|
Constant fields and constant gradients in open ionic channels

Duan Pin Chen, Victor Barcilon, and Robert S. Eisenberg
Department of Physiology, Rush Medical Center, Chicago, lllinois 60612 USA

ABSTRACT lons enter cells through pores in proteins that are holes in dielectrics. The energy of interaction between ion and charge
induced on the dielectric is many kT, and so the dielectric properties of channel and pore are important. We describe ionic
movement by (three-dimensional) Nernst-Planck equations (including flux and net charge). Potential is described by Poisson's
equation in the pore and Laplace’'s equation in the channel wall, allowing induced but not permanent charge. Asymptotic
expansions are constructed exploiting the long narrow shape of the pore and the relatively high dielectric constant of the pore's
contents. The resulting one-dimensional equations can be integrated numerically; they can be analyzed when channels are short
or long (compared with the Debye length). Traditional constant field equations are derived if the induced charge is small, e.g., if the
channel is short or if the total concentration gradient is zero. A constant gradient of concentration is derived if the channel is long.
Plots directly comparable to experiments are given of current vs. voltage, reversal potential vs. concentration, and slope
conductance vs. concentration. This dielectric theory can easily be tested: its parameters can be determined by traditional
constant field measurements. The dielectric theory then predicts current-voltage relations quite different from constant field,
usually more linear, when gradients of total concentration are imposed. Numerical analysis shows that the interaction of ion and
channel can be described by a mean potential if, but only if, the induced charge is negligible, that is to say, the electric field is

spatially constant.

INTRODUCTION

Classical theories of electrodiffusion describe structures
with fixed geometry, for example, channels with a
definite length and cross-sectional area (constant field
theory: Goldman, 1943; Hodgkin and Katz, 1949; liquid
junction theory: Henderson, 1907, 1908; Maclnnes,
1961). Electrodiffusion through the membranes of cells
occurs, however, through a varying number of different
kinds of channels, in effect, through a varying cross-
sectional area of different sorts of permeable membrane
(Hille, 1984). Indeed, the macroscopic movement of
substances is often controlled by opening and closing
channels, thereby changing the area and kind of mem-
brane through which a particular ion can move. Such
macroscopic fluxes, flowing through varying numbers
(typically, tens of thousands) and types of (typically, two
to ten) channels cannot be described by the classical
equations of electrodiffusion, because those assume a
fixed area of membrane available for ionic movement.
Microscopic currents flowing through a single channel
are quite different from macroscopic currents flowing
through many channels. Once a particular channel is
open, its geometry is presumably fixed and the micro-
scopic current flows through a definite area, constant in
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time. Classical theories of electrodiffusion originally
described currents in gross preparations of many cells;
they fell out of favor as the voltage clamp was used to
measure currents in small but macroscopic pieces of
membrane from single cells (Hodgkin, 1971, 1977). They
are needed once again to codify, understand, and
perhaps guide these measurements, now that currents
are routinely measured in submicroscopic pieces of
those membranes, namely single open channels.
Constant field theory (Goldman, 1943; Hodgkin and
Katz, 1949) is widely used for such analysis but often
with some confusion between its original macroscopic
derivation and its present microscopic application. Many
papers have analyzed electrodiffusion in a macroscopic
context (in several fields, viz., membrane biophysics:
Adrian, 1969; Liuger and Neumcke, 1973; Sten-
Knudsen, 1978; electrochemistry: Buck, 1984; Rubin-
stein, 1990; semiconductor physics: Selberherr, 1984;
Markowich, 1986; Hess, 1988; electron transport in
metals: Verhoeven, 1963), but reexamination seems
necessary before classical theories are used to describe
ionic movement through channels of atomic size.
Cooper, Gates, and Eisenberg (1988; following many
others in the biological literature, e.g., Levitt, 1982,
1986; Jordan, 1987) describe ionic movement as a
diffusive process, arguing (following many in the chemi-
cal literature, e.g., Murthy and Singer, 1987) that solute

1372 0006-3495/92/05/1372/22  $2.00

Biophys. J. @ Biophysical Society
Volume 61 May 1992 1372-1393



movement on the biological time scale of microseconds
to seconds involves a large number (> 10%) of collisions
between atoms, even in the shortest time likely to be
relevant to permeation (1077 s). Such movement is
described by classical continuum equations: the Nernst-
Planck equations (as used by Planck, 1890a,b; Hender-
son, 1907, 1908; Maclnnes, 1961; Goldman, 1943;
Hodgkin and Katz, 1949; Levitt, 1982, 1986; Jordan,
1987) describe average properties; Fokker-Planck equa-
tions (Cooper et al., 1988) describe stochastic proper-
ties. as do the more or less equivalent stochastic differen-
tial equations, the Langevin equations (Cooper,
Jakobsson, and Wolynes, 1985) that describe trajectories
of individual particles drifting and randomly walking
through a potential field. Classical Nernst-Planck equa-
tions are one-dimensional, not describing a channel at
all. They can easily be scaled to describe one-dimen-
sional flow across an area and through a length of a
channel. But no trace of the induced charge or dielectric
properties of the channel protein appear in the equa-
tions. Classical Nernst-Planck equations do not allow
interaction between ion and channel wall and so are
hard to justify as a description of ionic movement
through biological channels, which are just 0.6-1.5 nmin
diameter, comparable to a Debye length, the length
scale of interaction between charges in solutions. Thus,
electrical interaction is expected to occur; indeed, it is
hard to see how the biological properties of a channel
(e.g., selectivity, rectification, and gating) could occur
without such interaction.

Many workers have modified the classical Nernst-
Planck equations to include interactions (following
Neumcke and Lauger, 1969) between ion and channel,
describing ion-channel interactions as a charge interact-
ing with a mean potential, a potential dependent on
location but independent of all other parameters, includ-
ing time, dielectric constant, concentration, and cur-
rent.! A similar treatment is used in stochastic analysis
of Fokker-Planck equations (following Kramers, 1940;
further references in Cooper et al., 1988) and Langevin
equations (references in Cooper et al., 1985), and in
much of solid state physics (e.g., Hess, 1988; Markowich,
1986; Selberherr, 1984). In these theories, the interac-
tion of matter and a charge is described by a potential,
an energy, sometimes called “the potential of mean
force.” That energy is assumed constant, known in
advance, independent of the parameters of the theory,
the same for every concentration gradient, flux, and
diffusion constant of each ion in the pore.

'The interaction should not be computed with image charge methods,
because those methods are not general and do not permit solution of
Maxwell's or Poisson’s equations in most geometries, e.g., a finite
cylinder (Panofsky and Phillips, 1962, pp. 39-43).

The difficulty with this description is that it is in
conflict with the electrical properties of matter as
described by Maxwell’s equations. lons do indeed inter-
act with a surface potential as they flow through a
channel, but that potential depends on all the parame-
ters of the problem,” e.g., the type, location, and amount
of ions in the pore. The ions in a pore are anything but
constant; thus, it is unwise to assume that an ion
interacts with a fixed potential when it in fact interacts
with matter. Such could be an end, but should not be a
beginning of analysis.

The mean potential approach fails because the force
between an ion and matter cannot be described as the
interaction of an ion with a fixed preordained potential.
Matter itself is made of internal charges that move in
response to an electric field or a nearby ion, creating
significant induced charge, even if the matter is origi-
nally uniform and electrically neutral, and even if the
induced movement of charges inside the matter is tiny.
Tiny movements produce significant polarization charge
inside and on the surface of matter, thus producing its
dielectric properties. These dielectric properties are
always important, usually dominant determinants of the
energetics and movement of ions near proteins in
solution because an ion is so close (i.e., <0.2 nm) to the
atoms of water and the channel wall. Estimates of the
energy of interaction between an ion and dielectric (Egs.
3.8-3.10 in Israelachvili, 1985) show that dielectric
interactions depend on the difference in the reciprocal
of the dielectric constants and are very strong, easily tens
of kT in energy (using parameters in Table 1; and Eq.
3.10 in Israelachvili, 1985). Currents through channels
often depend exponentially on the interaction energy
(divided by kT); thus, the dielectric properties of the
channel wall and pore must be explicitly (and accu-
rately) included in a theory of permeation. Approxima-
tions that neglect dielectric effects are inherently implau-
sible and require mathematical or physical justification,
in our view.

