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CHAPTER 7

ANALYTICAL DIFFUSION MODELS
FOR MEMBRANE CHANNELS

PETER Y. GATES, KIM E. COOPER, and
ROBERT S. EISENBERG

1. INTRODUCTION

Evidence gained from such techniques as patch clamp, membrane protein
reconstitution, site-directed mutagenesis, and electron microscopy yields a
picture of a channel as a globular transmembrane protein containing a water-
filled pore. This pore provides a low-energy pathway through which ions
may pass, producing a current. This current is modulated by a process
known as gating. The mechanjsm of gating involves some poorly understood
conformational transition in the channel protein that necessarily results in a
large change in the energy barrier to ion transport. Many factors in the
environment of the protein affect the gating process, including trans-
membrane voltage, membrane distortion, and binding of specific molecules
such as chemical transmitters and channel modulators. Hence, the trans-
membrane current of cells is determined by the number and tvpe of chan-
nels, the probability that a channel is open (gating), and the mean open
channel current (for a general reference to channel phenomenoclogy, see
Hille, 1984). This work will be specifically directed at this last factor, analyz-
ing the current through the open channel.

Historically, this process has been modeled in two different ways:
through the use of hopping models (Eyring et al., 1949; Heckman, 1965a,b;
Lauger, 1973) and through electrodiffusion models (Goldman, 1943;
Hodgkin and Katz, 1949; Levitt, 1986). Before 1955, these two approaches
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shared a roughly equal footing with no obvious theoretical or practical rea-
son to prefer one ovcr the ower. That situation changed with the experimen-
tal work of Hodgkin and Keynes (1955) in which they showed that ions do
not move through channels independently of one another, as had been as-
sumed in all models up to that point.

Various attempts to include nonindependent ion movement in channel
transport models followed. The first truly successful models were presented
by Heckmann (1965a,b, 1968, 1972). These models made use of the concept
of discrete ion occupancy states and transitions between the states (see also
Urban and Hladky, 1979). This approach lent itself naturally to the use of
Eyring rate theory for specifying the transition rates in terms of channel
structure and applied transmembrane voltage {(Lauger, 1973). Thus, channel
theory entered a period in which the preferred models were based on an
Eyring theory version of ions hopping over barriers.

Levitt (1982) showed how to combine a diffusional model for ion move-
ment with the concept of discrete occupancy states. This led to diffusional
models that incorporated nonindependent ion movement (Levitt, 1986,
1987; Gates et al., 1987). In this chapter we will review electrodiffusion
models and present some further generalization and interpretation of that
work as applied to the simple case of a channel that can hold at most one ion
at a time. A few channel types are thought to behave this wav aver a wide
concentration range, but anv channel would behave this way in the low
concentration limit. Also this is the simplest realistic channel model and so
is valuable for obtaining insight into the behavior of ion channels in general.
Levitt (1987) has analyzed the two-ion case using numerical techniques.

2. DERIVATION OF ONE-ION CHANNEL DIFFUSION THEORY

We begin by assuming that transport through each pore in a membrane
is independent of the other pores present. This assumption is the simplest
case and for many situations is the complete solution. In favorable situations
the patch clamp technique allows for the direct measurement of the trans-
port properties of a single pore in isolation. One could then correct these
data for the influence on the concentration at the mouth of one channel due
to the flux through adjacent channels. This aspect of the problem will not be
considered here; for a discussion of these issues, consult Lauger (1976).

The essential geometry of an ion channel can be represented in three
spatial domains. Two of these domains are the semi-infinite volumes on
either side of the channel which provide access to the channel interior. The
third domain is the channel interior itself. Manv of the properties of pore
transport are a consequence of the transition from an r? dependence of the
cross-sectional area in the bath to an essentially uniform cross-sectional area
in the channel itself. The physical model used here for these different do-
mains is the classical theory of electrodiffusion (Bockris and Reddy, 1970;
Sten-Knudsen, 1978).
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A model of the entire system can be obtained by combining the equa-
tions for transport in these three domains through the use of the steady-statz
assumption. This assumption allows one to equate the time-averaged fluxes
through the three respective spatial domains. This in turn allows the repre-
sentation of the channel current in terms of the properties of the bath where
measurements can be made at a point distant from the channel. The justifica-
tion of this assumption comes from a comparison of the relative time scales
of the relaxation to steady state and the mean channel open time. Estimates
of the relaxation times are on the order of tens of nanoseconds (Cole, 1965;
Hille, 1984), while mean channel open times are on the order of millisec-
onds. Thus, the steady state dominates the functional properties of the chan-
nel (see Section 7.1.3).

2.1. Independence

We will first derive what will be designated the independence flux; this
is the flux that would occur in a system without ion—ion interactions. In this
case, occupancy states will not be needed since the rate at which ions enter
the channel will be assumed independent of the occupancy state or the past
history of the channel. We will then see how the derivation of the indepen-
dence flux can be modified to include the effect of interactions between ions
in the channel and ions in the bath. Since we are only interested in the
movement of ions in the direction normal to the membrane, the problem can
be reduced to one dimension by defining a coordinate x to be the position of
the ion projected onto a line extending from the left opening of the pore to
the right opening. The differential equation on which the model is based is
the traditional Nernst—Planck equation, where the concentration n(x) is the
probability density per unit volume for finding an ion in the neighborhood
of x (for a summary of the symbols used, see Section 9):

- = Dix)A) [ 90+ de] (1)

where | is the current through a single channel (ions/sec) and ¢(x) = U(x)/
kT. The dimensionless potential includes the ensemble average of the in-
teraction between an ion and the channel-solvent system and other ions. We
further assume that the channel is a straight-walled pipe [the cross-sectional
area A(x) is a constant] and that the diffusion coefficient does not depend on
the position in the channel. In the steady state, Eq. (1) can be integrated from
the left end of the channel (x = 0) to the right end of the channel (x = 3)
through the use of the integrating factor e#*) to yield

_ DA[n(8)est® — n(0)e«)]

13
ewtx)dx
0

_Ii (2)
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where D is the diffusion coefficient in the channel and J; represents the
channel flux in the absence of ion—ion interactions. If one assumes that the
rate of ion entry and exit is fast relative to the rate at which ions move
through the channel, then Eq. (2), together with a model for the difference in
potential between the bath and channel ends, would yield the desired inde-
pendence flux. This would be equivalent to an assumption of quasi-equi-
librium between the bath and the channel, and then the product of the
concentrations and exponential of the potentials (i.e., the electrochemical
potential) could be equated with the bath values. Applying these results to
the bath on either side of the channel yields

_ DA[n(x)es(*) — n(—x)ew~=)]
fé e«(x1dx

0

_Ii

(3)

For illustrative purposes. consider the simplest example of the above
equation. This occurs when the channel has a uniform internal structure and
the applied transmembrane potential falls linearly within the channel ac-
cording to

¢(x) = d¢x/d + Agy, (4)

where Ae is the transmembrane voltage [A¢ = ¢(*) — ¢(—=), ¢(—=) = 0] and
Ag, is the potential change that occurs in moving an ion from the bath into
the channel. These two assumptions vield what is commonly known as the
constant-field assumption. It is one of the few examples for which the inte-
gral in the denominator can be evaluated analytically. Also make the sim-
plifving assumption that the concentrations on the two sides of the channel
are the same [n(—=) = n(x) = n|. With these assumptions the following
simple, well-known equation results:

-1 =

zqnDAAge 3%, (5)

| »

Here I, = zqJ;, z is the ion valence, and q is the electronic charge. In this case
the current—voltage curves are linear and the conductance does not saturate
with concentration.

In general, we would not expect the exchange of ions between the chan-
nel and bath to be much faster than the rate at which ions move through the
channel. In particular, the rate at which ions move through the channel
would depend on the applied electrical potential difference: hence, at large
potential differences the quasi-equilibrium assumption would break down
even if it were valid at small potentials. We therefore need a model for the
rate at which ions enter the channel. For this process we use the radial
Nernst—Planck equation:
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dn do ] (6)

=] = 272D, [‘a—r + H—J;

Here we have assumed that the diffusion coefficient in the bath, D,, is con-
stant. At this point we will further assume that the flux in the bath is in the
steady state. Equation (6) can be integrated with respect to the radial coordi-
nate through the use of the integrating factor e#(*} to obtain

_ Dg[n(b)e*® — n(a)eea)]

=Ji

- (7)
——f r-2eelndr
2w,

We have specified the value of the concentration and potential at the bound-
ariesr = aand r = b. For bounded ¢, the limit of Eq. (7) can be taken as b goes
to infinity. We can now use Eq. (7) for the rate at which ions enter the
channel by defining a capture radius p (Lauger, 1976) within which ions are
considered to have entered the channel. Equation (7) can then be integrated
from the capture radius (r = p) through the bath (r — <) and solved for the
electrochemical potential at the capture radius to yield

n(p)ec®) = n(xjee=) + (J/kjee (8)
kl ede = 2—rrlD ‘F r-2e¢indr (9)
£ b7p

We have assumed in Eq. (9) that the potential in the bath on the right end of
the channel can be written as ¢(r} = ¢'(r) + A¢ with ¢” the potential when A¢
= 0. This is equivalent to assuming that the membrane capacitive charge has
infinitesimal thickness. By convention we take the bath on the right end of
the channel to be at positive radial coordinates; hence, Eq. (8) yields the
concentration at the right end of the channel. The concentration at the left
end of the channel is obtained by integrating Eq. (7) from negative infinity to
the capture radius at the left end of the channel and again solving for the
electrochemical potential:

n(~plee!—¢) = n(—c) — (J/k) (10)

Here we have assumed k; to be the same in both baths.

Now we seek an expression for the flux through a channel connected to
the bath. We equate the concentrations at the capture radii with the con-
centrations in the channel at x = 0 and x = 3. Equations (3), (8), and {10) can
then be combined and solved for the flux to yield

n(x)ed¢ — n{—x)

- = , (1)
1 (ede + 1) + LJE estxldx
kf AD [
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This equation then generalizes the independence flux to include the effects
of the bath.

In order to show the consequences of this generalization we need to
specify ¢(r). We assume that ¢(r) is a 1 k, T barrier to entrance that represents
the effects of partial dehydration of the ion as it enters the channel. Our
constant-field expression then becomes

zqfede — 1)
tede + 1 + (k; dedeb/ADA@)(e¢ — 1)

Figure 1 shows the potential function we have assumed for the system. The
effects this has on the current—voltage relation are seen in Fig. 2. Note that
the main effect is to decrease the current at large voltages. This occurs be-
cause eventually the current through the channel becomes limited by the
rate at which the baths can supply ions to the channel mouth. Since ion
movement in the bath is voltage independent, the current saturates at a fixed
value given by

Ll = zqnk; (13)

2.2. Nonindependence

We now relax the assumption of independence. The channel environ-
ment involves chemical groups that are constrained by the structure of the
protein and may therefore stabilize positive charge over negative or vice
versa. This fact has been experimentally verified repeatedly in biological
channels (see Hille, 1984). This gives rise to an asvmmetry in the interaction
between ions in the bath and ions in the channel since ions of like charge in
the bath are shielded by counterions. We therefore assume that an ion in the
channel strongly influences other ions in the channel and in the bath access
regions while ions in the bath weakly influence the concentration of ions in
the channel. We will consider the simplest consequence of this asymmetry,
where at most one ion may enter the channel at a time (see Section 7.1.2).

One-Ion Channel

We proceed by considering that the channel can be characterized by two
distinct states. The first state is associated with the channel being occupied
by one ion and the second state is associated with the channel being empty.
In defining these states we will generate a means by which boundary condi-
tions can be obtained for a flux equation in the channel. The procedure will
involve writing flux equations for each of the three regions of the channel
system; the bath access regions and channel itself. We will then make the
steady-state assumption and match the boundaries through the aid of the
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channel occupancy states. Strictly speaking, this procedure is not rigorous.
In fact, the more rigorous procedure would be to obtain the boundary condi-
tions of the time-dependent Nernst-Planck equation and then average to
obtain the steady state. This is a more difficult problem and will not be
considered here. The matching of the boundaries after having made the
steady-state assumption is equivalent to assuming that the flux in the bath
instantaneously reaches the steady state after an ion leaves the channel. A
more detailed treatment of this last assumption is given in Section 7.1.3.

