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Stochastic trajectories are described that underly classical diffusion between known concentrations.
The description of those experimental boundary conditions requires a phase space using the full
Langevin equation, with displacement and velocity as state variables, even if friction entirely
dominates the dynamics of diffusion, because the incoming and outgoing trajectories have to be told
apart. The conditional flux, probabilities, mean first-passage times, and contents (of the reaction
region) of the four types of trajectories—the rrans trajectories LR and RL and the cis trajectories LL
and RR—are expressed in terms of solutions of the Fokker—Planck equation in phase space and are
explicitly calculated in the Smoluchowski limit of high friction. With these results, diffusion in a
region between fixed concentrations can be described exactly as a chemical reaction for any
potential function in the region, made of any combination of high or low barriers or wells. © 1995

American Institute of Physics.

I. INTRODUCTION

Diffusion has been analyzed by classical field theory,'?
starting with Fick, and also, at higher resolution, by the
theory of stochastic processes describing the trajectories of
diffusing particles.>* Classical theory is based on the canoni-
cal experimental setup for diffusion, where particles diffuse
from a region of one concentration to another. Surprisingly, a
stochastic theory is not available that describes trajectories in
this situation. Theories of stochastic diffusion in the context
of chemistry or biology often analyze a restricted case, when
particles diffuse over a high barrier. Trajectories diffusing
over arbitrary barriers seem not to have been analyzed in this
context.

This paper calculates the statistical properties of the ran-
dom trajectories of diffusion using stochastic differential
equations®™’ to describe the dynamics of ionic motion. The
Langevin model is used for the calculation of the probabili-
ties of the four types of trajectories—the trans trajectories
LR and RL and the cis trajectories LL and RR—as well as
for the calculation of the mean first-passage times and aver-
age contents of the reaction region. With this analysis all the
statistical properties of the four types of trajectories can be
determined for any shape potential function and any friction.
In the limit of high friction, reduced problems are derived for
each type of trajectory that yield explicit formulas for (con-
ditional) probabilities, contents (of the reaction region), and
residence times (i.e., mean first passage times). The trans
unidirectional components of flux, studied in biology with
radioactive tracers for many years, correspond to the condi-
tional probabilities, and are also the (conditional) contents
divided by the mean first passage time.

Interestingly, in this setup the velocity distribution of the
ions is not Maxwellian, even in the limit of high friction, but
rather contains an asymmetric term proportional to flux.
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This work started as an attempt to describe the stochastic
motion of ions through single biological channels, protein
molecules that open to form a pore allowing ions to move
across cell membranes.® Interestingly, this is the same prob-
lem that motivated Fick—who was both a physiologist and
physical chemist®*—to invent classical diffusion theory. The
biological problem is described at the end of Sec. IX.

. THE SETUP, FRICTION, AND DIFFUSION

We represent the experimental setup of Fick by a reac-
tion region separating two baths in which concentrations and
potentials are maintained fixed. The ions inside (and outside)
the reaction region move by diffusion and transport in an
electrical field. The electrical field arises from the distribu-
tion of charge in the reaction region and at its boundaries, a
distribution that must be expected to change as experimental
conditions are changed. Thus, the potential function ®(x) is
expected to vary if the species or concentrations of ions in
the baths or the electrical potential there is changed. The
diffusion arises from the thermal collisions of the ion with
surrounding waters and protein. Motion is collision domi-
nated because the atoms move with thermal velocity (A/ps)
in a liquid with very little empty space; in a typical experi-
ment an ion undergoes hundreds, thousands, or millions of
collisions (or more!) as it moves from one boundary at one
concentration to another.

Although friction in liquids is characterized by memory
kernels, we simplify the calculations by assuming a (position
and spécies dependent) effective friction coefficient, B(x)
(see Ref. 10). This coefficient would ideally be an output of
a numerical simulation of molecular dynamics. The friction
coefficient we use is an effective parameter; it is expected to
be independent of conditions under a reasonable range of
concentrations, electric fields, and temperatures. That is to
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say, the structure of the memory kernels is not expected to
vary much as the flux is manipulated experimentally by
changing concentration, potential, etc. over the pertinent
range.

lil. THE MATHEMATICAL MODEL AND THE
NERNST-PLANCK EQUATION

We present the Nernst—Planck (i.e., Smoluchowski)
model so the paper is reasonably self-contained. The reaction
region is located on the x-axis between x=0 and x=1; the
bathing solutions are on either side of the reaction region,
between —<< x<<0 and 1< x<{ec. The concentration of ions
in the reaction region, p(x), satisfies the Nernst-Planck
equation in Stratonovich form>® (see Appendix A for nondi-
mensionalization)

d d 1 dd(x)

Z;'l)tX) e plx)+ Pl

p(x)|=0 for 0< x<I,

(3.1)

where D(x) is the diffusion coefficient and € is dimension-
less temperature (not necessarily small). Also the concentra-
tion of ions in the baths satisfies the three-dimensional
Nernst—Planck equation in —%<< x<<0 and 1< x<{e, with
P(x,y,z)=const. and D(x,y,z)=const. In order to avoid
solving the Nernst—Planck equation in all three domains si-
multaneously, we approximate the solution in both baths by
constant concentrations. Therefore, the boundary conditions
for Eq. (3.1) are

p(0)=C,, p(1)=Cq. (3.2)
Integrating Eq. (3.1) once, we obtain

d®(x) ]

fd ', )
pLx ) |=~1. (33)

1
; +—
D(()lL dx € dx

where J is the (spatially and temporally constant) flux. Inte-
grating again and using the boundary conditions Eq. (3.2),
we obtain

p(x):e—!b(x)/e [CReCD(l)/e_CLe(D(O)/e]
£ bo)e ds
D(s
( )+CLe“><"”f . (3.4)
letb(s)/e
0 D(s)

In particular, it D(x)=D, Eq. (3.4) reduces to

®l)e__ P(0)/e
CRe C[_e e—(p(x)/fJ‘
f(l)e‘(bu)/éds

X
etl)(,v)/sds
0

p(x)=

+ CLe[‘l’(O)—Q)(x)]/e. (35)
Using Eq. (3.4) in Eq. (3.3), we obtain

; CLE(D(O)IE“CR(:’(D“)/E (3 6)
J‘leLD(x)/e ds . .
0 D(s)

For constant D(x)=D, Eq. (3.6) reduces to the well known
expression®

b CLecbw)/e_ CRewm/e \
- f(l)etb(:)/eds : 3. )

If the concentrations C; and Cj, are time dependent, Eq.
(3.7) can be easily generalized by solving the time dependent
Nernst—Planck equation.

The stochastic dynamics underlying the Nernst—~Planck
equation is the reduced Langevin equation®

dd
Bx)x+ d(X) = y2B(x)ew, (3.8)

X

where x(z) is the position of the ion at time 7, ®(x) is the
electric potential, B(x) is the friction coefficient, € is nondi-
mensional temperature, and w is standard Gaussian white
noise (see Appendix A). The friction and noise terms in Eq.
(3.8) are related by the Einstein fluctuation-dissipation
principle.3“6

The inhomogeneous boundary condition for the Nernst—
Planck equation corresponding to the reduced Langevin
equation (3.8) leads to difficulties, because it requires the
region outside the channel to be borh a source (of trajectories
entering the channel) and an absorber (of trajectories leaving
the channel). In Eq. (3.8), however, all trajectories that origi-
nate at the boundary are immediately absorbed there and
never get anywhere, an undesirable, presumably unrealistic
phenomenon observed directly, at considerable computa-
tional cost, in the simulations of Ref. 11.

