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Abstract

The patch clamp technique opened a new field in biological research and shed light on membrane

permittivity for ionic currents.
The key element in patch clamp measurements is the detection of the ionic currents in a single biological

channel. It is known that the channels open and close at random times, thus modulating the ionic currents.
The measured current switches between two levels corresponding to the open and closed states of the

channel.
Determining the statistics of the open and closed periods is of crucial importance to the experimenter,

because it reflects the response of channel protein to drugs and other factors. The detected signal is
strongly corrupted by instrumentation and other noises, rendering the detection of the opening and

closing moments extremely difficult.
We describe the use the wavelet transform and its associated multiresolution (multiscale) analysis to

detect the currents through single ionic channels corrupted with noise.

Keyword: Wavelets, biological research, ionic currents,channels,detection, initial estimation, training.

1 Overview

In this paper we present the investigation and implementation of new algorithms to detect the currents
through ionic channels corrupted with noise.

The detection algorithm is based on the use of wavelet transform and its multiresolution decomposition
analysis. The new algorithms for detecting the current levels of single ionic channel measurements are
robust and link the wavelet transform to multiscale edge detection. Multiscale analysis generates internal
information that can be used to optimize the wavelet algorithm and make it more robust, as insensitive as
possible to noise.

Our results demonstrate the feasibility and utility of multiscale analysis and the algorithms are optimized
for channels.

The wavelet algorithms work best if they are given some a priori estimates of channel amplitude. Often-—
indeed usually-such estimates are available from separate experimentation, already done, and often already

0-8194-1627-4/94/$6.00

published. In our case, a training algorithm (as a preprocessing step) is needed to generate a decent first
guess from the raw data. This guess is then used by the detection algorithm. The training is performed
once on initial raw data for the the complete duration of the detection process provided that just one ionic
channel is present in the recording. If subconductance states or two channels or more are recorded then we
can reapply the training process more often to have a new estimate for the channel amplitude.

The training algorithms work on raw data giving estimates of the two levels (namely of open and closed
channels) and their spread. The algorithm is based on the (experimentally) well known stochastic properties
of single channels and their detecting apparatus and amplifiers. The numerical suitability and stability of
the algorithm is studied since it involves the solution of non-linear equations.

The algorithm initially smoothes the raw signal using the low-pass part of the wavelet transform, and
then applies multiscale analysis to detect openings. A number of ways to do this are presented. We show
the feasibility of Gaussian smoothing and edge detection previously developed for other purposes.

We were successful in detecting and analysis of short events containing as few as 7 sample points. (These
events might be openings of 70 psec in typical experimental situations.) Two possible improvements occur
to us: one to oversample in general, hoping that the steep nonlinear dependence of wavelet resolution on
number of samples will overcome the loss in independence of oversampled events. The other is to locally
increase the resolution of analysis just at suspected locations of transitions.

The current work is implemented in a robust user friendly software package that performs training and
detection with minimal user intervention. Indeed, it may be possible to implement it in an on-line, hands
off, form.

The output is a cleaned record of channel openings, as they would appear in the absence of noise. From
this output, an event list and all associated statistics can be generated. Our software can act as a front end
to existing systems and so will be easy for workers to use.

One advantage of wavelet analysis is that it is surprisingly undemanding of computer resources and so
can often be implemented in real time.

Our results reported here are performed on PC/486DX2 (33/66 MHz). The portable C program has
been implementated successfully both on workstation and PC. \

2 Wavelets - Background

Wavelet theory provides a unified framework for a number of techniques which had been developed inde-
pendently for various signal processing applications. For example, multiresolution signal processing, used
in computer vision; subband coding, developed for speech and image compression; and wavelet series ex-
pansions, developed in applied mathematics, have been recently recognized as different view of a single
theory. In particular, the Wavelet Transform is of interest for the analysis of non-stationary signals because
it provides an alternative to the classical Short-Time Fourier Transform.

For some applications it is desirable to see the wavelet transform as a signal decomposition onto a set of
basis functions. In fact, basis functions are called wavelets, and they are obtained from a single prototype
wavelet by dilations and scaling as well as shifts.

In a wavelet transform, the notion of scale is introduced as an alternative to frequency, leading to a so-
called time-scale representation. This means that a signal is mapped into a time-scale plane (the equivalent
of time-frequency plane used in short time Fourier transform).

