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ION FLOW THROUGH NARROW MEMBRANE CHANNELS:
PART II*

VICTOR BARCILONT, D.-P. CHEN?, anp R. S. EISENBERG!

Abstract. This paper is devoted to the study of the flow of ions through protein channels in
physiological membranes. More specifically, it is concerned with the role of the electrical properties
of the channel in determining that flow. For the case of long channels, it is shown that, when the
channels have a small permittivity (compared to that of the aqueous solution), the potential down
the channel is markedly altered. In particular, this potential ® does not satisfy a one-dimensional
Poisson-Boltzmann, but rather is a solution of a new equation, namely,
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where « is the small aspect ratio and ¢ is the ratio of the permittivity of the channel protein to that
of the aqueous solution. The meaning of the other variables are given in the text.
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1. Introduction. Membranes enclosing living cells consist primarily of lipid lay-
ers, typically 5 x 10—9m thick, that provide an effective electrical shield. All the elec-
trical “signalling” that occurs among cells is controlled by protein molecules embedded
in the lipid layers. These protein molecules act as channels that permit the selective
passage of Ca™* Cl™,K+, and Na% ions.

The structure of the lipid membrane as well as the structure of the channel is
rather complex. Figure 1 is an artist’s representation of two channel proteins in a
planar lipid membrane. The spheres represent the polar head groups of the lipid that
make up the impermeable mass of the membrane, the so-called planar lipid bilayer.
The channel is a large protein made of a continuous polypeptide chain, illustrated
here as a long, thin, bent rod, which, because of random thermal motion, occupies a
larger space, shown here by the twisted, larger diameter cylinders. These cylinders
pack to form the channel protein. In particular, the cylinders form the wall of the
pore through which ions move once the channel is open. No attempt is made to draw
a gate of the channel, if one exists. The polypeptide chain is itself made of atoms not
shown here. The structure and properties of proteins and channels are described in
[1] and [3].

Measurements of the current through a single channel are now being made rou-
tinely. A typical set of such measurements is shown in Fig. 2. The current is measured
with the patch clamp method using an inside-out excised patch [15]. The channel is
the most-studied K+ channel, the so-called “delayed rectifier,” in the membrane of
a neuroblastoma cell, which is a neuron-like cell grown in the laboratory in tissue
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Fic. 1. An artist’s representation of a channel embedded in a planar lipid membrane.
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FI1G. 2. A continuous recording of current from a single Kt channel of neuroblastoma cell.
The external solution is mostly 150 mM NaCl and 5.5 KCI, 1.8 CaCly, 0.8 MgCly held at pH 7.2 by
10 HEPES (N-2-hydrozyethyl piperazine-N’-2-ethane sulfonic acid). The internal solution is 150 mM
K glutamate along with 10 HEPES and 5 EGTA (ethene glycol-bis-(3-aminoethyl ether) N,N,N'N’-
tetraacetic acid) to keep free calcium very low, around 3 uM.

culture [12]. The potential across the channel is maintained at —20 mV. The ex-
ternal solution is mostly 150 mM NaCl and 5.5 mMm KCl, where M stands for moles
per liter of solution. The internal solution is mostly 150 mM K glutamate. Current
through this channel is carried chiefly by K+: the channel is “selective” for K+ for
unknown reasons. The movement of K+ is driven by both concentration and electric
potential gradients. The other ions in the solution prevent water movement (Nat) or
maintain the channel in a normal condition, i.e., prevent slow irreversible changes in
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observed currents.

The experimental record represents a continuous reading of current through the
channel. Closed periods alternate with open periods. The amount of time spent in each
state is widely variable, depending on the experimental and biological conditions. The
channel shown in Fig. 2 is closed most of the time, and the lower level of current in each
of the horizontal segments is a baseline, which has zero mean. The deviations from
zero represent instrumentation noise. Channel openings appear as sudden, upward
deflections of the current record to a new level, characteristic of the channel type,
concentration gradient, and potential gradient. The time course of channel opening
has not been resolved: it is faster than 20 us. The processes controlling the opening
and duration of opening are called gating. They are thought to represent conformation
changes in the channel protein and depend sensitively on experimental conditions.

The mean current through the channel is quite reproducible and is thought to
represent the movement of ions similar to that of ions in solution. Current through
many types of open channels shows random fluctuations very different from those of
the baseline. These fluctuations are of at least two types, one representing zero-mean
noise processes, the other representing rapid closings too brief to resolve with our
instrumentation.

In this paper, we consider a single aspect of the complex problem of ion perme-
ation through biological membranes; namely, we restrict our attention to the case of
the open channel exclusively. In other words, we do not analyze the gating process.
Rather, we set the stage for a theory that predicts the magnitude of the ion current
through the channel as a function of the ion concentration across the membrane as
well as the potential difference once the channel is open.

