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Stochastic trajectories are described that underly classical diffusion between known concentrations.
The description of those experimental boundary conditions requires a phase space using the full
Langevin equation, with displacement and velocity as state variables, even if friction entirely
dominates the dynamics of diffusion, because the incoming and outgoing trajectories have to be told
apart. The conditional flux, probabilities, mean first-passage times, and cofuénte reaction

region of the four types of trajectories—thimnstrajectoried. R andRL and thecistrajectoried L
andRR—are expressed in terms of solutions of the Fokker—Planck equation in phase space and are
explicitly calculated in the Smoluchowski limit of high friction. With these results, diffusion in a
region between fixed concentrations can be described exactly as a chemical reaction for any
potential function in the region, made of any combination of high or low barriers or well$985
American Institute of Physics.

I. INTRODUCTION This work started as an attempt to describe the stochastic
motion of ions through single biological channels, protein

starting with Fick, and also, at higher resolution, by themolecules that open to form a pore allowing ions to move

. o : . ross cell membranédnterestingly, this is the same prob-
theory of stochastic processes describing the trajectones_ ?aécm that motivated Fick—who was both a physiologist and

. . . ’4 . . _
diffusing particles** Classical theory is based on the canoni physical chemi&®—to invent classical diffusion theory. The

cal expenr_nental setup for d|ffu_3|on, where partlcle§ qlﬁusebiological problem is described at the end of Sec. IX.
from a region of one concentration to another. Surprisingly, a

stpchgsuq theory is pot available th.at qescr|be§ trajectories |”_ THE SETUP, FRICTION, AND DIFFUSION
this situation. Theories of stochastic diffusion in the context
of chemistry or biology often analyze a restricted case, when We represent the experimental setup of Fick by a reac-
particles diffuse over a high barrier. Trajectories diffusingtion region separating two baths in which concentrations and
over arbitrary barriers seem not to have been analyzed in thigotentials are maintained fixed. The ions insided outsidg
context. the reaction region move by diffusion and transport in an
This paper calculates the statistical properties of the ranelectrical field. The electrical field arises from the distribu-
dom trajectories of diffusion using stochastic differentialtion of charge in the reaction region and at its boundaries, a
equation3™’ to describe the dynamics of ionic motion. The distribution that must be expected to change as experimental
Langevin model is used for the calculation of the probabili-conditions are changed. Thus, the potential functigm) is
ties of the four types of trajectories—thmns trajectories  expected to vary if the species or concentrations of ions in
LR andRL and thecis trajectoriesLL andRR—as well as the baths or the electrical potential there is changed. The
for the calculation of the mean first-passage times and avediffusion arises from the thermal collisions of the ion with
age contents of the reaction region. With this analysis all thesurrounding waters and protein. Motion is collision domi-
statistical properties of the four types of trajectories can beated because the atoms move with thermal velodips)
determined for any shape potential function and any frictionin a liquid with very little empty space; in a typical experi-
In the limit of high friction, reduced problems are derived for ment an ion undergoes hundreds, thousands, or millions of
each type of trajectory that yield explicit formulas f@on-  collisions (or more) as it moves from one boundary at one
ditional) probabilities, contentsof the reaction region and  concentration to another.
residence timesi.e., mean first passage timedhe trans Although friction in liquids is characterized by memory
unidirectional components of flux, studied in biology with kernels, we simplify the calculations by assumingasition
radioactive tracers for many years, correspond to the condand species dependegrgffective friction coefficient,3(x)
tional probabilities, and are also tieonditiona) contents (see Ref. 10 This coefficient would ideally be an output of
divided by the mean first passage time. a numerical simulation of molecular dynamics. The friction
Interestingly, in this setup the velocity distribution of the coefficient we use is an effective parameter; it is expected to
ions is not Maxwellian, even in the limit of high friction, but be independent of conditions under a reasonable range of
rather contains an asymmetric term proportional to flux.  concentrations, electric fields, and temperatures. That is to

Diffusion has been analyzed by classical field thedry,
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say, the structure of the memory kernels is not expected téor constanD(x) =D, Eq. (3.6) reduces to the well known
vary much as the flux is manipulated experimentally byexpressiof

changing concentration, potential, etc. over the pertinent

range.

I%. THE MATHEMATICAL MODEL AND THE
NERNST-PLANCK EQUATION

We present the Nernst—Plandke., SmoluchowskKi

CLe®(O/e— CpeP(Die

J=D . (3.7

fée‘b(s)/fds

If the concentrationsC, and Cg are time dependent, Eq.
(3.7) can be easily generalized by solving the time dependent

model so the paper is reasonably self-contained. The reaCti%ernst—Planck equation

region is located on thg-axis betweerx=0 andx=1; the

bathing solutions are on either side of the reaction region
between—«~< x<0 and K x<~. The concentration of ions
in the reaction regionp(x), satisfies the Nernst—Planck

equation in Stratonovich fort? (see Appendix A for nondi-
mensionalization

d 1 dd(x)
ax D(x) ax p(x)+ < Tdx

p(X)|=0 for 0O< x<1,
(3.1

whereD(x) is the diffusion coefficient and is dimension-
less temperaturénot necessarily smallAlso the concentra-

The stochastic dynamics underlying the Nernst—Planck
equation is theeducedLangevin equatich

pooscr g = VB e,

(3.8

wherex(t) is the position of the ion at timg ®(x) is the
electric potential 8(x) is the friction coefficiente is nondi-
mensional temperature, and is standard Gaussian white
noise(see Appendix A The friction and noise terms in Eq.
f3.8) are related by the Einstein fluctuation-dissipation

tion of ions in the baths satisfies the three-dimensional™. ™ .

Nernst—Planck equation ir-o<x<0 and K x<ow, with
®d(x,y,z)=const. andD(x,y,z)=const. In order to avoid

solving the Nernst—Planck equation in all three domains s
multaneously, we approximate the solution in both baths b
constant concentrations. Therefore, the boundary conditions

for Eq. (3.1 are

p(0)=C_, p(1)=Cg. 3.2
Integrating Eq(3.1) once, we obtain

d 1dod
D(x) ’;(;() = dix) x)|=-3, (33

wherel is the (spatially and temporally constarftux. Inte-
grating again and using the boundary conditions BR),
we obtain

p(x):e—d)(x)/e [CRe(I)(l)/s_CLed)(O)/e]

X AD(s)/ e
fOe D(S)

1,®(s)/e ds

0 D(s)

In particular, ifD(x)=D, Eq. (3.4) reduces to

Cre®W/e— gb 0
[1e®@egs

+CLe[<1>(0)*‘1>(X)]/E_

+C et (3.4

X
p(X)= e—cD(X)/eJ ed)(s)/eds
0

(3.9
Using Eq.(3.4) in Eq. (3.3, we obtain

CLeCI)(O)/E_ CRe<I’(l)/e

(3.6)
fée<1><s)/e D_
(s)

Yy

principle3-°
The inhomogeneous boundary condition for the Nernst—

i_Planck equation corresponding to the reduced Langevin

equation(3.8) leads to difficulties, because it requires the
region outside the channel to betha sourcgof trajectories
entering the channghnd an absorbdpf trajectories leaving

the channel In Eq. (3.8), however, all trajectories that origi-
nate at the boundary are immediately absorbed there and
never get anywhere, an undesirable, presumably unrealistic
phenomenon observed directly, at considerable computa-
tional cost, in the simulations of Ref. 11.

Exiting and entering trajectories differ only by the sign
of their velocities; one is positive and the other negative, but
velocity is not a state variable in the reduced Langevin equa-
tion (3.8). Obviously, if a stochastic theory is to separate
entering from exiting trajectories, it must analyze and de-
scribe the velocity of ions as well as their displacement. The
distinction between enteringpositive velocity at the left
boundaryx=0) and exiting(negative velocity trajectories
cannot be made in the reduced Langevin equation. In con-
trast, the full Langevin equatiéfi'>*3

X+ B(X)X+

(3.9

LGP

describes random ionic trajectories in a phase space with two
state variables, displacement(t), and velocity,v=x(t).
Thus, the distinction between entering and exiting trajecto-
ries is automatic; one has>0 at the left entrance and the
other hasv <0 there. The full Langevin equation describes
the underlying dynamics of these trajectories. The Fokker—
Planck equation, involving both displacement and velocity, is
needed to describe the probability density function of these
trajectories, and its evolution. Therefore, we must use the full
Fokker—Planck equation rather than the Nernst—Planck to
describe diffusion, even if friction is large.
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IV. THE LANGEVIN AND FOKKER—-PLANCK B(x) and potentiakb(x) of the reaction region. That poten-
EQUATIONS; THE NERNST-PLANCK EQUATION tial function is determined by the spatial distribution of all
RECOVERED charge(fixed and mobile, in the reaction region and at the

boundaries and must be expected to change shape if the
%ectrical potential in the baths or the concentrations of ions
reaction region. The ions simply move in and out of a region ere are changed. Bofi(x) and ®(x) may und-ergo a dis-
o ) . : continuity at the entrance to the reaction region. However,
where friction and potential change from their values in the, ; . . . :
: . i . ; he random trajectories defined by the Langevin equation

free solution outside the reaction region. Indeed, in a reaﬁ ; : ; .