Exiting and entering trajectories differ only by the sign
of their velocities; one is positive and the other negative, but
velocity is not a state variable in the reduced Langevin equa-
tion (3.8). Obviously, if a stochastic theory is to separate
entering from exiting trajectories, it must analyze and de-
scribe the velocity of ions as well as their displacement. The
distinction between entering (positive velocity at the left
boundary x=0) and exiting (negative velocity) trajectories
cannot be made in the reduced Langevin equation. In con-
trast, the full Langevin equation®®!'*13

o
dblx) _ V2B(x)ew, (3.9)

F Blx)i+ —

describes random ionic trajectories in a phase space with two
state variables, displacement, x(¢), and velocity, v=x(1).
Thus, the distinction between entering and exiting trajecto-
ries is automatic; one has v>0 at the left entrance and the
other has v <<Q there. The full Langevin equation describes
the underlying dynamics of these trajectories. The Fokker-
Planck equation, involving both displacement and velocity, is
needed to describe the probability density function of these
trajectories, and its evolution. Therefore, we must use the full
Fokker—Planck equation rather than the Nernst-Planck to
describe diffusion, even if friction is large.
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IV. THE LANGEVIN AND FOKKER-PLANCK
EQUATIONS; THE NERNST-PLANCK EQUATION
RECOVERED

A concentration boundary condition does not imply any
particular physical process at the entrance and exit of the
reaction region. The ions simply move in and out of a region
where friction and potential change from their values in the
free solution outside the reaction region. Indeed, in a real
experimental situation the concentration is not absolutely
fixed at this boundary; rather it is measured and changes are
held small enough so they do not matter, as shown by direct
experimentation. (In some situations, e.g., currents through
biological Ca*"* channels, significant concentration changes
always accompany current flow under realistic conditions.)
The trajectories of ions at an edge of the reaction region are
complex and oscillate strongly [particularly as friction domi-
nates, S—, and trajectories approach those of Eq. (3.8)] but
they are unconstrained by specialized physical structure or
experimental apparatus. Some trajectories (the cis ones) start
at the boundary and end there. (In many situations, most
trajectories are of the cis type.) Other trajectories (the trans
ones) enter the reaction region and end on the opposite side.
Both sets of trajectories flow without noticeably changing
the concentration or potential in the baths because of the
experimental apparatus and procedures used to maintain the
concentration boundary condition.

A description of the random current requires separate
calculation of the properties of incoming and outgoing ions.
These ions are distinguished by the different signs of their
velocity of motion and so a theory must describe both the
position and the velocity of the ion.

The velocity can be introduced into the Langevin equa-
tion (3.9) explicitly as a second state variable v(t), forming a
two-dimensional system

o (4.1)

dd(x
v==pBx)v— dix)+\/2ﬁ(x)ew(,),

The random trajectories, [x(t),v(r)], defined by the system
Eq. (4.1), describe the motion of the ion in phase space both
inside the reaction region and outside, in the baths. The
boundaries of the reaction region in phase space are the lines
x=0, —o<<y<w, and x=1, —we< p<<oo, In the real system
of baths and reaction region, ions that reach the left end with
v >0 enter the reaction region, whereas those that reach this
end, coming from the right with v <0, exit the reaction re-
gion and diffuse into the external solution. The other end is
analogous. The concentration boundary conditions (main-
tained by experimental apparatus) enforce this behavior. In
the bath on the left, that is, for x<< 0, the ionic motion is
described by the Langevin equation (4.1) with B(x)=const.
and ®'(x)=0, and the experimental apparatus maintains a
(nearly) constant concentration of each species and a (nearly)
constant electrical potential (analogously on the right). In-
deed, these properties are what we mean by “‘concentration
boundary condition.”

Inside the reaction region the ionic motion is described
by the Langevin equation (4.1) with the friction coefficient

B(x) and potential P(x) of the reaction region. That poten-
tial function is determined by the spatial distribution of all
charge (fixed and mobile, in the reaction region and at the
boundaries) and must be expected to change shape if the
electrical potential in the baths or the concentrations of ions
there are changed. Both B(x) and ®(x) may undergo a dis-
continuity at the entrance to the reaction region. However,
the random trajectories defined by the Langevin equation
remain continuous. They may enter the reaction region on
either side and exit on either side with certain probabilities.
Thus, no boundary conditions are imposed at the ends of the
reaction region.

The stationary joint probability density function of find-
ing a random ionic trajectory at a point (x,v) in phase space
is denoted by p(x,v). The marginal probability density of
finding an ion at the point x with any velocity, p(x), is given
by

p(x)= jj} p(x,v)dv. (4.2)

If given concentrations, C; and Cj, are measured at the ends
of the reaction region, then

p(0)=Cr, p(1)=Cg. (4.3)

These are exactly the boundary conditions (3.2) for the
Nernst—Planck equation (3.1).

The joint pdf p(x,v) satisfies the stationary Fokker—
Planck equation®*~®

) p) #p
Fplx,v)=—v -£+B(x)e 2
dd(x) B
+ | B+ ——[p=0 (4.4)

in a large strip x; <x<<xp, —o<p<ow, where x; €0 and
xg>1 are points where sources or sinks are placed in order to
maintain the fixed concentrations on both sides of the reac-
tion region. Note, however, that no boundary conditions are
specified or imposed at the ends of the reaction region, x=0
and x=1. The properties of the variables at x=0 and x =1 are
derived later as part of the solution to the problem.

The time dependent Fokker—Planck equation is
op(x,v,t)
—Qa =%p(x,v,1). (4.5)

Equation (4.4) can also be written in the form of a conserva-
tion law

-V, Jx,v)=0 for (x,v)e¥, (4.6)

where the probability flux density vector J(x,v) is defined as
usual for this two dimensional problemf" by

vp(x,v)
ap(x,v)
=[B(x)v+D'(x)]p(x,v)—B(x)e B—
4.7

Note that J(x,v) describes the flux of probability; the rela-
tion of this flux to the ionic flux through the reaction region
remains to be seen.

J(x,v)=
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We study the standard Smoluchowski expansion of the
full time dependent Fokker—Planck equation® to make the
paper reasonably self-contained. Denote the time dependent
pdf by p(x,v,t); scale B(x) by its maximum, B; write

B(x)=BBy(x); (4.8)

and scale time by t=B:'. For large B the time ¢’ is slow, so
that the time dependent Fokker—Planck equation becomes

BE(x) d J . \) , N+ d dd(x) o
Blx v € v jp(x,v,t ) v 6x+ dx v
X p( ! +1 !
plx,v,t’) B Wp(x,v,t )
o . 1
E(B—%o+.$1+§°%’z p(x,v,t")=0, (4.9)
where
o = ey "y, (4.10
'?"()p(xﬁv’[ )"-,30(«‘) v 65 U p(x,v,t )’ ( 1 )
v N e, +d<1>(x) 4 , il
Zpx,v,t’)=|—v o P %—p(x,v,t ), (4.11)
and
] d
Zap(x )= o5 plxu,t’). (4.12)

Expanding the density in an asymptotic series in negative
powers of B,

| 1
plxv.t)=p’(xv.1t')+ = plxv,t’)+ — pix,v,t")