Here we develop a theory of electrodiffusion in
channels allowing only the simplest electrical interaction
between channel wall and permeating ion, the interac-
tion between a charge and a dielectric, seeking formulae
describing current flow through an open channel, di-
rectly comparable to experimental data. We find some

*More precisely, the interaction of an ion with a fixed potential is
described in electrostatics by a “*Dirichlet boundary condition” and is
quite different from the interaction of an ion with matter, which is
described by a “jump boundary condition™ (Panofsky and Phillips,
1962, p. 32). It would be a mathematical miracle if the two quite
different boundary conditions gave the same physical forces over a
range of concentrations, fluxes, and diffusion constants of each ion in
the pore.
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cases where dielectric interactions dominate the theory
and other cases where they are negligible. We try to set
the stage for a more precise analysis, that would use the
actual (local) dielectric properties and permanent charge
distribution of channel proteins, once they are measured
or computed from realistic simulations of atomic dynam-
ics (Brooks, Karplus, and Pettit, 1988; McCammon and
Harvey, 1987).

THEORY

Readers primarily interested in using this theory may prefer to turn
directly to Eq. 19.

Statement of problem.  Equations must be written in three dimensions
if the dielectric properties of the channel are to be analyzed: we do not
know how (a priori) to describe dielectric interactions in one dimen-
sion, where dielectric and pore would occupy the same space. The
open channel is described by the Nernst-Planck equations, with flux J;
which satisfies the continuity equation

V-J =0. (1)

The ﬂux,], (cm~2-s ') of each ioniis

Ze
Ve, + —=¢ Vo

-li= _DI T

; (2)

where ¢;(r. x, 8) (units: cm~ 3y is the concentration of species i; (7, x, 6)
is the electrical potential in volts; Z; is the charge on each ion, positive
for cations, negative for anions in units of e, the charge on the proton,
1.6 - 107" coulomb; k is Boltzmann’s constant, and 7 is the absolute
temperature; D, is the diffusion constant (cm?/s) of the ith ion in the
channel’s pore. This diffusion constant may be very different from the
value in bulk solution, because the environment of an ion in a pore is
very different. D; is assumed independent of x. The x dependent case
could be handled without much difficulty, at least numerically, if the
dependence were known from, for example, simulations of the
molecular dynamics of ion permeation.

The potential ¢ arises from the distribution of the charge 3,Zec; on
ions free to move macroscopic distances and from the distribution of
charge bound to molecules. able only to move atomic distances. Bound
charge can be a permanent chemical property of an atom or molecule,
independent of the local electric field, or it can be induced by the local
electric field, being zero when that field is zero and proportional to
that field in other cases (Purcell, 1985, chapter 10, particularly pp. 388
and 389: Feynmann, Leighton, and Sands, 1964, chapter 10 and 32).
Here all the bound charge is assumed to be induced, described by the
polarization field, proportional to the electric field, with the proportion-
ality constant truly constant, independent of time or location (or
potential, current, or concentration, for that matter), equal to e, — €,,
where €, = 88.5 fF/cm is the permittivity of free space and e, is the
permittivity of the pore of the channel. €, = €, - €,, where €, is the
relative permittivity, i.e.. dielectric constant. The electric field is
described by Poisson’s equation:

1

EHIEO

E Z;ec;. 3)

1

Vig = —

A dielectric theory should allow the proportionality constant to
depend on time and location once that dependence is known experi-

mentally or from simulations of molecular dynamics. A cylindrical
coordinate system (r,x, 8) is used, but axial symmetry is assumed so
there is no 6 dependence. Outside the pore, but still in the channel
protein, no ions are present and so the potential is described by
Laplace’s equation

Vip = 0. (4)

The potential on the left hand side is assumed to be ¢(x = 0) = V, to be
specific, where we choose the origin of the longitudinal coordinate x; d
is the channel length. The potential outside (on the right hand side) is
assumed zero, ¢(x =d) = 0, positive flux and current is assumed
outward (from left to right), and the concentration of each ion is
described by

cx=0)=1/"¢ on the left hand side (5)

and
clx=d)=rcyg

on the right hand side. (6)

Electrical neutrality is assumed on each side of the channel (but not
within the pore), so on the left hand side

2 IIZI = - E IIZI -

Z,>0 Z;<0

|

(7

and on the right hand side

Nrzi=—- 2 rnZ=1 (8)

Z,>0 Z,<0)
The potential within the pore is linked to the potential within the
channel protein by dielectric boundary conditions

ela — 0,x) = ¢(a + 0,x) 9

o 0 i 0 0
—(a—-0,x)=e— (a +0,x). 1
(@ = 0.0) = €= (a+0,x) (10)
a — 0 means a location just inside the channel wall and a + 0 means
just outside the channel wall; e is the ratio of permittivities (equiva-
lently, ratio of dielectric constants) of the channel wall €, and aqueous
solutions €,.

€

€=—. (11)
EL\
These equations assume no permanent (i.e., independent of Vo)
surface charge on the channel wall. In this paper we only consider
induced charge, namely polarization charge proportional to the local
electric field, leaving the analysis of permanent charge until another
time.

Ions are confined to the pore by forbidding radial flux at the wall of
the channelr = a

dei(a,x)y  Ze de(a, x)
— + 7= cla,x) ——=0. 12

or T kT or (12)
The measured experimental variable is the current /(1) flowing out of
the channel mouth, the spatial integral. nearly the spatial average of
the fluxes

1) = 3 ez)em [ ir.d)-irdr, (13)

i
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where fis the radial unit vector. Our intuition has been aided by
displaying the induced charge opi(x) along the cylindrical surface of
the channel. once ¢(r.x) is determined (Panofsky and Phillips, 1962.
p. 32).

0'pnl _ a_‘P _ N d_'ﬁc
ey (a —0,x) o (a +0,x). (14)

€\\

An asymptotic analysis (Kevorkian and Cole, 1981) of these coupled
nonlinear partial differential equations (1-10) can be found in Bar-
cilon et al. (1991). There the three-dimensional problem is reduced to
a one-dimensional problem by exploiting the small ration « of
diameter to length of channels, using the distinguished limit where € =
(—« In @)é. The results are expressed in the nondimensional spatial
variable z, and the nondimensional potentials &(r, z):

a } € X
oa=-; €=—FT"";
d —a’lna

b(r.2) = ¢(r,2) - e/kT. (15)

The analysis shows that the leading term of the expansions for the flux
Ji is independent of position, and the leading terms ®(z) and C;(z) of
the expansions for the potential ¢(r.z) and concentrations ¢;(r,z)
depend only on axial location. The Appendix shows how these
variables also describe the spatial average of the potential and
concentration in channels of varying cross-section, perhaps not long
and narrow, although the error terms are not evaluated in that case.

db(r.z) = (z) + o(1)
¢ (r.2) = C(2) + o(1)
J(r.z) =J, + o(1), in the z direction. (16)

The order notation o(1) (little oh one™: see Olver, 1974, pp. 4-11).
describes the error terms in the expansions of Barcilon et al. roughly

dielectric correction:
duced charge

A

The ionic strength ic (units: ¢cm~%) in the present treatment is
computed from the ionic strength in either the left or right hand bath.?

1
IL(L) = ECI E [IZI::

1
I(R) = 5 Cx 21Z}. (18)

When computing the numerical solution of the differential equations,
we chose 1. = Y[I(L) + I(R)]; when using the constant field
expressions, it would be better to choose 1. = max [I(L): I.(R)]: when
computing the constant gradient expression, it would be better to
choose iL = min [I(L); /(R)].

The system of one-dimensional differential equations (written here

for three univalentions Z, = 1, Z> = 1. Z; = —1)is
dc, do
&= +C1~E: =Jid/D,
dc, do
E’ +C- = —J-d/D,
dc, do
TE*C‘I'E: —J5d/Ds. (19)

The role of the fluxes and diffusion constants J.d/D; in these equations
is interesting. They are constants, independent of location and time in
this steady-state problem; in a way they are integration constants of the
differential equations. Once the differential equations (19) are multi-
plied by an integrating factor and explicitly integrated (as shown in Eq.
6 of Barcilon et al., 1991), the integration constants, i.e., the flux terms
Jid/D,. are determined by the boundary conditions 5-8, leaving
expressions for the concentration C; that do not depend on the
diffusion constants or fluxes at all (Eq. 5.7 of Barcilon et al., 1991).