In order to construct the steady state in the bath we note that the bath
flux is given by the product of the flux in the the bath when the channel is
empty (J,) times the probability the channel is empty (P,) plus the flux in the
bath when the channel is occupied (J,) times the probability the channel is
occupied (1 — P); thus, we have

J=1JoPo + (1 = Py) (14)

(A more detailed argument is given in Gates, 1988.) The assumption that the
channel will admit at most one ion implies that no additional ion can enter
when the channel is occupied, thus J, = 0. Thus, the flux in the bath aver-
aged over all time is given by

n[x)e-\ap —_ no(p]ew’(p) (151

J’ r—2e«lndr
P

=] = —JoPo = Py

ZTTDb

where ng(p) is the concentration at the capture radius r = p, on the right end
of the channel averaged over those times when the channel is empty. Notice
that J, is exactly the previously defined independence flux. At this point we
must link these results to the flux expression in the channel. We assert that
the electrochemical potential must be continuous at p:

n(p)e*®) = n(d)e*'d (16)

This is a consequence of the fact that a gradient in the electrochemical
potential is the driving force for flux. Thus, a discontinuity in this potential
would give rise to an infinite flux.

As with the flux, the above concentrations can be represented in terms
of a weighted average of the concentrations during those times the channel is
empty (n,) and occupied (n,) yielding

n(p) = ny(p)P, + n,(p)(1 — P,) (17)
Consider the case when the channel is alreadv occupied bv an ion. Under the

one-ion assumption. there is some potential of interaction between an ion in
the channel and ions in the bath such that additional ions are not allowed to
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enter. If we assume that the concentration is continuous, the~ this implies
that the concentration just outside the channel, i.e., n,(p), is zero, thus

n(p) = no[p]Po (18]
Substitute this into Eq. (15) to obtain

n(gc)PoeAw — n(p)eetr)

1 f -2gwlrld
r

== (19)

where n(p) is now the concentration averaged over all time. We can now
make use of Eq. (16) together with Eq. (19) to obtain a boundary condition for
the right end of the channel:

n(3)e«® = n(x= JP e3¢ + (J/ki)es® (20)
The analogous expression for the left end of the channel is
n(0)e<® = n(==)P, — (J/k¢ (21)

where, as with the right end of the channel, we take n(0}e*(9) = n(—ple¢t—»}
and use the negative radial coordinate to indicate the left end of the channel.

We now replace Egs. (8) and (10) with Egs. (20} and {21), again equate
the channel and bath fluxes, and solve for the flux to vield

j= — Poln(==) = n(xjede] _p . (22)

El- (ed¢ + 1) + evxidx
f

1

ADJ,
In order to completely specify the flux under the one-ion assumption, we
must now obtain an expression for the probability P, that the channel is

empty. This is done by integrating Eq. (1) from zero to an arbitrary position x
in the channel and then solving for the concentration at x:

n(x) = [n(O]e"?“’l - %f" e‘G(S'ds] e -olx) (23)

O

We can now combine Egs. (21) and (23), multiply the result by the channel
cross-sectional area, and integrate from x = 0 to x = & to yield the probability
the channel is occupied by one ion. Since we have assumed that the channel
is either occupied by one ion or is empty, we have that the empty probability
is one minus the above integral:

Py =1- n(—ac}/:utq,f15 e-etdx + JB (24)
o
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where

A ld 1 (% X
B = [—-j e—elxidx + —f e‘@"‘"[ edS’dsde (25)
kf 0 D 0 0]

Using Eq. (22) to eliminate the flux from Eq. (24) and solving for P, vields
) -1
Py = [1 + n(—oc)A[ e~exdx — [iB] (26)
o

Combining Eqgs. (22) and (26) yields an expression for the flux:

J = J (27)

1+ n(~x)AJh e~*xidx — J:B
(o]

Equation (27) reduces to Levitt's (1986) result [Eq. (A4)] when Eq. (9) is
negligible compared to the denominator of Eq. (3) divided by AD.

We now can see how ion—-ion interaction modifies the independence
flux. It does so by scaling the independence flux by an amount that is a
function of concentration and applied transmembrane voltage. The effects
this has on the current—voltage relation under the constant-field assumption
can be seen in Fig. 3. One effect is to linearize the curve. Another effect is to
give rise to a saturating relation between conductances and concentration.
Note that we obtained this result without having a specific binding site in
the channel. In our constant-field case the entire channel acts like a binding
site. The equation for the affinity constant of this binding site (in the near-
equilibrium case) is

K, = Ade~ae (28)

This is the well-known result that the equilibrium affinity constant is the
effective volume of the binding site times the Boltzmann factor. Near equi-
librium we define a small signal conductance and plot it against concentra-
tion in Fig. 4:

Gss = n/[k,T(2/k, + 82/DK,)(1 + nK,)] (29)

One is still left wondering about possible ways to interpret the various
integrals in Eq. (27). In particular, note that the quantity labeled B has units
of time. One of the goals of this chapter is to develop a detailed understand-
ing of this time (see Section 5). Also in the above derivation we made use of
two states. the probability the channel was occupied and the probability the
channel was empty. Such state probabilities are reminiscent of the occupan-
cies of states in chemical kinetic schemes more traditionally used in model-
ing ion permeation in channels. We would like to organize the derivation in
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a way that would provide a more transparent connection with traditional
theory.

We pursue this program by considering various classes of trajectories
taken by ions that encounter the channel. This classification of trajectories
will form the basis of a kinetic scheme that can be demonstrated to be
equivalent to the above result. The classification of trajectories will also lead
us in a natural way to interpret the integral expressions in the empty proba-
bility in terms of the theory of passage times (Weiss, 1966: Schulten et al.,
1981; Goel and Richter-Dyn, 1974; Gardiner, 1983; Cooper et al., 1988).

3. CHANNEL STATES AND TRANSITION RATES

The previous calculation suggests that the details of the mechanism by
which an ion moves inside the channel may be considered separately from
transitions between states characterized by the number of ions that occupy
the channel. In order to pursue this idea, we will consider trajectories of
individual ions as they move in the channel or the bath outside the channel.
Such trajectories and their properties can be related in a natural way to
machine calculations of the equations of motion of an ion in a channel
(Jordan, 1987). In general, we can represent the position of the ion in the
channel as a function of time x(t). We expect that x(t) will be continuous (no
instantaneous jumps) as illustrated in Fig. 5.

3.1. Trajectories in a One-lon Pore

If we consider the geometry of a channel, trajectories of ions can be
classified into several possible categories. For the moment, consider an ion
whose initial position is at the left end of the channel. If we wait for a length
of time much longer than the mean time an ion spends in the channel, then

Position

) /\\/\\\'/ﬁ/\/
FIGURE 5. Trajectory in one spatial

{ Time v dimension as a function of time.
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a)
S
§ I3
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FIGURE 6. The three possible classes of trajectories as- cH| T T
sociated with a one-ion channel where the initial posi- . . f
tion is on the left (x < 0) side of the channel. Panel (a} is /(‘/J"f e
a trajectory that never encounters the channel, panel (b) o
is a cis trajectorv whose initial and end points are on the [ ~
left side of the channel. and panel {c) is a trans trajectory
whose initial point is on the left side of the channel and
whose end point is on the right side of the channel. Time

we are likely to find the ion either in the bath on the left side or on the right
side of the channel. Hence, an ion that encounters the channel will
eventually end up either on the same side from which it entered or on the
opposite side. These two outcomes will be designated cis and trans, respec-
tively. If we consider an ion whose initial position is in the bath on the left
side of the channel, we have a total of three possible outcomes: the ion may
not encounter the channel, the ion may encounter the channel and be a cis
trajectory, or the ion may encounter the channel and be a trans trajectory.
These three classes of trajectories are illustrated in Fig. 6. If we then include
those trajectories that begin in the bath on the right end of the channel, we
have a total of six categories of trajectories. These categories are a natural
consequence of the channel geometry and the assumption that at most one
ion may enter the channel at a time.

3.2. Three-State Model

These categories of trajectories can now be used to generate a formalism
bv which the steady-state diffusion models can be combined with the con-
cept of occupancy states. If we consider the initial positions of ions in the
svstem, thev are either on the right or left side of the channel. Thus, the state
characterized bv single ion occupancy can be divided into two states de-
pending on the point at which the trajectory originated. If we add to this the
empty state, we have a total of three occupancy states. Associated with these
states are the probabilities (dimensionless) of finding the channel in each of
the states:
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State Probabilities

P, The probability that the channel is empty

P The probability that the channel is occupied by an ion whose trajectory started on the
left side of the channel

P(r) The probability that the channel is occupied by an ion whose trajectory started on the

right side of the channel

Transitions between these states are then modeled through the use of a set of
transition rates. These transition rates fall into two categories: rates at which
ions fill the channel and rates at which ions empty from the channel. As in
the case of the states characterized by the channel being occupied, the filling
rates fall into two categories, each depending on the point at which the
trajectory originated. These filling rates select for those trajectories that en-
counter the channel:

Filling Transition Rates

Fy The rate at which ions (that have trajectories starting in the left bath) encounter the
capture radius on the left end of the channel
F(r) The rate at which ions (that have trajectories starting in the right bath) encounter the

capture radius on the right end of the channel

Having selected for those ions that encounter the channel, we can further
select between the cis and trans trajectories through the use of conditional
exit rates. Given that we have eliminated all trajectories that do not encoun-
ter the channel through the use of the filling rates, we are left with four
remaining categories of trajectories. We associate each of these categories
with an exit rate:

Exit Transition Rates

Cis

E(h The rate at which ions {having trajectories that start and end in the left bath) exit the
left end of the channel

E(rir) The rate at which ions (having trajectories that start and end in the right bath) exit
the right end of the channel

Trans

E(l|r) The rate at which ions (having trajectories that start in the left bath and end in the
right bath) exit the right end of the channel

E(r|l) The rate at which ions (having trajectories that start in the right bath and end in the

left bath) exit the left end of the channel

These rates describe transitions between the three different states of the
channel. It is clear, by the arguments given above, that these transition rates
describe all possible trajectories. But we have not yet determined how the
transition rates depend on the channel structure, i.e., the component of ¢(x)
due to ion—channel interactions.

The three-state kinetic scheme can be summarized in the single kinetic
diagram in Fig. 7. The following set of equations describe the svstem:
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E(rir)

F(r)

e et T

Filled from left
P(1)

E(riz) Filled from right
P(r)
unidirectional

eftiux

o=t
®=R

o ————————————

FIGURE 7. Characterization of the three possible occupancy states of a one-ion channel and the
transitions between the states. Pg is the probability that the channel is empty. P(l) and P(r) are
the probabilities the channel is occupied by an ion that started on the left and right side.
respectivelv. F(l) and F(r) are the rates (units seconds — ') at which ions fill the channel from the
left and right side, respectively. E(l|l) and E(rir) are the rates {units seconds~') at which the
channel empties on the same side it fills. E(l|r) and E(r{l) are the rates at which the channel
empties on the opposite side from which it filled. Only the trans trajectories contribute to the
unidirectiona!l fluxes.

F()P, — [E(l) + E(l|r)}P(1) = dP(1)/dt (30)
F(r)P, — [E(r]r) + E(z]l)]P(r) = dP(r)/dt (31)
P, + P(l) + P(r) = 1 (32)

In the steady state, the derivatives with respect to time are zero and Eqgs. (30)
through (32) yield the following matrix equation:

-E, o F| PO 0
0 —-E, F||p)| =1]o (33)
1 11]|P, 1
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where E; = [E(l|l)+ E(l|r}] is the sum of the rates at which ions originating on
the left end of the channel exit from the channel and E, = [E(r|r) + E(r]l})] is
the equivalent expression for the right end of the channel. Making use of
these definitions, the solution of the above matrix equation is

- ElEr
PO B EIEr + FlEr + FrEl (34)
_ F\E,
PO = gr+FETFE (35)
P(r) = it (36)

ElEr + FlEr + FrEl

We now have relationships between the state probabilities and the transition
rates between the states. In order to completely specify the model, we need
expressions relating the transition rates to the ion—channel interaction po-
tential and the concentrations of permeant ions on either side of the channel.
In principle. we could, at this point, make use of any number of models for
the dynamics of ion movement up to and through the channel. Thus, Egs.
(34) through (36) reflect the basic topology of a one-ion channel and there-
fore transcend any specific model for the dynamics of ion movement in the
channel. For a discussion of the relationship between the three-state model
and more traditional chemical kinetic schemes, see Section 8.