We model the lipid layer and channel wall as a dielectric slab, and the pore in the
channel as a cylindrical hole. This perforated barrier separates two distinct domains
of an electrolyte solution. Keeping the schematic diagram shown in Fig. 1 in mind, we
discuss the left and right half-spaces as the left and right baths. We assume that the
concentration of ions in these two baths is uniform such as to be electrically neutral.
As this model indicates, we are focusing on a single channel, tacitly assuming that, in
so doing, nearby channels do not interact with it.

The plan of the paper is as follows. In §2 we start from the premise that the dis-
tribution of ions of each species is governed by a Boltzmann equation with a collision
term such as Fokker—Planck. Then, we show that, for times long compared to the time
between collisions with the water molecules, these equations for the ion distributions
can be approximated by the familiar Nernst—Planck equations. In §3 we adopt this
macroscopic-deterministic approach and formulate the basic steady-state open chan-
nel boundary value problem, which consists of the above-mentioned Nernst-Planck
equations for the concentration of ion species coupled to Poisson’s equations for the
electric field. In the dielectric slab, only Laplace’s equation needs be considered since
no ions are present. We stress at this point that, along the edge of the channel, neither
the electric potential nor the electrical charge distribution is prescribed. Rather, we
impose the usual jump conditions that hold along the interface of two dielectrics, and
we let the solution of the equations determine the charge and the potential. Since the
resulting problem is mathematically untractable, we rely on the fact that the aspect
ratio of channels, i.e., the radius divided by the length, is typically of the order of 10—2
to simplify the analysis. The resulting singular perturbation analysis is discussed in
§4 for the case in which the ratio of the permittivities of the aqueous solution and
the membrane is order one; for this case, the membrane plays an inert role. In §5 we
consider the more interesting case in which the ratio of permittivities is small; making
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use of asymptotics, we find that the potential down the channel is governed by an
equation other than a one-dimensional Poisson equation. This version of the problem
is further discussed in §6.

2. The Nernst—-Planck equations. In this section we want to give one possible
interpretation of the Nernst—-Planck equation. The derivation to be presented might
be used to explain the randomness observed in the current measurements.

We start by defining the distribution function f;(x,u,t) for the ith species of
ions. We recall that by definition f;(x,u,t) dxdu represents the number of i-ions in
the cube (x,x + dx) x (u,u + du) of phase space. Consequently,

+o00 +o0
(2.1) / du / dx fi = N;,

where IV; is the total number of ith ions in the system.

For simplicity, we consider the one-dimensional case only. Then the equations
governing the evolution of f;(z,u,t) are the one-dimensional Boltzmann equations
02 % ZeOh_(5)

at 0z m; 0z Ou ot / .on
In this equation, ¢ is the electric potential; Z;e and m,; are the electrical charges
and masses of the ith ions. The term on the right-hand side represents the effect of
collisions.

We envision that these collisions are primarily with the water molecules of the
aqueous solution. (Typically, ionic solutions of physiological interest are about 55.5
moles of water to 0.3 moles of solute.) As such, these collisions are very frequent.
The effect of these numerous collisions can be approximated as follows (see, e.g., [13,

p. 38]):
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where w is a parameter with units of (time)~! related to the frequency of collisions,
and

time between collisions

6 =

characteristic time
is a dimensionless parameter measuring the ratio of the time between collisions and
another, longer characteristic time such as the spatial evolution from an initial state.
With this parameter, (2.2) becomes
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Since @ is assumed to be very small, we look for an asymptotic series solution of this

equation via the method of two-timing [6, p. 115]. To that effect, we define a slow
time

(2.5) T = 6t,
rewrite (2.4) as follows:
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and look for a solution of the form
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In other words, because of the frequent collisions, the velocity distribution equilibrates
rapidly to a Maxwellian distribution. The factor N;(m;/2nkT)'/? has been introduced
for normalization purposes. As a result of this factor, pz(-o) dz is the probability of finding
an i-ion in the interval (2,2 + dz). The next-order equation reads
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If we integrate this equation over all possible values of the velocity and anticipate
that f(1) tends to zero exponentially fast as u — +o0, we see that

ap” _
(2.12) o = 0.

In other words, pgo) evolves on the slow timescale. As a result, (2.11) can be written
thus:
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Integrating once over u, we obtain
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(2.14)  —N; (_&_) {sz + Zie ¥ %} = w—a-{fi(l) exp[miu2/2kT]}.
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(0)

Since p; ’ is not a function of u, it follows that
2N; i
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In deriving (2.15), we have set various constants of integration equal on account of
the fact that

~+o0 1
(2.17) / fdu=o0.
—00
We should also note at this stage that because of (2.12) and (2.16)
afl
2.18 —— =0.
(218) Lo

We next turn to the O(62) equation, which reads
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or, in view of (2.15) and (2.17),
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Integrating this equation over all velocities, we deduce that
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Equations (2.16) and (2.20) are the equations proposed by Nernst [9] and Planck [11],
provided (i) that

kT

3
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and (ii) that ng) can be identified as a flux of i-ions.
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Equation (2.21) is the famous Einstein relation. The question of the flux can be
settled as follows. By definition, the flux of ions is given by

+o0
(2.22) F, = / uf,, du.