The asymptotic analysis vields an equation for the potential within
the channel, also independent of flux or diffusion constant.

space charge

d’d(z)

€
+2m(‘b(z) - [1 =2z]A) = )

,Cila) + CE) — Cx(2)

dz? 1. (20)
meaning “smaller than order one, as « — 0.” The Discussion describes The boundary conditions atz = 0 andz = 1 are
what little can be said in general about the error involved in using just
the first term of the expansion. The transmembrane potential } is z=0 z=1
described by the dimensionless variable A; the dimensionless variable — -
A describes the effective length, the relative size of the channel length C(0) =1C, Ci(1) =rCy
. —1 that i i [ORIESN . . s .
d. and the Debye length k! that is the width of the ionic atmosphere C5(0) = (1 = DC, Cy(1) = (1 = 1Cy
e G(0) = ¢, Gy(1) = Cg
A= V.
kT D0) = A =eV/kT d(1) = 0. (21)
N = «d,
where *In our theory the ionic strength is simply used to define a length scale.
We are aware that fluxes in other electrochemical systems can be large
y enough to change ionic strength in some locations and thus produce a
K2 = et (17) variable, spatially dependent. and nonlinear scaling into perturbation
€,€ kT’ expansions (Rubinstein. 1990, pp. 3 and 107).
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Eqgs. 19 and 21 are the classical one-dimensional Nernst-Planck
equations. What is not classical is their coupling through a modified
version of the Poisson equation. relating the violation of electrical
neutrality (i.e., the space charge) C(z) + Ca(z) — C3(z) to the electric
field (Eq. 20).

The differential Egs. 19-21 with two point boundary conditions have
been solved numerically with a commercially available multiple shoot-
ing procedure (BVMPS: Sewel, 1982; Press et al., 1986). Their
numerical solutions were within machine error of solutions of the
equivalent integral equation (Barcilon et al., 1991), and were indistin-
guishable from constant field, or constant gradient approximations in
the appropriate regimes. Computation of the potential and concentra-
tion profiles for one set of parameters at 500 spatial points and an
iteration accuracy of 107" took less than 2 s, using an IBM RS/6000,
model 320 (Austin, TX).

Induced charge

The induced charge opi(2) (units: coulomb/cm?) along the cylindrical
surface of the channel can be determined from Eq. 14 and Egs. 5.14
and 5.9 of Barcilon et al. (1991). Note that o,,(2) is proportional to the
dielectric correction term 7 (z, A) = $(z) — [1 — z]A of Eq. 20:

T 1

a e Ina

ek

Tpal(2) = (P(z) — [1 = z]A). (22)
We see then that deviations > (z, 4) from constant field [1 — z]A. are
tied to the amount of induced surface charge (see Eq. 59).* When the
induced surface charge is negligible, the potential gradient will be
linear and the second derivative will be zero. Then. the dielectric
correction term drops out of the modified Poisson equation (20), i.e.,
opoi(z) = 0 and the space charge A(Cy(z) + Ca(2) — C5(2)) is also
zero.

Profiles of concentration and potential.  The fact that the concentration
profiles do not depend on the diffusion constants of ions, in the bulk or
in the pore, has interesting physical consequences. In our theory, ions
are distinguished chiefly by their diffusion constants in the pore;
different ions of the same charge are hardly otherwise recognizable,
except. of course. by their different concentrations. Thus, it is perhaps
not too surprising that many key results concerning the potential and
concentration profiles (e.g., Eqs. 23 and 39-41) depend on the total
concentration of ions and not on the individual ion concentration. The
individual ion concentrations become critically important only when
we measure flux or current, or functions of them, because only then do
the diffusion constants of individual ions in the pore, that distinguish
ions one from another, enter prominently into our expressions (e.g.,
Eqgs. 27-31). Those parameters influence the time course by which the
concentration profiles are established but they do not influence the
steady-state profile itself (Cohen and Cooley, 1965: Cole, 1965, 1968;
Mafé, Manzanaes. and Pellicer, 1988).

Simplifications of the one-dimensional expansion. The one-dimen-
sional version (Egs. 19-21) can be further simplified (case 1) if the

*Note that classical analyses of liquid junctions and constant fields are
not consistent with the usual (uncorrected) equations of the electric
field. For example, a constant field inplies electrical neutrality yet
computation of the space charge from the constant field theory (i.e.,
Egs. 24-26) does not yield zero. i.e., electrical neutrality (Bass, 1964;
Zelman, 1968: MacGillivray, 1968; MacGillivray and Hare, 1969;
Friedman, 1969; Zelman and Shih, 1972; Jackson, 1974; Mafé, Pellicer,
and Aguilella, 1986; Riveros, Croxton, and Armstrong, 1989). Consis-
tency requires a modification of the constant field or of Poisson’s
equation along the lines of our equation (20).

channel is short (A\* << 1) compared with the ionic atmosphere: (case
2) if the channel is long (A > 1) compared with the ionic atmosphere;
(case 3) if the concentrations are symmetrical with r = [; (case 4) if the
diffusion constants of different ions in the pore are identical D; = D;
(case 3) if the gradient of total ion concentration is small, namely
(CL. = CRr) — 0: (case 6) if the ratio of dielectric constants e = 1.
Under physiological conditions, with ionic strength I, = 150 mM =
9 x 10" ¢m~3, and dielectric constants €, = 80, €, = 2. the ionic
atmosphere is probably some 1-nm thick, with the channel being from
3 to 10 nm long, so we anticipate the long channel case (2) to be the
most relevant to biological channels.

Simplifications: (case 1) short channels with constant electric fields.
Expanding Egs. 19-21 in powers of A’ gives the constant field
expression (Cole, 1965, 1968), and the corresponding induced charge

Tpa(z) = 0. (23)

The next order problem for @ in this expansion has been solved for a
special case but is not presented because direct comparison with the
numerical solution of the integral or differential equation is more
general and accurate.

The corresponding distribution of concentration within the pore is

rCR[e:BV kT _ 1] + ICL[L,CVJ(T _ e:t’l"’/k’l‘]

G = T (24)
: (1 = nCyle=* ™ " = 1] + (1 = HC e — e*¥HT]
Cy(z) = ST _
(25)
Chle ~zeb TRT _ 11+ Cle —eVikT e—:cl"’kT
Ci) = Rl |+ G | 26)

E,fel"r/\'l' —1

These equations show that the distribution of concentration within the
pore in this approximation is independent of many parameters of the
problem. It is independent of the diffusion constants of ions in the pore
in general. In both the constant field and constant gradient approxima-
tions, it is also independent of the dielectric constant of the pore and
channel protein, and of the aspect ratio of the channel. The indepen-
dence of the concentration profiles makes computation much easier.
particularly when the dependence on the other parameters can be
displayed analytically, as in perturbation expansions.

The measured current can now be predicted from Eq. 13. The
resulting expression is well known but written here in explicitly
microscopic variables, with A4 being the cross-sectional area of the
pore.

IV)=A D eZJ, -
: g eV kT
=7 R (e oir, Dl rCre ]
+ Dy[(1 = HCy — (1 — r)Cre V47
+ D;y[Cr — CLe VA1), o8)

This expression yields the well known expression for the reversal
potential (the potential at zero current)

v le DIC + Dy(1 = )C + D;Cy
rev. — e nDerR + Dl(l — r)(/‘R + D;(‘[,‘

(29)

1376 Biophysical Journa

Volume 61 May 1992



and the, at least as, useful (Landowne and Scruggs, 1981) expression
for the short circuit (or diffusion) current

Ae
I(V=0)=——=(C[D/+ D5(1 - 1) - D;]
dr
— Cr[Dyr + Dy(1 = r)y ~ D;]). (30)
At large transmembrane potentials | V| or | A| — o, the current-voltage
relation asymptotes to straight lines, passing through the origin (7 = 0.

V=)

2

IA = +2) = = A[(DIC, + Do(1 = NGy + DiCy)
T (DIC, = rCr) + Doj(1 = DHC = (1 = ) Cy]
+ Dy(Cr = Cy))e 2 + o(e ™)) 31

eA
(A — —x) = d A[(DyrCg + Dy(1 = r)Cg + DiCy)

+ (Dy(rCg = ICy) + Dy[(1 = 1)Cr = (1 = )Cy]
+ Dy(Cp = Cr))e +o(e)], (32)

where we use the order notation: for example, in Eq. 31, 0(e ~**) means
(roughly) “smaller than e =% as A — +x" (see Olver. 1974). The
rectification ratio R(c¢f ) measures the limiting ratio of slopes in the
constant field theory and has a simple meaning if one ion is much more
permeable than the other

al
. _;)T&(A#)—OC) r("R B D[ >>D2 %
R(cf) =25 ) ~ic, if D, > Dy (33)
a3+

The entire current—voltage relation can be sketched from these
asymptotes and the reversal potential and slope there (or short circuit
current and slope there; see below), because the function 7(A) has so
little structure. Evidently, its slope does not change sign: it seems to
have no maxima or minima and an inflection point only at the reversal
potential. Note that the accuracy of the constant field approximation
may depend on the value of other parameters, e.g., the size of the
transmembrane potential. For that reason we always use the numerical
solution of the full set of equations (19-21) to compute results.