Over the last few years we have seen the emergence of wavelet analysis as a new method for the study
of transient signals, providing a good complement to traditional windowed Fourier transform analysis. The
wavelet transform was introduced to remedy the inconvenience of a windowed Fourier transform. It is
computed by expanding the signal on a family of functions which are the dilate and translate of a single
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function. Its discretization is completely known a priori. The wavelet transform allows us to decompose an
arbitrary signal into its localized contributions labeled by a scale parameter. It decomposes an arbitrary
function into a two-parameter family of elementary wavelets that are obtained by shifts in the time variable
but also by dilations (or compression) that are both on the time and the frequency variables. This localization
techniques substantially enrich our ability to deal with all types of signal analysis. The locality behavior of
the transform is in contrast to the global nature of the classic Fourier transform. The complete representation
is calculated by decomposing the signal on a wavelet orthonormal basis and this gives an intermediate
representation between a Fourier and a spatial representation. Thus the new method is easier to implement;
it permits a better convergence of the reconstruction formulas.

We believe that the wavelet transform theory has a good chance to succeed in many applications where
the classical Fourier analysis has failed or is not adequate.

The wavelet transform [1, 2, 3] is a recent method of signal analysis and synthesis. It analyzes signals
in terms of wavelet-functions limited both in the time and frequency domain.

3 Other methods

Single channel currents are detected in most labs by a combination of low pass filtering and threshold
detection. These methods have been optimized over many years taking full advantage of biological knowledge
of the signals. We present here other methods where some are based on analysis and others on traditional
methods.

Denoising by Coifman[6, 18] - The adapted waveform analysis and denoising is used to denoise signals
which are corrupted by noise. The algorithms utilize libraries of orthonormal waveforms (such as wavelet
packets and local trigonometric libraries). The method extracts from a signal a coherent part which is well
represented by the given waveforms and a noisy or incoherent part. The performance of the algorithm is
independent from the statistical characterization of the signal. Therefore, the separation between noise and
non-noise parts of the signal is a robust iterative method.

Denoising by thresholding the wavelet coefficients was proposed by Donoho[7].

Another use of thresholding on the measured data with smart filtering was proposed by [28, 29].
Identification of transients in noisy time series was proposed by [8, 9]. Reconstruction of a signal embed-
ded in noise. The procedure relies on a bootstrap analysis of the statistical properties of the noise and a
reconstruction algorithm from the multiscale zero-crossings of the wavelet transform of a signal. There are
similarities with the generalized smoothing spline problem. The identification of the significant features of
the wavelet transform is done by means of a bootstrap test on the size of a given extremum of the absolute
value of the wavelet transform.

Wiener filter is another method in which the effect of observation noise is to produce a smoothed autore-
gressive (AR ) spectral estimate. The practicality of the AR spectral estimation is very limited. The various
methods for AR parameter estimation which were derived based on maximum likelihood principle are no
longer MLEs when observation noise is present. Due to the difficulties of an MLE approach, the data is
filtered with Wiener filter (which is a suboptimum estimator) to enhance the signal from the noise. It can
be shown that the Wiener filter is an implicit part of the MLE.

4 Models of the noisy signal

The simplest experimentally measured signal switches between two states of the current, corresponding
to open and closed states of the channel. The open and closed durations are typically random and the
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probability distributions of the open and closed periods may vary from one experiment to the other. It is
often assumed that these periods are determined by a multi-state Markov process, but that (?nly several of
these states are observed [25]-[27]. For the purpose of testing our procedure, we adopt the simplest model
ming a Markovian signal. .

o r?}?eorgltzsssﬁrﬁz:ms ire typically vergy noisy, containing several .component.s of noise. .Depefldll.lg on
the instrumentation, different components of the noise may be do‘mlnant. Wh;le often Whltfé noise is 2the
dominant component, in some cases other components, such as f n<.)15e, or even [ })ecome domlglant. (28, 29].
We examine the performance of our algorithm on models with.whlte noise :«‘Lnd Wl.t}.l ﬁlte.ered ff n01s.et. y
The signal. The random signal, z¢, is a telegraph process with exponential waiting tlmt.asuords.v:l i) 1;1gd
The signal switches between two levels, a and b, say. It stays a:t level a for an exponentla.u y1 dls ri} l:;.e
random time with rate A\, and then switches to b, where it stays with rate Ap. The mathematical description

of this signal is
TipAt = Ty with probability 1 — Az, At
Tipar =a+b—xy with probability A; At.