Therefore substituting the asymptotic series (2.7) with the help of (2.9) and (2.15),
we have that

; 1/2 +oc0
F, =N; (é%f) pgo) / uexp(—miu2/2kT] du
= i\ [
A ()" @ / w2 exp|—~mau? /2KT] du + O(62),
that is,
(2.24) Fi =0 N:Q© + 0(62).

In summary, dropping the superscripts and relabelling 7 as ¢, we can rewrite
(2.15), (2.20), and (2.21) as
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The above approach is necessary for the microscopic study of ion flow through
channels. However, at the present time, such a microscopic approach is not needed
because of the limitation of the measuring devices. To understand this, we recall
that because of frequent collisions with water molecules an ion takes a diffusion time
to cross a channel. If the diffusion coefficient is 10—5 cm2sec=! and the channel is
10-6 cm, then the diffusion time is of order 10—7 sec. This implies a current of the
order of 10-12 A, which is about right. Now, the recording instruments have a charac-
teristic time of the order of 10—5 sec. Therefore the experimental results are averages
over at least hundreds of ions. We use this observation as a justification for using
a continuum, macroscopic approach to the problem, adopting the same microscopic
equations but now giving macroscopic interpretations to the various variables. In par-
ticular, we discuss concentrations c; instead of probability distributions p;. Finally,
to further emphasize the macroscopic viewpoint, we denote the flux of the i-ions by
the traditional symbol J; instead of Q;. The resulting equations are the classical
Nernst—Planck equations.

(2.25)

3. Mathematical formulation. We idealize the membrane to be a dielectric
layer of thickness d with a cylindrical hole, or channel, of radius a. Inside the channel,
we assume that the Nernst-Planck equations hold. For the steady state, this means
that the flux J; of i-ions satisfies the continuity equation

(3.1) V-3 =0,

which is the three-dimensional generalization of (2.20) for the steady-state case. The
flux J; is given by the following “constitutive” equation:
Z,-e

(3.2) Ji=-Di{Vei + T

Ci v¢})
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which generalizes (2.16). As before in the above formula, D; is the diffusion coeffi-
cient of the i-ions, eZ; their electric charge, k¥ Boltzmann’s constant, 7" the absolute
temperature, and ¢ is the electrical potential, where as usual

(3.3) E=-V¢.

This electrical potential arises partly from the distribution of the ions in the aqueous
solution. Thus, if D is the dielectric displacement field, then, according to Gauss’ law,
V-D =), Ziec, or if €, stands for the permittivity of the aqueous solution in the
channel region and

(3.4) D = ¢E,

then, in view of (3.3),
1
(3.5) V2p=—-=>" Zec.

Outside the channel, but still in the membrane, no ions are present, and hence
the only field to consider is the potential that satisfies

(3.6) V29 = 0.

Strictly speaking, we should complete the analysis of the various regions with a dis-
cussion of the baths on either side of the membrane. However, incorporation of these
regions makes for a much more complicated geometry and renders an analytical treat-
ment of the problem impossible. For this reason, we instead assume that the ions on
either side of the membrane are uniformly distributed and in neutral electric equilib-
rium. As a result, if z stands for the coordinate along the axis of the channel, then,
at the right and left ends of the channel, we can state that

i =l; cocp,  at z=0,
(3.7a) G = cocL
Ci =Ti CoCr at z =d,

where [; and r; are the fractional amounts of each species chosen to satisfy the charge
neutrality conditions, viz.,

0< liyri Slv
l;Z; =— L,Z; =1,
(3.7b) Z1Z>:0 Z,Z<:o 1
Z 'I“,‘Zi = - Z T','Zi = 1.
Z;>0 Z;<0

In anticipation of the nondimensionalization process, we have written the concen-
trations on the right- and left-hand sides as cocp and cocp, where cop has units of
concentration (number/cm®), whereas ¢z, and cg are dimensionless quantities.

The most important physiological case is that for which there are three species of
ions such that Z; = Z2 = 1 and Z3 = —1; this describes, for example, the case of K+,
Na™t, and C1™ in solution. Another relevant case is that where Z; = 1,Z, = 2, and
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Z3 = —1, which occurs if Ca’™ is present. To consider both of these cases at once,
we write the boundary conditions (3.7)

c1 =(1—=1)cocy, c2=xlcocr, ¢ =co cr, at  z2=0,
(3.8)
c1 =(1—r) cocr, €2 =XT Co CR, €3 =C0 CR, at z=d,

where x = 1 in the first case, and x = 1/2 in the second. Note that if we set [ =7 =0,
then we can also treat the case of two ion species with equal charge number.