. . . o remain continuous. They may enter the reaction region on
experimental situation the concentration is not absolutely ; : . g . . X
i ) ) o either side and exit on either side with certain probabilities.
fixed at this boundary; rather it is measured and changes a i :

. us, no boundary conditions are imposed at the ends of the
held small enough so they do not matter, as shown by direc . ;

: . o feaction region.
experimentation(In some situations, e.g., currents through . - . . . i

: ) r o . The stationary joint probability density function of find-
biological Ca ™ channels, significant concentration changes L . ) .
- . Ing a random ionic trajectory at a point,{) in phase space
always accompany current flow under realistic conditipns. . . o ;
. . . ; . is denoted byp(x,v). The marginal probability density of
The trajectories of ions at an edge of the reaction region arg_ i . . : X o
. : - . inding an ion at the point with any velocity,p(x), is given
complex and oscillate strong[particularly as friction domi- b
nates,3—, and trajectories approach those of E38)] but y
they are unconstrained by specialized physical structure or N q
experimental apparatus. Some trajectoftas cis ones start P(X¥)=] p(xv)do.
at the boundary and end ther@n many situations, most ) )
trajectories are of theis type) Other trajectoriegthe trans  If given concentrationsC, andCg, are measured at the ends
oneg enter the reaction region and end on the opposite sid&@f the reaction region, then
Both sets of trajectories flow without noticeably changing  p0)=c,, p(1)=Ck. 4.3
the concentration or potential in the baths because of the N
experimental apparatus and procedures used to maintain tj&@€se are exactly the boundary conditiof&?2) for the
concentration boundary condition. Nernst—Planck equatio8.1). _
A description of the random current requires separate 11 jomt_e#zp(x,v) satisfies the stationary Fokker—
calculation of the properties of incoming and outgoing ions.Planck equatio
These ions are distinguished by the different signs of their ap #p
velocity of motion and so a theory must describe both the ~ “P(X,v)=—v -+ B(X)€ 2
position and the velocity of the ion.
velocity can be introduced into the Langevin equa-
tionx379) explicitly as a second state variallét), forming a
two-dimensional system

A concentration boundary condition does not imply any

4.2

B(X)v+ dx (4.4

N de0o]
v P=

in a large stripx, <x<xg, —o<v<®, wherex, <0 and

X=v, Xg>1 are points where sources or sinks are placed in order to
(4.1 maintain the fixed concentrations on both sides of the reac-
. dd(x) . : . o
v=—B(X)v— ot 28(X) ew(t). tion region. Note, however, that no boundary conditions are
X

specified or imposed at the ends of the reaction regier

The random trajectoriesx(t),v(t)], defined by the system andx=1. The properties of the variablesxat0 andx=1 are
Eq. (4.1), describe the motion of the ion in phase space botlflerived later as part of the solution to the problem.
inside the reaction region and outside, in the baths. The The time dependent Fokker—Planck equation is
boundaries of the reaction region in phase space are the lines ap(x,v,t)
X=0, —o< p<ow, andx=1, —wo< p<w, In the real system e
of baths and reaction region, ions that reach the left end with

v >0 enter the reaction region, whereas those that reach thisquation(4.4) can also be written in the form of a conserva-
end, coming from the right witly < 0, exit the reaction re- tion law

gion and diffuse into the external solution. The other end is _

analogous. The concentration boundary conditi¢émsin- Vi dx0)=0for (x,v) e 2, 4.6
tained by experimental apparatuanforce this behavior. In  where the probability flux density vectd(x,v) is defined as
the bath on the left, that is, fot< 0, the ionic motion is ual for this two dimensional problefrpy

described by the Langevin equati¢hl) with B(x)=const.

= Zp(X,0,t). (4.5

Xl
and ®'(x)=0, and the experimental apparatus maintains a vp(x.v)

; ! J(x,v)= , ap(x,v)
(nearly constant concentration of each species afrkarly —[B(X)v+P"(x)]p(x,v)— B(X)€
constant electrical potentidhnalogously on the right In- dv
deed, these properties are what we mean by “concentration 4.7)
boundary condition.” Note thatJ(x,v) describes the flux of probability; the rela-

Inside the reaction region the ionic motion is describedtion of this flux to the ionic flux through the reaction region
by the Langevin equatiof4.1) with the friction coefficient remains to be seen.
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We study the standard Smoluchowski expansion of the

full time dependent Fokker—Planck equafido make the

paper reasonably self-contained. Denote the time dependent

pdf by p(x,v,t); scaleB(x) by its maximum,B; write
B(X)=BBo(x); (4.8

and scale time by=Bt'. For largeB the timet’ is slow, so
that the time dependent Fokker—Planck equation becomes

a7 ol b0 g

B(X)g €, TV p(x,v,t") U ix_ 7
>< ! ﬁ !
p(X,U,t )+§ W p(X,v,t )

1
E(B%O+%l+ g%z) p(X,v,t'):O, (49)
where
_ , 17 d ,
Zop(Xv,t)=Bo(X) 2~ | € —~Fv [p(xv,t), (4.10
Z. t)= i +— 4Px) 9 t’ 4.1
Zip(Xu )= —v =+ — = o p(xo, ), (4.1D)
and
- J
Zp(X ) == =5 p(X.v,t'). (4.12
Expanding the density in an asymptotic series in negatlvef}0
powers ofB,
1 1
P(X,u,t)=p°(x,v,t') + 5 pH(Xp,t") + 57 PA(Xu,t)
4o, (4.13

we obtain the following hierarchy of equations:

Zop%(x,v,t")=0, (4.149
Lo (xv,t) =~ Z1p%(xv,t"), (4.15
Fop?(X,v,t")=— Z1p (%0, t") — Z,p°%(x,v,t),
(4.16
and so on. From Eq4.14 we obtain
—v2/2¢
pO(x,v,t") = —— POx,t"), (4.17)
2me

where P°(x,t’) is yet an undetermined function. The inte-
grable solution of Eq(4.15 is given by

o= 2 L[
- V21e Bo X
do
i1 ()PO( t)v+Pl(xt)]
€ dx

(4.18
where PY(x,t’) is another undetermined function. Using
Egs. (4.17) and (4.18 in Eq. (4.16 and integrating with
respect taw, we obtain
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aPoUxt') o 1 IPO(x,t")
at’ x| Bo(X) IX
do(x) . |
o Pt ] (4.19

ScalingB back into Eq(4.20 and settingp(x,t)=P%(x,t"),
we obtain the Smoluchowski model

dd(x)
dx

0, (4.20)

p(x,t) 4 1 ap(x,t) N dCID( )
a ox | BX) ax PO,Y)
(4.20
Note that Eq.(4.20 has the Stratonovich forif In the
steady state, we obtain

0 1 Ip(x)

Ix B(X) X P(x)
wherep(x)=lim,_ ..p(x,t).

Proceeding as above, we find thlt(x,t’) =0. Note that
the Smoluchowski equatiof@.21) is identical to the station-
ary Nernst—Planck equatio{8.1). Returning to the expan-
sion (4.13, we find that the expansion of the pdf is given by

—v2/2¢ 1 ﬂp(X,t)
(x,v,t)~ | (x,t)— —
P e T oo o
+1d<1>(x) p(x,t)[v+0O 1 H (4.22
€ dx 2(x)

The total probability flux in thex direction is calculated
m Eq. (4.7 [see, e.g., Eq5.7)] as

Tx,t)= J vp(x,v,t)dv

1 ap(x,t) d(I)(x)

~ B(X) IX POGD)

+0O| 57— ! 4.2
B0 423

It follows that away from equilibrium the pdf depends
on flux, no matter what the frictionso that we obtain an
expansion in the Smoluchowski limipreviously derived in
another contexf)

g vi2e Tx,Dv 1
p(X,v,t)~ p(x,t)+ (0} .
’ \2me S ,32()() J
(4.24

Formula (4.24 differs from the usual high friction
(Smoluchowski approximation to the joint pg(x,v,t) (see,
e.g., Refs. 4, 6, 12, 213The usual high friction expansion
neglects the flux term7(x,t)v/e inside the braces of Eg.
(4.24). It stops after the first ternp(x,t). When the usual
approximation to the joint pdf is substituted into the integral
in the flux formula(4.23, the resulting flux in thex direction
vanishes, no matter what the potential or values of other
parameters. Therefore, the usual high friction approximation
is valid only when fluxes vanish or are vanishingly small,
e.g., at equilibrium or when barriers are sufficiently high that
the system is essentially at equilibrium. If, however, a finite
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flux is imposed experimentallgnd thus always present no assuming that far away in the solution on the left there is a
matter what the friction,as in most laboratory situations, mechanism that maintains the given concentration there

then both terms, viz., (e.g., a source
- Interestingly, in experiments radioactive tracer is often
T(x,Hv ) . . ;
p(x,t)+ , placed onjust one side of a reaction region or the other to
€

estimate the ionic fluxed(R|L) and J(L|R), really the

must be retained in Eq4.24). The presence of both terms steady state and mean value of the fluxes. In this particular
insures that Eq(4.24) is valid for all values of flux, thus for experimental situation, the probability flux and the ionic
all barrier shapes_ The tenﬁ'(x,t)vle is responsib|e for the fluxes coincide, if the incoming flux in both cases is normal-
difference between our analysis, e.g., of chemical reactiorized to 1.
and most earlier work. We denote byp(x,v|L) the pdf of trajectories that enter