The noise. The noise intensity often varies between closed and open channels. We therefore afid different
noises to the two level signal. In the white noise model we add to each value of the telegraph signal a zero
mean Gaussian variable, independently of one another, so that

2

o
Var{z:} = —Aﬁz—,

; ~ 2
WIt}}nUbth; .1f'22(;1ao.ise case the signal is sampled after low pass filtering throug-h an 8-pole Bess?l ;ilter.dT}:;e
resulting noise is approximately Gaussian, as above, but the values .of the noise are no longer m1 delp;en etn (i
but rather correlated with correlation induced by the transfer function of the filter [29]. It. should be note
that the filtering rounds the corners of the signal, spreading them on about 1.7 sample points.

5 Training for Level Estimates - Preprocessing Step

The current wavelet algorithm for detection, described in section 6, works ‘best if t}Eey are given someta
priori estimates of channel amplitude. A training algorithm (as a preprocessing step) is needTe;d1 to generate
a decent first guess from the raw data. This guess is then use(.l by the detectlo‘n algorithm. -(:1 tgatlﬂmtg 12
performed once on initial raw data for the the complete duration of the detection process provide at w

operate on single ionic channel. ’
’ The training algorithms work on a raw data giving estimates of the two levels (namely of open and

closed channels) and their spread. The numerical suitability and stability of the algorithm is studied since

it involves the solution of non-linear equations.

5.1 The model

The values are sampled from a population containing a mixture of two distributions, A = (a;) and B };—-
(b;) given by N(a,04) and N(b,op) respectively. The distributions are independent of each other. Tf e
pr:)portion of A is P4 and the proportion of B is Pp, such that P4 + Pg = 1. It follows that the pdf of a

randomly drawn sample from the mixture is given by:
Pg —(a—b)2/2025. (1)

__Pr _e-aypr 1B,
ple=a)= o "t Varos
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Hence

z® = P4+ Pg

z' = Pra+ Pgb (2)
(3)
(4)

r? = Py(a® + 0%) + Pp(b* + 03)

3 = Py(a®+ 3a0}) + Py(b® + 3bad)

zt = Pu(a*+ 6a’s? + 30%) + Pp(b* + 6b202 + 303)

8 = Pud®+ 10a’0? + 15a0%) + Py(b® + 13[)30129 -{'i 15b0%)

4 is computed from tnear system of 6 algebraic equations (2)-(7). The moment

(5)
(6)

wif equations. Even two non-lj
. -linear
» 1t is advisable to devote much effort to reduction of

cannot be done easily b i 1 e ke ey i |
mposeibly LS €2 Og/a Oerczu;eu of 'the tl;lgh degree. We would also like to keei) Itl;llirelate Onetvan?)ble b
. . Pursuing the i metrical o -
of aand b which oo %" L eg_ e symmetry idea we look for the simplest symmetrical Zomlll):nt}tlfs .
b . the s ation
Eliminating a and b in terms of ¢ and e we make the ¢ |

tob i
0 be of second degree in ¢. This can be interpreted as a

: : g m c. N()W we can SOl e fOI‘ c d i i
| ] ; n ubs ltu (5] i

Positivity of the iliti
probabilities and standard deviati
, eviations further restrict
setobee>-3/2

ru?lal_ observation that the first equation happens
relation between ¢2 and ¢ so that we can reduce

te}sltuna,tion. Even the estimated amplitudes
an s1.1fﬁc1ent for our initial estimat
Tespective probability
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[ No. of Samples | Amplitude A | Amplitude B | Estimated amplitude A + | B | Pa| Pg |

2000 0.64 -0.42 1.06 0.39 | 0.61
4000 0.66 -0.42 1.08 0.39 | 0.61
6000 0.63 -0.40 1.03 0.39 | 0.61
8000 0.61 -0.40 1.01 0.39 | 0.61
10000 0.61 -0.40 1.01 0.39 | 0.61

Table 1: Training results

6 The Detection Algorithm

The detection algorithm consists of two steps: smoothing the raw signal and then applying the wavelet

transform and its multiscale analysis across the scales.

6.1 Smoothing
Before we apply the wavelet transform and its multiscale analysis to detect channel openings, the algorithm
smoothes the raw signal. The smoothing is basically a denoising procedure.

We perform several cycles of Gaussian wavelet smoothing by applying the low-pass part of the wavelet
transform. In other words, we apply the wavelet transform on the raw signal on several levels according to
equation 8. The number of levels is predetermined in advance (it is an input parameter to the algorithm),
and usually 3 levels is sufficient. Then, the low-pass part of the signal is the smoothed part of the signal

that is being passed to the actual detection algorithm.
Figure 2 is the smoothed version of the signal given in figure 1. These were obtained after applying

the wavelet transform across three levels. The low-passed part of this decomposition is the input to the
detection algorithm.