4. ELECTRODIFFUSION INTERPRETATION OF TRANSITION
RATES

4.1. Preliminaries

Before continuing we make the following definitions. Define an elec-
trodiffusive length as follows:

b
Lt =J' evlxidx (37)

Notice that negative potentials tend to reduce the electrodiffusive length
below the physical length while positive potentials increase the elec-
trodiffusive length above the physical length. From this, we can define an
electrodiffusive resistance:

Rb = LE/AD (38)

The electrodiffusive resistance is proportional to a voltage-dependent gener-
alization of the electrical resistance. the proportionalitv constant being
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(zq)?n/k,T. The reciprocal of Eq. (38) has the units of velocity times area and
so could be thought of as a voltage-dependent permeability. The electrodif-
fusive resistance provides a convenient and intuitive wayv in which to write
the integrated form of the Nernst—Planck equation and will be used through-
out the remaining presentation.

4.2. Derivations

We now develop connections between the transition rates and elec-
trodiffusion equations, obtaining a set of identities between the six transition
rates of our kinetic scheme and their corresponding electrodiffusion theory
interpretations. Let us begin with the entrance rates, F(l) and F(r). We will
concentrate on F(i), the arguments for F(r) being completelv analogous. F(l)
is the rate at which ions that start in the left bath find the mouth of the
channel (i.e., arrive at p). The rate of such encounters was first calculated by
Smoluchowski (1917) and later extended by numerous authors (reviewed in
Rice, 1985). The technique used put a source of particles far from the en-
counter surface and set the concentration on the encounter surface to zero
[making it a so-called absorbing boundary; see Egs. (7}~(9)]. Using these
boundary conditions in the diffusion equation, we equate the encounter rate
with the flux (unidirectional) through the system. Denote such a flux by J(q|
b), where a is the source location and b is the absorbing boundary location.
Using Eq. (1) such a flux can be shown to be

J{alb) = n(a)e¥t°}/RE (39)

In our case, on the left end of the channel, the source is at —= and the
absorbing boundary is at the capture radius {(—p). This yields

F(l) = J(==|-p) = n(—=)/RZ% (40)
Analogously for the right side we obtain
F(r) = =J(=lp) = n(x)e**/R} (41)
Let us now find an expression for the trans exit rates E(l|r} and E(z|l). As
above, we will concentrate on E(l|r) and note that the arguments for E(r|l) are
analogous. The starting point for this derivation is the net flux equation as
interpreted from the kinetic scheme:

J = E(n)P()) = E (r[)P(r) (42)

Note this is the difference between two unidirectional fluxes. The diffusion
equation can be written likewise:

J = J(—=[=) — J(=|-=) (43)
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where

J(==|®) = (Pon(-=)/R_Z (44)

=J(=|==) = Pgn(=)e*/R_Z (45)

Here, we define R_Z = RZ¢ + R§ + R}. Equating the unidirectional fluxes
we obtain

E(lir)P(]) = J(—=x|=) (46)
Using the above we can arrive at the following:
E(llr) = Pgn(—==)/[P(1)R _Z] (47)

This equation establishes the relationship between the trans exit transition
rate and the bulk electrochemical potential. To proceed, we require an ex-
pression for the occupancy probability P(l) in terms of the electrodiffusive
resistances. Analogous to our earlier treatment of P,, P(l) can be found by
integrating the concentration in the channel [see Egs. (23) and (24)]. Since
we have assumed a steady state, we can integrate from an arbitrary position x
in the channel up to the right end of the channel or similarly from the left
end of the channel up to an arbitrary point x, yielding

n(x) = [n(&)ew(s) + ]Ri}e—o(x) (48)

n(x) = [n(O]e“‘O’ - ]Rg:le“"("’ (49)

At this point we need expressions for | and for n(0)e*(© to obtain P(l). We can
use Eq. (45) for the flux. To obtain an expression for the electrochemical
potential at the mouth requires a little more work. Such an expression can be
obtained as follows. Note that the flux, J(—=|x), can be written in terms of the
net flux in the bath on the left end of the channel where the concentration in
the bath on the right end of the channel is set to zero (analogous to Eq. (19)]:

J(=>|=p)Py — J(—pl—2) = J(—=|=)
(1/R~ _8)[Pon(—=) — ny(—p)e®~@|/R=g= Pyn(—=)/R_2 (50)
We have introduced the subscript | in the concentration to emphasize that

ions contributing to this concentration have originated in the bath on the left
side of the channel. Solving for nj(—p)e*t~#} yields

n(—plest=¢l = P n(-=)R3/R_2 (51)

x
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If we associate the concentration at the capture radius on the left end of the
channel with the concentration at x = 0 inside the cl.annel, Eq. (51) can be
combined with Eq. (49) to yield an expression for the concentration at x in
terms of the bath concentration:

ny(x) = [Pon(—=)/R>_]R%e ) (52)

Strictly speaking, we should consider a three-dimensional treatment of the
entrance process. Here, we are assuming that such considerations can be
absorbed into the choice of the capture radius, which depends only weakly
on the other parameters of the model. Integrating from 0 to 8 and multiplying
by the cross-sectionai area yields the occupancy probability due to ions that
started in the left bath:

PgAn(

P(l) = Af: n(x)dx = R= ac]f Rre~+(xldx (53)

and the corresponding result for ions that started in the right bath:

PyAn(x)eds

R f Rx e -elxdx (54)

P(r) = AI [(x)dx =

This expression for P(l) can now be substituted into Eq. (47} to vield an
expression for the trans exit transition rate in terms of the bulk electrochemi-
cal potential and the channel structure:

E(lr) = (Afﬁ H;e—‘c(’ddx)_1 (55)
o]}
An analogous equation for E(r}l) can be derived, yielding
& -1
E(rll) = (Af H’i,e—‘d’"dx) (56)
o

We now have the desired expressions for four of the six rate expressions.
Our final job is to find expressions for the cis exit rates, E(l|l) and E(r|r). As
above, we will concentrate on E(l|l) and note that E(r|r) can be obtained by
analogous arguments. The derivation begins with Eq. (30) derived earlier
from the kinetic scheme:

F()P, = P(HEAN) + E(l|r)] (57)
This can be rearranged to yield

E(ll) = [FI)P,/PU] - Ellin (58)
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If we now substitute in the expressions above for F(l1}), P(l). and E(l|r). we
obtain our desired result:

E(|l) = - Rg (59)
ARQ,[ Rxe-#ix)dx
4
and by analogous arguments we obtain
3
E(elr) = i (60)

AR? J Rx  e—elxidx

0

If Eqs. (53)—(56) are substituted into Eq. (42), we will recover (after some
rearrangement) our earlier result [Eq. {27}] showing the consistency of the
two approaches. There still remain questions concerning the connection
between the above rates and the occupancy times in the channel. These
issues will involve a considerable digression where we will build, in several
steps, from a reduced problem that is standard in the theory of passage times
up to the exit transition rates derived above. This process will involve gener-
alizing the mean first passage times (MFPTs), which are standard results in
the literature (Weiss, 1966; Goel and Richter-Dyn, 1974; Gardiner, 1983;
Cooper et al., 1988), to what we will refer to as mean occupancy times.

5. TRANSITION RATES AS MEAN FIRST PASSAGE TIMES

The first passage time is the time that a diffusing particle spends in a
designated region before encountering a target defined by an absorbing
boundary. Because the target is absorbing, the first encounter with the target
results in the particle being removed from the region, hence the designation
first passage time. The use of the first moment of the distribution of passage
times as a model for a rate constant in chemical kinetics has been shown to
be a useful approximation (Schulten et al., 1981). This tvpe of model has
also been suggested for the rate constants traditionally used in modeling
transport in ion channels (Jakobsson and Chiu, 1987; Gates et al., 1987;
Cooper et al., 1988). In our treatment above, we started with a steady-state
diffusion equation and in the process of accounting for discrete occupancy
states we generated expressions similar to standard results in the theory of
passage times. On discovering these similarities we began to pursue a rela-
tionship between the two results. Here, rather than starting with the transi-
tion rates and attempting to interpret them in terms of passage times, we will
start with calculations of passage times in reduced problems and slowly
build to expressions that can be directly related to the transition rates in our
model of a channel. In the calculation of passage times, we make use of
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artificial “channels” confined between absorbing and reflecting boundaries.
These seem in conflict with our intuition concerning the nature of trajecto-
ries of ions entering and leaving a channel, but we shall see in the following
series of derivations that the simpler trajectories associated with passage
times provide the information needed to calculate the time an ion occupies a
channel.

5.1. The Steady State and Mean First Passage Times

It has been shown (Hardt, 1981; Cooper et al., 1988) that MFPTs can be
related to steady-state fluxes. In this approach we define the “holdup” of a
system to be the average number of particles in the system under a given set
of steady-state conditions. In one dimension, these conditions consist of
either an absorbing and reflecting boundary or two absorbing boundaries. If
we then assume that the dvnamics of the particles in the system are indepen-
dent of one another, the mean time of passage of a particle through the
system is the -holdup divided by the steady-state rate at which ions are
injected into the svstem:

T = N/ (61)

where 7 is the MFPT. N is the holdup. and I is the steadv-state rate of
injection. We can now make use of Eq. (39) where the source of the unidirec-
tional flux is the point of injection and the sink is at an absorbing boundary.
In the case where we have an absorbing and reflecting boundary, there is a
unidirectional flux from the point of injection to the absorbing boundary and
no net flux between the source and the reflecting boundary. In the case
where we have two absorbing boundaries. we make use of two unidirec-
tional flux equations of the form of Eq. (39). each with the source at the point
of injection and the sinks at the two absorbing boundaries. The holdups are
obtained through the use of equations analogous to Egs. (23), (48), and (49).
In our system, the one-ion assumption requires that the holdup be no greater
than one (the channel alwavs occupied). Equivalently, the holdup can be
considered to be the probability the channel is occupied. In our notation. Eq.
{61) becomes

T_P[l)+P[r)_1—PO
B I T

(62)

Equation (62} provides a method by which the first moment of the passage
time can be calculated from steady-state diffusion. We will begin with a very
simple set of boundarv conditions that will yield a standard result in the
theory of MFPTs. After having done so, we will then proceed to generalize
the boundary conditions until we obtain a result that is the reciprocal of the
exit transition rates of the previous section. Along the way we will discover
several interesting properties of the mean time an ion occupies the channel,
and we will relate these properties to the trajectories of individual ions.
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AN AN

MFPT =5 (0] O. R 5. A)

is the notation for a Mean First Passage Time

with initial; and boundary, conditions
(x; = O| reflecting boundary at xy = O: absorbmng boundary at x, - )
FIGURE 8. The notation we use for the mean first passage time v and the mean occupancy time t

indicates the initial position of the diffusing ion followed by the locations and attributes of the
systemn.

5.2. Mean First Passage Time

In the calculation of MFPTs there are three parameters: the initial posi-
tion of the diffusing particle, and the two boundaries of the spatial domain.
One of the boundaries must be absorbing while the other can be either
absorbing or reflecting. The notation we use indicates the initial position of
the diffusing particle followed by the locations and attributes of the bound-
aries of the system (see Fig. 8):

MFPT - 7(0[0.R;5.A)
with initial and boundary conditions:

(x; = 0| Reflecting boundary at x = 0; Absorbing boundary at x = 3)
First consider a one-dimensional box with the above boundary conditions.
Recalling the recipe for the MFPT, we must obtain expressions for the
steady-state rate of injection and the steady-state holdup. We begin with the
injection rate by applying the above boundary conditions to Eq. (39):

I = J(0]3) = n(0)e*©/R3 (63)

We now obtain the holdup by integrating the steady-state concentration
over the length of the box:

Pocc =1- Pu = 1‘:\J’8 n(x)dx (64)
(4]
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The holdup is, of course, the occupancy. We combine Eq. (49) with Eq. (63)
to obtain an expression for n(x):

n(x) = [n(0)e*©}/R§]RGe ~*x) (65)

This result can be compared with Eq. (52). Integrating Eq. (65):

P, = é.“(_o)e_“o.)jb Roe—eixdx (66)
] 0

Taking the ratio of the holdup and the flux eliminates the boundary condi-

tion at x = 0 and yields the passage time. After a change in the order of

integration, we have a result previously obtained by others with more so-

phisticated approaches (Weiss, 1966: Goel and Richter-Dyn, 1974; Schulten

et al., 1981; Gardiner, 1983; Cooper et al., 1988):

8 b s
T = Af Rée-etxidx = lj e¢(sij e~«'dxds (67)
0 D o 4]

Notice that this expression is equal to the second term on the right-hand
side of Eq. (25). As mentioned earlier, this observation motivated what fol-
lows. In summary, we obtain a passage time by representing the steady-state
flux and holdup in terms of the electrochemical potential at the initial posi-
tion of the ion in the system of interest. We then take the ratio of the holdup
to the flux yielding the passage time. We must now extend this calculation in
a way that more accurately reflects the trajectories of ions associated with
the “real” channel geometry described previously.