Note that Egs.(4.23 and (4.24 recover the one- the reaction region on the left while the right end is blocked
dimensional flux of the Nernst—Planck equati@hil) from for entering trajectories. The total influx on the left is then
the two-dimensional Fokker—Planck equation. The fixed -
concentration boundary conditio(%.3) give in a straightfor- T(L)= J
ward manner the boundary conditio(®?2) for the Smolu-

. vp(0,v|L)dv. (5.4

chowski equatior(4.21). The functionp(x,v|L) is the solution of the Fokker—Planck
equation(4.4) in the strip x, <x<1, —owo< p<co with the
V. EXIT PROBABILITIES AND EXIT TIMES boundary condition
One of the goals of this paper is to calculate the statisti- Z(1|L)-»v=0 for v<0 (5.5

cal properties of each of the four kinds of trajectories,

LR, RL, andRR These trajectories are described (opn- wherev is the unit outer normal to the boundary. The bound-

ditional) probability density functions, their residence timesary condition(5.5 can be written as a condition for the pdf

in the reaction regiorfalso called first passage timesnd p(x,v|L) as

the fluxes of each of the four kinds .o'f trajectories. The rgla- p(1|L)=0 for v<O. (5.6)

tion of these partial fluxes of probability to the flux of ions in _

the Nernst—Planck equation cannot be assumed:; it is one dihecis flux.7(L|L) and thetransflux.7(R|L) are the con-

the outputs of this paper. ditional effluxes of probability defined in terms of the flux
In order to calculate the conditional probabil®(L|L)  VectorJ(x,v) of Eq. (4.7) by

of trajectories to exit on the left, given that they entered on 0

the left, we have to isolate the influx of probability from the ,7(L|L)Ef J(O,w|L)-vdv= —f

left from that on the right. Each of these unidirectional prob- - -

0
vp(0,v|L)dv,

ability fluxes(to use the physiologists’ worglss further split 5.7

into its cis andtrans components, into conditional flux€to o o

use the probabilists’ wordise.g., -7(R|'-)Ef0 J(1w[L)-vdo= fo vp(lp|L)dv. (5.8
T(L)=7(LIL)+T7(R|L). (5.9

Similarly, .7(R|R) is calculated from the pdb(x,v|R) that
Here.7(-) describes the flux of probability, not ions. The satisfies the Fokker—Planck equatidd.4) in the strip

conditional probability of thecis trajectoriesLL is 0< x<Xg, —< v <o with the boundary condition
J(L|L J(R|L 0,v|R)=0 for v>0. 5.9
Pl =2 bR —1- Py - 2R P(0]R) v 59
7(L) 7(L) As above, we have
(5.2
as is obvious by simply counting trajectories. Using similar ~ 7(R|R)= wa(l,v|R)-vdv= fxvp(l,v|R)dv,
notation, we obtain 0 0
(5.10
J(R|IR) J(LIR)
P(RIR)=——5—, P(L|IR)=1-P(RIR)= —5—. 0 0
7(R) -/(RzS 3 .,«7(L|R)Ef J(1,v|R).ydv=—f vp(1,0|L)dv.
Thus, the calculation of the exit probabilities of ions that (5.1

entered on the left consists in splitting the probability influx Next, we calculate the conditional residence times, also
Z(L) into thecis flux .7(L|L) and thetrans flux .7(R|L), called mean first passage tim@dFPTs, 7(jli), (i=L,R,

and applying Eqs(5.2). Next, we must expresg(L|L) and j=L,R), taken by an ion that enters at endf the reaction
Z(R|L) in terms of the solution of an appropriate boundaryregion (with velocity pointing into the reaction regiprto
value problem. In order to isolate the probability flux enter-reach end of the reaction regiofwith velocity pointing out

ing on the left, we have to eliminate the flux entering on theof the reaction region given that it exits there. Note that in
right. Therefore, we impose a zero-influx condition on thegeneral thgunconditional mean first passage time fromo
right but we do not impose any boundary condition on thej is infinite, because there is a finite probability that ions will
left. Instead, we solve the problem in the interxpkix<<1,  exit on the other side and so never gef tdhat is, the time

Downloaded-09-Jan—2003-to~144.74.27.192 CheMisihsioM 05 uk2e N - B2 IHRMRIY o+ 980y right, ~see-http://ojps.aip.orglicpoljcper.jsp


Bob
Highlight
flux is imposed experimentally, and thus always present no
matter what the friction, as in most laboratory situations,
then both terms, viz.,
p~x,t !1
T ~x,t !v
e
,
must be retained in Eq. ~4.24!. The presence of both terms
insures that Eq. ~4.24! is valid for all values of flux, thus for
all barrier shapes. The term T (x,t)v/e is responsible for the
difference between our analysis, e.g., of chemical reaction,
and most earlier work.
Note that Eqs. ~4.23! and ~4.24! recover the onedimensional
flux of the Nernst–Planck equation ~3.1! from
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they take to get tg is infinite. The contribution of those of the boundary value probler®.4), (5.6) with a line of
trajectories to the mean first passage time to rgaishinfi-  sources ak=x, . The functionP(L|x,v) is the probability
nite and thus so is the MFPT. Thenditional MFPT is,  that a trajectory starting ak(v) exits on the left. It follows
however, finite because conditioning selects only those trathat P(L|x,v) is the solution of the backward equation
jectories that do get t¢. The infinite MFPT'’s found in the

2

analytical treatment of the mean fldxshowed clearly the M+E(X)e P(LLX’U)
need for an explicit stochastic analysis of the problem. IX v

Consider the conditional mean timg(L|L), taken by an dd(x)] IP(L|x,0)
ion that enters the reaction region on the left to exit the —{B(X)U'F ax 5 — = (5.16
reaction region, given that it exits on the left. Note that the v
trajectories of such ions are conditioned on both end pointgith the boundary conditions
of their path rather than on just the initial point. Now, to
distinguish the two cases, we define the general diffusion P(L|0w)=1 for v<0,
(i.e., random process (t),v(t)] and its subset théoubly) P(L|1,0)=0 for v>0. (5.17

conditioned random procesz*[(t),v* ()], with trajectories
that begin in the bath on the left with positive velocities The function P(R|x,v)=1—P(L|x,v) satisfies the same
having the steady stat®ut not equilibrium distribution of ~ backward equation,

that bath, and reach the left end of the reaction region with IP(RX.v)

negative velocitiegand therefore leave the reaction region , —— """~
before they reach the right end. If the random first passage

#PP(R|x,v)
(X)e —— 72—

time of any trajectory to the left is called , and that to the dd(x)] dP(R|x,v)
right is called 7z, the terminal condition is the event —| B(X)v+ ax 7 = (5.18
{r.<7g}

The singly conditioned pdb(x,v,t|L) is the probability  with the boundary conditions
density of finding a trajectory of thdégeneral process _
[x(t),v(t)] at the point &,v) at timet, given that it started P(R|0,v)=0 for v<0,
on the left. The trajectory can exit either on the leftoronthe  p(R|1,y)=1 for v>0. (5.19
right. On the other hand, the doubly conditioned pdf

Assuming .7(L)=1, the double integral

trajectory of the general process(f),v(t)], given that it  Jo/P(X,v|L)dxdv is the contents of the reaction region, be-
starts on the left and also ends on the left, that is to say, givefause nothing enters on the right. The double integral
that the trajectory is a member of the doubly conditioned
class of trajectories, the process[t),v* (t)]. Note that the
trajectories k* (t),v* (t)] form but one of the several classes
of trajectories of the unconditional procesg),v(t)]. is therefore the conditional contentslof. trajectories in the
The pdfp(x,v,t|L) is the solution of the time dependent eaction region.
Fokker—Planck equatiofd.5 with the boundary condition It can be showr(see Appendix Bthat rather than cal-
(5.5). Itis shown in Ref. 7, p. 195, pp. 261-263, K8.1) in  cylating the double integral in Eq5.15, the conditional
particular, that the pde of the dOUny and Slngly ConditionedMFPT, ;(L“_), can be calculated from the solution of the
processes are related by following boundary value problems. First, calculate
p(x,v|L) from the boundary value problei#.4), (5.6), as

N(L|L)ELJ p(x,v|L)P(L|x,v)dx dv (5.20

Pr(TL< TR|X,U)

p* (X,v,t|L,L)=p(X,v,t|L) (5.12 described above, then calculate the solution to another
Pr(r <mglL) -
boundary value problem, now witp(x,v|L) as asource
The conditional MFPT is given By*1° density, for an unknown quantity(x,v|L),
_ oo (/f/ J—— /;'/
T(L|L):J f J 0% (vt L)dx do dt (5.13 Zq(x,v|L)=—p(x,v|L) for (x,v)e ¥ (5.21
0z with the boundary conditions
Pr(m <tg|X,v _
f f fp(xv L) P Prin<mlXv) = o 4t q(0,0|L)=0 for v>0,
Pr(m <7glL) (5.22
(5.14) q(l,v|L)=0 for v<O.
Denoting P(L|x,0)=Pr(r,<7g/x,v) and P(L|L) Then, according to Eq¢5.15 and(5.7) we have the nearly