Slope conductance.  Measurements are routinely made of current—
voltage relations of open channels at different concentrations of ions.
These curves are usually analyzed to show the variation with concentra-
tion of the reversal potential (the potential at which / = 0) and slope
conductance d// r'iV[[u,[vm . It would be more accurate and easier (Tang
et al.. 1990) to measure and analyze the slope conductance at zero
potential al/aV|;—, because the current measured is much larger, the
analvtical expressions are neater, and the physical situation is simple.
ions moving under their concentration but not the electrical gradient.’
The slope conductance at the reversal potential in a constant field

*When V' = V.., the current flow through the channel is zero, but the
flux of each individual ion is not zero, indeed each flux can be large, if
the diffusion constants (i.e.. permeabilities) are comparable.

theory is

ol A (’ZVR‘ 1
aV [':1[_\_d kT

"1 — o et kT
e
(77 (DACL+ Dy(1 = DCy+ DiCr). (34)

The slope conductance at zero potential is

ol Ae e
V0, 2d kT

[D\[IC, + rCr) + Df(1 = Cp + (1 = r)Cr]
+ DG + Cell. (39)

Simplifications: (case 2) long channels, with constant concentration
gradient.  We now turn to the more physiological case, in which the
channel is longer than the width of the ionic atmosphere, that is longer
than some | nm. Expanding Eqgs. 19-21 in a power series in 1/A%, we
get for the leading terms

Poisson cquation: = C,(z) + C5(z) — C3(z) = 0 (36)
Ci@) + Ci(2) - ®'(2) = ~1,d/D,

Flux equations: = {C2(2) + Cy(z) - @'(z) = =Jd/D,. (37)
Cy(2) = Cx(2) - P'(2) = —Jxd/D;

The coupling to higher order corrections occurs through Poisson’s
equation but is not shown here.

Adding Eqs. 37 and 36 together and combining, gives the constant
gradient in total concentration

d
© [Ci(z) + Cx(z) + Ci(z)] = constant. (38)

Integrating Eq. 38 and combining with Eq. 36 and the boundary
conditions (21) give the concentration explicitly as a linear function of

z

Cia)=Ci(2)+C{2)=C  +z-(CxR = C 0<z<l.
3(2) 1(2) 2(2) L (Cr L) (39)

Adding the first two equations (37). using the boundary condition (21)
for ®, we determine the nonlinear potential profile, not a constant
field (in general)

dz) = A —— (40)

Note, this implies a surface charge (from Eq. 22) of

! \
L,
+—(l -z
WV In|z Cu (1 )J 1 | .
(Tpnl("‘) alna | CL - ( - Z) ’ ( )
\ " Cu !

which simplifies in the case of large or small concentration gradients to
a linear gradient of surface charge. We abbreviate the ubiquitous
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concentration ratio as C = C/Cg.

EUV
C=C/Cg > L oy(2) = o’ forz = 1
. . eV
C=C/Cg <1, op,(2) = m(z —1); forz=0. (42)

Additional attention should be paid to the special. if not singular, cases
of {C > 1;z=1and [C < 1:z2 =0}

The concentrations and fluxes can now be determined by solving the
equations in 37.

(rCg — IC ™)

c( 2
p, O e

hi= d Ce* -1 (“43)
{ A i
p.(1=O) (\1 + ﬁ) (1 = 1)Cy = (1 = HCye?)
L= Ced — 1 )
Dy[ A
,]3 = -d—tm - 1 (CR - Cl) (45)

The concentration profiles are given by

Ci(z) l(r = DCre>(z(1 — C) + C)=3m<

T - 1!

— (rCr — IC1e*)z(1 — C) + C)} (46)

i
Ci(z) = m«‘(l - r)C[_(»A(z(l -C)+ C)~A=]n(‘

= (1 =nCr = (1 = DCeN (1 = C) + O)). (47)
which determine C; from Eq. 39. The total electric current is then
Cp—CreA
Cer—1 d
— Ce?|Dy + Dy(1 = 1) — D5]

1(A) = [Dy+ Dy(1 = r)y — Ds]

A
+ R[le"rDz(l - r) + Ds]

CAe?

~ o i+ DAL=+ D)) (48)

The short circuit or diffusion driven current is then the same as in the
constant field case (see Eq. 30), because the electrical driving force is
zero. We suspect, but have not proven, that the short circuit current is
a general property of the unapproximated Eqs. 1-14, as suggested by
the work of Landowne and Scruggs (1981).

At large potentials, the current-voltage relation asymptotes to
straight lines that do not pass through the origin (in contrast to the
constant field expressions), described by

o

eA

(Cr. = Cr)

D\ + Dy(1 =1)+ D,
DY+ Dy(1 =1) =Dy + A- e .

(49)

and

eA
I(8 = =) = — (€, = Cy)

D+ Dy(1 —r) + D,
InC

D+ Dl =r)—-D;+ A (50)

The rectification ratio R(cg) measures the limiting ratio of slopes in
the constant gradient theory and has a simple meaning if one ion is
much more permeable than the other

ol A
_(')A( - r . |D,> D,
R(cg) = s T 1 D, > Dy (51)
E(AH +0) »

Thus, at least in this case, the constant field theory predicts greater
rectification than the constant gradient theory, proportional to the
ratio of concentration of total salt (see Eq. 33).

The entire current-voltage relation can be sketched from these
asymptotes and the reversal potential as for the constant field case.
Note that the constant gradient approximation seems inaccurate when
the transmembrane potential | V| is large.

The slope conductance in the constant gradient theory is given
below, with Ay, = Vi e/kT, Ve = V (I = 0). We hope the reader will
forgive our mixing dimensionless and dimensional units for brevity’s
sake,

ol Cr—CLeA e
Iy
Cedres
i InC (Arev+])(Dll+DZ(l _[)+D3)
ncC

— Ceda(Dl + Ds(1 = 1) — Dy)

Dy + D,(1 ~r) + D; ,
InC ‘ ©2)
The slope conductance at zero potential is
ol Cyk—Cp eAd ¢ C 53
Wiy [C=1P d kT (33)
where for the sake of typography we define
D < (D, ~D : )l l
(L_ln(,'(r_ Dy ~ 2)¥lnC(ll +Dy(1 = 1) + Dy)
Dyr+ D5(1 —r) + Dy
- InC
- C(D(r+1)+Dy(2~-r—1)—2Dy). (54)

Simplifications: (case 3) symmetrical concentrations, wherer = 1. Then,
the current—voltage relation is strictly linear

>

d

1(8) = (€L = Cy)

7+ Dy(1 —r)+ D,
InC ’

D
~ [(D,r +Dy(1=r)—Dy) + A (55)
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and so the slope conductances are equal, given by the slope of Eq. 55,
namely, in dimensional units,

ol

aV

ol
TV

=1

e°A . Dir+Dy1-r)+D,
kpTIn C

1'=0

(56)

The (dimensionless) reversal potential can be explicitly determined

Dy + Dyl =) — Dy,
D+ Dyl —r)+ D, "

Arcx == C. (57)

Simplifications: (case 4) identical diffusion constants. Equal diffusion
constants in the pore D; = D; = D3 = D imply a linear current-voltage
relation no matter what the other parameters

A
I(V)y=DV- (%} (CL + Cp) (58)

Simplifications: (case 5) no concentration gradient. Another special
case is (. = Cr. equality of total concentrations. Then, many
expressions become singular and limits need to be taken as C; — Cyg,
giving expressions independent of the effective channel length (Arndt,
Bond. and Roper, 1970). In this special case, the constant field and
constant (here zero) gradient expressions are the same.

Interestingly, if the gradient of concentration is zero, one can show
that the linear potential [1 —z]A is a solution of the full set of
nonlinear partial differential Eq. (1-13), suggesting that whenever the
potential gradient dominates the movement of ions, a constant field
will arise, except at boundary layers nearz = O or 1.

Simplifications: (case 6) no dielectric gradient.  1f the diclectric constant
of the pore and channel wall are comparable, e = O(1) as a« — 0
and the channel is inert, as derived and described by Barcilon et al.
(1991). In that case, the induced charge is negligible and a constant
field results. The induced charge is negligible because (d¢/dr, -y, =
de/drl, . o). however, the radial derivatives might individually be
nonnegligible.