5.3. Mean Occupancy Times in Terms of Mean First
Passage Times

It is clear that the trajectories associated with the calculation of the
MFPT are quite different from those associated with the one-ion channel
described in Section 3, and so we must modify the boundary conditions to
more accurately reflect an ion channel. In the calculation of the MFPT of the
previous section, we injected ions into the box by placing each ion at the
reflecting boundary. As alreadyv discussed, in the case of a pore, ions may
leave from the same side that they entered. something not permitted by the
reflecting boundary of the previous calculation. In fact, it would be expected
that any ion that encountered the channel would undergo many crossings at
the boundary of the channel. As a consequence, the durations we calculate
under the steady-state assumption in this section will be referred to as mean
occupancy times (MOTs). Both the MOT (denoted by t) and the MFPT (de-
noted by 7) are the average times that a diffusing particle spends in a region
before encountering an absorbing boundary. In the case of an MFPT, the
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target is on the boundary of the system and (because the target is absorbing)
the first encounter with the target results in the particle being removed from
the system, hence the designation mean first passage time. In the case of an
MOT, we are interested in the time a particle spends in a region which is a
proper subset of the system and consequently a particle can encounter a
boundary of the region, leave the region. and later reenter before finally
being absorbed at the target. Because the time the particle spends outside the
region is counted in an MFPT analysis, but not in an MOT analvsis, an MFPT
> MOT for the equivalent geometry of the system. The MOT is related to the
MFPT through the ratio of the holdup of the region to the holdup of the
system.

The strategy of the following sections will be to extend the calculation of
the MFPT in three steps. We will first modify the reflecting boundary of the
MFPT calculation to more accurately represent a channel. We will then
modify the absorbing boundary of the MFPT. Finally we will combine these
results to yield an expression that can be directly compared with the exit
transition rates. After each MOT is obtained, we will interpret the MOT in
terms of the MFPT of the previous section through the use of arguments
based on averages of the durations of trajectories. These arguments follow
the spirit of the presentation of Chandrasekhar (1943). For the MOTs we
will, by convention, always refer to the occupancy time in the channel, i.e.,
the time the ion spends in the interval (0,3). As in the case of the MFPTs, we
must then specify the locations and attributes of the boundaries of the sys-
tem, and the initial condition.

5.3.1. MOT #1 (x; = 0| x = =\, Absorbing; x = 8, Absorbing)

In the MFPT calculation, we forced the ion to exit the right x = § end of
the interval by placing a reflecting boundary at the left end at x = 0. In an ion
channel we know that an ion that encounters the left end of the channel may
exit from either end. To approximate this possibility more realistically, there
must be two absorbing boundaries in the system. Thus, we place an absorb-
ing boundary at an arbitrary position (—A) in the bath to the left of the
interval. We now have two possible outcomes: the ion may be absorbed in
the bath at x = —X [and contribute to J(0]—A)] or pass through the channel to
be absorbed at x = 3 [and contribute to [(0|5)].

Thus, in comparison with the calculation of the MFPT, we have ex-
tended the system out into the bath. and what used to be the svstem has
become a subregion of the new system. Consequently, the holdups of the two
calculations are obtained bv integrating over the same interval, while the
rate of injection in the MOT calculation includes the additional flux to the
absorbing boundary at x = —\. This additional flux is obtained by writing
Eq. (39) with @ = —X and b = 0. The rate of injection is then the sum of the
absolute value of the unidirectional fluxes to the two absorbing boundaries
in the svstem:
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I = J(0|8) — J(0]—\) = n(0)e*® R3 ,/(R° ,R3) (68)

Since the holdup for the MQOT is obtained by integrating over the same
interval as was the holdup for the MFPT, we can use Eq. (66). We now divide
the holdup by the new expression for the flux to obtain the new expression
for the MOT:

RO
R2

5
t(0]—N\,A58,A) = =2 AJ Rde —#txidx (69)
A o

Comparing this expression with the expression for the MFPT [Eq. (67)]
yields

t(0|—X\.A;8,A) = (R%,/R% ,)7(0[0,R;3,A) (70)

Let us pursue a better understanding of this result. First note that the ratio of
electrodiffusive resistances in Eq. (70) is precisely the ratio of the rate at
which ions pass through the channel to the rate at which ions are supplied to
the source {the sum of the rates that the ions are removed at the two absorb-
ing boundaries). This is the probability that an ion that starts out at the
source will eventually be absorbed at the opposite end of the channel.
Hence, we define a probability that we will call the trans probability:

ptn:ms = ](Ola)/U(OIS] - ](Ol‘“A)] = RO_)‘/HS_)\ (71)
We can also account for the remaining ions by defining a cis probability:

P_. = R3/R%, (72)
Applying the definition of the trans probability to Eq. (70) yields the result
that the channel MOT under these boundary conditions is given by the
product of the MFPT and the probability that an ion exits the opposite end of
the channel:

t(0]-\,A8,A) = P,,...7(0]0.R;3,A) (73)

trans
In order to understand the above result, we now consider an ensemble of
trajectories. These trajectories are of two categories: the first category (cis) is
the set of trajectories that terminate at the absorbing hemisphere at x = —A,
and the second category (trans) is the set of trajectories that reach the trans
absorbing boundary at x = 8 and terminate there. Consider a trajectory from
the first category. If we discard those times during which the ion is outside of
the channel, we are left with a trajectory that begins and ends at the cis end
of the channel and in between appears to reflect off of the cis boundary at
every encounter. To see this, notice that every time the trajectory encounters
the boundary of the channel at x = 0 it will be joined with a later part of the
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trajectory where the ion reenters the channel. thus giving the appearance of
reflecting off the boundary at x = 0. In this way we can define an accumulat-
ed duration that a given ion spends in the channel. We can do likewise for
trajectories from the second category. If we enumerate the members of the
ensemble with the index k we have for the MOT:

N
(0]-MAB.A) = lim 3 2 At (74)
Nesx N pay

where At, is the accumulated duration the kth ion spends in the channel.

Let us consider a different system of indexing the trajectories of the
ensemble. In the above discussion we identified each trajectory with an
index k. We now define two indices i and j. The index i enumerates the
trajectories from the second category, those that are absorbed at the trans end
of the channel. Each trajectory from the second category defines the end of a
partial sequence of trajectories. The index j enumerates the trajectories with-
in a partial sequence. We allow i to range from 1 to M, the number of
trajectories from the second category, which is also the total number of
partial sequences. The index j ranges from 1 to n;, the number of trajectories
in the ith partial sequence (see Fig. 9).

Consider the ith partial sequence of trajectories. The first n; — 1 edited
trajectories (first category) begin and end at the cis end of the channel and in
between appear to reflect back into the channel at every encounter of the cis

lst partial {th partial mth partial
sequence T sequence " sequence
Ist
trajectory
ith
trajectory
n,th
trajectory

FIGURE 9. An ensemble of trajectories can be enumerated in such a way that after editing out
those parts of the trajectories that lie outside of the channel. the trajectories that remain can be
appended to compose a sample trajectory from an MFPT. This is done by dividing the ensemble
into partial sequences that are enumerated by the index i. Within each partial sequence the
trajectories are enumerated by the index j. The ith partial sequences begins with n, — 1 trajecto-
ries of the first kind (absorbed at x = ~} and ends with a trajectorv of the second kind (absorbed
at x = 8).
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channel boundary, never reaching the trans absorbing boundary. The n;th
edited trajectory (second category) begins at 0, also appears to reflect back
into the channel at every encounter with the boundary at 0, and ends at the
trans absorbing boundary. If we now append these n, edited trajectories, we
will obtain a single accumulated trajectory that is indistinguishable from a
sample trajectory where there is a reflecting boundary at the cis end of the
channel and an absorbing boundary at the trans end of the channel. The total
time, At;, for the accumulated trajectory associated with the ith partial se-
quence of trajectories will be the sum of the durations At; of the edited
trajectories:

At = 2 At (75)
j=1
We can also consider the average of the At; given by
M
= lim & 3 At (76)

Consider now that for each k there exists an i,j that identifies the same
trajectory. Therefore, Eq. (74) for the MOT can be written in terms of the
indices i,j. Futhermore, we can write N as the product of M and the average
of the n; to yield

M
t(0]—A,A:5,A) = lim Lw > At =

M—x UV .

=]

(77)

M
n= 1 2 is the average number of trajectories we must accumulate to com-

i=1
pose a sample trajectory enumerated by the index i. Recall that in the ith
sequence of trajectories the first n; — 1 ions in the sequence were absorbed at
the hemispherical surface at —A and only the last ion successfully made the
trip through the channel to be absorbed at 5. Hence, one out of the total of the
n; ions in the ith sequence passes through to the trans end of the channel. On
the average we would expect that one out of nn ions would successfullv pass
through to the trans side, which is precisely the trans probability. With this
in mind a comparison of Eq. (73) and (77) reveals that the average of the At; is
equal to the MFPT of Section 5.2. Hence, by editing and appending an
ensemble of trajectories associated with a channel. we can compose trajecto-
ries whose mean duration is identical to the mean duration of an ensemble of
trajectories associated wth a reflecting boundary. In this wav we can see that
the form of Eq. (73) is merelv a reflection of the fact that the average accumu-
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lated time a partial sequence of trajectories spends in transporting an ion
from the left to the right (absorbing) end of a channel is exactly the MFPT.

5.3.2. MOT #2 (x; = 0| x = 0, Reflecting; x = \, Absorbing)

Having considered a more realistic boundary for the left end of the
channel, let us turn to a consideration of the right boundary. For simplicity
we will return to the MFPT calculation as a starting point. In calculating the
MFPT, & was taken to be an absorbing boundary. We would now like to allow
for the possibility that an ion can return to the channel after reaching the
boundary at 8 for the first time. We know that the average time required,
starting from 0, to reach 3 for the first time is the MFPT. An estimate of the
additional time spent in the channel can be obtained by starting the ion at &
and calculating the MOT with 0 a reflecting boundary and an absorbing
boundary in the bath to the right of the interval (0.8) at an arbitrary point x =
5 + A. We will therefore calculate the contribution due to reentries and add
the result to the MFPT, i.e., t(0|0.R:\.A) + 7(0/0.R:5.A) = t(3|0,R;\.A).

Now we will calculate t(3/0,R:\,A). As before, we start by obtaining the
steady-state rate of injection. In this case, the only way that an ion can leave
the system is through the absorbing hemispherical surface at x = & + A.
Thus, we have

[ = J(85+\) = n(8)e*®/RE+ (78)
Consider that there can be no net flux between a reflecting boundary and the
source at x = 5. Applying this to Eq. (48) yields Boltmann’s equilibrium
distribution:

n(x) = n(d)e*® ~ @x) (79)

For the holdup, as before, we integrate Eq. (79) times the cross-sectional area:

3
P,.. = An(S)e“[mf e~ex)dx (80)
0

Taking the ratio of the holdup to the flux yields an occupancy time:

8
t(5]0,R:5 + A,A) = Aﬂgﬂf e-elxidx (81)
o}
R3+x = 1 J'6+A -2g¢lrid
by 22Dy, r-2e r

Comparing Eq. (81) to earlier results, we notice that this expression for the
MOT seems simpler because it does not involve an iterated integral. Thisisa
consequence of the use of the Boltzmann distribution for the concentration.
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However, the interpretation of this expression in terms of MFPTs and subse-
quently in terms of ensembles of trajectories will prove to be more involved
than in the previous calculation. To obtain this connection we make a brief
digression.