=Pr(r <7g/L) [see Eq.(5.2)], we can write Eq(5.14) as

7(LIL)= P(L|L f fp(Xv|L P(L|x,v)dx dv.
(5.15

We now have to calculate the two probability functions
in the double integral. The functign(x,v|L) is the solution

symmetrical equation

/2.va(0p|L)dy
% op(0u|Lydo

— 1% _vq(0,v|L)dv

(L|L)= AL

(5.23

In view of Eq.(5.7), Egs.(5.195 and(5.23 can be writ-
ten as
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N(L|L) with an absorbing condition at the right end pojfthe right
TLL)= D (5.24  end point for p(x|L) is actually located atxt=1
+ 0(1/pB) 11817 The boundary layer, b.k(v) that arises
in analogy with the unconditional formula given in Refs. 4, from the boundary condition ax=1, is transcendentally

13, and 15. small atx=0*1"because the reaction regip®,1] is much
The other conditional mean first passage times can binger than the boundary layer on the right. Near0 the
calculated from boundary layer functiortfrom the other sideb.l.(x,v), is a
1 smooth function. The probability currefite., the probability
7(RIL)= =——=— f f p(x,v|L)P(R|x,v)dx dv, flux) of p(x|L), denoted7, is constant in the interval<0 x
P(RIL) Jo <1. This gives
(5.29
T 1
whereP(R|x,v) is the probability that a trajectory starting at ~ p(x|L)=— e"l’(")’ff B(s)e®®/<gs, (6.3
(x,v) exits on the right, € X
3 1 so that
T(R|R)= P(T|R) fyf p(X,U|R)P(R|X,v)dX v, 7 wione 1 w00
(5.26 p(0|L)= —e . B(x)e dx. (6.9

and Now, the incoming probability current on the Iéftone flows

B 1 on the right) is given by
T(LlR)_P(L—lR) f{/J’ p(X,v|R)P(L|X,v)dX .

(5.27) AL)= J:vp(x,v|L)dv= V5 pOJL)

G

VI. CIS AND TRANS PROBABILITIES AND FLUXES o .
+f b.I.(O,v)vdv-i—E, (6.5
0

We turn now to the large friction expansion of the pdf
p(x,v|L) considered in Sec. V. The large friction expansiongng the outgoing flux on the left is given by
of the pdfp(x,v|L) is not as obvious as that @f(x,v) in
Sec. IV. The difference between the expansions arise from ALIL)=— JO op(%.0|L)dv
the boundary conditions and their interpretation. Since no e '
restrictions were imposed at the boundary on entering and
exiting trajectories in the treatment of Sec. IV, no boundary ] 0 T
layers arise in the Smoluchowski expansidri3—(4.22. In =\ 3, POIL)— J',mb'l'(o’v)vdv 2
contrast, in Sec. V a boundary conditidh.6) is used to
separate unidirectional probability fluxes, and so a boundary
layer is present at=1. A similar situation was considered in Neglecting the contribution of the remote boundary layer, as

(6.6

Refs. 16, 14, and 17. we may, and using Eq$6.1) and(6.4), we obtain
Now, we further split the unidirectional probability _ ﬁ
fluxes into theircis and trans components. In particular, to - 7 —b(0)e 1 D(x)/e 7
split the incoming flux from the left into its components, we 7(L)= e fo B(x)e dx+ E 6.7

simply take the flux of the Fokker—Planck equation, with the 2me

boundary conditior(5.6) at x=0 that the Smoluchowski eX- The trans flux is given by

pansion(4.22 produces, and split it into itsis and trans

components. Specifically, the solution is given in the strip - Z(R|L)=.7(L)—7(L|L)=.7. (6.9
0< x<1, —o< y<e by the expansion Now, by Eq.(5.2),

—v2/2¢ ~

p(x,v|L) = p(X|L)+b.L(x0)+ 2L +h.o.tl, _7(RIL)
Vore € P(RIL) 7L)

6.

o
with the following notation: b.lX,v) means the value at the = Z

point (x,v) of the boundary layer formed at=1, h.o.t. T eﬂb(O)/ef%’B(X)edxx)/edij'Z
means “higher order terms in powers o1/ The reduced Vo e 2
density,p(x|L), is the solution of the Smoluchowski equa- 1
tion = . (6.9
1 1 e—‘b(O)/sfélB(X)etD(x)/edx_l_ 1
ax | Bog L@ COPKILIT +ep"(x[L)} | =0 2me 2
If the incoming probability flux7(L) is normalized to 1,
for 0<x<1 (6.2  then.7=P(R|L). This gives

Downloaded-09-Jan—2003-to~144.74.27.192 CheMisihsioM 05 uk2e N - B2 IHRMRIY o+ 980y right, ~see-http://ojps.aip.orglicpoljcper.jsp



1774 Eisenberg, Klosek, and Schuss: Diffusion as a chemical reaction

1 gion at a distancAx from an absorbing boundary and make
T= (6.10 it across the reaction region to the other boundary. These
e—(I)(O)/eféﬁ(X)ed)(x)/edx+ _ numbers were related _to an analytical expressivaf. 11,
2 e 2 Eq. (2.29] that was derived from the Nernst—Planck model.

) Equation(6.15 provides a probabilistic derivation of both
It should be noted that” does not necessarily represent {hao analytical and statistical results of Ref. 11.

the physical ionic current, because in the physical problem Physiologists have estimated the componéntsidirec-
there are no boundary conditions at the ends of the reactiofyng) fluxes”) of the (mean steady-stateet flux by placing
region that correspond to the no flux conditions introduced inygjoactive tracer on one side of a system or the other since
the mathematics to define and separate the unidirectiong}gioactive isotopes became available in the 1940s. Thus, the

probability fluxes. _ physiologists’ unidirectional fluxes correspond precisely to
In the limit of large 3, we obtain one set of trajectories, described by one set of conditional
e®(0)/e probabilities, or the other, as they should if the probabilistic
P(R|L)=V2m (6.17) and tracer analysis consider the same trajectories, albeit in

€ T o N P eqy
JoB(x)e dx quite different experimental and theoretical traditions. Note,
Similarly, however, that physiologists have usually ignored the exist-
ence ofcis fluxes and their contribution to open-channel
P(LIR)=\2me m— (6.12 _nmse(see Sec. IX perhaps begause t.hlelr mean vglue is zero
(LIR) ToB(x)e®™<dx in the steady-state measured in traditional experiments.

e® (1)

Trajectories must go either to the left or right—they are not
stored in the channel—and so the probabilitiegisftrajec-
tories are simply the complement of tirans probabilities, ~ VII. RESIDENCE TIMES (MFPTs)

as mentioned previously in Eq5.2) and (5.9), The conditional mean first passage time&|j), (i

P(L|IL)=1-P(R|L) (6.13 =L,R,j=L,R) can also be calculated in the large friction
limit. We use the approximation E@6.1) with Eq. (6.3 for
p(x,v|L) in the double integral in Eq5.15. The large fric-

P(R|IR)=1-P(L|R). (6.14  tion approximation toP(R|x,v) is found directly from the
backward equatio5.18. Using the expansion

and

Nernst—Planck flux in terms of conditional exit
robabilities 1

P P(RIX,0)=P(RI0)+ = PARIX o)+, (7.0

It has always been intuitively clear that a relation should

exist between the unidirectional fluxes of the flux formulawe find thatP°(R|x,v) is independent of [we denote it by

(3.6) and the conditional probabilities of the trajectories thatP®(R|x)] and that it satisfies the reduced backward equation

carry that flux. However, the proper stochastic definition of

2p0 0

those unidirectional fluxes and conditional probabilities was dP—(|2?|X)_<D,(X) dp(—R|X):0 (7.2)
not clear(see Ref. 11 and so the implementation of the dx dx
intuition was not known. with the boundary conditions

Our analysis shows that the conditional fluxes., the 0 0
unidirectional fluxes of ionsare proportional to the condi- PA(R|0)=0, P (R[1)=1. (7.3
tional exit probabilitieg6.11) and(6.12), the proportionality  Thus,
constant being the concentration at the source of the trajec- X P(S)eg
tories. In particular, the Nernst—Planck flux formula E2}6) PO(R|x) = Joe S (7.4
can be written as Joe®®eds’ '

J=a[C_ P(R|L)—CgP(L|R)], (6.15  Next, we combine the expressi¢.25 for 7(R|L) and the

. L expression(6.11) for P(R|L); the expression&.1) and(6.3)
where the numerical factat is given by for p(x,v|L); and the exl)ressior(s'z'.l) and(7.4) for P(R|x),
\/T and write
a= 2_’776 (616) B 1 1 B
o . . T(R|L):W f e D(x)/ e

The net ionic flux from left to right, E3.6), is therefore the €/ge ds Jo
difference between the probability fluxes, normalized by the 1 «
concentrations on both sides of the reaction regidh. X f ,B(s)eq’(s)’fdsf e®*®/dsldx (7.5
C., Cg are time dependent, E¢6.15 can be generalized X 0

by solving the time dependent Smoluchowski equationsfter normalizing the entrance probability flux density
(4.20 and(3.7).] vp(x,v|L) by .7(L)=1. Similarly, we obtain
Simulations showRef. 11, Eq.(7.5)] that the flux for- .
mula Eq.(3.6) can be expressed in terms of the relative num- T(LIL)= s f e Plegg
bers of random trajectories that start inside the reaction re- e(1-7)[ge?™'edx Jo
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1 1
X J,B(s)e‘ms)’fdsf e®®ledsidx, (7.6
X X

where.7 is given by Eq.(6.10. In particular, for a free
particle (no external fielgl with large constant frictio3(x)
= const.>1] we obtain

_ 1 27

(7.7

1775

tial point X is xo(1—X,)/D.> SinceD is inversely propor-
tional to B,'® we find that the mean exit time remains finite
even asB — .

