior has steadily decreased. Thus is seems that the single-ion
channel may be more a convenient fiction than a reality. However, single-ion models allow
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relatively simple analytical results and therefore are a convenient starting point for
theoretical understanding of channel behavior. It is in this spirit that we present an analysis
of a single-ion channel model based on diffusion theory.

The goal of our analysis will be to understand the behavior of the current through a one-
ion channel as a function of the permeant ion .concentration, the applied transmembrane
voltage and most importantly the intrinsic ion—channel interaction potential. Three major
themes will be developed. First, we will analyze the effects of bath access limitations for a one-
ion diffusion model. Several approaches to this problem have been presented for rate theory
models (Lauger, 1976; Hladky, 1984; Sandblom, 1985). Second, we will discuss three
mechanisms of rectification for a one-ion channel. These include: the standard Goldman type
concentration difference rectification, rectification due to a difference in the potential
between the bath and the channel mouth, and rectification due to a nonzero slope in the
interaction potential at the mouths of the channel. The last theme has to do with a difference
between diffusion models and Eyring models. It appears to be a general result that diffusion
models give rise to more linear current-voltage relationships than do the corresponding
Eyring models. We will discuss the nature of this linearity.

We are aware of a number of limitations in the theory we present here. The most important
limitation is the assumption of single-ion occupancy. In the discussion we will present an
approximate equilibrium method for determining how good the single-ion assumption is for
a given potential profile. Another limitation is the assumption that the ion channel
interaction potential is static. This is equivalent to assuming that relaxation of the average
channel structure in response to the electrical field produced by the ion is fast relative to the
time scale of the movement of the ion in the channel. In general this may not be true and the
potential may depend on such things as the fraction of time the channel is occupied (Lauger,
1985) and the details of a particular ion’s movement in the channel (Edmonds, 1989). There
are in addition several assumptions made in developing the theory that may not be obvious
to the reader. We will mention these briefly. Finally, we will discuss the future of analytical
diffusion models for ion permeation.

II. OUTLINE OF ONE-ION DIFFUSION THEORIES

1. Boundary Conditions for One-Ion Diffusion Theories

Three methods have been suggested in the literature for specifying the boundary
conditions of the Nernst-Planck equation. Levitt (1982) obtained boundary conditions by
invoking virtual binding sites at the ends of the channel which exchanged with the bath
according to a set of rate constants. This work motivated a formulation involving a kinetic
scheme whose rate constants were specified by solving diffusion equations with absorbing
and reflecting boundaries (Gates et al., 1990). These two formulations are essentially
equivalent and can be considered to be hybrids of rate theory models and diffusion models.
The second approach was first suggested by Levitt (1986). In this formulation the boundary
concentrations of the Nernst-Planck equation were obtained by assuming that the ends of
the channel were at equilibrium with the bath concentrations. This was later generalized to
the two ion case (Levitt, 1987). The third (C-J) approach (Chiu and Jakobsson, 1989) was to
assume a steady state flux in the bath that was independent of channel occupancy.
Combining this assumption with Levitt’s (1986) results yielded a quadratic equation in the
flux.

The physical consequence of these three approaches is the way in which access limitations
are handled. The simplest of the three is Levitt’s (1986) method in which access limitations
are assumed negligible. The other two methods are attempts to include access limitations.
The hybrid method is an extension of the traditional rate theory approaches and is
fundamentally of the same form as the equilibrium boundary conditions. The hybrid
approach has the disadvantage that it overestimates access effects at high concentrations. We
will return to this issue in Section IV. The C-J boundary conditions are qualitatively
superior to the hybrid method because at high concentrations access effects become
negligible and the equilibrium boundary conditions are recovered. This approach still suffers
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from a failure to properly handle interactions between an ion in the channel and ions in the
bath (see Summary and Discussion of Chiu and Jakobsson, 1989). A proper treatment of the
access problem must involve the pairwise interactions of many ions simultaneously.

In the following sections we will derive both the hybrid model and the model proposed by
Chiu and Jakobsson. We will then describe the numerical consequences of the hybrid
approach with most of the emphasis on the negligible access limit which is a common special
case of both methods (for numerical results of the C-J boundary conditions see Chiu and
Jakobsson, 1989).

(a) Hybrid model

We first describe a one-ion channel in terms of occupancy states and the rates of transition
between those states. This allows us to write an expression for the flux* through the channel
in terms of the transition rates. We then use diffusion theory to specify these transition rates
in terms of the properties of the channel. Finally, we develop some conceptual tools to help
understand the behavior of this model.

A one-ion channel can exist in one of three states (Fig. 1). It can have no ion in it (denoted
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F1G. 1. Kinetic scheme. The three possible occupancy states of a one-ion channel and the transition

rates between the states. P, is the probability that the channel is empty. P(!) and P(r) are probabilities

of occupancy by ions from the left and right respectively. F(l) and F(r) are the filling rates for ions from

the left and right baths respectively. E(I|l) and E(r|r) are the rates at which ions exit the same side they
enter. E(I|r) and E(r{l) are the rates at which ions exit the opposite side they enter.

P,), it can be occupied by an ion that entered from the left bath (denoted P(!)) or it can be
occupied by an ion that entered from the right bath (denoted P(r)). These three states
interconvert with the six rates shown in Fig. 1 and defined in the figure caption. A net flux (J)
of ions through the channel from left to right occurs when the left-to-right flux is not balanced

*Flux is related to current by /=zeJ. We use flux instead of current to avoid unnecessary constants in our
expressions.
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by the right-to-left flux. This can be expressed in terms of the rates and occupancy
probabilities as follows:

J=E(l|r)P(l)— E(r|{)P(r). (1)

Expressions for the occupancy probabilities in terms of the rates can be obtained by
standard kinetic techniques. The results are listed below.

E(DE(r)

Fo= EMNE(r)+ F()E(r)+ F(r)E() @

_ FI)E(r)
)= E()E(r)+ F()E(r)+ F(r)E(]) 4

_ E()F(r)
Plr) = E()E(r)+ F(DE(r)+ F(r)E() @

The following definitions have been made for convenience:

E(y=E(|+ E(l|r) &)
E(r)=E(r|r)+ E(|D. (6)

Equation (1) can be put in an alternate form by writing P(!) and P(r) in terms of P, and the
transmission probabilities P, and P,;. The transmission probabilities express the probability
that an ion entering a given side of the channel successfully makes it through to the opposite
bath. P, and P, are defined as follows:

P, =E(l|r)/E() (M
P, = E(r|l)/E(r). @)

In terms of these quantities the flux can be written:
J=Po[F()P,— F(r)P,]. ©)

Note that eqns (1) and (9) are complementary ways of saying the same thing. In both cases,
the net flux is the difference between two unidirectional fluxes. Each unidirectional flux in
eqn (1) is the product of the probability the channel is occupied by an ion from a given side
and the rate at which that ion exits the opposite side. Ineqn (9), each unidirectional flux is the
product of the rate of entry of an ion to a given side (e.g. P,F(l)) and the probability the ion
exits the opposite side. Thus we have a choice as to whether we think about flux in terms of
transmission probabilities and entrance rates, or in terms of entrance probabilities and
transmission rates.

The effects of ion—ion interaction are contained in the P, term. It is this term that gives rise
to the saturation of flux or conductance with increasing permeant ion concentration.
Therefore the bracketed term in eqn (9) represents the flux that would exist in the absence of
ion—ion interactions. We refer to it as the independence flux and denote it J;. We will see the
use of defining such a quantity later.

Equation (9) is a complete specification of the behavior of a one-ion channel. However, to
do detailed calculation requires that the six rates be specified in terms of the bath ion
concentrations, the applied voltage difference across the channel, and the potential energy
profile seen by an ion as it traverses the channel. There are two ways of doing this.
Traditionally the specification of the rates is made via transition state rate theory (Lauger,
1973). It is also possible to make the specification using a diffusion theory (Gates et al., 1990;
Cooper et al., 1988a,b), and that is the approach we develop here.

The six rates are calculated by solving a set of diffusion problems with boundary
conditions appropriate to each rate in the kinetic scheme. The diffusion equation we use is
one dimensional and can be written:
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dx dx

where A(x) is the area, D(x) is the diffusion coefficient, n is the ion concentration in particles
per unit volume, and ¢ is the dimensionless potential (i.e. the real potential divided by &, 7). ¢
contains both the applied voltage (A¢) and the intrinsic ion—channel interaction potential
(¢°(x)). In the steady-state, eqn (10) can be integrated between two points a and b to yield:

n(b)e¢(b) — n(a)e¢(a)
—/= b e*¥dx ’
L A(x)D(x)

The denominator of this expression occurs so frequently we give it a special symbol R’ , and
refer to it as the electrodiffusive resistance. It has the units of the inverse of the product of
permeability and area. Equation (11) has the form of a driving force divided by a resistance
and is thus analogous to Ohm’s law. The system we will be dealing with consists of a channel
separating two semi-infinite baths. We choose the zero point of the x axis to be in the center
of the channel. The channel is of length 6. Thus R Z%2 is the electrodiffusive resistance of the
left bath, Ry, is the electrodiffusive resistance of the right bath, and R%3, is the
electrodiffusive resistance of the channel. We will use a somewhat more compact notation,
using R, R, and R, for the left bath, right bath and channel electrodiffusive resistances
respectively. We denote the sum of these three resistances R,.

The derivations of the rates from the diffusion equation are lengthy and the interested
reader is referred to Gates et al. (1990) for details. In that paper, it is shown that the exit rate
constant expressions can be written and understood in terms of the electrodiffusive
resistances and a pair of times related to the lifetime of an ion occupancy event. We call these
times mean occupancy times (MOT). They are a generalization of the mean first passage
times (MFPT) used in the theory of diffusion processes (Goel and Richter-Dyn, 1974;
Gardiner 1983). There are two such times in this model. One (t,) corresponds to ions entering
the left end of the channel and the other (t,) is the analog for ions entering the right end of the
channel. The six rates of the one-ion model are given in terms of these quantities below:

n(—oo)e ™92

—J=D(x)A(x) [93 + ng‘q , (10)

(11)

FOy="2— (12)
R =" (13)

where n(cc) and n(— o) are the concentrations in the right and left baths respectively at
distances far from the channel mouths. Notice that if the potential in the electrodiffusive
resistance is a superposition of the applied transmembrane voltage and a potential that is
independent of the transmembrane voltage the filling rates become voltage independent.
These equations for the entrance rates have an intuitive interpretation. The numerator of
each rate is the driving force to the mouth of an empty channel. The denominator is the
electrodiffusive resistance of the bath.

R+R[1
s =7 (¢ "
t 1
Ein =R B (15)
1 1
R 1
E(rlr) = °; R [t-] (16)

E(rlh == [— (17)
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R R,
zl=i[n+z(n+m] (18)
z—R' r+R'(1:+t) (19)
P_R( r Rc 1 r

Here 7, is the MFPT for an ion which is initially at the left end of the channel and reflecting
and absorbing boundaries at the left and right ends of the channel respectively. , is the
analogous MFPT for an ion initially at the right end of the channel.

The form of the exit rates can also be given a simple interpretation. Note that by combining
eqns (14) and (15), E(I)=1/t,and E(r)=1/t,. Thus the total rate of exit for ions entering from
a given side is the inverse of the occupancy time for those ions. If we think of the exit rates as
currents and the electrodiffusive resistances as electrical resistances, eqns (14) through (17)
are just statements of current division. This means that an ion sitting at the mouth of the
channel “makes a decision” whether to go through the channel or back into the bath based on
the relative electrodiffusive resistances in the two directions. The equation for E(I!r) can be
understood as follows. If the channel resistance is much larger than the bath resistance, the
ratio R,/R, in t, goes to zero. In that case, E(/|r) is equal to the inverse of the MFPT through
the channel. This is almost a tautology. The inverse of this exit rate is by definition the mean
time it takes an ion to traverse the channel and that is essentially what the MFPT expresses.
In such a situation, when an ion leaves the channel, the chances of it reentering before it
diffuses away become negligible. Thus the second term in t, represents the effect of
reentrances. These reentrances decrease the rate as would be expected. An analogous
argument holds for E(r|l).