To understand the above result we will need an expression for the
MFPT from a reflecting boundary at x =  to an absorbing boundary at x = 0.
This is accomplished by replacing Eq. (63) with the unidirectional flux from
a source at x = 5 to a sink at x = 0 and using Eq. (48) for the concentration
instead of Eq. (49). We then proceed as before to obtain

5
T(0f3) = Af R3e —¢txdx (82)
o

7(8}0) = AIB Rxe~ex1dx (83)
0

Here. our notation for the MFPTs is the same as for the unidirectional fluxes
[see Eq. (39)] reflecting the fact that the initial position of the ion is equal to
the position of the reflecting boundary. If we now take the sum of Eq. (82)
and (83), we can add the arguments of the two integrals since the range of
integration is the same and obtain

7(0[3) + 7(3]0) = AR{;[&e‘d-"dx (84)
0

Comparison of Eq. (81) for the MOT with Eq. (84) yields

t(0|0,R;3+\.A) = (R3*MR3)[x(0[3) + (3]0)]
= (Py/P,)(7(0[8) + 7(3]0)] (85)

where P, and P,, are the analogues to the trans and cis probabilities respec-
tively defined in Eq. (71) for the initial position at the right end of the
channel. We have obtained an expression for the additional time an ion
spends in the channel due to reentries in terms of MFPTs and the trans
probability. We now add the occupancy time due to reentries to 7(0[3) to
obtain the total occupancy time starting with the ion at x = 0:

t(8]0,R;5+\,A) = v(0[8) + (P,/P,)[(0[3) + =(3]|0)] (86)

Returning to an analysis of the trajectories of ions in the channel, we
present an extension of the argument we used to interpret the expression
obtained in the last section for MOT #1. We first consider only the addi-
tional time an ion spends in the channel due to reentries. Since we are
starting the ion at the right end of the channel. the cis boundary is at § and
the trans boundary is at 0. As before we divide the trajectories into two
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FIGURE 10. The additional time an ion spends in the channel due to reentries can also be
related to MFPTs. An ensemble of trajectories whose initial position is at the right end of the
channel (x = ) is again enumerated with the indices i and j (see Fig. 9). As in the argument for
MOT #1. the first n; — 1 trajectories of the ith partial sequence never reach the trans boundary
of the channel (x = 0 in this case). The first piece of the n;th trajectory is also analogous to the
n;th trajectory of MOT #1. The second piece of the n;th trajectory is equivalent to a sample
trajectory of an MFPT. The third piece is exactly a sample trajectory for the MOT we are
calculating. thus leading to a consistency relationship that can be solved for the desired MOT.

categories. The first category (cis) is the set of trajectories that encounter the
absorbing boundary at 8 + A without ever encountering the reflecting bound-
ary at 0. The second category is the set of trajectories that encounter the
reflecting boundary at 0 at least once before being absorbed at 8 + A. Let us
consider the second category in greater detail. The first piece (a trans
trajectory), starting at & and ending at the first contact with the reflecting
boundary at 0, is analogous to a sample from the second category of trajecto-
ries of MOT #1 (with the right and left ends of the channel reversed). The
second piece, starting at the first contact with the reflecting boundary and
ending at 8, is a sample trajectory from 1(0|8) of Eq. (82). The third piece,
starting at  and being absorbed at & + \, is a sample trajectory from the MOT
we are considering here due to reentries (see Fig. 10).

We begin by applying the same argument used for MOT #1 to obtain the
average time a sequence of n, trajectories spends in the channel ending in
contact with the trans absorbing boundary (in this case the first contact with
the reflecting boundary at 3). We then add to this 7{0{5). This yields the
average time a sequence of trajectories spends in the channel where the first
n, — 1 ions are absorbed at 3 + X\ without ever encountering the reflecting
boundary at 0 and where the n;th ion reaches & for the first time after encoun-
tering the reflecting boundary at 0 at least once. On the average, the addi-
tional time the ion spends in the channel due to the third picce of the n;th
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trajectory is precisely the MOT we are trving to calculate, thus leading to a
consistency relationship that we can solve for the MOT. For clarity, we will
begin by neglecting the third piece of the n;th trajectory and calculate the
accumulated time spent in the channel by a sequence of n; trajectories to the
first encounter with the point at x = 3 after an intervening encounter with
the reflecting boundary at x = 0. After having done so, we introduce the
third piece and generate a consistency relationship that we will solve for the
MOT.
Formally. neglecting the third part of the n;th trajectory. we have:

n,—1

2

Total accumulated time = >, At; + Ati_,, = 2. A (87)
1

W

i=1 i

where the n;th At is now the n;th At associated with the second category of
MOT #1 (an absorbing boundary at x = 0) plus a At{ required for the ion to
return and visit the point at x = 3 for the first time (be absorbed at x = 3):

At_,(0.Ref) = At,,(0,Abs)+ At (88)

Consider the average time spent in the channel by each ion neglecting the
third piece of the n;th trajectory. This is the average of the At,:

N
> At (89)

We again write N as the product of M and the average of the n;, factor the
reciprocal of fi (the trans probability) from the limit. and write the sum in
terms of a sum over the index i:

M
L1

= 1 At + :
t Prl I\lfli»nx M : (—\t\ Atll [90}

Here we make use of a similar definition for At; as we did in Eq. (75), i.e., the
duration of an appended sequence of n; edited trajectories ending with an
absorption at x = 0. Recall that we concluded that At, was the average of the
MFPT (x = 0. reflecting; x = 8, absorbing for MOT #1 and x = 0, absorbing;: x
= 3, reflecting here] and that At} was a duration associated with a sample
trajectory of a left-to-right MFPT. Hence. Eq. (90) can be rewritten in terms of
the MFPTs:

{ = P,[7(018) + 7(3]0}] (91)

We now introduce the third piece of the trajectorv and use Eq. (91} to
obtain a consistency relationship for the MOT. Recall that the n;th ion in the
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sequence terminated at the cis end of the channel (x = 3), effectively neglect-
ing the third piece of tha n;th irajectory. Thus, the n;th ion in the sequence
still has the opportunity to spend more time in the channel. We can account
for this by noting again that at the end of the above accumulated time t, the
ion is at the initial position with the same boundary conditions for a sample
trajectory we are calculating here. We would therefore expect that, on the
average, the n;th ion would spend an additional MOT in the channel before
being absorbed at x = & + A. Adding the additional MOT to the duration of
the n;th ions’ occupancy brings the average time on the left-hand side (91) up
to the MOT. We again average and make use of the definition of the MFPTs
in terms of the At;’s to yield

t(3/0.R:3+\,A) = P, [7(0[3) + 7(8]0) + (3]0,R;5+X\,A)) (92)

We can now solve Eq. (92) for MOT #2 to obtain Eq. (85). To obtain the
average time an ion occupies the channel starting at x = 0 with a reflecting
boundary at x = 0 and an absorbing boundary at x = & + A\, we add the
correction due to reentries given by Eq. (85) to the MFPT:

t(0l0,.R:3+X,A) = 7(0[8) + (P,/P,)[(0[3) + 7(3]0)] (93)

5.3.3. MOT #3 (x; = 0| x = —\, Absorbing: x = & + \, Absorbing)

Finally we would like to allow for the possibility that the ion will exit
either end of the channel and subsequently reenter. This is accomplished by
placing absorbing hemispherical surfaces at a radial distance A from both
ends of the channel. We will start with the ion at x = 0 for ease of com-
parison with the previous calculations.

For the flux we need only modify the flux used in the second MOT by
moving the absorbing boundary from x = 8tox =8 + A\:

J(0[3+X) = J(O|=\) = n(0)e*(®)(R®*}/(R%,R§*) (94)

An expression for the concentration can be obtained by using the unidirec-
tional flux from the source at x = 0 to the absorbing boundary at x = 8 + X for
the flux in Eq. (49):

n(x) = n(0)e¢(0)~«(xIRE+A/RE+A (95)

Integrating Eq. (95) and multiplying by the cross-sectional area yields the
holdup:

p - An(0je<wl fs

occ T R{’,"‘ “Ri*ke—‘&[x)dx (96)
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Dividing by the total rate at which ions leave the channel, Eq. (94) yields the
MOT:

RO,

tOl=MAD + N A) = gk
=X

&
J' Ré+re-wixidx (97)
o

If we again make use of the definition of the trans probability as the ratio of
the rate at which ions are absorbed at & + A to the total rate at which ions are
supplied to the source, we will discover that the coefficient of the integral on
the right-hand side of Eq. (97) is the trans probability. Some algebra also
reveals that the integral in Eq. (97) is the second MOT [Eq. (93)}]. Applying
these results yields

t(O]—N,A;5 + X A) = Plr[T(O‘B) + (P, /P, }((0}3) + 1[810)]] (98)

The trajectory argument for this result is trivial given the results already
obtained. We need only apply the argument used in the first MOT (absorbing
boundaries at —\ and ) to the second MOT [7(0]3) plus a correction term for
reentries in the trans end of the channel], rather than to 7(0|3). Notice that if
we discard the correction term to 7(0|3) of Eq. (98) due to reentries, we will
recover the result obtained for the first MOT. Intuitively, Eq. (98) states that
the average time an ion occupies the channel is the total accumulated time a
partial sequence of ions occupies the channel ending in an ion being ab-
sorbed at the hemispherical surface x = & + X\, times the probability that a
given ion in the sequence will be absorbed at & + A. Similarly, the occupancy
time for ions whose point of injection is at the right end of the channel is
given by

t(3]—N\,AB+\,A) = P,,[T(SIO) + (P,/P,[+(0[3) + 1'(8]0]]] (99)

5.4. Mean Occupancy Times and Exit Transition Rates

Now let us consider the relationship between the MOTs we have de-
rived and the problem of ion permeation through a channel. Recall that in
the calculation of the transition rates we defined the electrodiffusive re-
sistances in terms of improper integrals. In Section 3.1 we argued loosely
that once a trajectory ends up a large distance away from the channel, it can
be classified into one of the four categories associated with the exit transition
rates. This suggests that a semi-infinite volume could be represented by
taking the limit as the radius of an absorbing hemispherical surface goes to
infinitv. We now return to this issue. Consider the electrodiffusive resistance
offered by the semi-infinite volume on the right end of the channel. Let us
write this resistance as the sum of the resistance from the capture radius p to
A and the resistance from A to infinity:
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A x
Ry= Ry + R = —2?15 [ fp r-2eeldr + IA"ZeO(”ar] (100)
We take the reference for the potential to be at infinity, i.e., ¢(®) = 0, and
further assume that the influence of the channel on the dimensionless poten-
tial is local in nature. This is equivalent to the mathematical statement that
for all € > 0 there exists a A(e) such that |¢(r)] < € for all r < A(€). The
dependence of A on € is determined by ¢(r). For instance, if |¢(r)| decays at
least as fast as 1/r, we have:

le(r)] < plelpll/r (101)

where ¢{p) is the potential at the capture radius and then we must have:

Ae) > ple(pll/e (102)

Under this assumption, ¢(r} in the second integral of Eq. (100) is bounded
above by €. If we take € less than one and assume that Eq. (101) holds, we
have the following bound on the second integral of Eq. (100):

x x e
r—2e<lridr < e‘f r-2dr < € 103
jx A ple(p)] (103)

If we now take the limit as € — 0 (A becomes large)}, then we see that the
influence of the absorbing boundary on the electrodiffusive resistance can be
made as small as we like. Furthermore, the only dependence of the MOTs on
the position of the absorbing boundary is through the electrodiffusive re-
sistances. We can then conclude that for A sufficiently large, the MOTs
calculated above can be made to arbitrarily well approximate the case where
there is a semi-infinite bath and no absorbing boundary. This yields the
following identifications between the MOTs and the emptying transition
rates [see the definition of E, following Eq. (33)]:

)

E, =, = lim [t(0]=\, A5 + \,A)]~! (104)

b A—x

Under the constant-field assumption in the channel we have

A¢b
1 +ew+k{f$; (ede = 1)
b= 1( 8 )2 GATJ A¢—Ach (105)
BN A — 1 — oAbDe 77 o -3¢ —
D(_\«,c) (ede — 1 A®}+kf.§¢(e-\0-l)(ew+e ° — 2)

E, = tl lim [((8]-N\.AD + A, A}~ (106)

A—x
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Again the constant-field result is

Aeb
1 + ede + IXSSA‘O (ede — 1)
E, = — G‘ZDG“‘"A‘P!’ (107)
(2 dofp—be — O (eA -dg —
D(AQp) ede(e b 1+A‘p)+k,A<p(eA~P—l)(e ¢ + e~de — 2)

The case where reentrances are negligible (Levitt, 1986) can be obtained
from the constant-field result by taking the limit where k; becomes large
holding A¢y, fixed. Since A¢g,, is proportional to the logarithm of the dissocia-
tion constant, allowing k; to get large implies that the off rate increases
proportionally and ions seldom reenter. In this limit the last term in the
numerators and first term in the denominators of Eqs. (105) and (107) domi-
nate. Thus, one of the implications of Levitt's (1986) result is that trans
trajectories are absorbed at the trans end of the channel.