VIIl. HIGH BARRIERS

The traditional analysis of chemical kineti¢Ref. 4
uses rates to describe flux over large barriers, and so we
should specialize our results to that case. We consider, with-

The mean time an ion spends in the reaction regionput loss of generality, the unidirectional flux in@;=0, for

given that it entered on the left, is given by

7(L)=7(L|L)P(L|L)+ #(R|L)P(R|L)

:f J'p(x,v|L)[P(L|X,v)+P(L|X,v)]dx dv
.

:Lj p(x,v|L)dx dv.

Using the same approximations as above, we find that

o fée[q:(O)—<b(x)]/efiﬁ(s)e¢<s)/eds dx

(7.9

;(L): féIB(X)ed)(x)/edX (79)
In particular, for a free particle,

_ 1 2

(L)= >NV o (7.10

We observe that as the frictigB(x) —c [see Eq(4.8)],
the trans probability P(R|L) vanishes and thérans time
7(R|L) becomes infinite. Obviousl(L|L)—1, butr(L|L)
remains finite, namely,

_ 1
lim r(L|L)=.7wf e PWiedg
0

B(X)—0

1 1
X fﬂo(s)e¢(s)’fdsf e®®/ds|dx,

X X
(7.11)

where
\/ﬁ e®(0)/e

To=\]— . - . 7.1
€ [oBo(1)e®Medx e <dx (712

the overdampedSmoluchowsKi case of high friction, put-
ting a source ak=x, and an absorbing boundary ®at1.
The Smoluchowski equation is given by

1
ax | B {{®'C)p(x|L)]" + ep”(XIL)}> == 8(X=Xxp),
8.1
with the boundary condition
p(1|L)=0. (8.2

The solution of Eqs(8.1), (8.2) is

Vet

T 1
p(x|L):?e’q’<X>’ff B(s)e®*®eH(s—x,)ds, (8.3

whereH(x) is the Heaviside step function. Now, we assume
that the potentiafb(x) forms a well with its bottom ax=0,
say, and with a top at a poire= X, where 0< xc<<1. Small
€ represents a high batrrier.

Assuming a constant concentratidd, , atx=0, we get
from Eqg. (8.3 in the limit of smalle

Cow
T L*e *A(D/E,

=———¢e
B(0)\2me

where the barrier height is given by
ADP=D(xc)—P(0)
and

wCE \ _(I)”(xc)v

see Ref. 11.

This equation isot identical to Kramers’ formufabe-
cause that traditional result expresses the flux in terms of the
total population of reactant molecules rather than their con-
centration. The reactant population is the integrap©f|L)

(8.9

In the large friction limit, the mean time that an ion enteringin the reactant well, that is,

on the left spends in the reaction region is given by

271_J‘él)e[q)(O)7(D(X)]/ef)](.ﬂo(s)etb(s)/edsdx
€ J3Bo(x)e®™<dx

lim 7(L)=
B(x)—

(7.13
The (apparently paradoxicafinite value of7(L|L) and

of 7(L) even in the large friction limit can be understood as

Xc
N,_Ef p(x|L)dx.
XL

Using Eq.(8.3), we obtain Kramers’ resuft,

NLwowc oA/
2mwB(0) '

—
oy =

(8.5

follows. Consider the simplest example of an overdampedvhere

free particle, with constant frictioB, that enters the reaction
region on the left with positive velocity,. On the average,
region a distance

it will penetrate into the reaction

wo=D"(0).

It is interesting to calculate the conditional MFPTs in the

Xo=vo/ 8.1 The mean time for a Brownian particle with limit of a high barrier. Assuming for simplicity tha#(x) =2

diffusion coefficientD to exit the interval0,1] from an ini-

=const., we obtain foe <1 (see Appendix §
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_ a B Chemistry is built upon the idea of a reaction, in the
T(RIL)~ ———= E (8.6 simplest casé =B, where a boldface uppercase letter, e.g.,
2 /i_ 1 ¢ A, represents the concentration of spedie8 likewise, and
2 = represents the process convertiado B. In the simplest
and case, the process is described by the law of mass action,
o giving a rate of reactiofi.e., rate of change of concentration
(L|L)~—. (8.7  of productB) described by a rate constant, independent of
o time and concentration ¢k andB. The simplest case is the

It is remarkable that the conditional MFPTs are independen@aradigm of a chemical reaction; it is the archetype that is
of the barrier height in this limit. But the conditional mean taught in elementary courses, and it is the mold into which
first-passage time(R|L) [of Eq. (8.6)] is a property of just Other more complex cases are cast.

those trajectories that cross the barrier and make it to the The idea of a chemical reaction is generalized in physi-
other side. The other trajectories—ttid. ones—do not Cal chemistry into a process in a multidimensional phase
cross the barrier at all; they exit at the absorbing boundargPace, in which the movement of a particle along the reaction

after their (conditional meahfirst-passage time(L|L), cf. ~ Path, over barriers and through wells of potential, describes
Eg. (8.7). the conversion oA to B, and the concentrations éf andB

generally appear as boundary conditions. In most cases, this
generalization has been studied in the limit of high barriers,
IX. SUMMARY AND DISCUSSION because the specids and B are well defined in that case,
A. Flux and high friction and the analysis of the conversion process is dramatically

. . . simplified if flux is determined only at one location, the top
In this paper, we show that the full Langevin equation, . i ) .
. A f a barrier (see Sec. VIIl. One difficulty with the high
rather than the reduced Smoluchowski equation, is needed [0_ . S . L .
L e . arrier approximation, however, is that it implies a near equi-
describe ions diffusing from one concentration to another,;, . . .
- e . . librium, nearly no flux system. Another is that it tends to
whatever the friction. Even if ionic motion along the trajec- o
. . X . obscure the role of boundary conditions, namely the concen-
tories of the Langevin equatidi3.9) is grossly overdamped,

i . o . trations of reactanf and producB. If of interest, the effect
the system is not in equilibrium because flux is present. The

velocity distribution is not Maxwelliafisee Eq.(4.24], but of boundary conditions and flux must be reinstated later, af-

rather contains an asymmetric term, proportional to the qu}er they have been approximated away, and that is difficult to

. - . : do without introducing inconsistencies.
of ions. In addition, the displacement and velocity of over- : . -
. . . . o The analysis presented here gives boundary conditions
damped ions are not independent, as is the case in equilib- . . ; . ! .
. B T and partial differential equations equal weight, thereby in-
rium or nearly equilibrium system.g., systems with high

barriers, but rather significantly correlatefindeed, that is creasing the reality and cor_nplexny of _the mathematical
. . : .. analysis. Nonetheless, analytical expressions for the flux are
why flux flows in the consistent treatment of high friction

given in Egs.(4.23 and (4.24.] It follows that the joint derived with simple physical and stochastic meaning; the
- S N .. approximation of high barriers can still be invoked, but now
probability density function of displacement and velocity fter th lem h | h le of
does not factor into a solution of the Smoluchow@%ernst— after .t. € problem has been SO.VEd and t € rol€ o boundgry
Planch equation multiplied by a Maxwellian density of ve- conditions and flux has been displayed explicitly and consis-
locities (that has zero net flyxas is usually statet®!3 tentl_?_/(.) our surorise. this anproach. that starts by making a
Obviously, a theory that implies zero flux should not be prise, bp ' y 9

used to predict flux. The traditional Smoluchowski limit im- SPI€ problem complexbecause it does not assume large

plies a Maxwellian distribution of velocities and zero flux. It barriers, leads eventually to a simple result, valid under a

. : . range of conditions including large barriers. In fact, the flux

cannot consistently describe a finite flux. It should not be . .

: . ... formula Eq.(6.19, true for all shapes and sizes of potential

used to describe experiments performed away from equilibz . . ; S

rium, in which flux is present barriers, is so S|mplg that further approximation seems un-
! ' necessary, and unwise. For exampteR?(B|A)C, is the
(unidirectiona) flux of A—B and «P(A|B)Cg is the flux of

B. Chemical reaction as a diffusion B—A, with the obvious change of notation from location to

Our analysis shows that diffusion between concentratiort PE¢I€S: Indeed, the chemical reaction
boundary conditions can be described as a chemical reaction,
without approximation, no matter what the shape of the po- A=B, CRY
tential barrier between reactant and product, because each ko
unidirectional flux in Eq(6.15 and Eq.(3.6) is strictly pro-  provides an irresistible generalization of the idea of rate
portional to the concentration at its source, for a potential‘constant” to chemical reactions with concentration bound-
barrier of any shape. Thus, each unidirectional flux—andary conditions and arbitrary potential barriers, using the ob-
their difference the net flux—follow the law of mass action vious definitionsk;= a«P(B|A) andk,=aP(A|B).
(if barriers are independent of concentrajiolm matter what With this generalization, the law of mass actifmith
the shape of the potential barrier that limits convergion, rate constant independent of concentratieiil be true even
diffusion) from reactant to product, if they flow between re- if barriers are low if concentrations at the boundaries are
gions of fixed concentrations. maintained and the barriers are independent of concentration.
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Of course, the same chemical reaction doest follow  treated as a chemical reaction with no approximation, pro-
simple rate laws if other boundary conditions are imposedvided that the potential functions and diffusion coefficients
For example, if the same chemical reactiae., a stochastic are not significant functions of the concentration of reactant
process with the same dynamics, with the same profile obr product. If they are significant functions, the representa-
potential barriers, same diffusion coefficients and so on, diftion of the system as a chemical reaction will probably mis-
fering only in its behavior at the boundaries of the sygtem lead more than inform and so should be replaced by direct
studied after a sudden change of concentration of spégies consideration of the experimental observables, e.g., concen-
the time course of the relaxation of concentratior®ofr B trations and fluxes in traditional experiments.