B B
e, (4.13)
we obtain the following hierarchy of equations:
o (x,v,1")=0, (4.14)
op'(xv,1") =~ Zp(xv.1"), (4.15)
Fopt(x,u,t)= —Zpl(xv,t")—ZpYx,0.t"),
(4.16)
and so on. From Eq. (4.14) we obtain
o~ vi2e
plxu’) = —= P%x1"), (4.17)
V2me

where Po(x.t') is yet an undetermined function. The inte-
grable solution of Eq. (4.15) is given by

L emene | [aP%xr)
pxu,t')=— -
V2 e Bo dx
1 dP(x)
+ - Po(x,t") v+ PU(x,t")t,
€ dx

(4.18)

where Pl(x,t') i1s another undetermined function. Using
Egs. (4.17) and (4.18) in Eq. (4.16) and integrating with
respect to v, we obtain

dPO(x,t’)_ d 1 aP%x,t")
ot’ T oox Bo(x) € ox
d®(x) N
+— PO(x,t )J} (4.19)

Scaling B back into Eq. (4.20) and setting p(x,t)EPO(x,t’),
we obtain the Smoluchowskil model

ap(x,t) [ 1 ap(x,t) .
3 €
(4.20)

ot ox (x) x
Note that Eq. (4.20) has the Stratonovich form.>® In the
steady state, we obtain

. ap(x) dd(x) p(x)” _o,

d®(x)
P p(x.t)

+ 421
ox dx ( )

d 1

dx | B(x)
where p(x)=lim,_,.p(x,t).

Proceeding as above, we find that Pl(x,t')=0. Note that
the Smoluchowski equation (4.21) is identical to the station-
ary Nernst—Planck equation (3.1). Returning to the expan-
sion (4.13), we find that the expansion of the pdf is given by

p(x,v,t)~ew2/2€{p(x,t)— L |opten
V2mre Blx) L ox
1 dP(x)
; . p(x,t)jv+0O ,Bz(x)}. (4.22)

The total probability flux in the x direction is calculated
from Eq. (4.7) [see, e.g., Eq. (5.7)] as

,J?(x,t)sfm vp(x,v,t)dv
1 op(x,t) dP(x)
T B(x) € Tox dx p(x.0)
1
+ 0 Bj(x—)] (4.23)

It follows that away from equilibrium the pdf depends
on flux, no marter what the friction, so that we obtain an
expansion in the Smoluchowski limit (previously derived in

another context'")
Tx,t)v 1
p(x,t)+ . +0 .

B*(x)
(4.24)
Formula (4.24) differs from the usual high friction
{Smoluchowski) approximation to the joint pdfp(x,v,#) (see,
e.g., Refs. 4, 6, 12, 13). The usual high friction expansion
neglects the flux term 7{x,t)v/e inside the braces of Eq.
(4.24). It stops after the first term p(x,7). When the usual
approximation to the joint pdf is substituted into the integral
in the flux formula (4.23), the resulting flux in the x direction
vanishes, no matter what the potential or values of other
parameters. Therefore, the usual high friction approximation
is valid only when fluxes vanish or are vanishingly small,
e.g., at equilibrium or when barriers are sufficiently high that
the system is essentially at equilibrium. If, however, a finite

N
e Vv 12¢

plx,v,1)~

f
V2me
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flux is imposed experimentally, and thus always present no
matter what the friction, as in most laboratory situations,
then both terms, viz.,

T(x,Hv

plx,n)+ .
€

must be retained in Eq. (4.24). The presence of both terms
insures that Eq. (4.24) is valid for all values of flux, thus for
all barrier shapes. The term .7 (x,t)v/€ is responsible for the
difference between our analysis, e.g., of chemical reaction,
and most earlier work.

Note that Egs. (4.23) and (4.24) recover the one-
dimensional flux of the Nernst-Planck equation (3.1) from
the two-dimensional Fokker—Planck equation. The fixed
concentration boundary conditions (4.3) give in a straightfor-
ward manner the boundary conditions (3.2) for the Smolu-
chowski equation (4.21).

V. EXIT PROBABILITIES AND EXIT TIMES

One of the goals of this paper is to calculate the statisti-
cal properties of each of the four kinds of trajectories, LL,
LR, RL, and RR. These trajectories are described by (con-
ditional) probability density functions, their residence times
in the reaction region (also called first passage times), and
the fluxes of each of the four kinds of trajectories. The rela-
tion of these partial fluxes of probability to the flux of ions in
the Nernst—Planck equation cannot be assumed; it is one of
the outputs of this paper.

In order to calculate the conditional probability P(L|L)
of trajectories to exit on the left, given that they entered on
the left, we have to isolate the influx of probability from the
left from that on the right. Each of these unidirectional prob-
ability fluxes (to use the physiologists’ words) is further split
into its ¢is and rrans components, into conditional fluxes {to
use the probabilists’ words), e.g.,

TL)=FLIL)+ AAR|L). (5.1

Here .7(-) describes the flux of probability, not ions. The

conditional probability of the cis trajectories LL is

ZALIL) P(R|L)=1-P(L|L ZIRIL)
(5.2)

as is obvious by simply counting trajectories. Using similar

notation, we obtain

P(L|L)=

S{R|R) JLIR)
P<R|R):—ﬁ[€)_’ P(‘L'R)ZI—P(R“{):?(R)—.
(5.3)

Thus, the calculation of the exit probabilities of ions that
entered on the lett consists in splitting the probability influx
(L) into the cis flux .7(L|L) and the trans flux 7{R|L),
and applying Egs. (5.2). Next, we must express .7{L|L) and
J(R|L) in terms of the solution of an appropriate boundary
value problem. In order to isolate the probability flux enter-
ing on the left, we have to eliminate the flux entering on the
right. Therefore, we impose a zero-influx condition on the
right but we do not impose any boundary condition on the
left. Instead, we solve the problem in the interval X, <x<l,

assuming that far away in the solution on the left there is a
mechanism that maintains the given concentration there
(e.g., a source).

Interestingly, in experiments radioactive tracer is often
placed on just one side of a reaction region or the other to

-estimate the ionic fluxes J(R|L) and J(L|R), really the

steady state and mean value of the fluxes. In this particular
experimental situation, the probability flux and the ionic
fluxes coincide, if the incoming flux in both cases is normal-
ized to 1.

We denote by p(x,v|L) the pdf of trajectories that enter
the reaction region on the left while the right end is blocked
for entering trajectories. The total influx on the left is then

ﬂL)If vp(0,v|L)dv. (5.4)
0

The function p(x,v|L) is the solution of the Fokker—Planck
equation (4.4) in the strip x;<x<l, —x<p <o with the
boundary condition

J(1Lv|L)y-v=0

where v is the unit outer normal to the boundary. The bound-
ary condition (5.5) can be written as a condition for the pdf
p(x,v|L) as

for v <0, (5.5)

p(1,v|L)=0 for v<O0. (5.6)

The cis flux 7(L|L) and the trans flux .F7(R|L) are the con-

ditional effluxes of probability defined in terms of the flux

vector J(x,v) of Eq. (4.7) by

vp(0,v|L)dv,
(5.7)

0 0
-‘7(L|L)Ef J(O,v|L)- vdv= —f

—

.T(RIL)Sf J(l,v[L)-vdv=f vp(l,ulL)dv. (5.8)
0 0

Similarly, 7 (R|R) is calculated from the pdf p(x,v|R) that
satisfies the Fokker—Planck equation (4.4) in the strip
0< x<xg, —%< p<eo with the boundary condition

p(0,0|R)=0 for v>0. (5.9)
As above, we have
.ﬂR[R)EJmJ( 1,v|R) vdv= fva(l,v|R)dU,
’ ' (5.10)
0 0
“ﬂLIR)Ef‘ J(l,v|R)'vdu=—J:mvp(l,v L)dv.
i (5.11)