Constant electric field and constant charge gradient.  We find then (to
the surprise of some of us) that a constant (electric) field is often a
valid approximation: constant fields arise in all special cases that
ensure small surface charge op,(z). In the other special case (of
constant gradient), the surface charge is nearly a linear function of z.

RESULTS

The dielectric theory presented here predicts different
experimental behavior in different regimes of concentra-
tion because the profiles of potential and concentration
within the channel are qualitatively different in those
cases. The reader more interested in experimental
predictions might wish to turn directly to Fig. 6. In
Results we identify those regimes and show the profiles
of potential and concentration in each, along with
predictions of typical experimental results. We then
examine an interesting case in which channels are

predicted to be more or less in one regime for outward
current and the other regime for inward current. Finally,
we examine the mean field approximation and show that
it applies if the electric field is spatially constant,

Different regimes: qualitative behavior. The fundamental
results of an electrodiffusion theory are the profiles of
concentration C,(x) and potential ®(x) along the chan-
nel. The experimental results of current-voltage rela-
tions, slope conductance, and reversal potential are
predicted from these profiles. Profiles of concentration
depend on a number of parameters (although, interest-
ingly enough, they do not depend on the diffusion
constants of individual ions in the pore; see previous
discussion) and so their prediction, analysis, and under-
standing can be complex, even when simple formulae
are available.

Fig. 1 shows the regions in which different approxima-
tions and computations are valid. These regions are
defined along the vertical axis by the ratio C = C/Cy of
total concentrations (of possibly permeant ions, see later
definition of this term); they are defined along the
horizontal axis by the effective length of the channel A.
which is inversely proportional to the Debye length and
thus the square root of the ionic strength (see Eq. 17).
The other parameters (e.g., membrane potential, diame-
ter of channel, dielectric constants, diffusion constants
in the pore) are held constant at physiologically reason-
able values (see legend). The boundaries of the regions
shown, undoubtedly depend on the values of those
parameters, but that dependence has not been investi-
gated.

Fig. 1 B defines the regions more precisely for the
range of parameters considered, provided the transmem-
brane potential A is not too large (Tables 1 and 2; note
that setting D¢, = 0 has no noticeable effect on any of
our plotted results). The constant field expansion
(A2 << 1) can be used in regions 1 and 5; the constant
gradient expansion (A*> > 1) can be used in regions 3
and 4, where the channel is long compared with the
Debye length. The integral equation (Barcilon et al.,
1991) can be used in regions 2 and 3, as well as the
intermediate region 2: in region | it gives nearly the
same results as constant field, in region 3 nearly the
same as constant gradient. In region 4 the iterated
solution of the integral equation does not converge. Our
numerical solution of the differential equations com-
putes so quickly (in the range of potentials reported
here) that we often use it instead of the analytical
approximations.

Fig. 2 describes a channel in the regime (C, = Cg,
long channel; cf. Table 1) where the constant field
approximation should be useful. Profiles of potential
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FIGURE I (A) Constant field approximation. The regime of validity

of the constant field equation. The abscissa is the effective length A of
the channel (see Eq. 17). The ordinate is the ratio of concentration of
possibly permeable ions (see text) on the left and right side of the
channel. The regimes were determined rather crudely, so they are
separated in the figure by a crudely drawn line; we suspect that they
should be symmetrical around the line €. = Cg. (B) Domains of
approximation. Regions of validity of different approximations.

and concentration, and current-voltage relations (not
shown) computed from the numerical algorithm are as
expected from traditional analytical expressions (28—
33).

Fig. 3 shows the potential (panel 4) and concentra-
tion profiles (panel B) in an (effectively) long channel
for a “medium” transmembrane potential (50 mV = 2
kT/e) and concentration gradient (in just one direction,
inside/outside = 2/1; Table 2) of possibly permeable
ions. Figs. 4 and 5 show the potential (panel A) and
concentration profiles (panel B) in an (effectively) long

TABLE 1 Equal total concentration of potentially permeant
ions: constant field case (C_ = Cp)

Ion Diffusion Left Right
(e.g.) constant (inside) (outside)
cm?s
K] 5% 1078 150 mM = €Cy 3.0 mM = rCy
[Na] 5x 1070 30=(01-6C 177 = (1 = NCy
[Cl] 25 x 10°¢ 180 =Cp =1, 180 = Cr =1,
Setting D¢y = 0 has no noticeable effect on any of our plotted results.

Parameters: ¢, = 80; €, = 2, implying € = 0.025:a = 0.5 nm;d = 10
nm, implying a = 0.05. ¢/(—a’Ina) = 6.67, and € = 3.338. ] = 1.08 X
102 em % k' = (.72 nm, computed from Eqs. 16 and 17, so A = 13.9.

channel for a “large” transmembrane potential (in both
possible directions: #500 mV = *20 kT/e) and moder-
ate concentration gradient (Table 2) of possibly perme-
able ions. Note the asymmetry between Figs. 4 and 5,
and the “boundary layers” (Kevorkian and Cole, 1981)
emerging nearz = 0.

Large membrane potentials. When the potential across
the membrane is large compared with kT/e = 25 mV,
other simplifications are needed because neither the
constant field nor the constant gradient expressions are
likely to be uniform approximations, valid at all mem-
brane potentials. For this reason, experiments per-
formed at large membrane potentials, [A| > 1, are
difficult to interpret with simplified theories: new effects
will appear at large membrane potentials. In particular,
the effects of access to a channel cannot be isolated by
making measurements at large membrane potentials.
Such large membrane potentials will qualitatively change
behavior within the pore because they create boundary
layers in the profiles of concentration and perhaps
potential within the channel, boundary layers not present
at smaller membrane potentials.

Current—voltage relations.  The dielectric theory predicts
current-voltage relations directly comparable to experi-

TABLE 2 Unequal total concentration of potentially permeant
ions: constant gradient case (C_ = Cg) (r = /)

Ion Diftusion Left Right

(e.g.) constant (inside) (outside)
cm?/s

[K] 5x10°° 600 mM = ¢Cy. 180 mM = rCy

[Na] Sx10°° 120 = (1 = )C,. 180 = (1 = r)Cr

[Cl 2.5 x107° 720 = Cp = I(L) 360 = Cr = I(R)

Setting D¢y = 0 has no noticeable effect on any of our plotted results.
Parameters: ¢, = 80: ¢, = 2, implying e = 0.025;:a@ = 0.5 nm;d = 10
nm, implying a = 0.05 and € = 3.338. k™! = 0.42 nm, computed from
Eqgs. 16 and 17, s0 A = 24.
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FIGURE 2 Profile of potential (4) and concentration (B) along the FIGURE 3 Profile of potential {(4) and concentration (B) in the

channel in the constant field regime, computed from the full nonlinear
one-dimensional differential equations (16-22). Parameters specified
in Table 1: C1 is the [K]; C2 is [Na]; and C3 is [Cl]. Setting D¢y = 0 has
no noticeable effect on any of our plotted results.

constant gradient regime, computed from the full nonlinear one-
dimensional differential equations (16-22). Note the transmembrane
potential of 50 mV. Parameters not specified or varied in figure are
given in Table 2: C1is [K]; C2is [Na]; C3is [CI].
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FIGURE4 Profile of potential (4) and concentration (B) in the

constant gradient regime, computed from the full nonlinear one-
dimensional differential equations (16-22). Note the transmembrane
potential of 500 mV. Parameters not specified or varied in figure are
given in Table 2: C1 is [K]; C2 is [Na]; C3 is [Cl].

ments. Fig. 6 shows, at two different magnifications, the
expected current—voltage relation for a choice of diffu-
sion constants in the pore (Table 2) compatible with the
permeability of ions found in many biological K* chan-

Potential Profile
along the channel
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S
c ~250
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B OOy e e e RN B o s s s o ey e e e
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z
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200.0 4 * ...-..-.l-.lllllll
OO LI I U S A N B B | T T 1T 771 | L
0.0 0.25 0.5 0.75 1.0

FIGURES Profile of potential (4) and concentration (B) in the
constant gradient regime, computed from the full nonlinear one-
dimensional differential equations (16-22). Note the transmembrane
potential of —500 mV. Parameters not specified or varied in figure are
given in Table 2: C1 is [K]; C2is [Na]; C3 is [Cl].

nels. The current—voltage relation is quite close to the
predictions of the constant gradient theory and quite far
from that of the constant field theory, although the
corresponding profiles, of Ci(x) and &(x) shown previ-
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Current Voltage Relation
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FIGURE 6 Current-voltage relation for channel (mostly) in the con-

stant gradient regime. Parameters not specified or varied in figure are
given in Table 2.

ously in Figs. 4 and 5. are not terribly far from constant
field or constant gradient; it is dangerous to assume a
simple graphical relation between the combination of
functions in Eqs. 24-26 and the different combination in
Eq. 28.