The MFPTs (t; and 7,) depend only on the dimensionless potential ¢(x), the channel
diffusion constant (D) which is contained in the electrodiffusive resistance, and the length of
the channel (J), as given in the following equations:

a2
r,=Af R¥2e™0x) 4x (20)

—4/2

32

r,=AJ R%,,e7 % dx. (21)
-4d/2

Here, we have introduced an electrodiffusive resistance with a variable region of integration.

For example:

é/2 1 b2 (¢3)
RIP=——| e d. (22)

Asdiscussed above, t,and 1, can be interpreted as the mean time a channel is occupied per ion
transported for the special case of negligible bath access resistances (see also Jakobsson and
Chiu, 1987). The relationship between a MFPT and this mean transport time is discussed at
some length in Gates et al. (1990).

The above equations can now be combined with eqns (2), and (5-9) to yield an equation
for J in terms of the concentrations, transmembrane voltage, and ion—channel interaction
potential. This yields the following general form of the one-ion diffusion model.

I n(—oo)e ~4¢'2 — n(o0)ed*? 23)

t t
R| 14+n(—w)=+n(w0) =

[ +(= ) g+ i )R,]

The numerator in eqn (23) is the driving force written in symmetrical form. It is the
difference in the exponential of the electrochemical potential between the two baths. In the
denominator, the second and third terms represent the effect of ion-ion interaction. It is these
terms that cause the flux to saturate with increasing permeant concentration. If the
concentration on both sides of the channel is small enough, these terms are negligible and the




160 P. GATES et al.

denominator becomes the total electrodiffusive resistance and we have the independence
flux. If the bath resistances are negligible in comparison to the channel resistance, R, becomes
R_,t,/R, becomes 1, "4%2/R_and t,/R, becomes 1,e**%/R_. In this situation eqn (23) reduces
to the result derived by Levitt (1986).

(b) Chiu-Jakobsson one-ion diffusion model
In our notation eqn (2) of Chiu and Jakobsson (1989) becomes:

_J=% [n(a)e?® — n(—a)e® 7], (24)

This equation can be interpreted as the product of the flux through the channel under the
assumption of independence and the probability the channel is empty. That is, an ion at the
capture radius a can enter the channel only if the channel is empty. Levitt (1986) suggests that
the concentration at the capture radius can be related to the bath concentration through the
Boltzmann distribution. For example on the left end of the channel n(—a)* 9=
n(— oo)e*~ ), Chiu and Jakobsson suggest as an alternative that the Boltzmann distribution
be replaced by a steady state diffusion equation in the radial coordinate. In our notation we
have, solving for the concentration at the capture radius:

n(—a)* " =n(—oo0)e 22— JR, (25)

n(a)e®® =n(o0)e?*? +JR,. (26)

In the hybrid model the flux in the bath is assumed to be zero when the channel is occupied.
This assumption can be incorporated into eqns (25) and (26) by dividing the flux by P,.
Although the one-ion assumption does imply that the rate at which ions enter the channel is
zero when the channel is occupied it does not follow that the flux in the bath is zero when the
channel is occupied. In fact, as an ion moves through the channel the electric field in the bath
changes producing a displacement current (see Levitt, 1985). In the absence of such a
modification eqns (25) and (26) imply that the flux in the bath is independent of the channel
occupancy. Combining eqns (24) through (26) yields an equation for the flux in terms of the
empty probability and the concentrations in the bath:

—J[R + Po(R, + R)] = Po[n(c0)e**'? —n(— c0)e™42]. 27)

A closed form solution only requires an expression for the empty probability. Making use of
our notation after some rearrangement Levitt’s (1986) result for P, becomes:

<

P, = {1 + ;zl—- [n(—a)e"’“"’t,+n(a)e¢“”r,]}_ l. (28)

Again we make use of eqns (25) and (26) to obtain an expression in terms of the bath
concentrations and the flux:

Py= {1 +% [(n(— c0)e ™32 — JR }t, + (n(00 )22 +JR,)r,]}_ g (29)

<

Equations (27) and (29) are two equations in the two unknowns J and P,. Inserting eqn (29)
into eqn (27) and collecting terms yields an expression that is quadratic in the flux:

aJ?+BJ+y=0

1

E [rrRr - T,R,]

o=

1
B=1+ 7 [n(c)ed*?t, 4+ n(— o0 )e =421 ]
t

v =7i‘ [n(c0)e*? —n(— ao)e™4¢/2]. (30)

t
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In the limit where the access resistances are negligible « goes to zero, R, goes to R, and we
again recover Levitt’s (1986) result.

2. Conceptual Framework

Our goal is to investigate the behavior of this one-ion channel model under conditions of
varying transmembrane voltage and concentration. However, even this simple model is quite
complex. To investigate its behavior systematically, we need some conceptual framework to
guide us. Let us begin by considering those factors that determine the flux. The flux is a
function of the ionic concentrations in the two baths, the intrinsic ion—channel interaction
potential (¢°(x)) and applied transmembrane voltage (A@), as follows:

J= F[n(- CXJ), n(d:)v d)o(x)’ Ad)] (31)

The concentrations of ions in the baths and the transmembrane potential can be directly
controlled and are thus key experimental parameters. We certainly need to understand how
the model depends on them. However, one channel type is distinguished from another
primarily by the ion—channel interaction potential. This potential can, in principle, be
controlled by modifying the structure of the channel. This approach has been realized for
several channels using site directed mutagenesis (for reviews see Dani, 1989; Krueger, 1989;
Miller, 1989). The relationship between the structural properties of a channel and the
ion—channel interaction potential is not well understood and thus we have little to guide us in
our choice of @°(x). For this reason, we use several simple ion—channel interaction
potentials. These have been chosen to illustrate some of the major factors in ¢°(x) that
determine the flux.

We propose to characterize the flux by three quantities: the independence flux (J;), the
saturation flux (J;), and the half saturation concentration (n,,,). In the remainder of this
section we discuss why these three quantities are useful. Equation (1) or (9) can be combined
with eqns (2) through (8) to yieid:

_ n(c)e*®’? —n(— o )e?’? (32)
" R[1+n(x0)K,, +n(—x)K,]
where
k- FO f - _fn _ & (33)

YT a(—x)ED) RS " n(x)E(r) R

K, and K, are the channel affinities for ions entering the left and right ends of the channel
respectively. If we vary the magnitude of the concentration on one end of the channel while
holding the ratio r,=n(o0)/n( — oo ) fixed, the flux saturates with a hyperbolic form. The same
is also true of the conductance. Since conductance saturation is often used experimentally, we
have plotted in Fig. 2 the conductance of the one-ion model vs the magnitude of the
concentration vector. The hyperbolic dependence of the conductance on the concentration
can be characterized by two parameters: the saturation value of the conductance and the
value of the concentration at half saturation (n,,,). The saturation value is the largest
conductance attainable for a given voitage and is achieved in the limit where the
concentration goes to infinity holding r, fixed. The half saturation concentration is the
magnitude of the concentration vector for which the channel is occupied one half of the time.
In order to produce expressions which are symmetric it is convenient to use the geometric

. - T .
average of the concentrations 7i=./n(c)n(— ). For the flux we can write:
nJ,
J= (34)
Ny2+n

1 r e 802 [ a0
J= s TN TnE (35)
Rl[Kal/'/\// rn + Kar\/' rn]

P8 53-31-8
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FiG. 2. Hyperbolic dependence of conductance vs concentration for a one-ion channel. Plot of the

single channel conductance of a channel 5 nm in length. 0.2 nm in radius, ion—channel interaction

potential identically zero and diffusion coefficient 0.4 x 10~ °m?/sec. Half saturation concentration is

the reciprocal of the channel volume and is 2.64 M. The saturation conductance [e?D/(k,T6%)] is
100 pSiemens.

_ 1
Ry, = ——= = (36)
K l//\// rn + Kar\// T

a

J= R; [n(—x)e” 22 —n(x je2*?]. (37
t

From the above analysis we see that the flux increases linearly at low concentrations (as
described by J;), then bends over and approaches a limiting flux (J,). The rate at which this
occurs is determined by 71, ., . We propose to understand this one-ion model by examining the
dependence of the three quantities J;, J,, and 11,,, on A¢ and ¢°(x). We add that the C-J
boundary conditions do not lead to a simple hyperbolic saturation of the conductance. In
that model the conductance saturates to the value predicted when access limitations are
negligible. Thus, at low concentrations, the flux for both models is given by the independence
flux. At high concentrations the flux in the C-J model asymptotically approaches the

hyperbola describing the saturation of the no access case.

IIT. INDEPENDENCE FLUX (/)

We begin our investigation of the behavior of the one-ion channel model by studying the
dependence of J; on the transmembrane potential A¢ and the intrinsic interaction potential
#°(x). We will introduce the set of intrinsic interaction potentials used throughout the rest of
the paper. We then investigate J; in the absence of access resistance effects, i.e. when the bath
resistances are much less than the channel resistance. At the end of this section the negligible
access resistance assumption will be relaxed.

1. Negligible Access Effects

We now begin investigating the behavior of J;. We will initially assume negligible access
resistances. Under this assumption eqn (23) becomes:

= n(3/2)e% (= 3y2)e =), (38)

(4
where n(6/2) and n(—46/2) are the concentrations at the mouths of the channel. These
concentrations are the same as those far from the mouths of the channel if the bath resistances
are negligible. At this point we introduce two new parameters. Since A¢/2 occurs so
ubiquitously we replace it by the letter u. To introduce symmetry into the two components of
the driving force, we also introduce a dimensionless ratio for the concentrations as follows:
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r=1%In(r,)= - In[n(c0)/n(— o)]. (39)
In terms of these parameters eqn (38) is:

_ 2Asinh(u+r)
‘]i = R .

(40)
C

We have defined the reference potential in our system such that electrical ground is in the
center of the channel.

To analyze the voltage dependence of J;, we must know the form of the dimensionless
potential in the channel. We assume that the potential can be represented as the sum of the
ion—channel interaction potential and a linear potential due to the applied transmembrane
voltage:

B(x) = 4°(x)+ A5 @1)

Notice that if $°(x)=0, ¢(x)=0 in the center of the channel. This is due to our reference
convention. We had, in effect, assumed this superposition in writing eqn (31). The
assumption of superposition implies that the applied transmembrane potential has a
negligible effect on the interaction between the ion and the channel, i.e. the channel
conformation ¢°(x)is independent of A¢. This is reasonable if we suppose that the dominant
contribution to the ion—channel interaction potential is from chemical groups in the
immediate neighborhood of the ion. The electric field strength in this neighborhood due to
the ion will be much larger than the field strength due to the applied transmembrane
potential and so will be the dominant force determining the conformational states of the
neighboring chemical groups. For example, a rough estimate of the field strength at a
distance of 10 A from a unit point charge in a medium with a dielectric constant of 10 is
2 x 108 volts/meter. This is equivalent to a transmembrane voltage of one voit across a 50 A
membrane, roughly an order of magnitude larger than physiological transmembrane
voltages. On the other hand, the experimental observation that the open probability of many
channels is a function of voltage indicates that the above assumption is not strictly correct.
Such observations can be considered as changes in ¢°(x) induced by changes in A¢. They are
likely to be on a much longer time scale than transport through the channel and so we may
still hope the assumption of superposition is reasonable. At any rate, the assumption of
superposition is more convenient than rigorous.

The relationship between the intrinsic ion—channel interaction potential and the
current—voltage relationship is a complicated one involving integrations over the potential
profile in the channel. At extreme voltages this complicated relationship reduces to a much
simpler relationship which depends only on the local properties of the potential profile at the
ends of the channel. To intuit this idea, consider an ion entering the left end of the channel
when the voltage is large and negative. Once the ion has moved a substantial distance into the
channel it is overwhelmingly likely to be swept through to the other end due to the large
electrical field. It therefore seems reasonable to expect that only those features of the
potential near the left end of the channel would influence permeation. This intuitive idea is
formalized in Appendix 1 through the use of an asymptotic analysis of the electrodiffusive
resistance and the MFPTs. The essential conclusion of this appendix is that the potential and
its slope at the ends of the channel are the dominant factors determining the current-voltage
relationship at extreme voltages. In the other extreme for small field strengths, two cases
exist. In the first case the ion—channel interaction potential is characterized by extreme
variations in the potential compared to the thermal kinetic energy k7. In this case the
characteristics of the potential at the tops of the barriers and bottoms of the wells are the
dominant influences on permeation (Kramers, 1940; Cooper et al., 1988a,b). In the second
case the ion—channel interaction potential undergoes only modest variations relative to the
mean thermal kinetic energy k,7. In this case all features of the ion—channel interaction
influence permeation. It is this last case that we consider in the body of this paper.