Next, we calculate the conditional residence times, also
called mean first passage times (MFPTs), 7(jli), (i=L,R,
Jj=L,R), taken by an ion that enters at end { of the reaction
region (with velocity pointing into the reaction region) to
reach end j of the reaction region (with velocity pointing out
of the reaction region), given that it exits there. Note that in
general the (unconditional) mean first passage time from i to
J 1s infinite, because there is a finite probability that ions will
exit on the other side and so never get to j; that is, the time
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they take to get to j is infinite. The contribution ot those
trajectories to the mean first passage time to reach j is infi-
nite and thus so is the MFPT. The conditional MFPT is,
however, finite because conditioning selects only those tra-
jectories that do get to j. The infinite MFPT’s found in the
analytical treatment of the mean flux'! showed clearly the
need for an explicit stochastic analysis of the problem.
Consider the conditional mean time, '%(L|L), taken by an
ion that enters the reaction region on the left to exit the
reaction region, given that it exits on the left. Note that the
trajectories of such ions are conditioned on both end points
of their path rather than on just the initial point. Now, to
distinguish the two cases, we define the general diffusion
(i.e.. random) process [x(¢),v(#)] and its subset the (doubly)
conditioned random process [x*(£),v™*(r)], with trajectories
that begin in the bath on the left with positive velocities

having the steady state (but not equilibrium) distribution of

that bath, and reach the left end of the reaction region with
negative velocities (and therefore leave the reaction region),
betore they reach the right end. If the random first passage
time of any trajectory to the left is called 7, , and that to the
right is called 74, the terminal condition is the event
{7, <7g}.

The singly conditioned pdf p(x,v,t|L) is the probability
density of finding a trajectory of the (general) process
[x(t).o(r)] at the point (x,v) at time ¢, given that it started
on the left. The trajectory can exit either on the left or on the
right. On the other hand,
p¥(x.v,t|L,L) represents the probability density of finding a
trajectory of the general process [x(¢).v(#)], given that it
starts on the left and also ends on the left, that is to say, given
that the trajectory is a member of the doubly conditioned
class of trajectories, the process {x*(¢),0*(¢)]. Note that the
trajectories [x*(¢),v™(r)] form but one of the several classes
of trajectories of the unconditional process [x(),v(#)].

The pdf p(x.v.t|L) is the solution of the time dependent
Fokker—Planck equation (4.5) with the boundary condition
(5.5). It is shown in Ref. 7, p. 195, pp. 261-263, Eq. (9.1} in
particular, that the pdfs of the doubly and singly conditioned
processes are related by

PriT, <Ttgl|x,v)

* )= ——— 2
p (X,U,[IL,L/ 14 Pr( TL<TR‘L) . (5-1 )
The conditional MFPT is given by”'*!?
?(L|L):J f fp*(x,v,t|L,L)dx dv dt (5.13)
0o Jv
j j f lm =Telv0) Ly d
t.

plx,v,t P;( L<7'R‘L X dv d
(5.14)
Denoting  P(L|x,v)=Pr(7, and P(L|L)

=Pr(1,<7g|L) [see Eq. (5.2)], we can write Eq. (5.14) as

HL|L)=

f f p(x,v|L)P(L|x,v)dx dv.
— (5.15)

We now have to calculate the two probability functions
in the double integral. The function p(x,v|L) is the solution

1
P(LIL)

the doubly conditioned pdf

of the boundary value problem (4.4), (5.6) with a line of
sources at x=x; . x,v) is the probability
that a trajectory starting at (x,v) exits on the left. It follows’
that P(L|x,v) is the solution of the backward equation

dP(L FP(L|x,v)
v X)€ ————5——
dx du~”
dd(x)} sP(L|x,v) 516)
— b v+ = .
Blow+ —— —— (5.16
with the boundary conditions
P(L|0,v)=1 for v<0,
(5.17)

P(L|1,v)=0 for v>0.

x,v)=1—P(L|x,v) satisfies the same
backward equation,

X,0) e
+B(x)

v ox € av?
N d®(x)] dP(R|x,v) 518
Blxyy+ —- P (5.18)
with the boundary conditions
for v<<0,
5.19
P(R|l,v)=1 for v>0. ( )
Assuming TL)=1, the double integral
I
cause nothing enters on the right. The double integral
N(LIL)EJ fp(x.vlL)P(LIx,v)dx dv (5.20)
o

is therefore the conditional contents of LL trajectories in the
reaction region.

[t can be shown (see Appendix B) that rather than cal-
culating the double integral in Eq. (5.15), the conditional
MFPT, 7(L|L), can be calculated from the solution of the
following boundary value problems. First, calculate
p(x,v|L) from the boundary value problem (4.4), (5.6), as
described above, then calculate the solution to another
boundary value problem, now with p(x,v|L) as a source
density, fi

Yq(x,v|L)y=—p(x,v|L) for (x,v)e (5.21)
with the boundary conditions
q(0,v|L)=0 for v>0,
(5.22)

g(1,v|L)=0 for v<0.
Then, according to Egs. (5.15) and (5.7) we have the nearly

symmetrical equation
f(]
e Up(O v|Lydv

— Y Lvg(0,v|L)dv
AL

H(L|L)=
(5.23)

In view of Eq. (5.7), Egs. (5.15) and (5.23) can be writ-
ten as
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_N(L|L)

TR (5.24)

J(LIL)
in analogy with the unconditional formula given in Refs. 4,
13, and I5.

The other conditional mean first passage times can be
calculated from

1
T(R|L)= F(R—ILJ J;f p(x,v|LYP(R|x,v)dx dv,
(5.25)

where P(R|x,v) is the probability that a trajectory starting at
(x,v) exits on the right,

1
%(RlR):W wa p(x,v|R)P(R|x,v)dx dv,
(5.26)

and

1
T(L|R)= PR ,LJ p(x,v|R)P(L|x,v)dx dv.
(5.27)

VL. CIS AND TRANS PROBABILITIES AND FLUXES

We turn now to the large friction expansion of the pdf
p(x,v|L) considered in Sec. V. The large friction expansion
of the pdt p(x,v|L) is not as obvious as that of p(x,v) in
Sec. IV. The ditference between the expansions arise from
the boundary conditions and their interpretation. Since no
restrictions were imposed at the boundary on entering and
exiting trajectories in the treatment of Sec. IV, no boundary
layers arise in the Smoluchowski expansion (4.13)-(4.22). In
contrast, in Sec. V a boundary condition (5.6) is used to
separate unidirectional probability fluxes, and so a boundary
layer is present at x=1. A similar situation was considered in
Refs. 16, 14, and 17.