The smoothing procedure (and other factors) misses short events containing 4 to 7 sample points.
Perhaps improved procedure such as eliminating the smoothing procedure in the beginning will do better.

6.2 Detection

6.2.1 Overview

We decompose the signal by applying the wavelet transform on the smoothed data. Points of sharp variations
are often among the most important features for analyzing the properties of transient signals. They are
generally located at the boundaries of important signal structures. Sharp transients in a signal can be
detected by multiscale edge detection. The scale defines the size of the neighborhood where the signal
changes are computed. The wavelet transform is related to multiscale edge detection. The well kncwn
Canny edge detector is equivalent to finding the local maxima of a wavelet transform modulus [12]-[14]. Our
detection algorithm is based on detected edge that its amplitude survives multiscale decomposition.

There are many different types of sharp variations points in signals. To identify more precisely an edge
that has been detected, it is necessary to analyze its local properties. Singularities of this type are usually
characterized by their Lipschitz exponents. Wavelet theory proves that these Lipschitz exponents can be
computed from the evolution across scales of the wavelet transform modulus maxima.

We derive a numerical procedure to measure these exponents across the scales. And if the edge is smooth,
we can also estimate how smooth it is from the decay of the wavelet transform maxima across scales.
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If we compute alon i
g a continuum of scales, the multiscal
moduls o 1 , ultiscale edges detected by the w
bt o ai;na,fdeﬁnes cur\;es in the sc.ale—space. Within each curve, the points }lllave Sin?}‘llelet trda'nsform
el P gAtes r}:)m scalej? to scale 2.1“, if and only if, they are connected by a point ve i the. >
"y pr.ocedea,c lscade 27, we find which point propagates to a point at coarser sczi)le 2j"'c1urve i the 1D
ure also removes small signal fluctuations and .
largsvstructures. This can help in denoising the signal e v ths only detect the sharp variations of
€ compute across scales the multiscale ed .
: ges detected by th i
detect tl‘le points that propagates from scale 27 to scale 2/+! Y e wmvelet transform modulus maxima. We
If this .propagation lasts over number of levels and h .
predetermined threshold (derived from training) then a
The detection of opening and closing of events is eq

as a cert.ain maximal amplitude that is above some
t-thls point we have an edge (singularity).
uivalent to locate edges in the above sense.

6.2.2 The algorithm

The edge detection is performed on the smooth
that were chosen in advance.

Assume that g; and h;, i =0
) . i» t=0,..., R (length of the filt i
tively. They consistute a complete subband ciding scl}?emeer) are the low-pass and high-pass filters respec-

The regular application of the wavelet tra
following way:

ed data. The signal is decomposed by a set of wavelet filters

nsform and its multiscale decomposition is performed in the

l 1 p— R l y
jl i=0 9: é l(l + 2?) .
Wherel—l,...,L' in 1 i
is the number of leVelS in 1ts mu]tlresolutiOn decomposition LY is the original i li
» Lj signal 1n

level 1 (before it decomposed), R is the range of the filters, L} and H!
> J

for point j, respectivel
that :
in level l—’l. Y, that are parts of the signal that were derive

We do not actually perform “bimation”

are the low-pass and high-pass results
d from the low-pass part of the signal

by factor of 2 (bimati
progress fro . ation of one sample out of t
p (fr o u;r;.ﬁnesto coarse le\.rel as appeared in the definition of the wavelet bir(z) = > 2_jwo) Whe.n we
zeros i quation ). Instead, in each level we insert zeros between the filter eleJ t— V2ak), jke
he higShPmPOrtjonlal to the current level. We skip the decimation since the SirgneaI,ll
-pass amplitudes (in H!}) across s n

. j everal scales of the wavelet iti

across scales that are in the same physical location in each scale oheomposit

order that the compari
parison among the same | i .
of resolution can be dope. ocations across the hig

The filters that are bein
the filter is important but n

s. The number of inserted
is analyzed by comparing
on. We compare features
Therefore, decimation is eliminated in

g used in this application are symmetric and of short length. The symmetry of
. )

. .

ution in equation
We can use in equation 8 also
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computation of the feature across scales is influenced by irrelevant remote features. If there are two edges
close to each other (opening and closing of channels), then, by using equation 8 we convolve them together
while we progress in the depth of the decomposition and they can cancel or weaken each other. Then, the
maximal amplitude of the wavelet coefficient will be significantly less than the predetermined threshold and
the suspected feature will be rejected as a significant transition (as explained later).