We have chosen five potential profiles which demonstrate these issues. Our starting place
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is the classic constant field potential. Being the simplest possible form of the intrinsic
ion—channel interaction potential, this profile emphasizes the dependence of the model on
the concentration ratio. The next potential considered is the ramp potential (Fig. 3, panel 1).
This potential has offsets at the ends of the channel and nonzero slopes but lacks any features
atintervening points. The step potential (Fig. 3, panel 2) has offsets at the ends of the channel
but zero slopes. This means that the change in the potential takes place suddenly rather than
gradually as in the case of the ramp. The last potential of odd symmetry is the Z potential
(Fig. 3, panel 3). The Z potential has no offsets but does have nonzero slopes and, like the
step, undergoes a sudden change in the center of the channel. Finally, we consider singie
extremum potentials with even symmetry (Fig. 3, panel 4). The single extremum potentials
are the even symmetry analogs of the Z potential, i.e. no offsets but nonzero slopes. The
sudden transition in the middle of the channel is now in the slope instead of the potential.

These potential profiles introduce an additional parameter p into the calculations. Now
the independence flux can be thought of as a function of the channel dimensions, diffusion
coefficient, concentration (discussed in the previous section) and the three dimensionless
variables u (1/2 the dimensionless potential difference), r (1/2 the logarithm of the
concentration ratio) and p.

In light of our previous discussion about limiting behavior of the current-voltage
relationship, we derive equations for two simple limits to the independence flux. First, we
consider the flux near equilibrium (i.e. near the reversal potential). From eqn (38) we obtain:

iss — Rc(r")

(42)

where R (r,) is the channel electrodiffusive resistance calculated at the value of A¢ that
satisfies the Nernst equation. Thus R, becomes a function of r,.
In terms of the conventional conductance formalism, eqn (42) can be written:

I=G(AV,—AV,) 43)
z%e*n(—48/2)
6= k, TR (r,) (44)
with
ze
AV = T Ad.

b

We emphasize the fact that eqn (44) is not generally correct. Away from equilibrium the
current—voltage relationship may be nonlinear. In this case the slope of the current voltage
relationship cannot be used in eqn (43). For this reason the traditional definition of the
conductance in eqn (43) is the chord conductance which in general depends on the applied
voltage in addition to the parameters of eqn (44).

The other limit is that at extreme voltages. We do the asymptotic analysis for this case in
Appendix 1. This analysis yields J, in terms of ¢°(x) and its derivatives at the mouths of the
channel.

2 2
= o2 (25 46D~ 3 £ 076 )+ O 69)

when >0 and:

A o d 82 d?

4D n(—96/2)e™ ¥ 2u+6 — ¢°(—6/2) — —— —5 #°(—8/2) | + O(1/u?)  (46)
o dx 2udx

when u <0. The notation O(1/u?) indicates that the remaining terms go to zero with order

1/u? as |u|-+oo‘ Let us now examine these expressions [eqns (42) through (46)] for the

various potential functions described above.
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F1G. 3. Various ion-channel interaction potentials used in the model. Panel 1: ramp potential;
panel 2: step potential; panel 3: Z potential; panel 4: single extremum potential; panel 5: double
extrema potential.

(a) Constant field potential

In Fig. 4, we have plotted the constant field independence flux* holding the concentration
on the left end of the channel fixed while varying the concentration on the right. A useful way
of thinking about Fig. 4 is to consider each current-voltage relationship as a slice through a
surface whose height is the current. This current depends on the concentration ratio (the
coordinate axis coming out of the page) and the voltage. When the concentration ratio is zero
[n(6/2)=0] the current is always negative but asymptotically approaches zero at large
positive voltages. When the concentration ratio becomes large [n(6/2)—c0], the reversal
potential goes to large negative voltages and the conductance at positive voltages becomes
large. This dependence of the current—voltage relationship on the concentration ratio is the
well known Goldman rectification (Goldman, 1943).

We now develop the details of the properties of the constant field independence flux. These
results give some flavor of the expressions describing the current-voltage—concentration
ratio surface. By evaluating R_ in eqn (40) for this simple form of ¢°(x) we obtain:
I = DA2n (u sinh(u+r)>

(47)

i P sinh(u)

*For easier comparison with real data, we plot currents instead of fluxes in all figures.
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F1G. 4. Constant field flux without access effects as a function of the voltage and concentration ratio.
Flux with ion—channel interaction potential identically zero. Channel length was set to 5 nm, channel
radius 0.2 nm, and temperature 25°C as will be the case in all remaining plots. For this plot the
channel diffusion coefficient was set at 0.1 x 10~ °m?/sec and concentration on the left side of the
channel was fixed at 2 M (g, 18.8 pS). Results were computed with negligible access effects. The
concentration ratio 4, 2, 1, 1/2 and 1/4.

For future reference, we collect the equations for R, for our entire set of potential profiles in
Table 1. For the small signal (near equilibrium) conductance we have:

In(r,)
G = gi(l_l/r), ra#1 (48)
gi ’ rn = 1
with
_z%?DAn
9= " To
Notice that the ratio G;/g; can be written in terms of the hyperbolic sine as follows:
G r
P ) 49
g; sinh(r) 49)

This result is the same as the result for the constant field R, if you substitute —r for u
everywhere in the expression in Table 1. This is a general result and thus we do not need a
separate table for G,. In symmetric concentrations and in the absence of access limitations,
the constant field flux approaches the Ohmic limit. This can be seen by setting r=0 in
eqn (47) to yield:

—J= % DAnu. (50)

Our other limit involves letting the transmembrane potential go to both positive and
negative infinity in eqn (47). This yields:

lim —.L=DA+W2)2u (51
lim —J,= _D_M 2u (52)

u— - 5



Diffusion models for one-ion membrane channels 167

TABLE |. INDEPENDENCE

DAR /6
sinh(u)
Constant field ”
sinh(u + p)
Ramp —_
u+p
sinh(u + p)—sinh(p)
Step —_—
u
sinh(u)—sinh
2 (u)—sinh(p)
u—p
. 1 e e 1 1
Single extrema = —_——g? ( —
2lu—p u+p U—p u+p

The various terms in the above expressions can be interpreted as
follows. For all of the potentials of odd symmetry (constant field—2Z2)
the slope can be factored out to yield expressions involving
hyperbolic sines. In the case of an offset (ramp and step) the
parameter p sums with the dimensionless applied voltage in the
argument of first hyperbolic sine. In the case of a jump (step and 2Z)
an additional hyperbolic sine with argument p is added. In the case of
the single extremum potential the addition of an applied voltage
breaks the symmetry of the potential and no convenient collection of
terms is possible.

Consider the qualitative information we have in eqns (48) through (52). We know that the
small signal conductance is a decreasing function of the concentration ratio. We also know
that the asymptotic behavior of the current-voltage relationship is linear with slope
proportional to concentration and intercept at the origin. Using this information and the
reasonable expectation that the current-voltage relationship is smooth we could produce ail
of the qualitative features of Fig. 4. In particular, a knowledge of the asymptotic behavior
provides enough information to obtain a rough approximation of the current-voltage
relationship at voltages where the asymptotic results do not apply. This argument illustrates
the utility of eqns (45) and (46). An important goal of this paper is to cultivate a qualitative
understanding of the one-ion model that would allow the reader to make rough predictions
about consequences of a particular feature of the ion—channel interaction potential on the
current—voltage relationship.

Before proceeding we mention a simple result. If the constant field potential is offset by an
amount p, the concentration is scaled by the Boltzmann factor of the offset. The result in this
case is eqn (47) with the concentrations n(—4J/2) and n(6/2) replaced by n(—35/2)e P and
n(6/2)e ~*. The small signal conductance and asymptotic results are similarly affected.

(b) Ramp potential

The ramp potential (¢°(x)=px/d) represents the simplest kind of odd symmetry. The
potential energy of an ion in the channel varies smoothly from one end of the channel to the
other. To understand the consequences of the ramp potential, consider the Ji(u, r) surface
normalized by the geometric average of the concentrations 7. The ramp potential causes a
shift of the surface by — p along the u (i.e. potential) axis and p along the r (i.e. concentration
ratio) axis (Fig. 5). The ramp potential produces Goldman-like rectification with symmetric
concentrations while producing an Ohmic current-voltage relationship when the concentra-
tion ratio is given by r, =e??. This is analogous to Woodbury’s (1971) finding that a channel
with a sequence of linearly increasing barriers produces a linear current—voltage relationship
when the logarithm of the concentration ratio is equal to the difference between the height of
the first and last barriers.

Next consider the asymptotic properties of the independence flux. The ramp potential has
an offset and a nonzero slope at either end of the channel. The effect of the offset is analogous
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F1G. 5. Comparison of constant field and ramp potential independence fluxes without access effects.

Flux with constant field and ramp potentials. The ramp potential has p=1k,T and the diffusion

constant is set to 0.01 x 10~ *m?/sec for all remaining piots. Panel 1:r,= 1 for constant field, r, =e? for

ramp; panel 2: r,=1 for ramp, r,=¢~2 for constant field. R: ramp potential; C: constant field
potential.

to the effect of the offset in the constant field potential except that the odd symmetry of the
ramp produces offsets of opposite signs for the two ends of the channel. The slope produces a
nonzero intercept of the linear asymptotes. If we set 7, =e??, the coefficients of eqns (45) and
(46) will be equal and the asymptotic results will predict a shift of the current-voltage
relationship by an amount proportional to the derivative of the potential at the ends of the
channel. This gives precisely the shift by —p discussed in the previous paragraph.

(c) Step potential

In the case of the ramp potential, the offsets at the ends of the channel came about through
a steady increase in the potential as it traversed the channel. At the other extreme, the
increase in the potential can be concentrated at a point as in the step potential (¢%(x)= —p
for —8/2<x<0 and ¢°(x)=p for 0<x</2).

Again we investigate the effect of the step potential on the normalized J(u, r) surface by
considering the small signal and asymptotic properties separately. At extreme voltages, the
surface associated with the step potential will match the surface associated with the constant
field potential by a shift of p along the r axis but, in contrast with the ramp potential, without
a shift in the u axis (Fig. 6). In the small signal range, a shift in the r axis must be accompanied
by a shift in the u axis of equal magnitude but of opposite sign because these are related by the
Nernst potential. It is not true, however, that the ramp and the step potentials share the same
tangents near equilibrium. In fact, for equivalent values of the parameters p, r and g;, the
ramp potential has the greater small signal conductance. Thus, a sudden change in the
potential gives rise to a lower conductance than a gradual change in the potential.

(d) Z potential
The Z potential (¢°(x)=2px/é + pfor —6/2 <x <0and ¢°(x)=2px/d —pfor0<x<d/2)is
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FiG. 6. Comparison of constant field and step potential independence fluxes without access effects.

Flux with constant field and step potentials (p= 1k, T, r, = | for constant field potential and r, =e? for

the step potential. The step potential has the lower small signal conductance. S: step potential; C:
constant field potential.

related to the step potential in the same way that the ramp potential is related to the constant
field potential. Also the ramp and Z potentials are both limiting cases of a more general
potential of odd symmetry having a well on the left end of the channel and a barrier on the
right end (Fig. 3, panel 5). This profile is characterized by two parameters: p, the height
(depth) of the barrier (well) and &, the distance of the barrier (well) from the center of the
channel. With symmetric concentrations (r=0), the small signal conductance becomes
independent of the parameter ¢ to yield:

_ p
Gi=9i <sinh(p)> ' 3

Thus, the Ji(r, u)/n surfaces associated with the ramp and Z potentials share the same tangent
plane at r=u=0. The Z potential has the feature that in symmetric concentrations, all of the
rectification is due to the slope in the ion—channel interaction potential at the ends of the
channel. Since the slope is the same at both ends of the channel, the asymptotic intercepts in
symmetric concentrations will also be the same for both positive and negative voitages. This
asymptotic intercept will be shifted an equal amount and in the opposite direction from the
ramp potential for r,=e? (compare Figs (9) and (11)). Thus, for both the step and Z, the
jump in the potential results in a bulge in the current—voltage relationship near equilibrium
(Fig. 7).