Now, we further split the unidirectional probability
fluxes into their c¢is and trans components. In particular, to
split the incoming flux from the left into its components, we
simply take the flux of the Fokker—Planck equation, with the
boundary condition (5.6) at x=0 that the Smoluchowski ex-
pansion (4.22) produces, and split it into its cis and frans
components. Specifically, the solution is given in the strip
0< x<l, —w< p << by the expansion

o v2e

f
V2ire

p(xlL)+bL(x,0)+ 22 +hodt.,
€
6.1)

plxvlL)=

with the following notation: b.l.(x,v) means the value at the
point (x,v) of the boundary layer formed at x=1, h.o.t.
means “higher order terms in powers of 1/B.”” The reduced
density, p(x|L), is the solution of the Smoluchowski equa-

tion
d 1 . R
T *’;(;;{[‘D ()p(x|L)] +ep"(x|L)} | =0

for 0<x<1 (6.2)

with an absorbing condition at the right end point. [The right
end point for p(x|L) is actually located at xF=1
+ O(l/ﬁ).m"("”] The boundary layer, b.1.(x,v) that arises
from the boundary condition at x=1, is transcendentally
small at x=0,""!" because the reaction region [0,1] is much
longer than the boundary layer on the right. Near x=0 the
boundary layer function (from the other side) b.lL.(x,v), is a
smooth function. The probability current (i.e., the probability
flux) of p(x|L), denoted .7, is constant in the interval 0<x
<1. This gives

Va 1
plalL)=— e P f B(s)e®eds, (6.3)
so that
1
p(0|L)= - e““m’f[ B(x)e® W edx. (6.4)
0

Now, the incoming probability current on the left (none flows
on the right!) is given by

AL)= f:vp(x,vlL)dF V3= plolL)

+f b.L1.(0,v)vdv + 5, (6.5)
0 2
and the outgoing flux on the left is given by
0
TL|LY=— f vp(x,v|L)dv
- (6.6)

B [ € ; 0 T
= ﬁp(OlL)—jAmb.l.(O,v)udu— 5

Neglecting the contribution of the remote boundary layer, as
we may, and using Egs. {6.1) and (6.4), we obtain

e ot T
ﬂL)= o e‘(D(O)/eJ ﬂ(x)e¢(x)/edx+ — (67)
21e 0 2

The trans flux is given by
FRIL)=FL)-TFL|L)=T". (6.8)
Now, by Eq. (5.2),
F(RIL)
J(L)

P(R|L)=

o

y

_4 T
e D(O)/ff(l)ﬁ(x)e¢(.r)/edx+ ;

|

V21e

- ! (69

1 - q 1
e d)(())/ef(l)ﬁ(x)e b(x)/sdx+ 5

V2rre
If the incoming probability flux .7 (L) is normalized to 1,
then 7 =P(R|L). This gives
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S= 1 i (6.10)

e—<D(O)/ef(l)’8(x)e(b(x)/edx+ 5
V2 Te

[t should be noted that .7~ does not necessarily represent
the physical ionic current, because in the physical problem
there are no boundary conditions at the ends of the reaction
region that correspond to the no flux conditions introduced in
the mathematics to define and separate the unidirectional
probability fluxes.

In the Limit of large 3, we obtain

e@(O)/e
P(RILY=\2Te€ 7% 6.11
( ‘ )=\2me J'(l)ﬂ(x)e‘mx)/sdx ( )
Similarly,
e‘D(l)/e
P(LIR)=\27e (6.12)

J‘(l)ﬁ(x)eib(x)ledx .

Trajectories must go either to the left or right—they are not
stored in the channel—and so the probabilities of cis trajec-
tortes are simply the complement of the trans probabilities,
as mentioned previously in Egs. (5.2) and (5.3),

P(LILY=1—-P(R|L) 6.13)

and

P(R|R)=1=P(L|R). (6.14)

Nernst—Planck flux in terms of conditional exit
probabilities

It has always been intuitively clear that a relation should
exist between the unidirectional fluxes of the flux formula
(3.6) and the conditional probabilities of the trajectories that
carry that flux. However, the proper stochastic definition of
those unidirectional tluxes and conditional probabilities was
not clear {see Ref. 11) and so the implementation of the
intuition was not known.

Our analysis shows that the conditional fluxes (i.e., the
unidirectional fluxes of ions) are proportional to the condi-
tional exit probabilities (6.11) and (6.12), the proportionality
constant being the concentration at the source of the trajec-
tories. In particular, the Nernst—Planck flux formula Eq. (3.6)
can be written as

J=a[C P(R|L)—CgrP(L|R)], (6.15)
where the numerical factor « is given by

\/ : (6.16

a= Tme .16)

The net ionic flux from left to right, Eq. (3.6), is therefore the
difference between the probability fluxes, normalized by the
concentrations on both sides of the reaction region. [If
C,, Cg are time dependent, Eq. (6.15) can be generalized
by solving the time dependent Smoluchowski equations
(4.20) and (3.7).]

Simulations show [Ref. 11, Eq. (7.5)] that the flux for-
mula Eq. (3.6) can be expressed in terms of the relative num-
bers of random trajectories that start inside the reaction re-

gion at a distance Ax from an absorbing boundary and make
it across the reaction region to the other boundary. These
numbers were related to an analytical expression [Ref. 11,
Eq. (2.24)] that was derived from the Nernst—Planck model.
Equation (6.15) provides a probabilistic derivation of both
the analytical and statistical results of Ref. 11.

Physiologists have estimated the components (“‘unidirec-
tional fluxes”) of the (mean steady-state) net flux by placing
radioactive tracer on one side of a system or the other since
radioactive isotopes became available in the 1940s. Thus, the
physiologists’ unidirectional fluxes correspond precisely to
one set of trajectories, described by one set of conditional
probabilities, or the other, as they should if the probabilistic
and tracer analysis consider the same trajectories, albeit in
quite different experimental and theoretical traditions. Note,
however, that physiologists have usually ignored the exist-
ence of cis fluxes and their contribution to open-channel
noise (see Sec. IX), perhaps because their mean value is zero
in the steady-state measured in traditional experiments.

Vil. RESIDENCE TIMES (MFPTs)

The conditional mean first passage times 7(i|j), (i
=L,R, j=L,R) can also be calculated in the large friction
limit. We use the approximation Eq. (6.1) with Eq. (6.3) for
p(x,v|L) in the double integral in Eq. (5.15). The large fric-
tion approximation to P(R|x,v) is found directly from the
backward equation (5.18). Using the expansion

1

P(R1x,u):P0(R|x,u)+EP‘(Rlx,UH--- , (7.1)
we find that P°(R|x,v) is independent of v [we denote it by
P°(R|x)] and that it satisfies the reduced backward equation

. dzPU({elx)~ , ()dPO(R]x) —0 12)
dx~ dx
with the boundary conditions
Po(R|0)=0, PO(R|1)=1. (7.3)
Thus,
PO(Rix)= foe " ds (7.4)

f(l)ed)(s)/sds .