6. STANDARD RESULTS

6.1. Binding Affinity

By rearranging Eq. (34) the probability the channel is empty can be
written

B F J_‘ (108)

P°=[1+E+E_r

If we now make use of the definitions of the filling transition rates as the
concentration times the second-order filling rate coefficient and exit transi-
tion rates as reciprocal MOTs, we have

Py, = [1 + n(—=)t,ky + n(=)t k. ] 1 (109)
This form suggests that P, can be written as

P,=(1+aK) 1! (110)

where 1i-K, is the scalar product of the vectors

i = [n(==), n (*]] (111)
K, = Ky, K,/ (112)
Kal = tlkfl' K:nr = trkfr (113]
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Notice that the components of the affinity constant are given by the second-
order rate coefficiente (k) divided by the first-order rate coefficient (1/t). In
the case of a symmetric channel with no applied voltage, the affinity vector
will be 45° from the “left”” and ‘‘right’”” coordinate axes. Thus, the deviation
of the affinity vector from 45° can be thought of as an indication of the
asymmetry of the potential energy profile in the channel. In symmetric solu-
tions, Eq. (110) reduces to the Michaelis—Menten result for the probability of
finding free enzyme where n = n(—«) = n(=) is the substrate concentration
and K,; + K,, = 1/K,,,, the Michaelis constant. The Michaelis—Menten result
can also be obtained by setting the concentration on either end of the chan-
nel to zero. With n(-=) = 0, K, = 1/K, and with n(x) = 0, K,, = 1/K,.

6.2. Multiple Current-Carrying Species

At this point, several additional quantities can be derived that are stan-
dard in experimental work on membrane channels. In most experimental
protocols, several ionic species are present. In this case, the channel can be
occupied by several different species and Eq. (32) becomes

N
Po+ 2 [P(l) + P(r)] = 1 (114)

k=1
where P, (1) + P,(r) is the probability that the channel is occupied by the kth
ionic species. Equations (40), (41), (53)-(56)}, (59), and (60) together with Eq.
(114) allow us to obtain the analogue of Eq. (110) for the case with N
permeant species. The concentration and affinity vectors are now given by

i = [n,(=2), ..., ny(==), n;(=), ..., ny(=)] (115)
Ka = [Kall' st KalN' Karl' MR KarN]
(116)
The current through the channel in this case would be given by
N
I=P, 2 zelq (117)
k=1

where J;, is the flux through the channel of the kth ionic species under the
assumption of independence and z, is the valence of the kth ionic species:

_]ik = (l/Rk][nk(x)e“’k(”' - nk[—x]e‘“k("z’] (118]
where R, = R_Z, is the electrodiffusive resistance over the entire range of

integration for the kth species of ion and can be considered the reciprocal of
an effective permeability.
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6.3. Reversal Potential

The reversal potential in this model can be obtained by setting the
current equal to zero and solving for the potential:

N
kz I,Zi [nk[—oc] — nk(w]ezuA‘”] =0 (119)
=1

where Ay is the dimensionless reversal potential. Equation (119) can be
rearranged to yield a polvnomial in ed%, An interesting special case of Eq.
(119) occurs when we have a monovalent and a divalent cation on either side
of the channel:

2n,(x) n,(x) _ | 2n {—=) n,(—=) | _
R, Wt R U [ B TR ]—0 (120)

where u = eV, the subscript 2 indicates the divalent, and the subscript 1
indicates the monovalent. Thus, we have

g2 [T [ o]

an,(x)
R,

Ay = In (121)

A more familiar expression (the Goldman-Hodgkin—Katz equation) is ob-
tained when one considers two different monovalent species:

P,n,(=x) + P,n,(—x) ]

Pyn,(*) + P,n,(*) (122)

Anp=1n[

Here, we define the permeability as the reciprocal of the total electrodiffu-
sive resistance. Finally, as a special case of Eq. (122), we consider a bi-ionic
experiment with two monovalent species. The voltage is measured at zero
current with the concentration of ion #1 on the left side equal to the con-
centration of ion #2 on the right side and the concentration of ion #1 right
and #2 left equal zero to vield:

AY = In(R,/R,) = In(P,/P,) (123)

6.4. Block

Ionic channel blockers, in the case of a one-ion channel, are a special
case of Eq. (117) where the blocking ion has a much lower permeability than
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J=JP,

E,E
1 A¢ l r
J. = [n(ﬂ!)e - n(m)] P, = + +
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FIGURE 11. Summary of important results for a diffusion model of a one-ion channel. Starting
at the top of the figure we have from Eq. (22) that the flux through a one-ion channel is the
product of the empty probability and the independence flux. Moving down the left-hand col-
umn we have from Egs. (11). {38}, and (118} the independence flux as the ratio of the difference
of exponentials of the electrochemical potential and the total electrodiffusive resistance. The
total electrodiffusive resistance can in turn be decomposed into components associated with the
bath access region on the left end of the channel, the channel itself. and the bath access region
on the right end of the channel. For the right-hand column beginning with the second row we
have from Eq. (34} the empty probability in terms of the filling and emptving transition rates
between the channel occupancy states. In the middle below the second row we have Egs. (40}



ANALYTICAL DIFFUSION MODELS 263

other ions in the solution. In this limiting case we can assume that none of
the current is carried by the blocker, but the blocker does change the proba-
bility that the channel is empty. Hence, the sum in Eq. {117) would only
include the permeant ions while the concentration and affinity vectors used
in calculating P, would include any ions that could enter the channel. In Fig.
11 we have summarized the one-ion model.

7. DISCUSSION
7.1. Assumptions

7.1.1. Constant-Field Assumption

In the numerical calculations we have assumed that the contribution to
the potential energy profile from the transmembrane voltage is linear. In this
section we will examine this assumption and show by dimensional argu-
ments that the approximation is a natural consequence of the one-ion as-
sumption (given a homogeneous dielectric medium).

At equilibrium the relationship between the electrostatic field and the
concentration in an ionic solution is given by the Poisson—Boltzmann theory
(McQuarrie, 1976, Chapter 15):

vay(r,.r) = ;‘i— S Nz e Pavin,0) (124)
s}

where ¥(r, r) is the electrostatic Helmholtz free energy at a position r, given
that there is a charged particle at position r,, k is the dielectric constant, ¢, is
the permittivity of free space, n, and z, are the number density and valence
of the kth ionic species in solution, and § is the reciprocal of the mean
thermal kinetic energy k,T. In this context we are interested in ion channels
that are highly selective. We will assume that the channel will only admit
one type of monovalent cation. Equation {124) then becomes

V2§ = (qne ~Pav})/ke, (125)

and (41) the filling transition rates in terms of the bath concentrations and second-order filling
rate constants. Also from Eqgs. (104) and (106} we have the emptying transition rates in terms of
the mean channel occupancy times (MOTs). From Egs. (109)-(113) we have the emptv proba-
bility in terms of the channel occupancy times and second-order filling rate constants followed
by an expression in terms of the scalar dot product of the concentration and affinity vectors.
From Eqgs. (98j and (99) we also have the channel occupancy times in terms of mean first passage
times and cis and trans probabilities. Finally, from Egs. (67). (82). and (83) we have expressions
for the mean first passage times in terms of the diffusion coefficient. the channel length, and the
dimensionless potential in the channel.
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Now assume that the potential energy profile in the channel can be obtained
from the superposition of image charge effects, specific interactions between
the permeating ions and the channel protein, and the applied transmem-
brane voltage. We will use Eq. (125) for the contribution to the potential
energy due to the capacitive charge arising from the transmembrane voltage.
The following nondimensional variables can be introduced:

¢ = Bqb, v = Bq®d3n/ke,, &= x/d (126)
Making these substitutions, Eq. (125) becomes
d2¢/dE? = ye~v (127)

Notice that in the limit where the interaction potential ¢ is large (the one-ion
occupancy assumption), the right-hand side of Eq. (127) is small and the
potential is approximately linear. Also it is clear that in the low-concentra-
tion limit, y becomes small and again we conclude that the potential is linear -
(the thin-membrane assumption; Moore, 1977). These two limiting cases
also lead to the result that the channel never contains more than one ion.
More sophisticated electrostatic calculations (Levitt, 1978; Jordan, 1984) are
in qualitative agreement with this result when one ion is in the channel. In
summary, we conclude that we can adequately approximate the contribution
due to the applied transmembrane potential by the following linear function:

¢(x) = zgBAV_ x/d 0 <x<3d (128)

where AV, is the applied transmembrane voltage. We also conclude that
this is consistent with the assumption that at most one ion can enter the
channel at a time.

7.1.2. One-lon Occupancy

In this section we will develop a simple model to estimate the validity of
assuming that at most one ion can occupy a membrane channel. The strategy
will be to assume that the probability of finding the channel in a given
configuration is approximated by the equilibrium distribution. We will then
proceed by.assuming that the channel is in one of three states: empty, oc-
cupied by one ion, or occupied by two ions. The equilibrium density of a
system that contains a variable number of particles is known as the grand
canonical ensemble density function {McQuarrie, 1976):

-Bl(x N
p(N:x) = e Pixeby (129)

> f fe—ewx"eewvdx; .. dX
N=0" -
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where N is the number of particles in the system, U(x] is the potential energy
of the system, x = (x,,X,, . . . ,X35) is the configuration space vector of the
system (Xi;_,, X3;_,, and x;; are the three spatial coordinates of the ith
particle in the system), and p = k,TIn(n) is the chemical potential of the
bath. The assumption that at most two ions can enter the channel is equiv-
alent to neglecting all of the terms in the grand partition function [denomina-
tor of Eq. (129)]) past N = 2. If we further assume that the channel cross-
sectional area is uniform and the potential depends only on the coordinate
normal to the membrane, the probability P(2) that the channel is occupied by
two ions can be obtained by integrating the density p(N;x) over all states
with two ions:

8 x,—2r
(nA)2 e"'@:(x:-":)dxzdx,
2r” O

P(twoions) = (130}

) ) x,-2r
1+nA| e-e®¥dx+ (nA)? e~ ®alx1xldx,dx,
V] 2r”’ 0

where ¢ is the dimensionless potential BU, x, is the distance from the left
end of the channel of the rightmost ion and x, is the distance from the left
end of the channel of the other ion (only half of the available configurations
are included since there are two ways to label the two particles), 2r is the
closest distance of approach between the two ions, A is the cross-sectional
area of the channel that is accessible to the permeant ion, and n is the
concentration of permeant ion in the bath at the reference potential (¢ = 0).

We must now specify the potential functions in Eq. (130). The first
assumption is that the interaction potential between the channel and each
ion superposes with the potential of interaction between two ions (i.e., the
binding of the two ions is not cooperative in any way). Thus, the one-ion
potential ¢, is the ion—channel interaction potential. The two-ion potential
¢, is the sum of the ion—channel interaction potential at x, plus the ion—
channel interaction potential at x, plus the ion—-ion interaction potential
¢;(x,,x,). Thus, we have

‘Pz(xvxz) = ‘91(x1) + @,(x;) + ‘Pi(xsz) (131)

We proceed by allowing ¢, to remain unspecified, but identical to the ion—
channel interaction potential during single occupancy. This last assumption
is motivated by convenience rather than sound physical reasoning. We are
left with ¢,, the potential of interaction between ions. We construct the
interaction potential by first placing an ion at the position x, and calculating
the resulting field. The interaction potential is then obtained through the use
of a line integral up to position x,. Following Levitt (1985) we will take the
limit where the dielectric constant of the water-filled pore is considered to
be much greater than that of the surrounding protein and lipid. In this limit
the component of the electric field normal to the channel lumen is negligible
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relative to the axial component. We will use a simplification of Levitt’s
results by allowing the cross-sectional area to undergo a jump discontinuity
from the circular disk (A = mr?) at the mouth of the channel to the hemi-
spherical surface (A = 27r?) defined by the capture radius. This simplifica-
tion yields more manageable expressions that have qualitatively similar
properties to Levitt's more realistic expressions. Under these assumptions,
the component of the electric field in the channel due to an ion in the chan-
nel is uniform and given by

_ zq n+d—x, ]
E(x <x,) = Talke, [ 2n + & (132)
- _ 2% 0t X, ]
Elx > x) = Talkeg [ 2n + 0 (133)

where n is a length defined by
n=(1/x + 1/p)1!

and A is the Debye length. The interaction potential at x, given an ion at x,
can now be obtained by adding the potential at the left mouth of the channel
to the integral of the field from the mouth up to x, [remember that the limits
in Eq. (130) require x, < x,]:

- Bz,z,e?