The only parameters available to determine selectivity
in this dielectric theory, or constant field theory, for that
matter, are diffusion constants in the pore.® Anions
cannot be removed entirely from the pore by setting
their concentration to zero (although their diffusion
constant can be set to zero) without ad hoc extensions,
like selectivity filters, or large concentrations of perma-
nent fixed charge. We choose not to make such exten-
sions until a later paper, although we realize some may
be necessary, even true; here we seek a thorough
analysis of the least complicated situation, trying to
avoid an ad hoc deus ex machina that may be inconsistent
with the rest of our treatment (e.g., a selectivity filter
that does not modify the electric field or the diffusion
constants in the pore).

Reversal potentials. The dielectric theory predicts the
reversal potential V., often used to characterize chan-
nels: channels are often exposed to varying concentra-
tions of the most permeant ion and the measured
reversal potentials are then compared with the so-called

%Qur “diffusion constant in the pore™ is simply another way of writing
the “permeability” of Hodgkin and Katz (1949).

Nernst potential Vy; = (kT/e) In [[,Cy /(r ,Cgr)]. The rever-
sal potential here is determined as the zero of the
expression for total current (e.g., Eqs. 27, 28, or 45)
using a widely available convergent root finding algo-
rithm (Brent, 1971).

In comparing theory and experiment it is important to
remember that at the reversal potential the fluxes of
individual ions are not zero, nor even small, and thus
analysis using thermodynamics or irreversible thermody-
namics is not appropriate. Fig. 7 shows plots, in custom-
ary logarithmic format, of the V., = (kT/e) - A, for the
concentrations and diffusion coefficients of Table 1,
except for the variable concentration of K*, the most
permeable ion. We choose to vary only the external
concentration of [K*],, keeping [Na*], fixed, thus vary-
ing both r and Cy, thereby moving the channel out of the
constant field regime. The prediction of constant field
theory, for the same parameters, is shown for compari-
son.

It is interesting to note that the reversal potential is
different in the various calculations. This should not be
surprising because the reversal potential is described by
different expressions in the different theories. It empha-
sizes once again that the reversal potential is not a
thermodynamic quantity, nor is it a unique function of
concentrations and diffusion constants in the pores
(Patlak, 1960) derivable by, say, a general form of

Reversal Potential vs, Concentration
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FIGURE 7 Reversal potential vs. concentration for different values of

diffusion constants in the pore for Na*. C.F. indicates prediction of the
constant field theory. Parameters not specified or varied in figure are
given in Table 2.

Chenet al

Constant Fields and Gradients in Open lonic Channels 1383



irreversible thermodynamics independent of the geome-
try or dielectric constants in the problem. Rather, the
expression for the reversal potential depends on the
details of the kinetic model of flux through a channel.

Slope conductance. Channels are characterized by their
dependence on concentration, using the slope conduc-
tance at zero current 9//9V| v=v,, to crudely represent
the entire I-V curve as concentration is varied in dif-
ferent ways. Fig. 8 shows plots of that slope conductance
and of its close relative //dV|, - as the concentration of
K* and Na* on the outside (right) are varied from 1 mM
to 1 M, other parameters being left as specified in Table
2. Fig. 9 shows plots of the same slope conductance for
several fixed total outside concentrations Cy (= 5 mM,
150 mM, 500 mM), with the relative concentration of K+
and Na™ varying between zero and one. Both curves
were determined from finite difference approximations
to the current-voltage curves described previously. We
are aware, of course, that channels often show a decreas-
ing slope of such curves with increasing concentration,
usually interpreted as a saturation phenomenon. This
dielectric theory evidently does not produce such a
decreasing slope and so should not be used under
conditions where saturation occurs.

Moving a channel through changing regimes. It is inter-
esting to design experiments that move a channel from
one regime to another, e.g., from constant field to
constant gradient, as identified in Fig. 1. Fig. 10 4 shows
current-voltage curves in which the effective channel
length is varied by changing total concentrations while
the concentration ratios (r, [, and C) are held constant
(at the values given in Table 2). Fig. 10 B shows a plot of
the reversal potential and Fig. 10 C shows a plot of slope
conductance vs. concentration.

Another way to vary the effective channel length
keeps the concentration ratios constant on each side of
the channel, but changes the ratio C/Cy. Fig. 10D
shows current-voltage relations computed by varying C
(and thus C, /CR), keeping the other parameters r and /
constant at the values specified in Table 2. C,/Cy is
varied from 1 (constant field) through 10 (something like
constant gradient), to (the more general case of) 100.

Experiments of this sort clearly distinguish the dielec-
tric theory from constant field theory. Measurements
made at C,/Cr = 1 with varying ratios of Na*/K*
determine all the parameters of the constant field
theory: the variation in reversal potential determines the
ratio of diffusion constants, e.g., Dn,/Dy, and the slope
conductance determines the magnitude Dy, + Dg; the
value of € is not determined, however. Changing the salt
gradient to C; /Cg = 5 or 10 then has much less effect on
the limiting current, as J — o, of the dielectric theory

Slope conductance at the Reversal Potential
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FIGURE 8  Slope conductance vs. concentration for different values of

diffusion constants in pores. (4) a//3V|y-y-_; (B) 81/9V| =g . Parame-
ters not specified or varied in figure are given in Table 2.

than on the limiting current of the constant field case, as
predicted by Eq. 33 and 51. Note that all the parameters
of the constant ficld and constant gradient theory are
determined by measurements at just one salt gradient
C1/Cg. No other parameters are available to fit the data
taken at other salt gradients C|/Cy in these domains.
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Only one parameter, €, is available to fit data taken in
other domains and the predictions seem a weak function
of this parameter.

Fig. 11 shows an interesting calculation for a different
set of parameters [K];, = ¢C. = 300 mM, [Na], =
(1 = €)CL=60; [K]oy =rCr = 18, [Naj,, = (1 = r)Cr =
18; the current—voltage relation shifts regimes as it shifts
quadrant. When current is positive (outward) and poten-
tial is positive (depolarizing), the curve is close to

FIGUREY Reversal potential (4) and slope conductance (B and C)
as a function of the fractional concentration (abscissa). Parameters not
specified or varied in figure are given in Table 2.

Slope conductance at V=0
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constant gradient, evidently dominated by the high
internal concentration C; = 360 mM. When the current
is negative (inward) and the potential is negative (hyper-
polarizing), the curve is close to constant field, evidently
dominated by the low external concentration Cg = 36.
In all these calculations, the diffusion constants in the
pore D; are held constant, independent of concentra-
tion. The concentration dependence of current-voltage
curves shown here is a consequence of the complex
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FIGURE 10 Moving channels from one regime to the other by changing concentrations: current-voltage relations (4 and D) and derived quantities

(reversal potential (B) and slope conductance (C)). Note the large difference between constant field and constant gradients in D: this should be
casy to detect in experimental data. Parameters not specified or varied in figure are given in Table 2.

interactions of ions and channel, not of a variation in the
frictional interactions (i.c., permeabilities) of ions.

The interaction potential. The potential describing the
interaction between an ion and the channel wall (i.e., the

potential on the cylindrical surface of the channel
¢ (r = a = 0)), is not in general a constant: the charge
0p01(z) induced on the channel wall depends on all the
parameters of the problem (see Eqgs. 14 and 22). In many
theories, however, the interaction potential ¢ (r = a = 0)
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Current Voltage Relation
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FIGURE 11 Current-voltage relation for a large concentration gradi-

ent. Note that the current-voltage relation (solid line: numerical
solution) approximates that of the constant field approximation when
current flow is inward (negative) and that of the constant gradient
approximation when current flow is outward (positive). Parameters
are:

Diffusion Left Right
constant (inside) (outside)
cme/s
K] 5x 107 300 mM = €C 1I8mM = rCg
[Na] Sx 100 60 = (1 - OCL 18 = (1 =rCq
[C1] 25 % 107° 360 = C). 36 = Cgr

Setting D¢y = 0 has no noticeable effect on any of our plotted results.
Parameters not specified or varied in figure or this caption are given in
Table 2.

is assumed constant, independent of other parameters
and dependent variables.