will not in general be exponentidif barriers are low for

example and simple rate laws do not apply. The law of massp gjological applications

action does not apply in its simplest formulation. We see then ] . . .

that the experimental imposition of concentration boundary  1hiS work was motivated by the biological problem that

conditions may lead to significant simplification in analysis, Interested Fick, the motion of ions across biological mem-
e.g., in the case of small barriers. branes. In the biological contetaf, for example, ion perme-

Our version of the law of mass action may be useful in aation through channels in membrafledarriers cannot be
number of other cases as well as in the case of small barrieSSumed large because many channels are selected by evolu-
(1) when the other approximations of high barrier theory!ion to pass large currents and qu%@s;oncentratlon bound-
(e.g., location away from the boundamre not appropriate; &7 conditions are unavo!dame contrast to chgmmal prob-

(2) when the dependence on boundary conditions is itself ofeMS, where concentration boundary conditions are often
practical interestas in the biological application(3) when qbscured by high barriersand stochastic properue; are rou-
species are not well determined, for example, when an intefinely measured. Thus, we are forced to a stochastic theory of
mediate species lying “betweenA and B is observed ex- ionic permeation, the first installment of which is presented
perimentally and that species does not lie between two highere; the stochastic analysis of diffusion between concentra-

barriers. tion boundary conditions.
lonic channels determine the diffusive flows in the bio-
C. Numerical simulations logical systems that originally interested Fick. Before chan-

o . nels were studied individually, macroscopic currents were
The explicit formulas for the conditional probabilities, usually interpreted as flows through a fixed area of homoge-
fluxes, contents, and residence times given in this paper atgous membrane. We now know that ions flow through indi-
valid when friction is large. In many applications, however, iqual protein molecules—ion channels—that can open and
closed form expressions for the solution of the Fokker—.gse. The number of open channels is anything but fixed;
Planck equation, or its approximation, are not available, fog,e phenomenon of gating, and thus the time dependent phe-
example, if the system is not overdamped, if ions interachsmena of channels, arise from changes in the number of
directly with each other, or if the Fokker—Planck equation iSophen channels and thereby in the area of membrane through
coupled to other differential equations, e.g., to the Poissohich current flows. Traditional interpretations of macro-
equation determining the electrostatic potential. In thes%copic currents must be discarded, because the macroscopic
cases, numerical simulations of trajectories or numerical SOs,rrents come from a varying number of channels; tradi-
lutions of the partial differential equations are needed.  {ional theories can be retained, but now as descriptions of
Even in the most general case, the conditional probabilif|q,y through one protein molecule, a single open channel.
ties, fluxes, contents, and residence times given in this paper single open channel is a unique object for investiga-
(and the relations among thg¢memain well defined. The ion |t is a single protein molecule performing a natural
probability measures can be estimated from numerical Simuynction of great biological and medical significance, fully as
lations of ion dynamics if analysis is not practicable. Thejmportant for the life of cells as the catalytic functions of
formulation presented here allows much more efficient simup, ost proteins(i.e., enzymes The mechanism of channel
lations of trajectories than used previodsipecause all tra-  fynction is much simpler than of enzymes, because covalent
jectories are used to estimate parameters. _ _ bonds do not change as ions permeate channels. For millenia
When simulating the Langevin equation, trajectories g |east since Aristotle a goal of biological research has
have to be started at= 0 andv> 0, and ax=1 andv<0.  peen the prediction of function, given structure. For nearly a
The velocitiesv should be chosen at random, from the non-century and a half, ever since molecules were discovered and
equilibrium distribution Eq(6.1), cf. Eq.(4.24. Whenever a  yinetic theory was invented, biologists have dreamed of pre-
trajectory exits the strip domain, it should be terminated.  gjcting function from atomic structure, using physical theory.
The following data should be recorded and processeghannels are a more promising subject for such research
according to the formulas of Sec. V: than any class of proteins of comparable biological and
(1) The number oRL, LR, LL, andRR trajectories. medical importance, in the opinion of at least one ofUs.
(2) The duration of the trajectory.
(3) The exit point of the trajectory, that ik, or R, andv at  E. Open channel noise and the counter model

the exit point. Current flow through a single open channel is noisy, so

Even in the general case, where dynamics are complex archaracteristically noisy that it begs for a stochastic descrip-
do not follow the Langevin equation, diffusion can still be tion and identification, if not analysis. A stochastic theory of
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open channel noise has been presented by Frehland atids paper on diffusion as a chemical reaction. This research
co-workeré® and has been used to interpret experimentaivas partially supported by research grants from the U.S.—
result$*=2%in normal conditions and when “slow iongl.e., Israel Binational Science Foundation and from the National
blockerg are present. This theory, however, describes thé&cience Foundation; we are grateful for their support.
movement of ions in solution by Eyring’s rate theory, origi-
nally derived to describe the flux of atoms in gas phaseapPPENDIX A: NONDIMENSIONALIZATION
chemical reactions, occurring without friction or interatomic _ . _
collisions. Rate theory can be reworked into a transition state W& introduce the following notation. The two sources
theory useful in condensed phases, like liquids or proteind'€ Placed at the origin and dt We assume that the motion
where friction and interatomic collisions dominate kinefits, ©f an ion of massm and total chargee, wherez is the
but the theory, reworked or not, requires potential barriers ty&/€nce of the ion, diffusing in a liquid bath, can be de-
be large and far removed from the ends of the chafsest, ~ScriPed by the Langevin equation
e.g., Eq.(8.4)]; in either case the role of concentration gra- d2x . dx dd(%) —17
dients is obscured, even though concentrations have promi- m ~—2+m,8(x) —t+ze———=V2mkTB(X) —,
nent effect in diffusion and biological phenomena. dt dt dx dt
The traditional description of ionic flow by the Nernst— . (A1)
Planck equation with prescribed concentration boundaryhere B(X) is the state dependent friction coefficieiper
conditions gives an expression for the net ionic flux as aunit mas$, k Boltzmann’s constant] is absolute tempera-
function of the concentrations and the potential in the chanture, andw is standard Brownian motion. The functidn(x)
nel [see EQ.(3.6)]. This function depends linearly on the represents the electric potential in the reaction region. We
concentrations and depends exponentially on the values d@ftroduce dimensionless variables according to Table I. Note
the potential at the endpointand on its exponential inte- that the dimensionless length of the reaction region is 1. The
gral). Thus, for example, if the values of the potential at thescaling factor for the potentiaA®, was chosen to represent
endpoints are equal, exchanging the concentrations reverstige barrier height, if one is well defined. Otherwise it is the
the flux. thermal energy. This scaling is necessary to keep track of the
There are several properties of the ionic current meavarious orders of magnitude in the Fokker—Planck equation
sured in real single channels that are hard to accommodate when we use the high friction expansion in Secs. VI and VII.
Nernst—Planck theories. These include current fluctuationgsollowing earlier practicé® we usee to describe nondi-
nonlinear dependence of the flux on concentrafis@miura- mensional temperature; it need not be small.
tion), blocking of the channel by slow ions, properties of
ratios of unidirectional fluxes, asymmetry of channel phe-APPENDIX B: CALCULATION OF THE CONDITIONAL
nomena, and so oifRef. 8, pp. 374-389 In addition, MFPT FROM BOUNDARY VALUE PROBLEMS
Nernst—Planck models exclude the notion of a channel that
admits one ion at a timéa single ion channgl
In order to account for these phenomena in single io
channels, we are analyzing a stochastic model, in which th
channel is viewed as a paralyzable counter, similar to the 0
Geiger counter of radioactive decays. In this model a single N(LIL)=~ fﬁquw'ﬂ'—)d”’ (B1)
ion channel is “paralyzed” for the time it is occupied by an
ion. The randomness of the model arises because the motig¥hered(x,v|L) is the solution of the boundary value prob-
of an ion inside the channel is diffusive and therefore raniem Egs.(5.21) and(5.22.
dom, so are the time spent in the channel and the time to the  First, we observe that according to Ref. 15, the probabil-
arrival of the next ion to the channel; and also ions can entelfy of exit at x=0, given the initial point X,v) in &, is the
and exit the channel on either side with certain probabilitiestotal efflux of probability on the left in a stationary problem
The random times the channel is occupied or empty acwith & source atX,v) and no influx ax=0 andx=1. That
count for the fluctuations in open channel current seen exS:
perimentally, as they do in theories of shot noise. The finite 0
time that an ion has to spend inside the channel before exit- Pr(7 <7g|x,v)=P(L|x,v)= —f 7p(0,7/x,v)d7,
ing accounts for the saturation in flux as concentration is o (B2)
increased. It also accounts for blocking of the channel by
slow ions. whereP(L|x,v) is as defined in Sec. V, ang(¢, »|x,v) is
The stochastic model of the ionic current requires thethe solution of the boundary value problem
stochastic de§cription pf the ioqic t_rajectories presented here. Lo P&, %) =—8(£=Xx)8(n—v)
The stochastic analysis of an ionic channel as a counter of