A useful exercise is to sketch both the ramp and the Z current—voltage relationships on the
same plot for symmetric concentrations (see ramp potential in Fig. 5, panel 2, and Z
potential in Fig. 7, panel 1). As mentioned above the relationships share the same tangent at
equilibrium. Away from equilibrium the asymptotic results require that the two relationships
diverge. These two curves define the limits of the family of curves produced when the
parameter ¢ of Fig. 3, panel 5 varies from 0 to J/2.

Let us summarize the sources of rectification for the potentials with odd symmetry. The
first source is the classic Goldman rectification due to a difference in concentrations across

8 53-3-C
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Fi1G. 7. Comparison of step and Z potential independence fluxes without access effects. Flux with step
and Z potentials (p=1k,T). Panel 1: r,=1 for Z potential and r,=e? for step potential; panel 2:
r,=e" 2 for Z potential and r, = 1 for step potential. In this case notice that the fluxes are identical but
shifted along the voltage axis proportional to the parameter r=(1/2)in(r,). S: step potential; Z: Z
potential.

the channel. The second source is an offset in the potential at the ends of the channel. This
causes the current-voltage relationship to appear qualitatively similar to Goldman
rectification in the presence of symmetric concentrations. In both of these cases the straight
line asymptotes have different slopes. The third source of rectification is a nonzero slope at
the ends of the channel. This causes rectification near equilibrium in symmetric
concentrations but not at extreme voltages. The asymptotic analysis demonstrates that this is
due to a shift in the intercept of the asymptote. The odd potentials give rise to asymmetric
current—voltage relationships when the baths have the same concentrations. In the next
section we discuss potentials with even symmetry. These produce symmetric current-voltage
curves in symmetric concentrations.

(e) Single extremum potential

We now consider a simple function which is even with respect to the center of the channel.
The parameter p will specify the height of a barrier (p > 0) or the depth of a well (p <0) that is
centered in the channel (Fig. 3, panel 4). We designate this potential the single extremum
potential (¢°(x)=2px/6+ p for —5/2<x<0and ¢°(x)= —2px/6+ p for 0<x <§/2). Notice
that the single extremum potential is the even symmetry analog to the Z potential. An
important consequence of this is that the application of a transmembrane voltage results in
symmetry breaking since the potential. due to applied voltage is an odd function. This
symmetry breaking causes a loss of symmetry in the equations for the model. As an example,
Table 1 shows the electrodiffusive resistances of the five different potentials. The first term in
each expression arises from the end points of the channel and thus involves u. In the case
where there is an offset, these terms also include the parameter p. The second term in the step,
Z, and single extremum potentials is due to the jump in potential in the center of the channel.
The fact that constant field, ramp, step, and Z potentials have odd symmetry means that no
symmetry breaking occurs when A¢ is added; thus, the denominator can be factored out and
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one obtains expressions involving hyperbolic sines. In the case of the single extremum
potential, no such factoring is possible.

For the symmetric barrier or well, there is no shift of the normalized flux surface on either
the r or u axes because there is no offset at the ends of the channel (Fig. 8). Recall that at
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FiG. 8. Comparison of constant field, 3k, T well and 3k, T barrier independence fluxes without access

effects. Concentrations are symmetric (r,=1) and equal to 2.64 M. Diffusion constant was set to

0.01 x 10~°m?/sec (g; 2.5 pS). Notice that the well potential has a high slope conductance near

equilibrium and asymptotically approaches the slope conductance of the constant field. Similarly, the

barrier potential has a low slope conductance near equilibrium and asymptotically approaches the

slope conductance of the constant field. W: well potential; C: constant field potential; B: barrier
potential.

extreme voltages the slopes of the potential at the ends of the channel produce shifts in the
intercepts of the straight line asymptotes. Since the single extremum potential is even with
respect to the center of the channel, the slopes of the potential are equal in magnitude and
opposite in sign at the two ends of the channel. This produces a rotation of the
current—voltage relationship in the small signal range (as opposed to the bulge seen in the
case of the Z potential). In the case of a well, the rotation is counter-clockwise producing an
increase in the conductance relative to the constant field potential while in the case of the
barrier the rotation is clockwise producing a decrease in the conductance.

2. Independence Flux with Access Limitations

We have now seen the behavior of the independence flux in the absence of access
limitations. Let us see how access limitations change the shape of the current-voltage
relationships. The qualitative effect is saturation of the flux with voltage. In all cases
examined in the previous sections the asymptotic behavior of the flux was described by a
straight line whose slope was determined by the offset and the concentration at the end of the
channel. When access effects are included, the independence flux without access effects can be
related to the independence flux with access effects through a dimensionless ratio of
electrodiffusive resistances:

J,o=—""¢ _=JR 54
* R+R+R, ' (54)
We can combine eqn (54) with eqn (A3) of Appendix 1 to obtain the asymptotic behavior of
this resistance ratio. From this we can show that the flux saturates to a fixed value determined
by the voltage independent rate at which ions encounter the channel:

lim-J,= n()

w~co R (53)

T
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lim J, _m=)

u= - R, (56)

At large voltages, the resistance ratio asymptotically approaches a hyperbolic rate of
saturation with half saturation value given by:

5e¢°(6/2)
A¢1/2=7D—R—T, as Ad)"’w (57)

5e¢o(—6/2)
A¢1/2=751—2-’—, as A¢>->—oc (58)

In Fig. 9, we plot the currents and their associated resistance ratios for the constant field, the
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F16. 9. Comparison of constant field, 3k, T well and 3k, T barrier independence fluxes with access

effects. Panel 1: fluxes analogous to those of Fig.8 but with the diffusion coefficient set at

1.5 x 10~ °m?/sec and with 4k, T access barriers; panel 2: electrodiffusive resistance ratio for fluxes of
panel 1.

barrier and the well potentials. The saturation of flux with voltage is evident in all three cases
(compare with Fig. (8)).

Access resistance effects are important when the bath resistances become comparable to
the channel resistance. The bath resistance can become large for several reasons. The
simplest has to do with the process of an ion finding the mouth of the channel. As an ion
approaches the channel from a distance, the cross-sectional area decreases as r2. This is
analogous to an electrical convergence resistance. In Fig. 10 we have polotted the constant
field potential and included the effect of the r* dependence of the cross-sectional area. Thus
the process of an ion gaining access to the mouth of a channel gives rise to an entropic barrier
in the potential. Another obvious source of such a barrier to entry is the process of ion
dehydration.
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F1G. 10. Constant field potential including effect of r2 dependence of cross sectional area of bath. This

plot demonstrates the effect of redefining the dimensionless potential to include the position

dependence of the cross sectional area of the bath, i.e. ¢ (r)=@(r)+In(4(r)/4(0)]. The intrinsic
ion—channel interaction potential is the constant field.

[V. SATURATION FLUX (J,)

In Section I1I we demonstrated that, for a fixed voltage, the effect of varying the magnitude
of the concentration vector was to give rise to a flux with hyperbolic saturation. This
saturation was completely characterized by a maximum value of the flux (eqn (35)) and a
concentration at which the current is half of its maximum value (eqn (36)), each a function of
the voltage. Here we discuss the saturation flux.

As in the last section, we begin by making the assumption of negligible access resistances. If
we factor out the geometric average of the concentrations from both the numerator and
denominator of eqn (23), take the limit as the average goes to infinity, let R, and R, become
negligible with respect to R, and rewrite the result in terms of u and r, we obtain:

R (59
e +1e
Several general features of eqn (59) as compared to eqn (40) for the independence flux are
worth noting. The independence flux depends on the geometric average of the concentra-
tions. For the saturation flux, this dependence was eliminated by taking the large
concentration limit. Notice also that the saturation flux does not depend on the channel cross
sectional area as does the independence flux.

Another important difference between the independence flux and the saturation flux is that
the saturation flux depends on MFPTs and the independence flux does not. The dependence
ofeqn (59) on the MFPTs allows us to obtain some insight into the role of MFPTs in the one-
jon model. Note that if the concentration on the right side of the channel is set to zero
(r— — o0), the saturation flux is equal to 1/1,. Hence, the mean first passage times represent
the maximum flux through a one-ion channel in the so called zero trans case (Jakobsson and
Chiu, 1987). At saturation, whenever an ion exits the channel, it is immediately replaced by
another ion and transport is limited by the rate at which the channel can process an ion. In
the steady state, this rate is related to the reciprocal of the mean passage time of an ion
through the channel.

We now derive the small and large voltage limits of eqn (59). In the small signal range, the
sum of u and r is small and the exponentials in the denominator of eqn (59) are approximately
one. The sum of the two passage times then simplifies to the product of two integrals and
eqn (59) becomes:

4D 1 1 -1
—J, = 57 (u+r) [ J gde/2) déj g oueD d§:| . (60)
-1 -1
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From this we can obtain an expression for the small signal conductance:

4z2e2D 1 1 -1
= ;;62 [j e9(8¢/2) dé'[ - #6812) dé] _ (61)
b -1 -1

In evaluating the integrals of eqns (60) and (61), we can make use of the fact that in the small
signal range the potential is approximately equal to the equilibrium potential and hence from
the Nernst equation u= —r.

In Appendix 1 we show that the large voltage limit of eqn (59) is:

—‘Js=-§|i2u—ﬂp+i(ﬂi")’p)]"‘o(l/“z)s“»o (62)
D 1 2 2
—Jy=53 | u=Bu+ 5= (B2 =) |+ O(1/u?), u 0. (63)
u

The expressions for the Bs and the ys are lengthy and will not be repeated here (see
Appendix 1, eqns (A35) and (A36) for details). The point we want to make here is that the fs
are functions of the values of the ion—channel interaction potential at the ends of the channel
while the ys are functions of the derivatives of the ion—channel interaction potential at the
ends of the channel. The asymptotic results demonstrate that the limiting slope of the
saturation flux depends only on the channel length and diffusion constant and not on any
feature of the intrinsic ion—channel interaction potential. The limiting slope of these
equations is simply D/&?.

The following argument shows why one might expect the limiting slope of the saturation
flux to be independent of the intrinsic ion—channel interaction potential. The saturation flux,
through its dependence on the passage times, involves two integrations of the exponential of
the potential profile in the channel while the independence flux involves only one.
Consequently, at extreme voltages, features of the model which determined the asymptotic
slope of the independence flux effect the asymptotic intercept of the saturation flux (see
Appendix 1). This means that the limiting slope of the saturation flux is independent of the
features of the ion—channel interaction potential.

1. Constant Field Potential

We proceed, as in the case of the independence flux, by presenting the constant field results
in detail. This will be followed by a qualitative description of the saturation flux for the other
potential profiles we have been using. We summarize the quantitative results for all the
potential profiles in Table 2. As was the case with the independence flux, the constant field
potential provides an opportunity to obtain manageable results which still have many of the
important features of the general one-ion model. In particular, interesting similarities
between the saturation flux, MFPTs, and the problem of random walks are most apparent
for the constant field case. The constant field saturation flux also has the unique property that
a series expansion exists which converges for all nonzero values of the voltage. This series is of
the same form as the asymptotic expansions obtained in Appendix 1 which in general
converge only at extreme voltages. Finally, the constant field saturation flux illustrates an
important general characteristic of the one-ion model, the current—voltage relationship tends
to become more linear with increasing concentration.