6.2.3 The decision for the existence of channeling opening or closing

scales, the extrema of the wavelet transform define curves in the scale-
es from a scale 27 to a scale 27*1, if and only if, they are connected
by an extrema curve in the scale space. At each scale 27 we find which extrema propagates to an extrema
at the coarser scale 271!, From the decomposition across scales, at each scale 27 we detect the modulus
maxima by finding the points where the discrete wavelet transform is larger than its two closest neighbor
values and strictly larger than at least one of them. (Maximum is either a positive maximum or negative
minimum of the wavelet transform.) This propagation algorithm computes the coordinates of the extrema
of each high-passed detail of the wavelet transform in each level of the decomposition. We first locate the
extremum points in each detail. Afterwards, each time an extremum point is found in a certain detail, a
second order interpolation is performed to find the "exact” position of the extremum (and its ”exact” value).

The chaining propagates the extrema along the scales.
Figure 1 is a raw signal of 2,000 samples. Figure 2 is the smoothed version of the raw signal by applying

on it three times the wavelet transform and taking its low-passed part.

The decomposition of the low-passed signal along seven levels is described in figure 3. We concentrate
now on figure 3 to explain in detail its structure. There are groups of lines separated by a blank line.
Each group is numbered where the number appears on the right handside in parenthesis. Each group
represents an event that has been successfully chained across scales and so is a candidate to be classified as
a transition. Each line in the group represents the complete information of the current level in the multiscale
decomposition. The first column indicates the level. The second column indicates the exact location of the
chained feature. Column three gives the amplitude of the measured feature in that location. Column four
(A) is calculated by equation 11 and the ratio (in column five) is defined by equation 10. Column four (A),
where its value is based upon column three (amp) and the ratio (column five), determines (as explained
later) whether the group represents an edge that can be classified as an opening or closing of a channel.

For example, group (1) indicates that locations 6000,6001,6000,5999,5990,5977 are chained according to
the algorithm described above. In group (3) there is only one level. In groups (4) and (5) there are only four
levels. Probably we can not get the rest three levels in groups (4) and (5) because beyond level 4 the detected
maximum disappeared or it was impossible to chain him to anything or they merged to other features. In
figure 3 there are 17 groups in locations 6000-6381 which can be chained and therefore we classify them as
”potential” or "suspected” edge that indicates a channel activity of opening or closing. More analysis is

needed to determine whether each group represents an edge.
The list in figure 3 is incomplete in the sense that there are more groups that were chained and are not

presented here in order to shorten the presentation.
So far, we decomposed the signal in seven levels and the related singularities in each high-passed part

ected edges are the chained features for which the amplitudes survive to a substantial

depth, i.e. number of levels. Points of maximum amplitude are generally located at the boundaries of
important structures. The scale of the level defines the size of the neighborhood which is influenced by the

signal changes. Thus the multiscale edge detection is related to the wavelet transform since it is equivalent
to finding the local maxima of the wavelet transform modulus.

If computed along a continuum of
space. We say that an extrema propagat

was chained. The susp
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In t;le following this idea is explained accurately.

(0 I?Oitshee f(?llo;vnllg t?)e sup}t:rscript ref means reference which is the decom
» single level) with amplitudes 0.0 and 1.0. T b

: . . .0. 1 i

function along the multiscale decomposition. The entriaes Ti 2thand .

. d aw da. a i

L " re N
Amplitude o/ l Ratio between amplitudes "¢ ,
(3

1.979
1.916
1.690
1.328
1.127
1.056
1.027
1.013
1.006

S WO U A w o

i

Table 2: The multiscale res
ults from decompositi ”
1.0 along 10 levels after 3 levels of smoothingOSl o ot ste (

Amplitude o/ Watio between amplitudes r-ref ,
[\1

clean synthetic”) function with amplitude

1 0.0059

2 0.0117 3:383
3 0.0234 . 1.999
4 0.0467 1.995
5 0.0925 1.979
6 0.1771 1.915
7 0.2995 1.691
8 0.3984 1.330
9 0.4492 1.127

10 0.4746 )

1.057 J

Table 3: The multiscale results from decomposition of a step (”

1.0 along 10 levels after 6 levels of smoothing clean synthetic”) function with amplitude

Let

= ser 1701 o = 10
9)
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Let a™ denote the measured amplitude along the levels of decomposition in each group.

m_ % gL (10)

where L is the number of levels in the decomposition.
Fori =1,...,L compute

a™ m ref ref
Aiz{a_f'_f e — e[| <1 - 0.2 (11)
0 otherwise

Let Amqr = maxscicr A;. The amplitude A4, is computed only from level 4 on because from there
on we can see whether the amplitude is strong enough to survive even if far away samples are affecting the
strength of the amplitude.