Most mean field theories approximate the interaction
of an ion with the channel wall by the deviation % (z, 4)

(2 A) = D) — [1 - 2]A = o In @)e/[ekT]).  (59)

the difference between the total potential and the
constant field potential at this location, proportional to
the induced charge (see Egs. 14, 20, and 22). As long as
®(z) nearly equals A-[1 —z], a channel is in the
constant field regime, with 7 (z, &) = 0, o,u(z) = 0,
independent of A. Then, the ion does interact with a
channel protein with an invariant profile of potential, a
constant field, i.e., a potential linear in x. In this sense
then the classical constant ficld theory turns out to be

the mean ficld theory of channology, the theory with no
induced charge, as one should have expected a priori,
but did not.

When channels do not contain a spatially constant
electric field, however, the mean field approach is often
inappropriate, because the induced charge is often
substantial and variable. Fig. 12 shows the deviation

(', A) of the potential from constant field in the

middle of the channel (z = '4) as a number of parame-
ters arc changed. For example, panel A shows the
deviation as a function of the transmembrane potential
for various concentrations with the parameters of Table
2 (cf. Egs. 41, 42). Panel B shows the deviation. 7 (14, A)
as a fraction of the transmembrane potential. The
deviation.% (!4, A) is not constant in most cases, showing
that the interaction of ion and channel wall usually
cannot be described as the interaction of an ion with a
fixed potential, except when the channel is in the
constant field regime (when the deviation remains zero,
of course).

Panel C shows one case, however, in which the
deviation (i.e., induced surface charge) is nearly con-
stant; the deviation does not depend significantly on &€
(that is to say, it does not depend on the ratio of
dielectric constants, or the ratio of length to diameter)
for the parameters of Table 2. There is at least one other
case in which the interaction between an ion and a
channel is constant, even if the interaction is large and
the electric field is not constant; we have previously
shown (e.g., Egs. 23-26 and 40, 46, 47) that the potential
and concentration profiles within the channel do not
depend on the diffusion constants (i.e., permeabilities)
of individual ions in the pore (see earlier discussion).

Thus, we see that mean field theories can be used for
the range of parameters considered here (Table 1 and 2)
when the channel is in the constant field regime, or the
parameters varied are the dielectric constants, diameter
or length of the channel, or diffusion constant of ions in
the pores. Otherwise, a mean field theory is likely to be
inappropriate.

DISCUSSION

Historical notes.  Barcilon, Chen, and Eisenberg (1991)
describe ionic motion in the pore by a system of
nonlinear differential equations and boundary condi-
tions not previously analyzed, to the best of our knowl-
edge. Levitt, 1978, 1985, 1986, 1988; Peskofl and Bers,
1988; and Jordan and his colleagues (e.g., Jordan, 1982,
1983, 1984, reviewed in Jordan, 1987; Jordan et al.,
1989) have emphasized the importance of electrostatic
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vs. Membrane Potential
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FIGURE 12 Deviation of potential in the middle of the channel for constant field, shown in absolute (4 and C) and relative units (8 and D) for
different concentration ratios (4 and B) or (ratios of) dielectric constants and (ratios f) channel length and area (C and D). Parameters not

specified or varied in figure are given in Table 2.

interactions in ionic channels,” but have not tried to
analyze flux through a pore in a protein, i.e., a hole in a
dielectric. Bass, 1964; Zelman, 1968; MacGillivray, 1968;

"Our theory computes the electrostatic interaction under many condi-
tions and presents it as the potential ®(z). The cited literature
computes the J; = 0 case with various approximations.

MacGillivray and Hare, 1969; Friedman, 1969; Zelman
and Shih, 1972; de Levie and Moreira, 1972; de Levie,
Seidah, and Moreira, 1972; Liuger and Neumcke, 1973;
Jackson, 1974; Maf¢, Pellicer, and Aguilella, 1986; and
Riveros, Croxton, and Armstrong, 1989, have empha-
sized the importance of the violation of electrical neutral-
ity, the space charge that accompanies ionic diffusion,
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but have not studied its interaction with a surrounding
dielectric.

Barcilon et al. (1991) analyze current flow, allowing
violation of electrical neutrality and interaction with a
dielectric, using a continuum description of ionic motion
in the pore. The ions in the pore interact electrically, but
only electrically, with the channel wall; the net charge in
the pore induces charge in the channel wall. Analysis
and approximation leads to a one-dimensional integro-
differential equation (Eq. 5.17 of Barcilon et al., 1991),
of considerable complexity, that can be formulated as a
system of nonlinear ordinary differential equations (Egs.
19 and 20) or as an equivalent integral equation (Egs.
5.18-5.20 of Barcilon et al.). Each formulation is quite
involved, so it is a welcome surprise that their numerical
evaluation can yield simple curves, reminiscent of the
properties of real channels and classical theories.

The body of this paper shows how the simple curves
come about. Numerical analysis yields simple curves
over a wide range of parameters. lonic movement can
occur in a constant electric field for a limited range of
concentrations and potentials. It is only under those
conditions that a mean potential theory should be
applied.

In the general case, and probably in the biological
situation, the electric field is not constant; in channels
nanometers long, in solutions of more than a few
millimolar ionic strength, the electric field varies with
location. The gradient of the fotal concentration of all
permeant ions, however, can, for some potentials and
concentration gradients, be nearly constant in such
channels, as assumed for the case of zero flux by Planck
(1890a, b; see Maclnnes, 1961, pp. 461-465). The other
classical (Henderson) assumption of the liquid junction
potential is, however, not accurate; the gradient of
concentration of each ion is not constant, as assumed by
Henderson (1907; see Maclnnes, 1961, pp. 231-233).
Interestingly, the results of the constant field and con-
stant gradient theories are indistinguishable in an impor-
tant special case, when the gradient of the total concen-
tration of permeant ions is zero (Arndt, Bond, and
Roper, 1970). Then, the zero concentration gradient is
accompanied by a constant electric field, independent of
channel length or ionic strength. 1f the gradient of total
concentration is even a factor of two, however, the
constant field theory is not very accurate.

Limitations of our model. The analysis presented here
1s of a reduced but reasonable model with more or less
the dimensions of the gramicidin pore. It is not meant to
describe our current view of a specific biological chan-
nel, both because that view may prove ephemeral, and
because our hope is to uncover qualitative phenomena

and properties common to many channel types, helpful
in the design and interpretation of experiments.

The physical model is mesoscopic, not atomic and not
macroscopic. The parameters of the model clearly need
to be understood in terms of the atomic parameters of
molecular dynamics, but it will take some effort and time
(human and machine) to stretch present day simulations
(some 0.1 ns in duration) into the biological time scale of
micro- and milliseconds. Meanwhile, a hierarchy of
models needs investigation: atomic dynamics, to deter-
mine atom-atom interactions, including induced charge;
molecular dynamics, to determine the permeating path,
potential of mean force, and motions of the channel
protein; Langevin simulations and stochastic differential
equations to follow ions interacting with each other
moving through channels; Fokker-Planck equations, to
analyze the first-passage time of noninteracting ions;
finally, the Nernst-Planck equations of this paper, to
describe the steady-state flux. Each level of the hierar-
chy is needed to provide the parameters for the next: the
potential functions of molecular dynamics come from
study of atom-atom interactions; the friction (i.e., mem-
ory kernel) of Langevin dynamics comes from molecular
dynamics; the potential barriers and diffusion constants
of the stochastic differential equations, Nernst-Planck;
and Fokker-Planck equations come from the potential
of mean force determined in molecular and/or Langevin
dynamics.

Such an hierarchical approach will take some time to
complete so we can fully understand our mesoscopic
variables. But physical insight (i.e., guesses) can help in
the mean time. For example, the mean concentration in
the pore is a mesoscopic variable depending on stochas-
tic quantities. Clearly it is in some sense the average
number of ions in a channel in some time period,
determined by the instrumentation used to record cur-
rent, divided by that time period and the volume of the
channel. Thus, concentration in the pore depends on
more than just the spatial distance between ions, it also
depends on the arrival rate and transit time of the ion
and the bandwidth of the instrumentation. Concentra-
tion in the pore, thus, has quite a different meaning from
concentration in a bulk solution.