Using the constant field potential in eqn (59) yields the following result:

_2uD u sinh(u+r) >

L (u sinh(u + r) —sinh(u)sinh(r) (64)

=

In the symmetric case, n(6/2)=n(—6/2) (r=0), eqn (60), like the independence flux reduces
to an Ohmic limit:
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TABLE 2. SATURATION

D Uhdd ~(u+r)
5 (r,e"" "+ 1 )
1 .
Constant field 3l [cosh(u—r)—cosh(u +r)+ 2u sinh(u +r)]
1 .
Ramp m [cosh(u—r+2p)—cosh(u+r)+2(u+ p) sinh(u+r)]
1
Step T [cosh{u—r+2p)—cosh(u+r)+2u sinh(u+r)
+sinh(p){4 sinh(r — p)—2 sinh(u +r—p)}]
1 .
zZ m [cosh(u—r)—cosh(u+r)+2(u—p)sinh(u+r)
+sinh(p){4 sinh(r)—2 sinh(u+r—p)}]
Si ! h wrp h 2u sinh
ingle extremum m cosh(u—r)— e g cosh(u+r)+ 2u sinh(u+r)

4
-= :’pz {u sinh(p)sinh(r)+p cosh(p)cosh(r)}]

We have collected corresponding terms from the right and left passage times and so the
leading two terms, having the same sign, are hyperbolic cosines. When offsets are added
(ramp and step) at the ends of the channel the parameter p appears in the argument of the
first hyperbolic cosine. The influence of the slopes at ends of the channel (ramp, Z and
single extremum) appear in the denominators and in the coefficient of the third term for the
ramp and the Z potentials. The analogous term in the single extremum potential cancels
with terms in the denominator. Finally, structural features inside the channel such as
jumps in the potential (step and Z) or extrema (single extremum) produce additional
terms.

This expression tells us that for a 1k, T difference in potential energy across the membrane,
the average time required for the net movement of one ion through the channel at saturation
is given by:
52
=— 66
5 (66)

This result agrees, within a factor of two, with two other results derived from different
boundary conditions. These are the MFPT in the absence of a field [eqns (20) and (21) with
¢(x)=0]:
52
= 67
=35 (67)

and the Einstein (1926) relationship for the average squared distance travelled by a random
walker in a time ¢:

{(x?»=2Dt. (68)

This idea of a transport time per k,T of driving force is closely related to the small signal
conductance under saturating conditions. For the general expression we have:

,
G=1 9 sinh(r) ’ r#0 (69)

dss r=0

with
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Here we see that g,, the conductance in the Ohmic limit, is proportional to the reciprocal of
this normalized transport time.

The constant field result [eqn (64)] can also be expressed as a power series in 1/u
empbhasizing the dependence of the saturation flux on the concentration ratio at extreme

voltages:
2uD & /1\* /sinh(u)sinh(r)\*
—h= 62 ,‘g‘o (Z)( sinh(u+r) ), u#0. ™)

In the limit of extreme voltages the first few terms of eqn (70) dominate and the coefficients of
the powers of 1/u depend only on r:

2
—-J= _6% [2u+2e" sinh(r) +;2‘-(e" sinh(r)) :|+ o(1/u?), u>0 (71)

—J= 3D3 [2u+2e’ sinh(r) + g (e’ sinh(r))Z:] +O0(1/u?), u<O. (72)

When the concentrations are unequal, the voltage dependence of the saturation and
independence fluxes are seen to be quite different (see Figs 4 and 11). Near equilibrium the

Picoamperes
o
T

-10

15 1 ] ] | ] ] ] ]
-400 -300 -200 -100 o] 100 200 300 400
mVv

F1G. 11. The constant field saturation flux as a function of voltage and concentration ratio. Fluxes
analogous to those of Fig. 4 except under conditions where the channel is always occupied.
r,=1/16, 1/4, 1, 4, 16. Remaining parameters are the same as Fig. 4. g, 25 pS.

current-voltage relationship rectifies in a qualitatively similar way to the independence flux,
but to a lesser degree. This linearization of the constant field saturation flux under
asymmetric conditions relative to the independence flux is a general feature of the one-ion
channel model and is due to the asymptotic approach to a slope equal to the symmetric (r=0)
case.

2. Potentials with Odd Symmetry

As was the case with the independence flux, the ramp potential gives rise to a shift of the
current—voltage—concentration ratio surface by — p along the u axis and p along the r axis.
Consequently, the ramp potential produces rectification in the saturation flux in symmetric
concentrations in a way that is completely analogous to the rectification due to asymmetric
concentrations in the constant field case. From this it follows that when the concentrations
are such that A¢,, = ¢°(—8/2)— ¢°(6/2)= — A¢°, we obtain the conductance of the constant
field channel under symmetric conditions.

Two observations are useful for providing insight into the properties of the saturation flux
in the case of the step potential. If the parameter r is set equal to the parameter p, the form of
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the constant field saturation flux is recovered (see Table 2). Physically this is equivalent to
setting the concentration ratio such that the concentration just inside the left end of the
channel is kept equal to the concentration just inside the right end of the channel. The result is
a J(u,r=p, p) surface which is equivalent to the J(u, r, p=0) surface. The second
observation is that in symmetric concentrations the step potential saturation flux no longer
rectifies (see Fig. 12). Two competing effects cause this disappearance of rectification. When
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Fi1G. 12. Comparison of constant field and step potential saturation fluxes. Fluxes analogous to those
of Fig. 6 except under conditions where the channel is always occupied by an ion. Panel 1:r,=1 for
the constant field potential and r, =e? for the step potential; panel 2: r,= 1 for both the constant field
and the step potentials. Flux for the Z potential flux can be obtained by shifting the step potential flux
along voltage axis as can the ramp potential flux from the constant field potential flux.

the concentrations are equal on both ends of the channel, the channel is much more likely to
be occupied by an ion entering the low potential end. In contrast, an ion having entered the
high potential end is more likely to traverse the channel than an ion entering from the low
potential end. This argument also holds for the ramp potential and accounts for the
linearization of the current—voltage relationship.

As already noted in the discussion of the independence flux, the relationship between the Z
potential and the step potential is analogous to the relationship between the constant field
potential and the ramp potential. The saturation flux for the Z potential, with r,=1, is
identical to that of the step potential, with r,=e? except that the flux for the Z potential must
be shifted so that it goes through the origin (see Fig. 12). This connection leads to another
conclusion. Recall that the Z potential independence flux was weakly rectifying due to the
effect of the slope of the potential at the ends of the channel. Also note that a jump has no
consequence in the asymptotic behavior of the independence flux (see Appendix 1). We
argued above that the jump in the step potential resulted in a complete loss of rectification in
the limit of saturating concentrations. In the case of the Z potential, the rectification due to
the jump in the limit of saturating concentrations overwhelms the effect of the slope of the
potential and the rectification changes from inward at low concentrations to outward at high
concentrations. We will return to this issue in the next section when we discuss the voltage
dependence of the half saturation concentration.

P8 53-3-0
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3. Single Extremum Potential

The observations made above for the potentials with odd symmetry have somewhat
different consequences for the single extremum potential. The symmetry breaking of the
combination of the odd symmetry of the applied potential with the even symmetry of the
jon—channel interaction potential leads in general to more complicated results. This is
particularly true of the small signal conductance. As was the case in the analysis of the odd
potential functions, insights can be obtained with the appropriate choice of the parameter r.
The expressions involving the single extremum potential, being of even symmetry, would be
expected to simplify in the case of symmetric concentrations, i.e. r=0. This simplification is
most striking for the small signal conductance and we have:

p 2
G,=g, (m) . (73)

Notice, that if we define p’' = p/2, the dependence of the small signal conductance on p’ is the
same as the dependence of the small signal conductance on r in the constant field case. This is
analogous to the relationship between the constant field and the step potential small signal
conductances when r = p. Also notice that, as was the case for the step potential, the result is
independent of the sign of p. This last point leads to the realization that while the well and
barrier have opposite effects on the small signal conductance of the independence flux, they
have the same effect on the small signal conductance of the saturation flux (see Fig. 13). This
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F1G. 13. Comparison of constant field, 3k, T well and 3k, T barrier saturation fluxes. Fluxes analogous
to those of Fig. 8 except under conditions where the channel is always occupied by an ion. Remaining
parameters are the same as Fig. 8.

implies that in the case of the well, there must be a transition analogous to the transition that
occurred with the Z potential. Due to the even symmetry of the well, the transition is in the
concavity of the current-voltage relationship rather than a transition from sub- to
superlinearity in the current-voltage relationship. Inspection of Fig. 13 also reveals that in
the small signal range under saturating conditions, both a barrier and a well result in a
decrease in the channel conductance (increase in channel transport time). This observation
suggests the stronger result (which we prove in Appendix 2) that the constant field potential
has the maximum possible small signal conductance under saturating conditions.

The consequences of access effects on the saturation flux are more subtle than was the case
for the independence flux. With the saturation flux we have, by assumption, precluded the
possibility of access limitations. In taking the high concentration limit, we have implicitly
assumed that the baths on either side of the channel can always supply ions to the channel ata
rate that is much greater than the rate at which ions exit. One way of rationalizing this is to
say that we are only considering voltages at which this assumption remains true. This
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suggests that the asymptotic dependence of the saturation flux with voltage is not physically
realizable. Disregarding this issue for the moment, the formal consequence of neglecting
access effects in the high concentration limit of eqn (23) is the loss of reentrance effects on the
occupancy time. Again we are confronted with a logical inconsistency since at infinite
concentrations one might argue that no reentrances could occur. This inconsistency is more
worrisome on mathematical grounds than physical grounds. The point we make here is that
the saturation flux is a construct of conceptual use rather than a physically realizable feature
of the model. We will return to these issues in the discussion section where we consider the
general validity of the one-ion model.

V. HALF SATURATION CONCENTRATION (n,,,)

The remaining piece of information needed to completely characterize the current—
voltage—concentration surface is the rate of saturation of the flux with increasing
concentration. In complete analogy with Michaelis~Menten enzyme kinetics, this rate of
saturation is characterized by a single parameter, the substrate concentration which leads to
half maximal catalytic velocity. In this formulation, we have not set the product
concentration to zero (as is done in enzyme kinetics) and so the concentration of ions is a
vector quantity. If we fix the ratio of the concentrations at the ends of the channel and fix the
transmembrane voltage, we will obtain a right rectangular hyperbolic dependence of the flux
on the geometric average of the concentrations. Hence, the functional dependence of the
saturation flux and the half saturation concentration on the parameters «, r and p is sufficient
to specify the one-ion model for the potentials considered here.

In the presentation of the half saturation concentration, we will develop two conceptual
approaches. The first approach relates the half saturation concentration to the ratio of the
saturation flux and the independence flux. This will allow convenient construction of
expressions for the half saturation concentration by taking ratios of the entries of Tables 1
and 2. The second approach relates the channel affinities to the half saturation concentration
and so makes the connection with more traditional methods in enzyme kinetics. We will also
present a qualitative discussion of the five potential profiles paralleling what was done with
the independence and saturation fluxes.

1. Negligible Access Effects

As in the case of the independence and saturation fluxes, we assume negligible access
resistances. In the final section we modify our resuits to account for access limitations. From
eqns (35) and (37) we can obtain an expression for the half saturation concentration as
follows:

A
J

1

(74)

=)

Ry =

Combining eqn (74) with eqn (40) for the independence flux and eqn (59) for the saturation
flux, we have:

R, (75)

ﬁ“ = atr . _<u-r-
2 e e

Equation (74) is general if reentrances are included while eqn (75) assumes that only one
permeant species is present and access effects are negligible. We can also cast the channel
affinity in terms of the components due to ions entering from the left and right ends of the
channel respectively. From eqn (75) we have:

T,e”
K, = 7
al Rc (6)
T.e"
e 77
Ki==% (77)

The left and right affinity constants can be directly measured in a zero trans experiment. In
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the zero trans case the geometric average of the left and right concentrations is zero and so we
must consider the asymmetric half saturation concentrations. These are obtained by
multiplying by €’ and e™" and we have:

n(=6/2), = o

X’ for n(6/2)=0 (78)

n(/2)y,, = i , for n(=4/2)=0. (79)
K,
Hence, by measuring the current-voltage relationship at several concentrations, with the
opposite concentration set to zero, K,, and X, can be measured. From this, the voltage and
concentration dependence of the empty probability can be determined. With these
definitions we shall again consider several specific forms of the ion—channel interaction
potential.