It is obviously appropriate to use the cylindrical coordinates r,8, z to study this
problem, where 6 is now the angular coordinate. In fact, we assume that all the fields
are axially symmetric, i.e., independent of #; hence no confusion need arise over the
meaning of §. To complete the formulation of the problem, we must join the fields
along the edge 7 = a of the cylinder. Standard “pillbox” arguments [4, p. 110] imply
that

¢(a, 2) =¢(a, 2),
(3-9) d¢ L
E(G’ z) =€ B
where € is the ratio of the permittivity €,, and €, of the membrane and aqueous
solution, respectively, viz., € = €m /€q.
We translate the fact that the ions are confined to the channel by the requirement
that

_JOci  Zie 0¢

(a,2),

=0.

(a,2)

Finally, in addition to the concentration gradient, we allow for a second driving mech-
anism, namely, an applied potential difference across the membrane. Therefore

¢(r,0) = 9(r,0) =V,

(311 o(r, ) = (r, d) =0,

where V is the applied potential difference.

The next step is to introduce dimensionless variables to bring out a feature of the
problem, namely, the fact that the channel is long and narrow. Denoting dimensionless
quantities by a prime, we write

r=ar’,
z=dz,
kT
—_ A
(3123) 45,710 e ¢ 711/) )
¢ =Co Cg’
D;co
J;= JL.
d (2

We are also interested in the current I flowing out of the channel mouth

I= ZeZi 271'/ Ji(r,d)-f{rdr,
: 0
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or, if D stands for an average diffusion coefficient, then we can define

ma2cpeD
I= —-—-—Z‘) r,
where
(3.12b) =2 / 1 S 225 d) K rar.
0o & "D

Substituting (3.12) in (3.1) and (3.2) and in (3.5)—(3.11) and dropping the primes,
we arrive at a complete mathematical formulation of the problem, which we state
together with a program for its solution. We first solve the Nernst-Planck equations
190 [805 0(15] 0 [8@- 8¢J ~0

—=—T |+ Zici— | +a?— | = + Zici—
r Or

(3.13) or or 0z | 8z 0z

for the concentrations c¢;, subject to the impermeability boundary conditions

dei d¢
5;+Z,cl5;—0 for r=1,

and the neutral left and right baths

(3.14)

¢i(r,0) =l; cr,

3.15
( ) Ci('f', 1) =Ti CR,

as if the potential ¢ were known. Incidentally, in (3.15), we have redefined [;,r; to
conform to (3.8), namely,

l1 =(1 - l) T1 =(1 - 7‘),
(3.16) la =lx T2 =TX,
I3 =1 rg =1.

Once the concentrations are found as functionals of the potential, we then find
this potential by solving the Poisson and Laplace equations

10 09 282¢ — 212 s

r@rra'r a6z2— a2\ ZZ,Q for r<1
(3.17) 5 ou o2 i

1

e 27 —

" Brrar +a 5.2 0 for 7>1
subject to

,0) = ,0) =A,

a1 8(r,0) = %(r,0)

#(r,1) = y(r, 1) =0,
and the jump conditions
¢ =y

(3.19) 8¢ at r=1,
ar “or
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as well as the condition at infinity
(3.20) Pp—(1-2)A—0 as r— o0.

In the process of solving the second half of the problem, we use the results obtained
in [2]. When doing so, we recall that analogues of the fields u and v are ¢ — (1 — 2)A,
and ¥ — (1 — z)A, and not ¢ and . Incidentally, we should note that the analogue of
the forcing f is A2 >, Z; ¢;, which does vanish at both ends of the channel and which
is z differentiable.

The dimensionless parameters that appear in the problem are the aspect ratio

a
3.21 a= —
( ) dl

the applied potential difference V' expressed in units of k7'/e, namely,

eV
.22 =
(3 ) A kT’

and the relative size of the Debye length x—1!

(3.23) A =dk,
where
e2co
3.24 2 = .
( ) " e kT

We solve problems (3.13)—(3.20) under the assumption that « is very small.

4. Inert channels. Under this heading, we consider the case in which the ratio
¢ of the permittivities is O(1). Making use of the results derived in [2], and more
particularly on the form (8.1) of [2] of the asymptotic expansions, we look for solutions
of the form

¢i =C9(2) + (—a2Ina) CV(z) + o2 rz)+ -,
(4.1) p=(1-2)A+(—-a2na) @El)(z) +a2¢P(r,z)+ -,
b =128+ (~a?lna) ¥V (2) +a2 PP (r2) + .

In the above expansions, we use capitals to emphasize that we have already anticipated
some results about the lower-order terms, namely, that they are independent of r.
Following the program outlined previously, we begin with the Nernst-Planck equations
(3.13). The first two orders are trivially satisfied. The third order, which is O(a?),
yields

(2) (0)
1 . (2) §
(4.2) 19, {%— + 2,002 } ) FC; — Az 0.

r Or or or dz dz

Integrating this equation over r and using the impermeability boundary conditions
(3.14) yields

(0
(4.3) — [ﬂ - AzC?| =o.

dz dz
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These equations are, of course, the one-dimensional version of the Nernst—Planck
equations for a constant gradient potential. We can solve for the concentrations and
summarize the results as follows:

_ricr(exp{Z;A 2z} — 1) + licy (exp{Z:A} — exp{ZiA z})

G= exp{Z,-A} -1

¢ =(1-2)A+0(—-a?lna).