Next, we combine the expression (5.25) for 7(R|L) and the
expression (6.11) for P(R|L); the expressions (6.1) and (6.3)
for p(x,v|L); and the expressions (7.1) and (7.4) for P(R|x),
and write

1 1
e — - Pix
HRIL) = rratreg fo em e

1 2
f B(s)edl(s)/edsfre(b(s)/eds
x 0

after normalizing the entrance probability flux density
vp(x,v|L) by Z(L)=1. Similarly, we obtain

‘%‘ f e—@(x)/eds
(1= [pe®edx Jo

X dx (7.5)

HL|L)=
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1 1
X JB(AY)e(D(X)/éde e‘p("')/éds}dx, (7.6)

where .7 is given by Eq. (6.10). In particular, for a free
particle (no external field) with large constant friction [B(x)
= const. >1] we obtain

_ o1 2w
T(L|L):§ \/——6——. (7.7)

The mean time an ion spends in the reaction region,
given that it entered on the left, is given by

H(L)=7(L|L)P(L|L)+ T(R|L)P(R|L)

:j fp(x,v]L)[P(LIx,v)+P(L|x,v)]dx dv
7

= J'ff p(x,v|L)dx dv. (7.8)

Using the same approximations as above, we find that

27_‘_f(l)e[(D(O)—(D(x)]/eflﬂ(s)e(b(s)/eds dx

(L)= 7.
TN ThB0)e ™ (7
In particular, for a free particle,
. 1 21T ;
T(L)= > VN (7.10)

We observe that as the friction B(x)—x [see Eq. (4.8)],
the trans probability P(R|L) vanishes and the trans time
7(R|L) becomes infinite. Obviously, P(L|L)—1, but 7(L|L)
remains finite, namely,

1
lim %(L;L):ywj -0l g
0

'[j(x)—,x
1 1
X J' ,Bo(s)eq)(s)/edsf e®eds |dx,
(7.11)
where
2ar e@(O)/e
T = (7.12)

€ JoBo(t)e™ ™V edx [oe® edx

In the large friction limit, the mean time that an ion entering
on the left spends in the reaction region is given by

27rf(l)e[<l>(0)—(l>(x)]/eflﬂo(s)ed)(s)/edsdx
x
€ JoBo(x)e® W dx

lim 7(L)=
Blx)—=
(7.13)
The (apparently paradoxical) finite value of 7(L|L) and
of 7(L) even in the large friction limit can be understood as
follows. Consider the simplest example of an overdamped
free particle, with constant friction S, that enters the reaction
region on the left with positive velocity v. On the average,
it will penetrate into the reaction region a distance
xozuo/ﬁ.ls The mean time for a Brownian particle with
diffusion coefficient D to exit the interval [0,1] from an ini-

J. Chem. Phvs.. Vol. 102

tial point x is xq(1 —xo)/D.5 Since D is inversely propor-
tional to B,'® we find that the mean exit time remains finite
even as B — .

VIil. HIGH BARRIERS

The traditional analysis of chemical kinetics (Ref. 4)
uses rates to describe flux over large barriers, and so we
should specialize our results to that case. We consider, with-
out loss of generality, the unidirectional flux into C=0, for
the overdamped (Smoluchowski) case of high friction, put-
ting a source at x=x; and an absorbing boundary at x=1.
The Smoluchowski equation is given by

([ (x)p(xlL)] + ep"(le)}> = 8(x—x.),

a % (8.1)

with the boundary condition
p(1|L)=0. (8.2)
The solution of Egs. (8.1), (8.2) is

a ‘
p(x|L)= - e‘q’(")/fj1B(s)e¢(”/‘H(s—xL)ds, (8.3)

where H(x) is the Heaviside step function. Now, we assume
that the potential ®(x) forms a well with its bottom at x=0,
say, and with a top at a point x =x., where 0 < x<<1. Small
€ represents a high barrier.

Assuming a constant concentration, C, , at x=0, we get
from Eq. (8.3) in the limit of small €

Cw
T= e —Ad/e (84)

BO)2me
where the barrier height is given by
ADP=D(x-)—P(0)
and

wc=V—®"(x¢),

see Ref. 11.

This equation is not identical to Kramers’ formula® be-
cause that traditional result expresses the flux in terms of the
total population of reactant molecules rather than their con-
centration. The reactant population is the integral of p(x|L)
in the reactant well, that is,

Xc
N, = j p(x|L)dx.

AL

Using Eq. (8.3), we obtain Kramers’ result,*

p __NLwOwC —Ad/e

= 37B(0) e , (8.5)
where

w0‘=‘\/@(0).

It is interesting to calculate the conditional MFPTSs in the
limit of a high barrier. Assuming for simplicity that S(x)=p
=const., we obtain for € <1 (see Appendix C),
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HR|L)~ —=—— B,, (8.6)
8 we
2\ —=——1
2
and
2
%(LlL)~w—O. (8.7)

[t is remarkable that the conditional MFPTs are independent
of the barrier height in this limit. But the conditional mean
first-passage time 7(R|L) {of Eq. (8.6)] is a property of just
those trajectories that cross the barrier and make it to the
other side. The other trajectories—the LL ones—do not
cross the barrier at all; they exit at the absorbing boundary
after their (conditional mean) first-passage time 7(L{L), cf.
Eq. (8.7).

IX. SUMMARY AND DISCUSSION
A. Flux and high friction

In this paper, we show that the full Langevin equation,
rather than the reduced Smoluchowski equation, is needed to
describe ions diffusing from one concentration to another,
whatever the friction. Even if ionic motion along the trajec-
tories of the Langevin equation (3.9) is grossly overdamped,
the system is not in equilibrium because flux is present. The
velocity distribution is not Maxwellian [see Eq. (4.24)], but
rather contains an asymmetric term, proportional to the flux
of ions. In addition, the displacement and velocity of over-
damped ions are not independent, as is the case in equilib-
rium or nearly equilibrium systems (e.g., systems with high
barriers), but rather significantly correlated. [Indeed, that is
why flux flows in the consistent treatment of high friction
given in Eqs. (4.23) and (4.24).] It follows that the joint
probability density function of displacement and velocity
does not factor into a solution of the Smoluchowski (Nernst—
Planck) equation multiplied by a Maxwellian density of ve-
locities (that has zero net flux), as is usually stated. 0"

Obviously, a theory that implies zero flux should not be
used to predict flux. The traditional Smoluchowski limit im-
plies a Maxwellian distribution of velocities and zero flux. It
cannot consistently describe a finite flux. It should not be
used to describe experiments performed away from equilib-
rium, in which flux is present.

B. Chemical reaction as a diffusion

Our analysis shows that diffusion between concentration
boundary conditions can be described as a chemical reaction,
without approximation, no matter what the shape of the po-
tential barrier between reactant and product, because each
unidirectional flux in Eq. (6.15) and Eq. (3.6) is strictly pro-
portional to the concentration at its source, for a potential
barrier of any shape. Thus, each unidirectional flux—and
their difference the net flux—follow the law of mass action
(if barriers are independent of concentration) no matter what
the shape of the potential barrier that limits conversion (i.e.,
diffusion) from reactant to product, it they flow between re-
gions of fixed concentrations.

Chemistry is built upon the idea of a reaction, in the
simplest case A=B, where a boldface uppercase letter, e.g.,
A, represents the concentration of species A, B likewise, and
= represents the process converting A to B. In the simplest
case, the process is described by the law of mass action,
giving a rate of reaction (i.e., rate of change of concentration
of product B) described by a rate constant, independent of
time and concentration ot A and B. The simplest case is the
paradigm of a chemical reaction; it is the archetype that is
taught in elementary courses, and it is the mold into which
other more complex cases are cast.

The idea of a chemical reaction is generalized in physi-
cal chemistry into a process in a multidimensional phase
space, in which the movement of a particle along the reaction
path, over barriers and through wells of potential, describes
the conversion of A to B, and the concentrations of A and B
generally appear as boundary conditions. In most cases, this
generalization has been studied in the limit of high barriers,
because the species A and B are well defined in that case,
and the analysis of the conversion process is dramatically
simplified if flux is determined only at one location, the top
of a barrier (see Sec. VIII). One ditficulty with the high
barrier approximation, however, is that it implies a near equi-
librium, nearly no flux system. Another is that it tends to
obscure the role of boundary conditions, namely the concen-
trations of reactant A and product B. If of interest, the effect
of boundary conditions and flux must be reinstated later, af-
ter they have been approximated away, and that is difficult to
do without introducing inconsistencies.