For the channel occupancy, the assumption of negligible access effects is equivalent to
setting the concentrations at the ends of the channel to their equilibrium values (Levitt,
1986). This is the same as assuming that the rate at which ions are transported through the
channel is small compared to the rapid exchange of ions between the bath and the channel
mouth. The asymptotic results of the previous two sections indicate that at extreme voltages
the channel flux increases linearly with the voltage. It follows that the assumption of
negligible access affects must break down at large voltages. This results in a somewhat
nonintuitive expression for the asymptotic behavior of the half saturation concentration.
From Appendix 1 we have:

I o 1
Ry = M\/¢ e?" % [1 ~ % (6¢0’(é/2)+ﬁp)J + O(1/u?) (80)
when 4> 0 and:
iy > 3‘/—;’— e#*=02 [1 — (5¢°’(—5/2)+ﬂ,)} +0(1/u?) (81)

when u <0. Here, we use the prime to indicate the first derivative. Notice that the limiting
value of the half saturation concentration is independent of the voltage and is determined by
the Boltzmann factor at the end of the channel into which ions are being drawn by the applied
voltage. This is a direct consequence of the assumption of negligible access limitations. The
rate of approach to this limiting value depends on the difference between the intercepts of the
linear asymptotes of the saturation and independence fluxes. This reflects the dependence of
the half saturation concentration on both the passage times and the electrodiffusive
resistance. We can also make use of the Boltzmann distribution to obtain a relatively simple
expression for the half saturation concentration at equilibrium:

o -1
Ryp= [A j e""""de . (82)
o

The general expressions for the half saturation concentration for the various potential
profiles can be obtained from Tables 1 and 2 and eqn (74). As in the case of the independence
and saturation fluxes, we consider the general expressions for the constant field case. For the
remaining cases, we will emphasize the asymptotic and equilibrium expressions.

(a) Constant field potential
For the constant field potential, eqn (75) is:

i __1_ u sinh(u) (83)
Y27 46 \ u sinh(u+r)—2 sinh(u)sinh(r) )
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Notice that with symmetric concentrations, the half saturation concentration is the
reciprocal of the volume of the channel. We emphasize that this is the volume available to the
center of the ion and not the total volume of the channel. Thus, the channel is occupied one
half of the time when the concentration outside the channel is equal to twice the effective
concentration inside the channel. In terms of the left and right affinities:

_ A /sinh(u)—u[cosh(u)—sinh(u)]
Ka== ( u sinh(u) ) ®4)

_ ﬁé sinh(u) —u[cosh(u)+ sinh(u)]
K= 2 ( u sinh(u) ) : (85)

The qualitative properties of the empty probability with the constant field potential can be
understood by considering the behavior of the affinities as a function of voltage. To begin
with, notice that K, + K,, = A6. The consequence of this is that with A¢ = — oo, the channel
binds ions with the same affinity as it would with zero transmembrane voltage and the
concentrations in both baths equal to the concentration in the left bath. Similarly with
A¢ = 0, the occupancy of the channel behaves as if it were at zero transmembrane voltage
with both concentrations equal to the concentration in the right bath. Finally when A¢ =0,
the channel is occupied as if it were at zero transmembrane voltage and the concentration
was the arithmetic average of the concentrations in the right and left baths.

Alternatively, we can consider the dependence of the half saturation concentration on the
concentration ratio. The rate at which the current approaches the saturation value is more
rapid when the applied transmembrane voltage draws ions in from the side of the channel
with the higher concentration. This is a result of the fact that at large applied voltages the
channel occupancy is dominated by ions which enter from the side of the channel that is at the
higher potential. To better understand this phenomena, we consider the concentration
profile in the channel, the integral of which is the channel occupancy.

By assumption, the concentrations at the boundaries are held fixed at their equilibrium
value. If we consider the left boundary, the concentration at a point in the channel will
approach the concentration at the left boundary wheu negative voltages are applied. The rate
of approach to the boundary concentration depends on the distance from the boundary and
the nature of the potential at intervening points. In the case of the constant field potential, the
concentration profile in the absence of an applied voltage is a linear function of position.
When a voltage is applied, the contribution to the concentration at a point due to ions
entering from the high potential end of the channel increases and the contribution due to ions
entering from the low potential end of the channel decreases (see Fig. 14). Thus in
asymmetric concentrations, the channel will saturate more quickly when a voltage is applied
that draws ions in from the high concentration side verses the low concentration side.

The ability of the one-ion model to saturate is the mechanism by which the current-voltage
relationship tends to become more linear with increasing concentration (compare Figs 4 and
11). In particular, as discussed above, this saturation is asymmetric for asymmetric potentials
and the polarity of the asymmetry is opposite to the polarity of the asymmetry of the
independence flux. In the constant field case when driving curent from the high concentration
end of the channel, the current will be further up the saturation curve compared with the
current under a similar driving force in the opposite direction. If we fix the concentration
ratio and vary the geometric average of the concentration, at low concentrations where the
independence flux is a good approximation, the current will rectify according to Goldman.
As the geometric average of the concentration is increased, the current driven from the high
concentration side will saturate more quickly than current driven from the low concentration
side.

As in the case of the indpendence flux, the effect of an offset on the constant field result can
be obtained by replacing the concentrations with the concentrations scaled by the
Boltzmann factor e ~?. The consequence of this is that the effective volume of the channel
changes and we replace 40 of the constant field result [eqns (83) through (85)] with 4oe~".
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FIG. 14. Ion concentration as a function of position in a channel with a constant field potential. The

normalized concentration in a constant field channel for r,=2 with transmembrane potential

differences of ~ 150, 0, 150. In the bottom panel the concentrations are broken down according to
which side the ion entered.

(b) Potentials with odd symmetry

For the ramp potential, eqn (82) yields the following equation for the half saturation
concentration in the small signal range:

_1 4
M2 =75 (sinh(p)>' (86)

Here, we have considered only the symmetric case where the concentration on the left end of
the channel is equal to the concentration on the right end of the channel which is equal to the
geometric average. Notice that n, , is a decreasing function of the slope of the ramp, i.e. the
larger the ramp the better the channel binds the ion. This is because (for p>0) the increase in
the channel’s ability to bind ions entering the left more than compensates for the decrease in
the channel’s ability to bind ions entering from the right. This characteristic of the ramp
potential emphasizes the vectorial nature of the channel affinity. From our experience with
the independence and saturation fluxes, we might expect the ramp affinities to be related to
the constant field affinities. This is the case and we again have that the sum of the affinities
weighted by the Boltzmann factors at the ends of the channel is equal to the effective channel
volume:

K,e P+ K, ef =A44. (87)
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At zero transmembrane voltage, the affinity corresponding to ions entering the right end of
the channel is smaller than the affinity corresponding to ions entering the left. Similarly the
asymptotic results demonstrate the difference in the interaction between the channel and ions
entering from one side versus the other:

? 1

"w=—§5[‘"5@’2"—1-41»)]*0(1/#), u»0 (83)
e’? 1 2p 2

Me=25 1+E(C —1+4p) [+ O01/u?), u<0. (89)

For positive voltages (ions drawn into the right end of the channel), the limiting half
saturation concentration is larger than the constant field case by e? but approaches from
below due to the presence of the “well” at the left end of the channel. For negative voltages
(ions drawn into the left end of the channel), the limiting half saturation concentration is
smaller than the constant field case by e ? but now approaches from above due to the
“barrier” at the left end of the channel. This results in more rapid saturation of the current at
negative voltages compared to positive voltages (Fig. 15) and an associated decrease in the
rectification.
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FIG. 15. Current-voltage-concentration surface for the ramp potential without access effects. The

ramp potential with symmetric concentrations where the concentrations were varied in multiples of

the equilibrium half saturation concentration n=4n, g, 2n, 5, Ry s, Ng.s/2, Ny s/4 with the half

saturation ny =2.21 M [eqn (87)]. Notice that the current saturates more rapidly at negative

voltages which draw ions into the low potential end of the channel. This results in a current—voltage
relationship which is more linear at high concentrations.

For the step potential with symmetric concentrations, the half saturation concentration in
the small signal range is given by:

1
"2= 55 cosh(p)’
Equation (90) shows that the half saturation concentration decreases more rapidly with the
parameter p in the case of the step potential than in the case of the ramp potential. This is a

result of the wider well on the left end of the channel compared to the ramp potential. For
extreme voltages we have:

(90)

e?

1, .
nmzﬁ(l—a2smh2(p)>+0(l/u2), u>»0 91)

TP |
"1/2:;—6(1 -f-;ZSmhz(p))-i-O(l/uz), u<0. (92)
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The asymptotic results are qualitatively similar to the ramp potential but again the
coeflicients of 1/u contribute more due to the effectively wider well and barrier on the left and
right ends of the channel respectively. This greater asymmetry in the voltage dependence of
the half saturation for the step potential relative to the ramp potential explains the complete
loss of rectification of the step potential saturation flux in symmetric concentrations
mentioned in Section IV.

For the Z potential in the small signal range, we have the same result as for the ramp
potential. For the asymptotic behavior, we have from eqns (80) and (81):

1 1
nl/z:%[l—ﬂ(e”_l_zp)]’ u»0 93)
! 1+ ! (e”2P—1+2p) <0 (94
= — -_— - <V
SEr] R o :

Comparing eqns (88) and (89) with eqns (93) and (94), we see that the rate of approach to the
asymptotic limits of the ramp and Z potentials are similar but due to the lack of an offset, the
Z potential half saturation converges to the constant field limit. This result is similar but with
opposite polarity to the corresponding independence fluxes. This results in the modest
rectification of the Z independence flux near equilibrium being reversed by the larger
asymmetry in Z potential saturation characteristics.

(c) Single extremum potential
In the small signal range we have:

1 pep/z
12 = 45 2 sinh(p2)” ®3)
As one would expect, for a well (p negative), the half saturation concentration decreases
exponentially with the depth of the well. However, for a barrier (p positive), the half
saturation concentration grows only linearly with the height of the barrier. Far away from
equilibrium, the half saturation concentration can be approximated by eqns (80) and (81)
and we have:

1
nyp=—s (14 p/|u|). (96)

From eqn (96), we see that at extreme voltages the half saturation concentration approaches
the constant field result with a hyperbolic dependence on the voltage. When p is negative, the
half saturation concentration approaches the constant field value from below and when p is
positive, the half saturation concentration approaches the constant field value from above.
These results are illustrated in Fig. 16. In the case of a well, this results in a more rapid
saturation near equilibrium than at extreme voltages which results in a transition from a
sublinear to a superlinear current-voltage relationship with increasing concentration. In
Fig. 17, panel 1 we have plotted the current-voltage—concentration surface for a 3k, T well.
The modest depth of the well results in an extremely linear current—voltage relationship even
out to 400 mV of applied voltage. In the case of a barrier, saturation is more rapid at extreme
voltages relative to the small signal range. This results in the superlinear current-voltage
relationship throughout the concentration range seen in Fig. 17, panel 2.

2. Channel Affinity in the Presence of Access Effects

There are two effects due to access limitations on the channel affinity. The first effect is
completely analogous to the discussion of the independence flux in Section III. This effect
can be accounted for by multiplying the affinities by the resistance ratio. This results in a
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F1G. 16. Comparison of the voltage dependence of the constant field, 3k, T barrier and 3k, T well half

saturation concentrations without access effects. The effects of the high channel affinity of the well and

low channel affinity of the barrier potentials are manifested in the low half saturation concentration of

the well and high half saturation concentration of the barrier. At extreme voltages in the absence of
access effects the well and barrier converge to the constant field case.
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FiG. 17. Current-voltage-concentration surface for the well and barrier potentials without access
effects. Panel 1: the current—voltage—concentration surface for the 3k, T well potential with symmetric
concentrations with and n=n, /4, ny /2, Ry s, 2045, 40, 5, With the half saturation concentration
ng.5=0.415M [calculated using eqn (96)]; panel 2: plot of the 3k,T barrier current-voltage-
concentration surface analogous to panel 1. In this case the equilibrium half saturation concentration
is ny s =8.28 M. In the case of the well there is a change in the concavity with increasing concentration
from sub- to superlinearity in contrast to the barrier potential which is superlinear at all
concentrations.
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decrease in the channel affinity to ions at large voltages. The other effect is an increased
occupancy time due to reentries.