+ O(—a?lna),

Note that the ratio of the permittivities is totally absent from the lowest-order fields.
In that sense, the properties of the channel protein are not felt by the ions. Because
its dielectric properties are not involved in ionic movement, we say that the channel
is inert. The case we next investigate shows that when € is small the situation can be
significantly altered.

5. Active channels. We now investigate the case in which the aspect ratio o
as well as the ratio of permittivities constants € are small. In this case, we find that
the dielectric properties of the channel protein affect the ion movement, as we feel
they must if we are to explain biological phenomena such as selectivity and gating.

The small parameters a and € are physically unrelated. However, mathematically
(and perhaps physiologically), the most interesting behaviour of the potential down
the channel occurs when a very specific relation between these parameters is assumed.
Such a distinguished ordering is not at all unusual in the theory of asymptotics. Per-
haps the most famous example of such an ordering occurs in the theory of water waves
[6, p. 510]. There it is found that when a small parameter, which measures the ratio of
the wave amplitude to the depth of the water (i.e., the nonlinear breaking tendency), is
comparable to the square of another parameter, which measures the ratio of the depth
to the wavelength (i.e., the dispersion), then the equations of motion allow for a new
breed of waves, viz., the solitary waves governed by the Korteweg—DeVries equation.
Similarly, we see that the richest behaviour for the potential occurs if we consider that

(5.1) e=(—a?lna)éE

where € is an order-one quantity.
Once again using the results in [2], and more specifically of the form [2, (9.2)] of
the asymptotic expansions, we look for the solutions of the form

1
ci(r, z; a, €) =C’i(0)(z) + —_— C’,-(l)(z) + a? cz(_z) (ryz) 4+,

(-lnea)
(52) 20,8 =00 () + = 11n 3 2 (2) + a2 ¢ (1,2) + -+,
1

b(r, z; 0, &) =p© (r, z) + PP (r,2) + 2P (ry2) + -

(-lna)

Just as before, the third-order Nernst-Planck equations yield

10 act? (0) 862 d [dc® (©) d®©
. —— | = O — —_ ,C ——| =0,
(53) ror l: or + 26 ar + dz | dz + ZG; dz

which imply that

ac® (0) 4
(54) 5[7”@ | =0
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So, once again, the leading-order concentrations satisfy one-dimensional Nernst—-Planck
equations. We can integrate these equations once and write

0
dC® |, a2 _ o)

(5.5) dz dz L

where J; are constants of integrations equal to the dimensionless fluxes of the ith
species. To solve for the concentrations in terms of the potential, we first must compute
these fluxes

(5.6) —J.(O) _ ricr — licp, eZ,'A.
RGP

We should remark at this stage that the fact that these fluxes are different from
zero is a distinguishing feature of the physiological channel problem, although a great
deal of the previous work on the Nernst-Planck equations dealt with situations in
which the fluxes were zero (see, e.g., [14, pp. 19-41]). We can next find the concen-
trations

it eZiA le A OIS ¢ +ricr f§ cZi®0)(Q) dc
Zi®O(z) 1 .Z:2O(() g :

67 %)

We proceed with the determination of the potentials. It is easy to deduce from the
third-order terms of the Poisson equation that

2 2 (0)
(5.8) P2 = —% {A2 S 2. + %ﬁ—} +32)(2).

As a result, the potential inside the channel is given by

(5.9)
¢ =00 (z) + (

—Ina) 21(2)

1"2 (0) d‘Z(I,(O)
+a2(-z— {)\222101 (Z)+—'d—z—2—— +<I)(2)(Z) +O(a2/lna>.
Similarly, the potential in the membrane is

(510) ¥ =AO(z)+BO(z)lnr +

(— lln ) (A(l)(z) + BM)(2)In r) + 0(a?).

For the potential to be continuous at 7 = 1 as required in (3.19), we must set

AO)(2) =20O)(2),
(5.11)
A (z) = @(U(z)
The other half of (3.19) requires that the normal derivative of the potential suffers the
correct discontinuity, namely,
o¢

(5.12) —(1,z;a,—a?Inaé) = —a? lnaE%(l, z; a, —a? In ).

or or
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This implies that

B0 (z) =0,
(5.13) W) — _ 1 ., ~ ~(0) d2®0)
BW)(z) = 52 A Z Z;C; 7 (z) + ("
In summary, the exterior near-field now reads
(5.14)
1 d <1>(0)
— 30 P (2) — — A2 ©) 1 2).
Y="> (Z)+(——lna)( (2) {A ch (2) nr )+ O0(a?)