¢i(xy,Xz) = Taixe, [

(n+ x)n + 8 - x4)
2n + 6 ] (134)
We compare the results for a centrally located well versus a centrally
located barrier versus the constant field where we have constrained the
equilibrium one-ion affinity to be the same for each potential (see Fig. 12). If
we take the dielectric constant to be 40 and require the probability of double
occupancy to be less than or equal to 0.1 with a one-ion affinity constant of
{340 mM) 1, the highest concentration for which the one-ion assumption is
valid is 0.71 M for the central barrier, 1.56 M for the constant field, and 12.2
M for the central well. The reader should be cautioned that this is only an
order-of-magnitude estimate of the effects of double occupancy. For exam-
ple, multiple occupancy in the well potential would be expected to have a
greater influence on the flux than in the barrier potential.

7.1.3. Transients

Next we examine the validity of the use of the steady-state approxima-
tion for the rate at which ions enter the channel. The issue is whether the
potential of interaction, which we assume excludes a second ion from enter-
ing the channel, influences the rate at which an ion will enter after the ion in
the channel has left. To address this issue we will consider the charge relaxa-
tion time in a uniform conductor.
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FIGURE 12. Plots of the ion—channel interaction potential where the form of the potential is
varied from a centrally located 3k,T well to a centrally located 3ky T barrier. The offset in each
case has been chosen to give a 340 mM equilibrium dissociation constant for comparison with
the constant-field potential in Fig. 1.
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We begin by calculating the product of the steady-state diffusion to
capture up to a hemispherical surface of radius r = p and the charge relaxa-
tion time constant in a conductor. In making use of the charge relaxation
time of a conductor, we are assuming that charge in the bath access region
can be represented in terms of a continuous density function and that the
conductivity is a constant independent of the time and spatial coordinates.
We will return to these issues again after concluding the analysis.

It is a standard result in electromagnetic theory that the time course of
relaxation of a charge distribution A in a dielectric medium is given by
(Lorrain and Corson, 1970, p. 424)

A = Age (ol (135)

where A, is the initial charge distribution and o is the conductivity of the
medium. Thus, for the relaxation time constant we have

t, = 2o = 2(S 72 SalnT : (136)
o q%[X,z¢Diny(>) + E,'ZfDin;(x)]

where the index i refers to all those ionic species that are able to permeate

the channel and the index j refers to those ionic species that are impermeant.
From the steady-state Nernst—Planck equation, we have for the flux up

to an absorbing hemispherical surface of radius p:

J¢ = X,2wD,n,(x) { fxr—ze“”dr] 1 (137)

p

Equation (137) is the average rate at which ions diffusing in a radially sym-
metric field ¢ encounter the surface at r = p. Since only those ions that can
enter the channel can contribute to a net flux, we sum only over the index i.

Thus, the average time t; between encounters is given by the reciprocal of Eq.
(137):

tp = 1/]; (138)

Consider several special cases of the product of Egs. (136) and (138).
First consider that ¢ is everywhere zero and there is a single ionic species of
valence one. We have for the dimensionless ratio of times:

Ry = t,/t, = q?/2mpk, €,k T - (139)

where k, is the dielectric constant of water, taken to be 80. At 300° the
numerical value of Eq. (139) is approximately 14/p where p is measured in
angstroms. Thus, we have a separation of time scales only if the channel
capture radius is say 2A or less.

Next consider the case where there is a charge Q distributed uniformly
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across the hemispherical surface (assume that the entire flux of the electric
field is directad radially outward into the semi-infinite valume). At infinite
dilution the potential will be given by

¢(r) = Qq/2nk, Tk,€5r (140)
Equation (139) now becomes

t/t, =q?[e*l®) — 1]/2wae(p)k €.k, T (141)

¢e(p) = Qq/2mpk €k, T (142)
For ¢(p) << 1 we have

t/t, = R, + [Qe*(p)/2q] (143)

Hence, if Q is negative (the channel is at a lower potential energy than the
bath), the ratio is smaller still. This case is relevant in light of the fact that
most ion-specific channels exhibit high affinities for the ions that permeate
them. Equation (143) is an overestimate of the effect of a potential difference
between the bath and the channel. At physiological concentrations, the
charge Q would be screened by counterions, but qualitatively the effect
would be the same.

This analvsis suggests that the steady-state assumption for the filling
rate constant would only be valid in two limiting cases: the case where there
is a high concentration of impermeant ions and a low concentration of per-
meant ions, and second, in the limit where the capture radius goes to zero. In
the absence of these assumptions, one would conclude that the steady-state
assumption for the filling rate constant might underestimate the effect of
bath access limitations especially in the case where the channel was at a
potential below that of the bath.

The above method is based on a continuum macroscopic theory, the
assumptions of which are suspect in the case of a molecular ion channel. A
more accurate treatment requires the use of the time-dependent diffusion
equation whose validity at the microscopic level is on firmer grounds (Gates,
1988).

7.2. Constant-Field Diffusion Model versus Eyring Rate
Theory Models

We will begin by applving the assumption of a linear form for the poten-
tial in the channel (constant field) in the diffusion model [Eq. (4)]. As dis-
cussed in Section 2.2, we have added an offset in the potential to account for
the affinity the channel has for the permeant ion. Combining Egs. (28) and
(12) vields
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~J, = nkq e — 1 (144)

k. 52
a f d¢ —
1+ew+EA‘pKa(e~° 1)

For the probability that the channel is empty we have

k; 32
KY f e —
~ 1+eW+DA‘pKa(e° 1)
P, = 52 (145)
A o —
1+ew+DA¢Ka(e 1) + nkgt

82 2K, e«
— Ae — a Ao -d¢ —
t Diy (e3¢ = 1) + kdg(eds = 1) (ede + e = 2) (146)

Equations (144) through (146) suggest the definition of three dimensionsless
numbers:

_ 82/(DK,) _ R,
R= " "R las =0 (147)
_ 8/D _ 1.
T= k) ~ 7 lae = 0 (148)
V =nK, = Y e-ae, (149)
a A =0

sp

where v is the specific volume of the permeant ion in bulk solution, v_ is
the channel volume, 1. is the sum of the MFPTs for ions injected at the right
and left ends of the channel at A¢ = 0 under the constant-field assumption
[see Eq. (84)], and 7, is the characteristic time an ion takes to find the
channel [see Eq. (137)]. Applying the constant-field assumption to Eq. (93)
reveals that the dimensionless volume is associated with the additional oc-

cupancy time due to reentrances.

7.2.1. One-Site Rate Theory Model

We now turn to rate theory models. We begin with a one-site model to
demonstrate that many of the properties of a one-ion channel can be cap-
tured by thinking of the channel interior as being a single site. The model is
shown in Fig. 13. For this model the independence flux and the empty
probability are

—=Ji = nk((ee = 1)/(e¢ + 1)] (150)

Y
P, = 1+ e

1+ e + (Znkdv) exp{BE* + (1 — a)ig] (151)
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FIGURE 13. A single-site rate theorv model for a channel ke ke
where the rate at which ions encounter the channel is voltage 'Td T"'
independent. k¢ is the second-order filling rate constant for ion

entry from the bath and k., and k., are the first-order exit rate ]E. /\/\
coefficients for the left and right ends of the channel, respec- 1

tively. E* is the potential energy difference (for A¢ = 0) be-

tween site 1 and the top of the barrier and a is the dimen- 4 + +
sionless pasition of site 1. o ad &

where a is the dimensionless electrical distance of the binding site from the
left end of the channel. By analogy with the diffusion model, we define the
dimensionless time:

_ Y{vexp[-BE*})
B 1/nk,

T (152)

Comparing Egs. (148} and (152) identifies the characteristic time of escape
from the well in the rate theory model with twice the time [one each for t,
and t,, see Egs. (105) and (107)] an ion takes to diffuse the length of the
channel. We also see that the one-site rate theory model lacks the other two
dimensionless numbers. If we compare Egs. (144) and (150), we see that the
independence flux has an additional term that is absent in the one-site rate
theory model. This term is proportional to the dimensionless ratio of the
electrodiffusive resistances. Hence. if we take the limit where the bath access
to the channel dominates the resistance to permeation, the diffusion model
goes over to the one-site rate theory model. The one-site rate theory model
therefore exhibits the limiting steepness to saturation with voltage of the
constant field diffusion model. Comparison of Egs. (145) and (151) further
reveals that the dimensionless ratio of volumes has been lost in the rate
theory model, which therefore does not account for reentrances. An addi-
tional point worth noting is that we can cast the rate theory model in terms of
the transition rates we defined for the diffusion model. This reveals that the
exit rates are symmetrical: E, = E_ = k,, + k,,. Thus, the one-site model is
memoryless in the sense that the side on which an ion exits the channel
does not depend on the side it entered.

7.2.2. Symmetric Two-Site Rate Theory Model

We can gain a better understanding of the relationship between the two
formalisms by including an additional site in the rate theory model. Since
the diffusion model is symmetric with respect to the center of the channel,
we will require the two-site rate model to be symmetric (see Fig. 14). For the
independence flux and the empty probability. we have:

ede — 1
ed¢ + 1 + yedsw<

Ji = nk (153)
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IE: /\/\/\ FIGURE 14. A two-site rate theory model for a channel where
1K the rate at which ions encounter the channel is again assumed

to be voltage independent. The two-site model now allows for

F3 the channel itself to offer a resistance to transport modeled by
the rate coefficients k,, and k;,. E{ and E¢ are the differences

(for A¢ = 0) in potential energy between a site and the top of the barrier leading to exit from the

channel and the height of the barrier separating the two sites. respectively. a is now the
dimensionless position of site 1.

4

+

o ab

ede + 1 + -Ye.)c/Z

= 4
0 e3¢ + 1 + -Ye.lwz + vnk‘[y(eu.\'c + e—a.&w) + 2(8“'\" + e(l‘ui.\@” (15 )

where « is now the dimensionless distance of the leftmost binding site from
the left end of the channel and vy is defined by

vy = exp[-B(ES — EJ] (155)

with EZ the height of the barrier to ion exit from the channel and E}* the height
of the barrier between the two sites in the channel. The constant-field diffu-
sion model and the two-state rate theory model can now be made to agree at
low concentrations near equilibrium through the following identification:

vy = k®2/DK, (156)

Better agreement between the two models can be obtained by increasing the
“number of sites in the rate theory model. In the limit where many barriers of
equal height are introduced. the rate theorv can be made to arbitrarilv well
approximate the low-concentration limit of the constant-field diffusion
model (Lauger, 1979). In this limit the rate theory model would still fail to
account for reentries. To account for reentries in the rate theory model
would require a hybridization with a diffusion model for the bath (e.g.,
Lauger, 1976) or the addition of a system of barriers for the bath on either
side of the channel.

7.3. Future Directions

In the following discussion we would like to suggest several ways that the
model presented here can be generalized. These generalizations will be divid-
ed into two categories, the first being extensions of the one-ion theory and the
second being a relaxation of the one-ion assumption itself.

7.3.1. Extensions of the Existing One-lon Theory

7.3.1a. Relaxation of the Assumption of Instantaneous Transition
Rates. As discussed in the previous section, the rate at which ions enter the
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channel may require a more sophisticated treatment than the simple diffusion
to capture presented here. The influence of past channel occupancy can result
in a reduction of the rate at which ions enter the channel below what is
predicted under the steady-state assumption. The qualitative effect of such
transients can be investigated through the introduction of additional states.
This can be done by defining a refractory state or states. When the channel is
in such states, the rate at which ions enter is reduced to below the steady-state
filling rate. These states are then allowed to decay to the normal empty state at
a rate determined by a transient analysis. Such a kinetic model is consistent
with the exponential time course of the transient described in the previous
section and therefore suffers from the same approximations. These more
complicated kinetic models can give rise to a voltage dependence in the
effective rate at which lons enter the channel that is absent in the model
presented here (Gates, 1988).

Another mechanism by which a voltage dependence in the filling rate
can occur is through the ion injection effect (Walz et al., 1969). This effect
arises from the diffuse double layer of capacitive charge on the membrane.
As the transmembrane voltage is increased, the capacitive charge increases
and the local concentration of ions at the channel mouth increases. Although
such effects are small in the physiological range of concentrations and volt-
ages, they become important in high-voltage studies of model systems such
as gramicidin (Anderson, 1983). A realistic treatment of such an effect would
require the inclusion of the angular derivatives of the potential and con-
centration in the Nernst—Planck equation in spherical coordinates.