If L > 5 (there are at least five levels in the decomposition) and |Amaz| > 0.70 X T then the current
chained group is an opening or closing of a channel (depending on the sign of the measured amplitude).
Otherwise we reject this feature.

We demonstrate the acceptance/rejection idea on figure 3. From the training process (see table 1) we
have that 7' = 1.0. In group (1) Amaz = 0.1635 in level=5 (we start from level 4). Since |Apqz| < 0.7, then
group (1) is rejected. We can also see that the amplitudes represented by A are decreasing and disappearing
since they do not survive the decomposition. This group represents noise.

Group (2) is rejected because of the same reason. We can here that the A = 0 which mean that the
amplitude did not survive through the decomposition. Group (3) does not have at least five levels.

Group (9) has strong A’s along the decomposition. Apmer, = 0.8270 at level 5. This is an edge at location
6198 (determined by the location of the maximal A). The correct location is 6201. The sign of A indicates
that this an opening.

Groups (10),(11),(12),(13) are rejected because their chaining do not survive at least five levels.

Group (15) has strong A’s along the decomposition. Apq.e = 0.9988 at level 5. This is an edge at location

6361. This is the correct location. The sign of A indicates that this is a closing.

The correct location is 6422,
The smoothing procedure and the interference between close edges, that were discussed above, prevent

the detection of short events containing 4 to 7 sample points. (These events might be openings of 40 to 70

psec in typical experimental situations.)

6.2.4 Threshold verification
We use the threshold method as an additional tool to verify the validity of the detection results derived in

the previous section (section 6.2.3) using wavelet and multiscale decomposition.

We take as an input the smoothed raw data (it is the same input as was used by the wavelet detection).
Instead of checking the strength of the amplitudes across the the multiresolution decomposition we check
whether each amplitude of the smoothed signal is greater or equal half of the amplitude computed by the

training procedure. In such a case, we have an edge, otherwise it is ignored.
This procedure can work independently well in certain cases for single jonic channels [28, 29]. But it is

limited to single channel, while the proposed algorithm is more general in the sense that it can be extended

to two and more ionic channels (see section 8).
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7 Software

A robust procedure and a stable user-friendly software was developed to implement the wavelet analysis
with its multiresolution decomposition to detect and analyze currents through ionic channels.

Training, smoothing, multiresolution decomposition, chaining of similar features, edge detection and
threshold verification were implemented in a software package that runs on either under DOS or UNIX.

8 Future Research

The key part of the wavelet algorithm smoothes the raw signal and then applies multiscale analysis to detect
openings. A number of ways to do this are possible. Here we show the feasibility of Gaussian smoothing and
edge detection previously developed for other purposes. One of the main areas of future work will be the
choice of the correct basis and the best method to use that basis to detect and locate opening and closing
events. Better smoothing and detection should be possible, for example, using a Haar (rectangular function)
basis.

Our goal is to detect and analyze short events containing between 4 to 7 sample points. (These events
might be openings of 40 to 70 psec in typical experimental situations.) Some possible approaches are: one
to oversample in general, hoping that the steep nonlinear dependence of wavelet resolution on number of
samples will overcome the loss in independence of oversampled events. The other is to locally increase the
resolution of analysis just at suspected locations of transitions.

Another possibility is to eliminate the smoothing procedure in the beginning and instead go further in
the depth of the multiscale analysis. To compensate for the skipping of the smoothing procedure we will
have to modify the rejection algorithms which is equivalent to the denoising step mentioned above. Qur
modified algorithm which will skip training and smoothing phases and will be reported in a subsequent
paper. Thus, we plan to introduce in this step instead a more sophisticated ”denoising” algorithms which is
not based on predetermined parameters. Such procedures have been proven to work better than any linear
filtering approach.

The multiscale edge detection method that was introduced in this paper can be extended to detect
two and more channels. In a later stage, we plan to study the decay of the noise across the scales of a

multiresolution analysis. The multichannel situation can be treated with modifications and extensions of
the algorithms developed for single channels.
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