The mathematical limitations of our analysis also
need mention. Error analysis of matched asymptotic
expansions is an active field of mathematical research
and is often impossible or impractical. The only known
way to determine the errors in expansions like ours is
numerical; the problem is too nonlinear, allowing too
many combinations of parameters, to allow convincing
general analysis. For that reason, we are currently
working on a numerical solution of the full field equa-
tions. We know how to check such a calculation and
which range of parameters to study because of the
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analysis presented here. Indeed, without prior asymp-
totic analysis our computer would drown our reason in a
sea of numbers.

Possibly permeant ions. A possibly permeant ion is one
that maintains its steady-state concentration profile
during the time interval of measurement (from 10 ps to
1 s) clearly long enough to justify our assumption of
steady-state. lons that do not enter channels in this time
period should be excluded from the computation of Cy.
or Cg. Our analysis concerns only possibly permeant
ions. lons that are partially excluded from the channel
(in this time period) cannot be treated by our theory but
are casily recognized in experimental records. Such ions
enter the channel but do not reach their stationary
concentration during its open interval. They contribute a
varying current and produce a “sloping top” on the
observed single channel current, if they contribute
significantly to the current at all. Single channel records
rarely show a systematic drift in the current through an
open channel.

The theoretical analysis of Cohen and Cooley (1965)
suggests that K*, Na*, and Cl~ ions reach their steady
concentration in nanoseconds. Thus, the mobility of an
ion would need to be reduced by a factor of 10 to
produce observable nonstationary phenomena, in which
case the ion would carry immeasurable current; experi-
mentally, mobilities need to be some 2% of free solution
values to yield resolvable currents and to make an ion
“possibly permeable.”

The preceeding paragraphs ignore the so-called liquid
junction potentials between the bath containing imper-
meable ions and the solution within the channel exclud-
ing the absolutely impermeable ions. The d.c. potential
so created is hopefully small, and can in any case be
dealt with as an offset by the usual experimental meth-
ods of electrochemistry and electrophysiology.

Experimental tests.  The best use of the dielectric model
and theory presented here is the design of experiments,
experiments to test the theory, experiments that might
otherwise not be done. For example: (a) current-voltage
relations can be measured in the constant field domain
C = Cg for enough ratios of concentration [Na*]/[K*]
to determine the ratio of diffusion constants Dy,/Dx
(from measurements of reversal potential) and Dy, +
Dy (from measurements of slope conductance), just as
has been done in traditional experiments for many
decades; (b) a salt gradient can then be imposed, moving
the channel to the constant gradient regime (e.g., see
Table 2 and Fig. 10) and measurements made at any and
all convenient concentrations; (¢) the channel can then
be moved to a mixed regime (e.g., see Fig. 11) and

measurements made once more at any or all convenient
concentrations; and finally, (d) the gradient C;/Cg used
in either the constant gradient or mixed domain can be
maintained while reducing the ionic strength (i.e., Cp
and Cg) so the channel is in effect shortened, moving it
to still another domain where constant fields should exist
for all realizable concentrations. The dielectric theory
predicts all current-voltage relations for regimes 24,
along with any others and any other concentration
gradients, from the measurements in just the first
constant field regime, without recourse to adjustable
parameters.

When a theory is this specific, predicting so many
results under so many conditions, without possibility of
adjustment, it is so constrained that it will probably fail.
Its authors are, thus, wise to choose an escape path, even
before experiments force them into it. Clearly, we have
no shortage of escapes; open channel conduction should
depend on a number of phenomena not included in our
dielectric theory, viz. (a) permanent surface charge on
the channel protein, (b) the entry process from bath to
pore, (c) the distinct diameter of different ions, (d)
ion-ion interactions. A model is likely to need some of
these effects to make a fitting, let alone convincing
theory of open channel permeation and ion selectivity.
Some of these effects can be included using the mathe-
matical apparatus of this dielectric theory, but others
probably require the hierarchy of analysis previously
mentioned.

APPENDIX
The averaged channel

The dielectric theory described here is derived in Barcilon et al. (1991)
using the theory of matched asymptotic expansions (Kevorkian and
Cole, 1981) to exploit the narrow aspect ratio present in at least some
channels. Because this theory is unfamiliar to some readers, we
thought it worthwhile to present another approach to show what can
be derived by averaging, and what requires the full asymptotic analysis.

Define the average concentration Ci(z), the average potential $(z)
within the pore, and the average potential outside the pore yi(z), in the
channel protein and membrane, remembering that, in this Appendix,
the aspect ratio a(z) = a(z)/d is a function of z although we do not
write the functional dependence explicitly.

j:a(:) re(r,z) dr

2
C2) == ),
(03

2 a(z)
P(2) = ;ﬁ rd(r,z) dr

i

2 =
e = [ e (AD)
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The averaged Nernst-Planck equations are derived by combining Eq. 1
and 2, muitiplying by 2r and integrating fromr = 0tor = a.

dg¢; . dd
e +Z,C; - e —J1d/D;. (A2)
A full asymptotic analysis is needed to see if other significant terms
arise from writing the product of average values as the average of the
products and from the cavalier treatment of a(z) here and below.

The averaged Poisson’s equation within the pore is

d*® 2 ab R
T o a-0n= —)\-‘EZ,»C,,

r<a. (A3)

Turn now to the region r > g, outside the pore, namely the channel
wall and surrounding membrane, described by Eq. 4 with boundary
conditions (Eq. 9 and 10). After multiplication by r and integration
fromr = a tor = =, the averaged Laplace’s equation is

Jd ad
a-dzzf?_;(awLO,z)—O r>a, (A4)

because the radial dependence d¢/or disappears far from the channel,
as r — . The induced surface charge o, can be written from Eq. 10
and 14 of the text.

kT[4
kT |30 0) — oo (a + 0) (AS)

g, = N a —
Pl ea(z) | ar o ar

e“kT. 1 —€ dd

- ea(z) e o (@=0) (A6)
kT -2 A7
= a €D @0, (A7)
Combine (A4) and (A7) to write
ekT Do da AS
UP"'*Zea(z) e o &2 r>a. (A8)
Combine (A3) and (A06) to write
d*® 2  ea(z)
R = —\? ZC <a. (A9
dz* * € — 1 ek To? Tpol 2," i r<a. (A9)

A full analysis of the potential outside the pore is needed to
determine oy, and proceed further. The potential in the channel
protein &(a + 0, z) can be determined from Laplace’s equation for the
potential in the channel wall &(r > a) (Eq. 4 in text) with the far field
boundary condition &(r — =;z) — (1 — z)A. Barcilon et al. (1991),
particularly its Appendix, solve that problem. After the Bessel func-
tion Ko(nwar) of the far field has been expanded for small arguments
(Egs. A8, A9, and A.18-A.27), leaving 1/(—In &) as its trace, the
induced charge can be determined from Eqs. A.30 and 5.16 (Barcilon
et al).

kT Lo (-2l (Al0
Upo[(z) *ea(z) ( 6) lna[ - ( Z) ] ( )
This reduces to Eq. 22 if we remember that the ordering of ¢, €, and «
in Barcilon et al. (1991) implies that e < 1.
The potential inside the pore can now be expressed by replacing the

induced charge o, of Eq. A8 with the results (A10) of the expansion
forr > a. The resulting modified Poisson equation is test Eq. 20.

d*d 2e

2 -a?lna

[®—(1-2a]=-N X ZC. (Al

The average potential Ji(z) outside the pore is related to the average
potential ®(z) within the pore: compare oy, of Egs. AY and A10.

5

dZ:

—(lna)— = PBz) — (1 —2)A =7 (2, 4). (Al2)

We see then that the deviation 7(z, A) from the longitudinal
constant field within the pore is produced by the second longitudinal
derivative of the average potential outside the channel, which is, of
course, proportional to the induced charge o, (see Eq. 22).

The constant field term (1 — z)A in our dielectric theory describes
the potential within the membrane far from the channel, where the
dielectric properties of the membrane are uniform and the potential is
entirely electrostatic, unperturbed by diffusion, migration, or space
charge. The constant field spreads towards the channel wall through
Laplace’s Eq. 4, as shown by the matching of asymptotic expansions in
Barcilon et al (1991). The constant field term spreads into the pore
through boundary condition 9, perturbed in the average potential as
shown in Eq. A12. There, in the pore it meets and matches constant
field terms that arise from the nonlinear Nernst-Planck equations
themselves (independent of the dielectric) under special conditions,
e.g.. when the gradient of total concentration is zero, or the channel is
short. Constant fields arise in many contexts in this problem, but they
only dominate in some.

The averaged quantities of this Appendix can describe the mean
properties of a pore that has variable cross-section and is as long as
wide; thus, it seems that dielectric theory describes the averaged
properties of many channels.
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