V1. DISCUSSION

The major result of this paper is eqn (23). This equation is a generalization of a result
previously derived by Levitt (1986). It generalizes to the case where access resistances are not
negligible. In addition to this generalization, we have introduced several conceptual tools to
help understand this model. These include mean first passage times, mean occupancy times,
independence flux, saturation flux and affinity constants. We have used these concepts to
understand the behavior of eqn (23) for a set of simple potential profiles. By analyzing the
limiting behavior near equilibrium and at large voltages we can intuit the major features of
the current-voltage relationship. From the asymptotic analysis at large voltages, it becomes
clear that the offset and slope of the potential profile at the channel mouths are of primary
importance. This motivated our choice of potential profiles. The major results of this analysis
are summarized in Tables 1 and 2.

We have chosen three major aspects of this model to present in detail. These aspects are:
the effects of access resistance, the causes of rectification, and the basis of the linearity of the
current-voltage relationship. The primary effect of access limitations is to cause the current
to saturate with increasing voltage. This is due to the eventual limitation of the rate at which
jons can be supplied to the channel from the baths. Recent experiments imply that such
access limitations may be important in channel behavior (Laver et al., 1989). Note that our
analysis has assumed voltage independent entrance rates; recently this assumption has been
called into question for the gramicidin channel (Hainsworth and Hladky, 1987).

In Section I1I we discussed three sources of rectification in the independence flux. The first
type discussed was the well known Goldman constant field rectification. This is the
rectification one sees in a structureless channel when asymmetric concentrations are placed
across it. This type of rectification should exist in any channel well below its saturation level.
The remaining two types of rectification are consequences of asymmetries in the potential
profile of the channel. Any asymmetric profile should produce some rectification but here we
are concerned only with the rectification related to the first three terms of an asymptotic
expansion associated with extreme voltages. In this case the asymptotic analysis shows that
the offset and slope of the potential profile at-the channel mouths are the major factors
determining rectification. Various combinations of these factors were investigated with the
different choices of potentials we considered.

The final theme we developed is the linearity of the model. We observe that the full one-ion
model is more linear than the independence case, i.e. ion—ion interaction linearizes the
current-voltage relationship. The basis of this linearity can be approached in three
complimentary ways. Mathematically, the linearity is a result of the dependence of J, on
passage times, while J; depends only on electrodiffusive resistances. A second way of thinking
about this linearization is that ions can enter the low potential side of the channel easily but
have trouble traversing the channel because they are moving against the potential. This
asymmetry tends to even out the intrinsic rectification that the potential profile gives in the
independence case. Finally, but in a related way, rectification is decreased by the fact that the
current saturates with concentration more quickly for ions that enter from the low potential
side.

An issue of more practical importance for modelling channels is the observation that
diffusion models seem to give more linear current-voltage relationships than do Eyring
models, given the same potential profiles. Clearly, one can fit a linear current-voltage
relationship with an Eyring model but it will require more barriers and wells than a diffusion
model would (Levitt, 1986). This raises the issue of the uniqueness of interpretation of
features of the potential profile. If different models fit the same data with different potential
functions, which if any corresponds to the “real” profile, or is it a matter of how you interpret
the features in the different models?

As mentioned in the introduction, this theory is presented primarily as a conceptual tool to
be used in developing intuition about the behavior of diffusion models. There are enough
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limitations to this theory that it is unlikely to be an accurate model of any real channel. The
most important limitation is that of one-ion occupancy. As channels are investigated in more
detail, it is becoming clear that there may not be any channel that is so constructed that it
absolutely limits occupancy to a single ion. It could be said that this theory describes the
behavior of real channels in the low concentration limit. While this is certainly true, there is
an important practical issue involved. The concentration range over which a real channel is
effectively one-ion may be so small that measuring current may not be practical because of
signal to noise limitations.

At high concentrations (approaching J), any real channel would probably begin to have a
significant fraction of multiple occupancies. To correctly predict at what concentration this
occurs would require a full two-ion diffusion theory (Levitt, 1987). However, we can do an
approximate calculation by treating the equilibrium case. Assume that the channel can only
be in one of three possible states: empty, occupied by one ion, or occupied by two ions. Under
this assumption we have for the channel occupancy probabilities (Gates et al., 1990):

1
Py= 5 97)
A /2
P, =1'z— J. e~ dx (98)
-4/2
A 2 /2 x, = 2r
P, = ("Z) J f %% dx, dx, (99)
2r -4/2
4/2 8/2 (x,-2r
Y=1+n4 j e %™ dx + (nA4)? f f e~ %% dx, dx, (100)
-3/2 2r -4/2

where ¢ is the dimensionless potential, x, is the distance from the left end of the channel of the
right-most ion, x, is the distance from the left end of the channel of the other ion (only one
half of the available configurations are included since there are two ways to label the two
particles), 2r is the closest distance of approach between the two ions, A4 is the cross sectional
area of the channel which is accessible to the permeant ion, and n is the concentration of
permeant ion in the bath at the reference potential (¢ =0).

We must now specify the potential functions in eqns (98) through (100). We assume that
the interaction potential between the channel and each ion superposes with the potential of
interaction between two ions (that is, the binding of the two ions is not cooperative in any
way). Thus, the one-ion potential, ¢, , is the ion—channel interaction potential. The two ion
potential, ¢,, is the sum of the ion—channel interaction potential at x, plus the ion channel
interaction potential at x, plus the ion—ion interaction potential ¢;(x,, x;). We use the
simplified version of Levitt’s (1985) ion—ion interaction potential described in Gates et al.
(1990). Thus, we have:

DXy, X)) =, (x;)+ P(x,, x3) (101)
_zze? [(n+x,)(n+3—x,)
dixy, x3) = npzxsoka{: 4o :I (102)

where, 7 is a length defined by:

1
T 1A+ 1/p’

p is the channel radius and 4 is the Debye length.

We compare the results of the above analysis for a centrally located well vs a centrally
located barrier. If we take the dielectric constant to be 50 with a one-ion affinity constant of
(100 mm) ™!, we obtain the results in Fig. 18. Clearly, there exists a range of concentrations
over which the one-ion assumption is a reasonable approximation for the well. For the

n (103)
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F1G. 18. Occupancy vs concentration. Panel 1: the equilibrium probabilities that a channel with a
3k, T well will be occupied by zero, one, or two ions. The dielectric constant of eqn (102) is set to 50
and the potential is offset so that the one ion affinity of eqn (96) is equal to 0.1 M; panel 2: the
analogous plot for the 3k, T barrier. The large negative offset necessary to match the oneion affinity of
the barrier with the well effectively produces a binding site at each end of the channel separated by a
3k, T barrier. This means that the ion—channel interactions stabilize configurations which minimize
ion—ion interactions and the channel is occupied by two ions almost 20% of the time at 200mM. In the
case of the well the ion—channel interactions stabilize configurations which enhance ion-ion
interactions and so an order of magnitude higher concentration is required to achieve double
occupancy compared to the barrier.

barrier, there is no such range. The reader should be cautioned that this is only an order of
magnitude estimate of the effects of double occupancy. For example, multiple occupancy in
the well potential would be expected to have a greater influence on the flux than in the barrier
potential.

Another major aspect of channel protein behavior left out of this model has to do with our
assumption of a unique function ¢°(x) describing the ion—channel interaction potential. A
channel protein may well undergo conformational changes on a time scale that would have
significant effects on ion permeation. Such behavior can cause a single-ion channel to behave
like a multi-ion channel (Lauger, 1985). Conceptually such phenomena can easily be
incorporated into this theory, but this leads to considerable computational complexity.

There are two other subtle assumptions in this theory that may not be obvious to the
reader. We have discussed them at length elsewhere (Gates et al., 1990). Our entire approach
has been based on the assumption of steady-state behavior, i.e. we assume that when an ion
enters or exits a channel the bath filling rate relaxes instantaneously to its steady-state value.
This may not be so. If not, the proper boundary conditions would be found from the solution
of a time dependent diffusion problem. There is also a hidden assumption of independent
particle behavior involved in reentrances. When we calculate the probability of an exiting
particle reentering, we do not take into account the possibility that a different particle might
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enter the channel during the period between reentrances. The issue of quantum identifiability
enters here.

Future development of this theory requires treatment of all the above issues. This becomes
increasingly difficult and the resulting analytical theories become increasingly cumbersome.
At some point, machine calculation may be more efficient or at least a useful adjunct to the
analytical work. A great deal of progress is being made on that front (Furois-Corbin and
Pullman, 1989; Chiu et al., 1989; Jordan, 1989).

VII. APPENDICES

1. Asymptotic Properties of Electrodiffusive Resistances and MFPTs

In this appendix we consider the asymptotic behavior of the one-ion diffusion theory. We
will demonstrate the method with two examples; the asymptotic behavior of the
electrodiffusive resistance, R., and the mean first passage times 1, and t,. These results can
then be used to characterize the asymptotic behavior of the three components (J;, J, and 71, ;)
of the one-ion diffusion theory.

The problem at hand is one of determining the asymptotic behavior of a definite integral
which depends on a parameter different from the variables of integration. In this particular
case the parameter in question is the voltage difference across the membrane in which the
channel is located. Hence, the results of this appendix will yield the limiting behavior of these
integrals at extreme transmembrane voltages.

The first case we consider will be the integral in the expression for the channel
electrodiffusive resistance [i.e. the denominator of eqn (11)]:

32
J‘ e®™ dx. (A1)

-4/2

We make the same assumption of superposition as made in eqn (41). Under this assumption
integral (A1) can be written:

8/2
j f(x)ed®*/ dx. (A2)

—-4/2

Here, we define f(x)=e?*™. Repeated integration of (A2) by parts yields:

J -
Ka <eA¢/2f(5/2)_e A¢/2f(_5/2)>

- (A—Z)z <e“"/2fx(6/2) —e M2 (—6/2)+ Af(O))

+ <Z5$)3 (e‘“” Mx(0/2)— €™ (= 6/2) + Afx(O)) +0(1/A¢)* (A3)

where f, and f_, denote the first and second derivatives of f with respect to x, and Af(0) and
Af (0) are jumps which occur in f and its first derivative at x =0. To illustrate the method by
which jumps are handled we consider an approximating potential where the sudden
transition at x =0 occurs over a ramp of length 2¢. For example, the step potential can be
approximated by ¢°(x)= —p for —§/2<x< —¢, ¢°(x)=px/e for —e<x<g, and ¢°(x)=p
for e<x<8/2. The above repeated integration by parts is then carried out for each of the
three regions. Finally, when the limit is taken as ¢ goes to zero the ramp in the potential
becomes an impulse in the derivative of the potential at zero. This impulse is a scalar multiple
of the well known Dirac delta function. The delta function can be defined as the derivative of
the unit step function. Consequently the magnitude of this impulse is the magnitude of the
jump in ¢.

We now consider the two limits as A¢p — + c0. When A¢ becomes large and positive we
have, out to third order in 1/A¢, the following approximation:
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O (LY so62)+ () (020672)7 + 0%.8/2)) | 157207 (A4)
A¢ A¢ X A¢ X XX .

When A¢ becomes large in absolute value and negative we have:

) o \? o \3 _
_ [E - (E) 62(—5/2) + (A—d,) {(¢2<—6/2»2,+¢2,(—6/2)}] f(— 6/2)e 8912, (A5)

Combining eqns (38) and (A4) we have for the asymptotic properties of the independence
flux at positive transmembrane voltages:

2
—J= % n(d/2)e~*"¢» (Aq& +8¢2(6/2) — ;;—S—‘; ¢2,(5/2)) + O(1/A¢?). (A6)
Similarly, combining eqns (38) and (AS) we have at negative transmembrane voltages:
4D —-8%(=8/2) | 0 s2 0 2
—J=—5 n(—6/2)e” YD Ap+6¢3(—6/2) ~ 2% =(—0/2) |+ O(1/A¢%). (AT)

Notice that the asymptotic results depend on the characteristics of the potential at the ends of
the channel and so a jump in the center of the channel only influences the properties of the
independence flux near equilibrium. If we assume that the curvature of the potential profiles
at the ends of the channel is small we have, out to terms that decay with 1/(A¢?), that the
independence flux at extreme voltages is linear with the slope and intercept given by:

slope = A—élz n(a)e = *°@ (A8)

intercept = ADn(a) % ¢%(a)e '@ (A9)

where a= —§/2 and 6/2 at negative and positive transmembrane voltages respectively.