The conditional content\(L|L), of LL trajectories in
I,}he channel is given by the double integral E§.20 if
.é”/‘(L)=1, as mentioned in Sec. V. We show below that

ions will be given in a separate publicatith. for (§,7) e and (Xx,v)e¥ (B3)
with the no influx boundary conditions
ACKNOWLEDGMENTS
=0 f > B
We thank D. P. Chen, A. Nitzan, and M. Ratner for use- P(0,7lx,0)=0for #>0 (B4)
ful discussions and the referee for suggesting that we focus p(1,7|x,v)=0 for <O0. (B5)
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27e

1
| = f e‘b(s)/ed S~ e(D(XC)IE_ (Cl)
Name Dimensional Dimensionless 0 wc
Proton charge e (Coulombs Next, we define
Position X (m) x=xd <
Length of reaction d (m) 1 \I’(X)EJ ed)(s)/eds
region 0
Scaling factor A® (J/kg) see below
_ _ ~ ez. and note thatV(1)=I. For B(x) =B=const.,
Electric potential ®(x) (J/Coulomb —D(X)=D(x)-AD
m
_ B (1 @
~ ~ = — —O(x) e —
Time £ fod TRIL=7 | e [1 =¥ (x)]¥(x)dx. (C2)
VA
Absolute temperature KT (9) E_i Asymptotically, \If(xc)j%l and so, for simplicity, we as-
mA® sume the exact equality
- - = o ~ o B(X)
Friction coefficient B(X) (19 (X)= = [AD W (xc)= % | (C3

Diffusion coefficient

~ . kT~ _
D)= B() (mi9

76
CBX)

Then, the integrand in E4C?2) peaks ai . Indeed, writing
the exponent of the integrand in the form

Concentration in bath Cu(r) (#IMT) CLry=ma2dCy g,
Concentration in - ooy —d(x
reaction region PR (#1m) PO =Cre(x) U(x)= 6( )t log[1 =W (x)]+log ¥(x), (C4)
Source strength CLr) (#19 CL(R)Z% SR we find that
_ ma’d ~ ’ ’ ’
Flux 3 P9 I= \@J U (0= -®'(x) V'(x) W'(x)
v(x) 1-¥x)’
*Scaling factor for electric potentialA\d=maxkT/m,ezm[maxd(x) " —d"(x) WP"(x) W¥'3x) P'(X)
—min ®(x) . (x)= + ¥ (X) \Ifz(x) | —W¥(x)
1{,!2
From the definition Eqs5.20 and (B2), it follows that -
[I=¥(x)]

o= |

0
D(X,vlL)fiwnp(O,nlx,v)dn

0
== fﬁwW(O,nlL)dn,

dx dv

Settingx= X in Eq. (C5), noting that®’(x:) =0, and using
Eg. (C3), we find thatU’(xc)=0. Furthermore, using Eq.
(C1), we find that

U"(xc) “"2:(1 8) o (o)
Xe)=— - =-,
where we define ¢ € 27 €
where
aténL)= [ poxolLpe nloiox d. —
o' =wc E—l. (Ce)

Applying the forward operatof# [in the variableq¢,7)] to

q(¢,7|L) and noting that it can be exchanged with thet follows that the integral in Eq(C2) can be calculated by
double integral because it acts on nonintegrated variables, Wge |aplace methotf yielding Eq.(8.6).

obtain from Eq.(B3),

The asymptotic calculation af(L|L) is simpler, because
the integrand in Eq(7.6) is maximal atx=0. Assuming that

Le A€ mIL)=— f f p(x,v[L)8(E—X) ®(x) has a local minimum at=0, using the Laplace expan-
7 sion, and Eq(C1), we obtain Eq(8.7).

X &(np—v)dx dv

=—p(& L), (B6)

which is Eq.(5.21). The boundary conditions E¢5.22 fol-
low from Egs.(B4) and(B5).
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APPENDIX C: THE CONDITIONAL MFPT FOR HIGH
BARRIERS

_ With the assumptions of Sec. IX, we have to evaluate
7(R|L) from Eqg. (7.5 in the limit e <1. First, we note that
in this limit
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Comment on Nadler, Schuss, Singer (2005) and Singer and Schuss (2005)
Bob Eisenberg April 16 2010

The boundary layer that is the problem in the Eisenberg, Klosek, Schuss paper is not a
practical problem because measurements should not and usually are not taken at the
absorbing electrode. Rather a “four electrode arrangement” is used, as is described in
electrochemistry textbooks: a separate pair of electrodes are used to measure potential
that carry no current at all. These simply report the electrical potential at some location
away from the absorbing electrode. Precautions are taken that the concentrations used in
analyzing experiments also do not include the boundary layer at the absorbing boundary.

A significant difficulty with the EKS, NSS and SS papers is—as it is in all these
treatments (Eisenberg 2006)—the cavalier treatment of charged solutes as if they do not
generate an electrical potential. The papers in this group do not compute the potential
from the charge distribution. Thus, the boundary layers and behaviors reported would in
practice be expected to be very different for solutions of ions like NaCl, or solutions with
mixed monovalent and divalent ions.

References

Eisenberg, B. (2006). The value of Einstein’s mistakes. Letter to the Editor: “Einstein
should be allowed his mistakes ...” Physics Today 59(4): 12.



A NOTE ON THE NON-DIMENSIONALIZATION IN EKS*

Boaz Nadler
September 1998

We start from the dimensional equation
s > d~¢ > S
mx + [T + ve s = 2BkTw (1)
T

In this equation, @ is dimensional, with dimension [sec'/?]. We scale the variables in the

following way,
~ kT - L - /KT
b=""0 i= Ll 2)

ez kT /m L
Insertion of this scaling into the dimensional equation, and use of the scaling identity
wi(at) = y/aws(t) for Gaussian noise, yields the non-dimensional equation,
d*x de  do
— + —+ — =/2Pw. 3
a2 O T T VA )
In this equation w denotes non-dimensional standart white noise.

We now consider the value of the non-dimensional parameter 3. From the scaling we
have that

T = Lux,

m ~ L kT
p=1L ﬁﬁzﬁ . (4)

With a typical value of L = 30A for the length of the channel, D = 10~'%m/s? for
the diffusion coefficient, and m = 60m,,, where m, is the proton’s mass, we obtain that
8 = 6100.

We now compute the average non-dimensional time to enter the channel, assuming
free diffusion outside. This dimensional time is given by

b
2w pDrep,

(5)

Tarrival =
Thus the non dimensional time is given by

\VET /m

ta'r'rival = — 5 Tarrival - (6>

L

With typical values p = 100mM, r., = 3A, and D = 1071%m/s?, we obtain that in non
dimensional units, t,,rive = 6000, i.e. of the order of .

*Eisenberg, R. S., Klosek, M. M., and Schuss, Z. (1995) Diffusion as a chemical reaction:
Stochastic trajectories between fixed concentrations. J. Chem. Phys. 102, 1767-1780.
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We consider the trajectories of particles diffusing between two infinite baths of fixed concentrations
connected by a channel, e.g., a protein channel of a biological membrane. The steady state influx and
efflux of Langevin trajectories at the boundaries of a finite volume containing the channel and parts of the
two baths is replicated by termination of outgoing trajectories and injection according to a residual phase
space density. We present a simulation scheme that maintains averaged fixed concentrations without
creating spurious boundary layers, consistent with the assumed physics.

DOI: 10.1103/PhysRevLett.94.218101

Introduction.—We consider particles that diffuse in a
domain ) connecting two regions, where fixed, but pos-
sibly different, concentrations are maintained by connec-
tion to practically infinite reservoirs. This is the situation in
the diffusion of ions through a protein channel of a bio-
logical membrane that separates two salt solutions of dif-
ferent fixed concentrations [1].

Continuum theories of such diffusive systems describe
the concentration field by the Nernst-Planck equation with
fixed boundary concentrations [1-4]. On the other hand,
the underlying microscopic theory of diffusion describes
the motion of the diffusing particles by Langevin’s equa-
tions [2,4—6]. This means that on a microscopic scale there
are fluctuations in the concentrations at the boundaries.
The question of the boundary behavior of the Langevin
trajectories (LT), corresponding to fixed boundary concen-
trations, arises both in theory and in the practice of particle
simulations of diffusive motion [7-14].

When the concentrations are maintained by connection
to infinite reservoirs, there are no physical sources and
absorbers of trajectories at any definite location in the
reservoir or in (). The boundaries in this setup can be
chosen anywhere in the reservoirs, where the average
concentrations are effectively fixed. Nothing unusual hap-
pens to the LT there. Upon reaching the boundary they
simply cross into the reservoir and may cross the boundary
back and forth any number of times. Limiting the system to
a finite region necessarily puts sources and absorbers at the
interfaces with the baths, as described in [15].

The boundary behavior of diffusing particles in a finite
domain () has been studied in various cases, including
absorbing, reflecting, sticky boundaries, and many other
modes of boundary behavior [16,17]. In [18] a sequence of
Markovian jump processes is constructed such that their
transition probability densities converge to the solution of
the Nernst-Planck equation with given boundary condi-
tions, including fixed concentrations and sticky bounda-
ries. Brownian dynamics simulations with different bound-

0031-9007/05/94(21)/218101(4)$23.00
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ary protocols seem to indicate that density fluctuations near
the channels are independent of the boundary conditions, if
the boundaries are moved sufficiently far away from the
channel [19]. However, as shown in [20], many boundary
protocols for maintaining fixed concentrations lead to the
formation of spurious boundary layers, which in the case
of charged particles may produce large long range fluc-
tuations in the electric field that spread throughout the
entire simulation volume (). The analytic structure of these
boundary layers was determined in [21,22], following
several numerical investigations (e.g., [23]).