The last step is to impose the boundary condition (3.20) far from the channel.
We saw in [2] that this can be done via the method of matched asymptotic expansions.
Since, in fact, the question we confronted in [2] for the exterior v field is identical to
that for the field ¢ — (1 — z)A, we can simply copy the needed results. In particular,
from [2, eq. (9.2)], we immediately see that the coefficient of the O(1) term must be
set equal to minus the coefficient of the Inr in the term of order (—1/Ilna). As a
result,

25 (0)
15 ev-a-Da=g (¥ D Ao+ )

or, better still,
) d2®
(5.16) —26{@(;:) - (1- z)A} =5 = —Azz Z:Ci.

This is the equation for the potential in the channel that we have been seeking. In
summary, where the leading-order potential and concentrations are pure functions of
the distance down the channel, and where the one-dimensional Nernst-Planck equa-
tions are in force, the electrostatic field is governed by an equation other that the
strict one-dimensional Poisson equation.

Since we now focus on this equation, we have dropped all superscripts. The
concentrations entering in this equation are given by expressions (5.7), so that, in
fact, (5.16) is an integrodifferential equation for &, viz.,

2
%;?— — 260 = —2¢(1 — 2)A
(5.17) licL eZiA f Z(DdC+TzCR f eZi® dC

—\2
)\ZZ Z‘I)f Z<I>d€

To avoid problems with the shooting method, we transform (5.17) into the integral
equation

(5.18) B(z) = (1 - 2)A — 22 ]0 G(¢, 2)F[®(0))dC,

where

lic, eZiA fcl eZi®(n) dn +ricr foc eZi®(n) dn
(19)  FBQ =Y Z O[T T ,

1
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and the Green function G is given by

__sinh V/2éz sinh V2é(zs — 1)
(5.20) G2 = V/2€sinh v/2¢ '

As usual, in the above expression, z<, z> stand for the “greater” and the “smaller” of
the arguments.

We have restricted our attention to the case of three species of ions such that
Zy = Zz = —Z3 = 1. For this important case, the solution of (5.18) is identical to
that of two species of ions since (5.19) reduces to

cred [} e®Mdntcp [£ M) dn
Fi® =

[@(¢)] 300 5 20 4

cpeA fcl e—2(n) dn + cr foc e~ () dn
B e_q)(C) fol e“‘I)(TI) dn .

(5.21)

We have solved (5.18) iteratively. For each iteration, we have used M points (usually
48) to evaluate the integral involving the Green function by means of Legendre—Gauss
quadratures. For each of these points, i.e., choices of ¢ in (5.18), we computed the
corresponding value of the functional F[®]. For this purpose, we used another set of
Legendre-Gauss quadratures with NV points (usually 20) for each integral appearing
in (5.21). Altogether, we evaluated ® at (2N + 1)M points. As a result, we were led
to consider the system

n 2 & "
(5:22) 8¢ = (1-20)A =23 GV Wi(M), K =1, 2N + )M,

i=1

where
C N _ C 2N+1
CR 51 Z e®iv WU(N) +cL et - ) - Z e®iv WV—N—I(N)
F = _®. v=1 v=N+42
7 —€ i C ~ 1 C IN+1 )
b3 wemn+ 158 5 eewnaw)
v=1 v=N+42
C N 1— C 2N+1
CR El Z e~ Piv WV(N) +cr A 3 : Z e— P WV—N—l(N)
. v=1 v=N+2
—er o & 1 — ¢ 2N ’
_l “q>iu ke “q:'iu
> ; e~ Wo(N) + —; U-;“ e=®w W,_n_1(N)

and Wg(I) is the Gauss-Legendre weight for an integration over the normalized in-
terval (-1,1) divided into I + 1 subintervals. Superscripts refer to iterations. Fi-
nally, the index K denotes the alphabetically ordered pair (¢,v),s = 1,---, M and
v=1,---,2N +1.

The iteration was stopped when the difference between two successive iterates
was smaller than 10-12. A crude analysis of the iteration suggests that convergence
should occur as long as A2 is not too large.
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Fi1G. 3. Ion distributions versus distance along the channel. Positive and negative ions are
indicated by crosses and dashes, respectively. The crossed and open circles represent the distributions
that would have been obtained if the dielectric effects were neglected. The diagrams are for a channel
100 A long with o radius of 5 A; with dielectric constants of membrane and solution of 2 and 80,
respectively, and voltage potential of 50 mV. In the (a) frame, the concentration in the left bath is 25
mM, and 3 mM in the right bath. In the (b) frame, the bath concentrations are reversed. In all cases,
the voltage drop from right to left equals 50 mV. C(+) our calculation +, C(—) our calculation ----,
C(+) constant field ®, C(—) constant field O.