7.3.1b. More Complicated ¢s. OQur group is currently in the process of
characterizing the relationship between the structure of the potential profile
in the channel and bath and the features of the current-voltage—concentra-
tion surface (Gates, 1988). This program can be carried out through the use of
piecewise linear potentials that furnish analytical results that can be used to
obtain asymptotic properties. These results can then be compared with nu-
merical evaluations of the integral solution of smooth potentials. In Fig. 15
are the current—voltage—concentration curves associated with the potential
profiles of Fig. 12. An interesting feature of these plots is that they are
virtually indistinguishable in the low-voltage range even though the profiles
are radically different. It would therefore be necessary to obtain data at large
voltages to determine even the grossest features of the potential profile in
such channels.

7.3.1c. Multiple Permeant Species to Include Block. The one-ion mo-
del can be generalized easily to allow for more than one permeant species
(see Section 6). A special case of some interest are channel-blocking agents.
In the case of large organic blockers of the SR potassium channel such as
hexamethonium and decamethonium, nonlinearities observed in the log-
arithm of the conductance ratio (}. Tang, personal communication) can be
accounted for in a natural way.
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FIGURE 15. Current—voltage~concentration curves for the potential profiles given in Fig. 12.
The upper panel is the current associated with the well potential and the lower panel is the
current associated with the barrier potential. The concentrations and diffusion constants are the
same as for the current in Fig. 3, associated with the constant-field potential. The saturating
small signal conductance for these two cases is 20 picosiemens.

7.3.1d. Nonstationary ¢. Lastly, nonstationary potential functions
can be modeled through the introduction of additional states in a way analo-
gous to generalizations of the Eyring rate theory (Lauger, 1987; Eisenman and
Dani, 1987). In such a formalism, a series of potential functions, each associ-
ated with a different conformation of the protein, are introduced. Transitions
of the protein between these conformational states can be coupled to other
processes to yield coupled and active transport. In the case where the confor-
mational transitions are coupled to occupancy of the channel by the permeant
ion, nonlinear Edie-Hoffstie plots of the small signal conductance can arise
(Hladky and Haydon, 1984), a characteristic that is usually taken as evidence
of multiple occupancy.
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7.3.2. Two-Ion Case

We now turn to the question of multiple occupancy. Experimental evi-
dence suggests, with the possible exception of the SR potassium channel, that
multiple occupancy must be included in a channel model. In the case of very
narrow channels such as the gramicidin A channel, the distance between ions
in the channel can be assumed fixed (Levitt, 1982). Hybrid forms of diffusion
and discrete state space binding models can also be used to allow for multiple
occupancy. For example, Levitt (1982) generated a model where an ion could
bind at either end of the channel while a second ion diffused within the
channel. More recently, Levitt (1987) reported numerical results for a double-
occupancy channel model where the distance between the two ions in the
channel was free to vary. To date, a thorough understanding of the properties
of these models has been limited by the fact that only numerical solutions
have been available. In situations where more than two ions can enter the
channel and the motions of all the ions are on similar time scales, stochastic
Brownian dynamics can be used to build pair correlation functions. These
correlation functions can be used to correct the potential function for ion—ion
interactions in a one-dimensional diffusion model where the potential profile
in the channel will now be both concentration and voltage dependent.

8. APPENDIX: COMPARISON OF ONE-ION DIFFUSION MODEL
WITH TRADITIONAL CHEMICAL KINETICS

In this appendix we relate the state model described in Egs. (30) through
(36} with traditional chemical kinetic models. Ion association with the chan-
nel can be thought of as a bimolecular diffusion reaction problem. In the
same way, the ion exiting from the channel can be thought of as a unim-
olecular breakup reaction. Ion transport through a channel is analogous to
enzyme catalysis. In this formalism the reactant is an ion on one side of the
membrane, the product is an ion on the other side of the membrane, and the
reaction coordinate is the distance the ion has moved through the pore. lon
channels have the additional feature that the potential energy of the reaction
coordinate depends on the applied transmembrane voltage. Thus, we have

kq ke,
[ +Ch=I-Ch=1 +Ch (A1)

el fr

Here, k;; and k;, are second-order association rate constants describing the
rate at which ions fill the left and right ends of the channel, respectively. k,,
and k,, are the voltage-dependent first-order dissociation rate constants de-
scribing the rate at which ions exit the left and right ends of the channel,
respectively. Equation (A1) gives rise to two equations analogous to Eq. (30)
through (32):

(kalll; + ke {1])[Ch] = (kg + k. J[I-Ch] = (% [I-Ch} (A2)
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[Ch] + [I-Ch] = [Ch], (A3)

where [Ch], is the total concentration of channels. We can again make the
steady-state assumption and write a matrix equation corresponding to Eq.
{33):

kalll) + kelll, —(ket + kei) [Ch] 0
= (A4)
1 1 [I-Ch] [Ch],

We can now solve for the concentration of occupied and unoccupied chan-
nels:

[I-Ch] _ koIl + kell],
CHL, ~ Kol =+ K[l + ke T Koy (43)
(Ch] _ ke + Koo (A6)

[Chlt - k(![”l + kfr[”r + kcr + ker

In general, we would expect that the rate at which ions appear at a given
channel would depend on the flux through nearby channels. As mentioned
in the Introduction, we restrict our treatment to the limit of low-channel
concentration. Taking this into account yields the following relatioship be-
tween the transition rates previously described and the more traditional rate
coefficients:

F() = lim [I);kq (A7)
[Chj—~0
F(l‘) = lim [”rkfr (AB]
{Chj—0
E(IhP() + E(r]hP(r) = lim k,[Ch-I}/[Ch], (A9)
[Ch],—0
E()P(l) + E(tjr)P(r) = lim k.[Ch-I}/[Ch], (A10)
[Ch}—0

To verify this algebraically, first note that in the traditional kinetic scheme
the probability that a channel is empty is given by the ratio of the concentra-
tion of unoccupied channels and the total channel concentration, i.e., Eq.
(A6). The identifications in Egs. (A7) through (A10) can then be used to
show that Egs. (32) and (A6) are equivalent results for the probability that the
channel is empty.
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9. SYMBOLS

Greek

a Dimensionless electrical distance that defines the location of a
binding site, first introduced in Section 7.2.1, Eq. (151)

B Reciprocal of the mean thermal kinetic energy [B = (k,T) ~ !} used
in Section 7.1.1, Eq. (124)

Y Used as a dimensionless concentration in Section 7.1.1, Eq. (126)

S Length of the channel and membrane thickness, introduced in Sec-
tion 2.1, Eq. (2)

Ag Difference in dimensionless potential across the membrane intro-
duced in Section 2.1, Eq. (4)

Aty Durations associated with trajectories of an ion in a channel intro-
duced in Section 5.3, Egs. (74) and (75)

€ Permittivity of vacuum (¢, = 8.854 X 10~ 2 farad/meter)

n Characteristic length defined in Section 7.1.2, Egs. (132) and {133)

K Dielectric constant

A Debye length used in defining the characteristic length n of Egs.
(132) and (133)

m Chemical potential defined in Section 7.1.2, Eq. (129) (units,
joules)

£ Dimensionless length defined in Section 7.1.1, Eq. (126)

T Ratio of the circumference of a circle to its radius (= 3.1416)

p Used for the capture radius introduced in Section 2.1, Egs. (8) and
(9)

Iog Used for the specific conductivity in Section 7.1.3, Eq. (135)

T Mean first passage time, notation defined in Fig. 8

7(0[3) Mean first passage time with an initial position and reflecting
boundary at x = 0 and an absorbing boundary at x = § defined in
Section 5.2, Egs. (67) and (82)

7(3]0) Mean first passage time with an initial position and reflecting
boundary at x = 8 and an absorbing boundary at x = 0 defined in
Section 5.2, Eq. (83)

¢ Dimensionless potential energy (¢ = BU), see Section 2.1, Eq. (1)

¢ Electrostatic Helmholtz free energy (units, volts) defined in Sec-
tion 7.1.1, Eq. (124)

English

A Cross-sectional area of the channel

B Quantity defined in Eq. (25) which has units of time
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Diffusion coefficient (units, meters?/seconds)

Diffusion coefficient in the bath outside of the channel

The steady-state rate at which ions (having trajectories that start
and end in the left bath) exit the left end of the channel defined
in Section 3.2 (units, number/second)

The steady-state rate at which ions (having trajectories that start in
the left bath and end in the right bath) exit the right end of the
channel defined in Section 3.2 (units, number/second)

The steady-state rate at which ions (having trajectories that start in
the right bath and end in the left bath) exit the left end of the
channel defined in Section 3.2 (units, number/second)

The steady-state rate at which ions (having trajectories that start
and end in the right bath) exit the right end of the channel de-
fined in Section 3.2 (units, number/second)

Sum of E(l|l) and E(l|r)

Sum of E{(r|l) and E(r]r)

The steady-state rate at which ions (that have trajectories starting
in the left bath) encounter the capture radius defining the left
end of the channel defined in Section 3.2 (units, number/
second)

The steady-state rate at which ions (that have trajectories starting
in the right bath) encounter the capture radius defining the right
end of the channel defined in Section 3.2 (units, number/
second)

Small signal conductance of a channel (units, siemens or chms 1)
introduced in Section 2.2, Eq. (29)

Current (units, amperes)

Current under the assumption of independence defined in Section
2.1, Eq. (5)

Rate at which ions are injected in a system when calculating mean
first passage times and mean occupancy times introduced in
Section 5.1, Eq. (61)

Flux through a channel (units, number/second)

Flux through a channel under the assumption of independence
defined in Section 2.1, Egs. (2), (3), and (11)

Unidirectional flux from a source at x = a to an absorbing bound-
ary at x = b defined in Section 4.2, Eq. (39)

Affinity vector defined in Section 6.1, Eq. (112)

Boltzmann’s constant (k, = 1.381 x 10~ 23 joule/kelvin)
First-order rate coefficient describing the rate at which ions enter
the left end of the channel introduced in Section 8, Eq. (A1)
First-order rate coefficient describing the rate at which ions enter

the right end of the channel introduced in Section 8. Eq. (A1)
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Second-order rate coefficient describing the rate at which ions en-
ter the left end of the channel introduced in Section 8, Eq. (A1)

Second-order rate coefficient describing the rate at which ions en-
ter the right end of the channel introduced in Section 8, Eq. (A1)

Integral of the exponential of the dimensionless potential from x =
a to x = b defined in Section 4.1, Eq. (37) (units, meters)

Density of ions (units, number/meter3) introduced in Section 2.1,
Eq. (1)

Concentration vector defined in Section 6.1, Eq. (111)

Probability that the channel is empty, i.e., contains zero ions, intro-
duced in Section 2.2, Eq. (14) and defined in Sections 2.2, Eq.
(24), 3.2, Eq. (34), 6.1, Eq. (109)

Probability that the channel contains an ion whose trajectory initi-
ated on the left side of the channel defined in Section 3.2, Egs.
{35) and (53)

Grand canonical ensemble density function defined in Section
7.1.2, Eq. (129)

Probability that the channel contains an ion whose trajectory initi-
ated on the right side of the channel defined in Section 3.2, Egs.
{36) and (54)

Probability that an ion will be absorbed on the same side of the
channel that it originated from defined in Section 5.3, Eq. (72)

Probability that an ion will be absorbed on the opposite side of the
channel that it originated from defined in Section 5.3, Eq. (71)

Cis probability for the left end of the channel, see Section 5.3. Eq.
(72)

Trans probability for the left end of the channel. see Section 5.3,
Eq. (71)

Trans probability for the right end of the channel. see Section 5.3,
Eq. (71)

Cis-probability for the right end of the channel, see Section 5.3, Eq.
(72)

Electrodiffusive length defined in Section 4.1, Eq. (38) (units,
seconds/meters?3)

Ratio of the mean filling time to the characteristic relaxation time
under the assumption of a constant field in the bath defined in
Section 7.1.3, Eq. (139)

Mean occupancy time introduced in Section 5.3, for complete no-
tation see Fig. 8

Dimensionless time given by the ratio of the mean first passage
time of an ion from a constant-field channel and zero trans-
membrane voltage and the average time an ion takes to find the
channel defined in Section 7.2, Eq. (148)
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t Average time spent in the channel by an ion whose initial position
was at the left boundary of the channel defined in Section 5.4,
Eqg. (104)

Average time spent in the channel by an ion whose initial position
was at the right boundary of the channel defined in Section 5.4,
Eq. (106)

t Characteristic time for relaxation of the distribution of ions in the

bath due to a sudden change in the potential field defined in
Section 7.1.3, Eq. (136)

U Potential energy of a system (units, joules) used in Section 2.1, Eq.
(1) and Section 7.1.2, Eq. {129)
X Spatial coordinate

; Point at which a trajectory originates, see Fig. 5

z Valence of an ion
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