The analysis presented here gives boundary conditions
and partial differential equations equal weight, thereby in-
creasing the reality and complexity of the mathematical
analysis. Nonetheless, analytical expressions for the flux are
derived with simple physical and stochastic meaning; the
approximation of high barriers can still be invoked, but now
atter the problem has been solved and the role of boundary
conditions and flux has been displayed explicitly and consis-
tently.

To our surprise, this approach, that starts by making a
simple problem complex (because it does not assume large
barriers), leads eventually to a simple result, valid under a
range of conditions including large barriers. In fact, the flux
formula Eq. (6.15), true for all shapes and sizes of potential
barriers, is so simple that further approximation seems un-
necessary, and unwise. For example, aP(B|A)C, is the
(unidirectional) flux of A— B and aP(A|B)Cy is the flux of
B—A ., with the obvious change of notation from location to
species. Indeed, the chemical reaction

ks
A=B8B, 9.1)
kp
provides an irresistible generalization of the idea of rate
“constant” to chemical reactions with concentration bound-
ary conditions and arbitrary potential barriers, using the ob-
vious definitions k= aP(B|A) and k,=aP(A|B).

With this generalization, the law of mass action (with
rate constant independent ot concentration) will be true even
if barriers ure low, if concentrations at the boundaries are
maintained and the barriers are independent of concentration.
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Of course, the same chemical reaction does not follow
simple rate laws if other boundary conditions are imposed.
For example, if the same chemical reaction (i.e., a stochastic
process with the same dynamics, with the same profile of
potential barriers, same diffusion coefficients and so on, dif-
fering only in its behavior at the boundaries of the system) is
studied after a sudden change of concentration of species A,
the time course of the relaxation of concentration of A or B
will not in general be exponential (if barriers are low for
example) and simple rate laws do not apply. The law of mass
action does not apply in its simplest formulation. We see then
that the experimental imposition of concentration boundary
conditions may lead to significant simplification in analysis,
e.g., in the case of small barriers.

Our version of the law of mass action may be useful in a
number of other cases as well as in the case of small barriers
(1) when the other approximations of high barrier theory
(e.g., location away from the boundary) are not appropriate;
(2) when the dependence on boundary conditions is itself of
practical interest (as in the biological application); (3) when
species are not well determined, for example, when an inter-
mediate species lying “‘between” A and B is observed ex-
perimentally and that species does not lie between two high
barriers.

C. Numerical simulations

The explicit formulas for the conditional probabilities,
fluxes, contents, and residence times given in this paper are
valid when friction is large. In many applications, however,
closed form expressions for the solution of the Fokker—
Planck equation, or its approximation, are not available, for
example, if the system is not overdamped, if ions interact
directly with each other, or if the Fokker—Planck equation is
coupled to other differential equations, e.g., to the Poisson
equation determining the electrostatic potential. In these
cases, numerical simulations of trajectories or numerical so-
lutions of the partial differential equations are needed.

Even in the most general case, the conditional probabili-
ties, fluxes, contents, and residence times given in this paper
{(and the relations among them) remain well defined. The
probability measures can be estimated from numerical simu-
lations of ion dynamics if analysis is not practicable. The
tormulation presented here allows much more efficient simu-
lations of trajectories than used previously'' because all tra-
jectories are used to estimate parameters.

When simulating the Langevin equation, trajectories
have to be started at x= 0 and v> 0, and at x=1 and v < Q.
The velocities v should be chosen at random, from the non-
equilibrium distribution Eq. (6.1), ct. Eq. (4.24). Whenever a
trajectory exits the strip domain, it should be terminated.

The following data should be recorded and processed
according to the formulas of Sec. V:

(1) The number of RL, LR, LL, and RR trajectories.

(2) The duration of the trajectory.

(3) The exit point of the trajectory, that is, L or R, and v at
the exit point.

Even in the general case, where dynamics are complex and
do not follow the Langevin equation, diffusion can still be

treated as a chemical reaction with no approximation, pro-
vided that the potential functions and diffusion coefficients
are not significant functions of the concentration of reactant
or product. If they are significant functions, the representa-
tion of the system as a chemical reaction will probably mis-
lead more than inform and so should be replaced by direct
consideration of the experimental observables, e.g., concen-
trations and fluxes in traditional experiments.

D. Biological applications

This work was motivated by the biological problem that
interested Fick, the motion of ions across biological mem-
branes. In the biological context (of, for example, ion perme-
ation through channels in membraness), barriers cannot be
assumed large because many channels are selected by evolu-
tion to pass large currents and fluxes;'® concentration bound-
ary conditions are unavoidable (in contrast to chemical prob-
lems, where concentration boundary conditions are often
obscured by high barriers); and stochastic properties are rou-
tinely measured. Thus, we are forced to a stochastic theory of
ionic permeation, the first installment of which is presented
here; the stochastic analysis of diffusion between concentra-
tion boundary conditions.

[onic channels determine the diffusive flows in the bio-
logical systems that originally interested Fick. Before chan-
nels were studied individually, macroscopic currents were
usually interpreted as flows through a fixed area of homoge-
neous membrane. We now know that ions flow through indi-
vidual protein molecules—ion channels—that can open and
close. The number of open channels is anything but fixed;
the phenomenon of gating, and thus the time dependent phe-
nomena of channels, arise from changes in the number of
open channels and thereby in the area of membrane through
which current flows. Traditional interpretations of macro-
scopic currents must be discarded, because the macroscopic
currents come from a varying number of channels; tradi-
tional theories can be retained, but now as descriptions of
flow through one protein molecule, a single open channel.

A single open channel is a unique object for investiga-
tion. It is a single protein molecule performing a natural
function of great biological and medical significance, fully as
important for the life of cells as the catalytic functions of
most proteins (i.e., enzymes). The mechanism of channel
function is much simpler than of enzymes, because covalent
bonds do not change as ions permeate channels. For millenia
(at least since Aristotle), a goal of biological research has
been the prediction of function, given structure. For nearly a
century and a half, ever since molecules were discovered and
kinetic theory was invented, biologists have dreamed of pre-
dicting function from atomic structure, using physical theory.
Channels are a more promising subject for such research
than any class of proteins of comparable biological and
medical importance, in the opinion of at least one of us.'?

E. Open channel noise and the counter model

Current flow through a single open channel is noisy, so
characteristically noisy that it begs for a stochastic descrip-
tion and identification, if not analysis. A stochastic theory of
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open channel noise has been presented by Frehland and
co-workers™ and has been used to interpret experimental
results®' > in normal conditions and when “'slow ions” (Le.,
blockers) are present. This theory, however, describes the
movement of ions in solution by Eyring’s rate theory, origi-
nally derived to describe the flux of atoms in gas phase
chemical reactions, occurring without friction or interatomic
collisions. Rate theory can be reworked into a transition state
theory useful in condensed phases, like liquids or proteins
where friction and interatomic collisions dominate kinetics,**
but the theory, reworked or not, requires potential barriers to
be large and far removed from the ends of the channel [see,

g., Eq. (8.4)]; in either case the role of concentration gra-
dients is obscured, even though concentrations have promi-
nent effect in ditfusion and biological phenomena.

The traditional description of ionic flow by the Nernst—
Planck equation with prescribed concentration boundary
conditions gives an expression for the net ionic flux as a
tunction of the concentrations and the potential in the chan-
nel [see Eq. (3.6)]. This function depends linearly on the
concentrations and depends exponentially on the values of
the potential at the endpoints (and on its exponential inte-
gral). Thus, for example, it the values of the potential at the
endpoints are equal, exchanging the concentrations reverses
the flux.