Figures 3(a) and 3(b) show the distribution of positive(crosses) and negative
(dashes) ions for a channel 100 A long with a radius of 5 A. The dielectric constants for
the membrane and solution are 2 and 80, respectively. The applied potential consists
of a drop of 50 mV (from left to right). In the (a) frame, the concentration in the left
bath is equal to 25 mM, whereas the concentration in the right bath has the lower value
of 3 mM. In the (b) frame, the concentration gradient is reversed but the electrical
potential is not altered. Because of the nonlinearity of the governing equations, the
results for these two situations need not be symmetric. However, for the parameters
considered here, this appears to be the case. In both cases, the concentrations depart
from a straight line profile, bowing either up or down, depending on the imposed
gradients. Circles with crosses and open circles indicate the distribution of positive
and negative ions that would be predicted if the dielectric effects were neglected. For
these particular settings, a = 0.05, € = 3.3, and A2 = 7.4. Incidentally, for these
settings, the next-order corrections, which are of order 1/(—Ina) = 0.33, may be
nonnegligible.

Figures 4(a) and 4(b) show the potential along the channel, or rather the deviation
of the latter from the straight line profile, for the same settings as before. Note
once again that the sign of the curvature of this deviation changes with the imposed
gradients.

Figures 5(a) and 5(b) show the current flowing out of the channel as a function
of the applied potential drop. The current is computed according to (3.12’) with
the following values for the diffusion constants: D4 = 1.0 x 10-6cm?2s—!, and D_ =
2.5x10~7cm2s—1. These values of the diffusion constants are not unrealistic, but they
are picked simply to get the right order of magnitude current.
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Deviation of Potential Profile Deviation of Potential Profile
from the constant field theory from the constant field theory
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F1G. 4. Deviation of potential from a straight line versus distance along the channel. All the
settings are identical to those in Fig. 3. In particular, frame (a) corresponds to concentrations in the
left and right baths of 25 mM and 3 mM, respectively, whereas frame (b) corresponds to the reverse
values.

0.0 Current Voltage Relation Current Voltage Relation
"" 4 our calculation — 9.0 7 our calculation —
4 constant field - 4 constant field -
6.0 ] 6.0 -
< E .
a 4 = i
8 3.0 7] = 3.0
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FiG. 5. Current versus voltage. The dashed lines represent what these current voltage relations
would have been had we neglected the dielectric effect. As in the other figures, the channel is 100
A long with a radius of 5 A. The dielectric constants of the membrane and solution are 2 and 80,
respectively. In the (a) frame, the left and right bath concentrations are, respectively, 25 mM and
3 mM. In the (b) frame, the concentrations in the left and right baths are reversed. The diffusion

constants used to calculate the current are Dy = 1.0 x 1078 cm2s~! and D— = 2.5 x 1077

6. The small gradients case. To understand the results of our numerical anal-
ysis shown in Fig. 3, and, in particular, whether the departures of the potential from
a linear profile are concave or convex, we have found it useful to treat the case in
which both the concentration gradient and the potential difference are small and of
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comparable magnitude. To fix the ideas, we consider the case in which ¢y and cgr
differ slightly from an average value c¢. Thus we define

(6.1) Cr =c(1 + pA),
‘ cL :C(l - :U‘A)a

where

(6.2) A<l

The parameter p introduced above represents the relative strength of the concen-
tration gradient versus the electric potential. We restrict our attention to the 2-ion
equations, viz.,

Cl+C1 ¥ = Jy,
(6.3) Cl— Co® = — Ja,
& — 2(® — [1 — 2]A) = — X2(Cy1 — C3),

and look for solutions as power series expansions in A, viz.,
Cr=c+ac +a20® ...
(6.4) Co=c+AacCq +a2cP 4.,
o= AN+ A2 +....
As a result, the boundary conditions are as follows:
e’ (0) =c(0) = —ue;  2(0) =1,

chmy=cP)y= pe M) =0,
(6.5)
cMo)=cMO)=em(0)=0 n>1,

cMy=cM(1) =8 (1) =0 n>1

The first-order problem is

acl) = de®
1 + — Jl(l)v

dz ¢ dz
1
(6.6) dc;” _ de® g
dz dz 20
d2e)

Clearly, the fluxes of positive and negative ions are given by

I =~ (2u- 1),
(6.7) W

Depending upon the magnitude of u, these fluxes can either be positive or negative.
The Nernst-Planck equations in (6.6) imply that

C =pe(2z —1) — (@) =1+ 2),

(6.8)
iV =pc(2z — 1) + (@MW) — 1+ 2).
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The remaining equation for the potential becomes

423 |
(6.9) o~ 26(2W — 14 2) = 2002(2M — 1 +2).

In view of the boundary conditions, we conclude that
(6.10) d(1) =1 -2,
and, after substituting this expression in (6.8),
(6.11) W = = pe(2z - 1).

Thus, to leading order, the so-called constant field approximation is, in fact, exact
and the concentration of 1- and 2-ions are the same. To explain the bowing of the
distribution profiles, we must go to the next order.