We now consider the integral expressions of the mean first passage time 7,. Our treatment
will initially consider the case where ¢°(x) and all of its derivatives are continuous. After
completing this analysis we will outline a method by which jump discontinuities can be
handled. Combining the definition of the electrodiffusion resistance in eqn (11) with eqn (20)
we have:

1 8/2 /2
T, == J. J e¢°(¥)"w°(yleAw(x—y)/6 dx dy‘ (AlO)
D —-6/2 Jy

This is a double integral over a triangular region in the x—y plane. We make use of the
following change of coordinates:

)

1 .
n=50-x)  y=50+d)

1 o
~f=5(}’+x) X=§(~f—'l)-

The region in the #n—¢ plane is illustrated in Fig. 19. Equation (A10) can now be written as a
double integral in the n—¢ plane to yield:

52 o ro 1 fo
u=s= f(n, &)e~"*"dndS + f(n, $)e™ 2" dn d¢
2D\ J-. J-¢ 0 Je-1

f(n, &) =exp[¢°{x(n, &)} —°{y(n, O)}]. (A11)

If we now consider the integrals of eqn (A11) to be iterated we notice that the first integration
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-1

FIG. 19. Region of integration in the 5, { plane for the MFPT 1,.

is of the form of integral (A2). The linearity of integration allows for an exchange in the order
of sum and integration and we have for the first integral on the right hand side of eqn (A9):

—-—éz— ’ dé(f(0, &) —e**¢ T f(—¢—1, &)
2DAd | _, ’ ’

S LV da 0, )=t~z 1, &)
wo\ag) | WS " ’

-5\ 2g

Likewise we have for the second integral on the right hand side of eqn (A11):

52 1 3 o]
( )f dE(, (0, &)=+ DE (~E— 1, )+ O(/AdY).  (Al2)
-1

__ [ dE(f(0, &)—e~2¢CDf(E — 1, &)
2DAd | _, ’ '

CE LV demnio, o)—emsee- -1, 20
p\As) |, ’ o

(1N [° A&~ 1)
—— = —g a0k E—1 4.
D (Ad)) f_l d&(f,, (0, &)—e fn(E—1, &)+ O(1/A@%) (A13)
We again perform a repeated integration by parts of the second terms in the brackets of
eqns (A12) and (A13) and combine the results to yield:

—52 L 1d§f0§) L 22‘“’f 1,0)—f(0, —1)-f(0, 1 xd{fO
tl—ﬁ{—mjl (’ +(E>[c (—’ )—(7_)_(’ )_J‘l q(’é)}

1

n

—£(0, —1)—£,(0, 1)+£,(0, — 1)—£,(0, 1) — f déf,, (0, 5)]}+0(1/A¢‘). (Al4)
1

We have included the angle in radians of the vector describing the direction of the contour
along which the second integration takes place. This is necessary to distinguish between the
two cases for each partial derivative with respect to n and ¢. We return to this issue below
when computing the derivatives. Preserving only coefficients of e*?, we have the asymptotic
behavior for positive values of the transmembrane voltage:

1 /)

+—A% [f,(—1,0, —=n/2)+f,(— 1,0, =3n/2) +{(—1,0, —-n/2)—f(=1,0, —31!/2)]} ed®,
(A15)
For f(—1, 0) we have:
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f(—1,0)=er* (A16)
with
Ap®=¢°(6/2)— ¢°(—9/2).

For f,(—1,0, —3n/4), we take 7 to be the independent variable and we have the case where
&m)=n+1. For f(—1,0, —n/4) we have the case where {(n)=—n—1. Similarly for
f,(—1,0, —3n/4)and f(—1, 0, —m/4), we take ¢ to be the independent variable and we have:
n(&)=¢&—1 and n(£)= — & — 1 respectively. As an example we consider the two cases for the
partial derivative of f with respect to n. Whenn= —1and { =0, x=4/2and y= —4/2 and we
have:

0
f,(=1,0, —3n/4) = an flx{n(n), £}, y{n(m), E} = -1, g=p+s

o dn on T ax & on | Gy onan | By 82 an
= "‘54’0'()’)“3‘, Mle=a2. y==09/2= —6¢0’(_5/2)CMD (A17)

_|:6f oxon of oxof of oyon of dy 85]
n=-—1,8=n+1

b9}
f(—=1,0, —m/d)= 7 fLx{n(n), Em}, yintm), EM}ly= -1, 6= -n—1

_ 6f6_x§2+ﬂ6_x%+6fayan+gayéé]
Oxdndn 0Oxd&dn 0Oyondn OyoLon |- —1 g=-p-1

= —8¢% (XWX W)=z, y= 52 = — 00" (8/2)**". (A18)
Similarly,
fo(—1,0, —3n/d)= —6¢° (- 6/2)e** (A19)
fo(—1,0, —m/2)=5¢°(5)e’. (A20)
Combining eqns (A17) through (A20) with eqn (A15) yields:
1/6)? 0 o . A0
TI—I)‘(E) l:l —Rw (5/2)+¢°(—5/2))] ehorad, (A21)

This result predicts an exponential dependence of the rate of escape from the reflecting
boundary to the absorbing boundary. This is qualitatively similar to Kramers’ (1940) result
and thus to traditional rate theory (also see Cooper et al., 1988b).

We also mention that eqn (A21) remains correct in the case where there is a jump in the
potential in the center of the channel. This is due to the fact that the asymptotic properties of
the passage time are dominated by the features of the surface in the neighborhood of the point
n=—1, ¢=0. As we shall see later, a jump in the potential at the center of the channel does
not directly influence this part of the surface.

At negative transmembrane voltages eqn (A11) becomes:

62 1 1 1 2 1
T :2—0 {—A—d) Jll d&f(o, é)—(_AE> [f(O, - 1)y+£0, &) + J'_l déf, (o, .f)il

1

A¢

For the first partial derivatives of f we have:

3
1

£,(0,¢)=—6 4 #°(x) (A23)
dx

£, —1)=—36¢%(—6/2) (A24)

n
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f£,0, 1)=—5¢%(5/2) (A25)
[0, —1)=8¢"(-5/2) (A26)
f(0, 1)= —56¢°(6/2). (A27)

The second partial derivative with respect to n is:

£,0.9=(5 L o)) A28
M(i)—( —d—;dJ(x))- (A28)

Substituting x for & in the fourth term of the right hand side of approximation (A22) with
n=0 and making use of eqn (A23) yields:

1 32
j défl (0, &) = —ZJ~ d¢°. (A29)
- )

A similar result holds for f(0, ¢) and f,,(0, £). Combining eqns (A23) through (A29) with
eqn (A22) we have for negative values of the transmembrane voltage:

1/ 6\
~—|— A -1+ — (% 9(5/2)—
T D(A¢> [ ¢+A¢" -1+ ¢<d> (—6/2)+¢°(6/2) J

Applying the same procedure for , for the asymptotic behavior at negative transmem-
brane voltages, we obtain:

1/6\? — ap—ago
f,=B<A_¢) [hm (@°(5/2)+ 6% (—8/2) )] 86-480° (A31)

For asymptotic behavior at positive transmembrane voltages we have:

r,~l( A‘;) l:Acﬁ rp-1 4 <¢°( 5/2)+4° (5/2>+f [6 (0)]? dx)]. (A32)

The above analysis was for continuous potentials. We now extend it to include potentials
with jumps. In both cases the asymptotic properties of the MFPTs are dominated by the
features of the n, & surface in the neighborhood of line 7 =0. To include the effects of jumps,
we proceed as we did in the one dimensional case except the ramp now defines four contours:
n=E(4¢e n=E—¢, n=—¢(+¢, and n= —¢—e¢. in the case of 7;, these contours define six
regions of the n, £ surface. Applying these contours to Fig. 19 we can see that the influence on
eqns (A30) and (A32) will be from the neighborhood of the point n =0, { =0. If we carry out
the integration by parts over each region and then pass to the limit as & goes to zero we obtain
additional terms for eqn (A30):

4/2

[¢°'(x)]2dx>] . (A30)

-d8/2

/2

-4/2

176\ 2o,
_ <_> (e**i—1 _A¢j) (A33)
and for eqn (A32):
1/ 6\ 2o,
— (—) (e —1+A¢)). (A34)

Here, we define A¢; as the magnitude of the jump.
Combining eqn (59) with eqns (A21) and (A32), we obtain the positive voltage asymptote
of J,:

_;=2 I:A¢ 8, +—(ﬂ2—y)]

1
Bp=r_eA¢0_1__A¢o+e—A¢,_1+A¢j

n

r _eM" ) ) ) 8/2 )
Vp=0 [( - " >(¢° (6/2)+¢° (—0/2))+j (0% (x)]? dx]- (A35)

n -4/2
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For negative voltages we combine eqn (59) with eqns (A30) and (A31) to yield:

Ad
Bo=—re 2 +1-A¢p°—e*+1+Ag;

J= [A¢ﬁ+ (82— )}

é/2

Va= —0 [(1 —r,e ") (6°(5/2)+ 9% (= 6/2)) —J‘ [6°(x)]* dx]- (A36)

—-4/2

Combining eqns (A4), (A21), (A32) with eqn (75) for the half saturation concentration we
have for large positive voltages:

- 1 0
"1/22T\/r—"ed’ “”2’[ 26 (09°(5/2)+B,)

A¢2 (6%[6°(6/2)* + 8% (6/2)] =7, + 09 (6/2)B, +ﬂ2] (A37)

For large negative voltages we use eqns (A4), (A30), (A31) with eqn (75) to yield:

ﬁl/zzéed’“‘ “’2’[ 15 087 (=012)45,)

A¢;(52[¢° —6/2)* +¢%( 5/2)]—vn+5¢°'(—5/2)ﬂn+ﬂf)]= (A38)

2. Maximum Small Signal Conductance for a One-Ion Channel Under Saturating
Conditions

In this appendix we find the ion—channel interaction potential that maximizes the small
signal conductance of a one-ion channel under saturating conditions. The equation for the
small signal conductance under saturating conditions (eqn 61) can be written:

4 2 2D 1 1
G=—kz—;,5—2|: f e dy f g m) dw]". (A39)
b -1 -1

Maximizing G is equivalent to minimizing the double integral in the brackets. We rewrite this
double integral as follows:

1 1 .
I{¢)= J J et60) = oW 4y, dw, (A40)
-1J-1

I(¢) is composed of infinitesimal units of volume:
dV=e#)=¢W qp dw, (A41)

We can construct /(¢) by combining pairs of elements d V. The pairs are chosen such that in
one element v=a and w=b, while in the other element v=b and w=a. This pairing spans the
entire region of integration by letting a and b vary from — 1 to 1. Consider the elementary
unit of volume composed of the sum of two such elements as follows:

dV, +dV, =[e?d0) 9 | godb)=0dar] gy dw, (A42)
This can be rearranged to yield:
dV, +dV,=2 cosh{¢(da)— p(éb)] dv dw. (A43)

Thus /(¢) is composed of elements of the form of eqn (A43). Clearly the entire volume is
minimized if each element’s volume is minimized. The minimum value of cosh is 1, thus the
minimum volume of an element is 2dv dw. This minimum occurs when the argument of cosh
is 0. This can only occur if ¢(da) = ¢(db) everywhere in the region of integration. Since aand b
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are arbitrary, this requires that ¢ be a constant. This derivation does not determine the
constant since G is independent of any offset in the potential. The value of this constant
determines the concentration at which the channel is occupied half the time.
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