There are several properties of the ionic current mea-
sured in real single channels that are hard to accommodate in
Nernst—Planck theories. These include current fluctuations,
nonlinear dependence of the flux on concentration (satura-
tion), blocking of the channel by slow ions, properties of
ratios of unidirectional fluxes, asymmetry of channel phe-
nomena, and so on (Ref. 8, pp. 374-389). In addition,
Nernst—Planck models exclude the notion of a channel that
admits one ion at a time (a single ion channel).

In order to account for these phenomena in single ion
channels, we are analyzing a stochastic model, in which the
channel is viewed as a paralyzable counter. similar to the
Geiger counter of radioactive decays. In this model a single
ion channel is ““paralyzed’ for the time it is occupied by an
ion. The randomness of the model arises because the motion
of an ion inside the channel is diftusive and therefore ran-
dom, so are the time spent in the channel and the time to the
arrival of the next ion to the channel; and also ions can enter
and exit the channel on either side with certain probabilities.

The random times the channel is occupied or empty ac-
count for the fluctuations in open channel current seen ex-
perimentally, as they do in theories of shot noise. The finite
time that an ion has to spend inside the channel before exit-
ing accounts for the saturation in flux as concentration is
increased. It also accounts for blocking of the channel by
slow ions.

The stochastic model of the ionic current requires the
stochastic description of the ionic trajectories presented here.
The stochastic analysis of an ionic channel as a counter of
ions will be given in a separate publication.
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APPENDIX A: NONDIMENSIONALIZATION

We introduce the following notation. The two sources
are placed at the origin and at d. We assume that the motion
of an ion of mass m and total charge ze, where z is the
valence of the ion, diffusing in a liquid bath, can be de-
scribed by the Langevin equation

— dw
= V2mkTB(%) —,
X dt

(A1)

where B(¥) is the state dependent friction coefficient (per
unit mass), & Boltzmann’s constant, T is absolute tempera-
ture, and w is standard Brownian motion. The function ‘I—)(Sc')
represents the electric potential in the reaction region. We
introduce dimensionless variables according to Table 1. Note
that the dimensionless length of the reaction region is 1. The
scaling tactor tor the potential, A®, was chosen to represent
the barrier height, if one is well defined. Otherwise it is the
thermal energy. This scaling is necessary to keep track of the
various orders of magnitude in the Fokker—Planck equation
when we use the high friction expansion in Secs. VI and VII.
Following earlier practice,™> we use € to describe nondi-
mensional temperature; it need not be small.

d* . df dd(%)
+m,8(x);+ze
!

m
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APPENDIX B: CALCULATION OF THE CONDITIONAL
MFPT FROM BOUNDARY VALUE PROBLEMS

The conditional contents, N(L|L), of LL trajectories in
the channel is given by the double integral Eq. (5.20) if
/(L)=1, as mentioned in Sec. V. We show below that

0

N(L|L)=—f vq(0.v|L)dv, (BI)

where ¢(x,v|L) is the solution of the boundary value prob-
lem Egs. (5.21) and (5.22).

First, we observe that according to Ref. 15, the probabil-
ity of exit at x=0, given the initial point (x,v) in &, is the
total etflux of probability on the left in a stationary problem
with a source at (x,v) and no influx at x=0 and x=1. That
is,

0
PriT <tglx.v)=P(L|x,v)=— j

7p(0, nlx,v)d 7y,
(B2)

where P(L|x,v) is as defined in Sec. V, and p(§,77|x,v) is
the solution of the boundary value problem

Le (€, plx.v)=—=8(6—x)8(n—v)

for (£,m)e and (x,v)ed (B3)
with the no influx boundary conditions

p(0,nlx,v)=0 for >0 (B4)

p(1,plx,v)=0 for n<O. (B5)
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TABLE [. Symbols and nondimensionalization.

Name Dimensional Dimensionless

Proton charge ¢ (Coulombs)

Position x (m) x=xd
Lengtb of reaction d (m) 1
region

Scaling factor Ad (Jkg) see below”

Electric potential &(£) (J/Coulomb) “ (7)) =D(x) AD
m

Time t(s) = /L— t
VAD
kT
Absolute temperature kT (1) =
P! ( € AD
Friction coefficient B(E) (1/5) =Y 25
. B(x)=—— vAP
Diffusion coefficient D(x kT = m Dix)= <
(D= BB MY D= g
Concentration in bath Cry #/m’) Crpy=ma’dCp,
Concentration in - 3 -
reaction region P(X) (#m’) Px)=Crpx)
Source strength Crry (#1s) cL(R)Z/;d_ CLR)
v
wald ~
3 2 J= ,__QJ
Flux J (Wm*s) Vad

“Scaling factor for electric potential A®=max{kT/m,ez/m[max ®(x)
—min d(x) ]}

From the definition Egs. (5.20) and (B2), it follows that
N(L|L)=— J f
o

0
:_f 7q(0,7|L)dn,

dx dv

0
p(x,v|L) f_ np(0,7lx,v)dn

L

where we define

q(&nlL)= fjf p(x,u|L)p(€& nlx,v)dx dv.

Applying the forward operator .% [in the variables (£,7)] to
q(&,mlL) and noting that it can be exchanged with the
double integral because it acts on nonintegrated variables, we
obtain from Eq. (B3),

‘Z”'g,y,q(&ﬂlLF—LJ p(x,v|L)8(£—x)

X 8(n~v)dx dv

=-p(&lL), (B6)

which is Eq. (5.21). The boundary conditions Eq. (5.22) fol-
low from Egs. (B4) and (BS5).

APPENDIX C: THE CONDITIONAL MFPT FOR HIGH
BARRIERS

With the assumptions of Sec. IX, we have to evaluate
7(R|L) from Eq. (7.5) in the limit € <1. First, we note that
in this limit

! |2me
) v
]Ef e(DLj)/EdSN
0 we

Next, we define

e‘D(XC)/f. (Cl)

\If(x)EJXeq’(”/‘ds
0
and note that W(1)=1. For B(x)=B=const.,
1
%(RIL)=EB; f e P - (x)]W (x)dx. (C2)
0

Asymptotically, W(x-)~3/ and so, for simplicity, we as-
sume the exact equality

V(xe)=41. (C3)

Then, the integrand in Eq. (C2) peaks at x. Indeed, writing
the exponent of the integrand in the form

. —®(x) ‘
Ulx)= +log[I=¥(x)]+log ¥(x), (C4)
we find that

oo -d'(x) ¥(x) WV¥i(x)
viix)= MR T TR

. B *“(D”(X) \I""(X) \y/z(x) \I}”(.X)
Uitx)= YV T Vi) T-(%)

P2
TR T

Setting x=x in Eq. (C5), noting that ®'(x ) =0, and using
Eq. (C3), we find that U’ (x.)=0. Furthermore, using Eq.
(C1), we find that

=-— (Cs)

/8
0w =we EP R (Ce)

It follows that the integral in Eq. (C2) can be calculated by
the Laplace method,?® yielding Eq. (8.6).

The asymptotic calculation of 7(L|L) is simpler, because
the integrand in Eq. (7.6) is maximal at x =0. Assuming that
@(x) has a local minimum at x =0, using the Laplace expan-
sion, and Eq. (C1), we obtain Eq. (8.7).
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