These second-order corrections are governed by

(6.12) dgg) - cdzf) +pe(22 = 1) = = J@,
We can easily check that
(6.13) J® =g =0

i.e., there are no second-order corrections to the fluxes. Consequently,
(6.14) C® = —C? = —c®® + pe(22 - 2).
The equation for ®(2) reduces to

d2e(2)
dz2

(6.15) — 2(E+ A20)P?) = 2X2pcz(1 - 2).

We can show that ®(2) is of one sign throughout the channel without resorting to its
explicit form. Indeed, if ®(2) changed sign at, say, z1, then after multiplying (6.15) by
®(2) and integrating from 0 to z1, we would obtain

21 d(I’(z) 2 . z1 9 21

(6.16) -—/ ( )'dz —2(é+ A2c)/ (®@)7dz = 2)\2,u.c/ 2(1 — 2)®@dz
0 dz 0 0

from which we would deduce that

(6.17) p®@ <0 in (0,21).

However, by repeating the same operations on the interval (z1,22), where 2o is the
next zero of ®2) (which could coincide with the endpoint), we would obtain

(6.18) p®?@ <0 in (z1,22).
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This contradicts our assumption that this correction changes sign at z;. Therefore
(6.19) p®@ <0 in (0,1).

In other words, the sign of the deviation of the electric potential is the same as that

of the concentration gradient.
The explicit expression for ®(2) is

A2uc
62 = — e z(1-2z)
(6.20) + A2uc 1 cosh /2(é + X2¢) (z — 1/2)
(€+ A2¢)? cosh \/2(€ + A2c)/2 .

Substituting this expression in (6.14), we see that

c® __ @ _ _ & _
! 2 €+ A\2c #(1-2)
(6.21) N A2uc - cosh \/2(€ + A2¢) (z — 1/2)
(€4 A2c)? cosh /2(€ + A2¢c)/2 '

Once again, the departure of the concentrations from the linear profile is dependent
on u, i.e., the sign of the overall concentration gradient. To understand this sign, we
can imagine a situation in which the electric potential is first set equal to zero. In this
case, the positive and negative ions diffuse throughout the channel and their identical
distributions coincide with the linear profile C; 2 = crz + cr (1 — 2).

Note that, for the perturbation analysis just considered, this profile is identical
with the first two terms of the expansion. We then imagine that the potential is
applied and that an electric field is generated. The positive ions are swept along in
the direction of the electric field. The negative ions have the opposite behaviour.
The sign of the net charge in the channel determines the curvature of the departure
of the electric potential from a straight-line profile. The quantitative features of this
behaviour are affected by the geometry of the channel as well as the dielectric constant,
but the qualitative features are not.

7. Discussion. In closing, we summarize the salient results of this analysis and
attempt to relate or constrast them to previous work in the literature.

The main result of the paper is the derivation of (5.17) for the electrical potential.
Inside a long, narrow channel, this electric potential is one-dimensional and governed
by three processes: (i) the classical axial spreading present in the one-dimensional
Poisson equation, (ii) a channeling process that is most pronounced when the ratio of
permittivities € is of order a? Ina; and, (iii) a source arising from the distribution of
ions in the channel as given by the Nernst-Planck equations.

It is interesting to contrast this equation with that studied by Jordan et al. [4]
and Mao Cai and Jordan [7]. They consider a channel with more realistic features
than ours, since they are relying on numerical means, and, in particular, they do
not restrict the size of the aspect ratio of their channels. They also consider surface
charges that are very important, and absent from our analysis. They solve a classical
Poisson equation in the channel with appropriate boundary conditions reflecting the
disparity in electrical permittivities. However, it is not clear from their analysis what
effect this disparity has. The other important difference between our approaches can
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be traced to the distribution of ions. In their analysis, the distribution of ions is such
that the flux of each different species is zero.

Levitt [6] also has considered the same problem and exploited the smallness of e.
In fact, in his paper, there is a hint that a and € must be related for the analysis to be
valid. The electrical potential is governed by a Poisson equation, and, as in our case,
the distribution of ions satisfy Nernst—Planck equations. Furthermore, his analysis
attempts to consider the finite size of the ions and, in particular, their confinement in
a channel of roughly the same radius. However, this important feature of ion transport,
absent here, may not have been done in a consistent manner. A time averaging might
be required to go from the behaviour of a single ion to that of a distribution governed
by the Nernst—Planck equations. Nevertheless, the fact remains that our less ambitious
analysis makes many results contained in his paper systematic and rigorous.

Another shortcoming of our paper is the very unrealistic treatment of the entry
and exit regions. The paper by Peskoff and Bers [10], in the same spirit as ours,
is devoted exclusively to such a treatment. Ideally, we would like to merge the two
treatments, but the analytical difficulties are too great.

The above remarks indicate that a satisfactory synthesis of all the important
aspects of this problem is still in the future. For our part, we have embarked on an
extention of the current work in which surface charges are present.
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