It seems that the boundary behavior of LT of particles
diffusing between fixed concentrations has not been de-
scribed mathematically in an adequate way. From the
theoretical point of view, the absence of a rigorous mathe-
matical theory of the boundary behavior of LT diffusing
between fixed concentrations, based on the physical theory
of the Brownian motion, is a serious lacuna in classical
physics.

It is the purpose of this Letter to analyze the boundary
behavior of LT between fixed concentrations and to design
a Langevin simulation that does not form spurious bound-
ary layers. We find the joint probability density function of
the velocities and locations, where new simulated LT are
injected into a given simulation volume, while maintaining
the fixed concentrations. As the time step decreases the
simulated density converges to the solution of the Fokker-
Planck equation (FPE) with the imposed boundary condi-
tions without forming boundary layers.

Trajectories, fluxes, and boundary concentrations.—We
assume fixed concentrations C; and Cy on the left and
right interfaces between () and the baths B, respectively,
with all other boundaries of () being impermeable walls,
where the normal particle flux vanishes. We assume that
the particles interact only with a mean field, whose poten-
tial is ®(x), so the diffusive motion of a particle in the
channel and in the reservoirs is described by the Langevin
equation (LE)

© 2005 The American Physical Society
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¥+ y(x0)x + V,O(x) = /2y(x)ew,

x(0) = x,, v(0) = v,,

where y(x) is the (state-dependent) friction per unit mass,
e is a thermal factor, and w is a vector of standard inde-
pendent Gaussian d-correlated white noises [6].

The probability density function (PDF) of finding the
trajectory of the diffusing particle at location x with ve-
locity v at time ¢, given its initial position, satisfies the FPE
in the bath and in the reservoirs,

dp

- = — . +
o v-V,p+yx)ed,p

ey

+V, [y(x)v+V, ) ]p, (2)
plx, v,0lxy, vy) = 8(x — xp, v — V).

In the Smoluchowski limit of large friction the stationary
solution of (2) admits the form [5]
1
Y 0(—2>} 3)
Y

—lvP/2e Jx) -
€
where the flux density vector J(x) is given by

plx,v) = (2 )3/2{p()+

Jw=-—o ){svp(x) + p(x)vq>(x)} + 0( 1)
and p(x) satisfies
V- Jx) =V %{SVp(x) + ) VD)) = 0.

In one dimension, the stationary PDFs of velocities of the
particles crossing the interface into the given volume are

o122
\/277'8 { SCL}

pL(v) ~ 7 for v >0,
i me
o @)
v /zp{ }
pr(v) ~ */m—JSC" for v <0,
J’_
2 Cp2me

where J is the net probability flux through the channel.
The source strengths (unidirectional fluxes at the interfa-
ces) are given by [5]

1
I = iCL—i+0—2,
2 2 0%
(%)
Je= e+ L+ oL
R 20 K2 <'y2>

[redn [ dEPH{v() = v, x(r') = x|&€ n}p(& 1)

Application to simulation.—Langevin simulations of ion
permeation in a protein channel of a biological membrane
have to include a part of the surrounding bath, because
boundary conditions at the ends of the channel are un-
known. The boundary of the simulation has to be interfaced
with the bath in a manner that does not distort the physics.
This means that new LT have to be injected into the
simulation at the correct rate and with the correct distribu-
tion of displacement and velocity, for otherwise, spurious
boundary layers will form [20].

Consider a single simulated trajectory that jumps ac-
cording to the discretized LE (1)

x(t+ An) =x(r) + v(H)At,
v(t + Ar) = v(1)(1 — yAr) — V. D(x(1)At  (6)

+ 2eyAw(t),

where Aw is normally distributed with zero mean and
variance At. The trajectory is terminated when it exits ()
for the first time. The problem at hand is to determine an
injection scheme of new trajectories into {) such that the
interface concentrations are maintained on the average at
their nominal values C; and Cy and the simulated density
profile satisfies (3).

To be consistent with (3), the injection rate has to be
equal to the unidirectional flux at the boundary (5). New
trajectories have to be injected with displacement and
velocity as though the simulation extends outside (), con-
sistently with the scheme (6), because the interface is a
fictitious boundary. The scheme (6) can move the trajec-
tory from the bath B into ) from any point £ € B and with
any velocity 7). The probability that a trajectory, which is
moved with time step At from the bath into () or from ()
into the bath, will land exactly on the boundary is zero. It
follows that the PDF of the point (x, v), where the trajec-
tory lands in () in one time step, at time ' = ¢ + Az, say,
given that it started at a bath point (£, i) (in phase space)
is, according to (6),

Prix(r) =x, v(') = v|x(t) = & v(r) = 0}

_ S(x—&—nAr)
(4mreyAr)’/?
o AL OV IO
(7)

The stationary PDF p(£, n) of such a bath point is given in
(3). The conditional probability of such a landing is

Prix,vilx € Q, £ € B} =

where the denominator is a normalization constant such
that

f dvf dxPrix,vlx € O, £ € B} = 1.
R3 Q

Prix € O, £ € B} ’ ®)

‘Thus the first point of a new trajectory is chosen according
to the PDF (8) and the subsequent points are generated
according to (6), that is, with the transition PDF (7), until
the trajectory leaves (). By construction, this scheme

218101-2
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recovers the joint PDF (3) in (), so no spurious boundary
layer is formed.

As an example, we consider a one-dimensional
Langevin dynamics simulation of diffusion of free particles
between fixed concentrations on a given interval.
Assuming that in a channel of length L

(CL B C'R)\/E

< Cy,
vL t

e
Pr{x, v|x >0, £ <0} =

2eAt/1 + (yAr)?

In the limit At — 0 we obtain from Eq. (9)

28(x)H(v) .

—v?/2¢
y
27re

Pr{x, v|x >0, £ <0} — (10)

where H(v) is the Heaviside unit step function. This means
that with the said approximation, LT enter at x = 0 with a
Maxwellian distribution of positive velocities. Without the
approximation the limiting distribution of velocities is (4).
Note, however, that injecting trajectories by any
Markovian scheme, with the limiting distribution (10)
and with any time step Af, creates a boundary layer [20].

A Langevin dynamics (LD) simulation with C; # O,
Cr = 0, and the parameters y = 100, e = 1, L = 1, At =
10~* with 25000 trajectories, once with a Maxwellian
distribution of velocities at the boundary x = 0 (bottom
trace on the left panel and top trace on the right panel, red
online) and once with the PDF (9) (top trace on the left
panel and bottom trace on the right panel, blue online)
shows that a boundary layer is formed in the former, but not
in the latter (see Fig. 1).

An alternative way to interpret Eq. (9) is to view the
simulation (6) as a discrete time Markovian process
(x(7), v(r)) that never enters or exits () exactly at the
boundary. If, however, we run a simulation in which par-
ticles are inserted at the boundary, the time of insertion has

07 07
0.6 0.65
05 06
- 04 055
= =
© o3 © o5
02 0.45
0.1 0.4
0 0.35
0 02 04 06 08 1 0 0002 0004 0006 0008 001

X X

FIG. 1 (color online). Left panel: Concentration against dis-
placement of a LD simulation with injecting particles according
to the residual distribution (9) (top trace, blue online), and
according to the Maxwellian velocity distribution (10) exactly
at the boundary (bottom trace, red online). The two graphs are
almost identical, except for a small boundary layer near x = 0 in
the residual distribution. Right panel: Zoom in of the concen-
tration profile in the boundary layer x < 0.01 = \/&/7y.

‘U2
xp{— 28[1+(7At)2]} %

which means that vy is sufficiently large, the flux term in
Eq. (3) is negligible relative to the concentration term. The
concentration term is linear with slope J and thus can be
approximated by a constant, so that p(&) = p(0) +
O(y™") in the left bath. Actually, the value of p(0) # 0
is unimportant, because it cancels out in the normalized
PDF (8), which comes out to be

1+ (yA)?/x 1 —yAt
fc(\/ 4syAr <E T+ (yAt)2>)' ©)
[

to be random, rather than a lattice time nAz. Thus the time
of the first jump from the boundary into the domain is the
residual time A#’ between the moment of insertion and the
next lattice time (n + 1)Az. The probability density of
jump size in both variables has to be randomized with
A?', with the result (9).
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Brownian simulations and unidirectional flux in diffusion
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The prediction of ionic currents in protein channels of biological membranes is one of the central problems
of computational molecular biophysics. Existing continuum descriptions of ionic permeation fail to capture the
rich phenomenology of the permeation process, so it is therefore necessary to resort to particle simulations.
Brownian dynamicgBD) simulations require the connection of a small discrete simulation volume to large
baths that are maintained at fixed concentrations and voltages. The continuum baths are connected to the
simulation through interfaces, located in the baths sufficiently far from the channel. Average boundary con-
centrations have to be maintained at their values in the baths by injecting and removing particles at the
interfaces. The particles injected into the simulation volume represent a unidirectional diffusion flux, while the
outgoing particles represent the unidirectional flux in the opposite direction. The classical diffusion equation
defines net diffusion flux, but not unidirectional fluxes. The stochastic formulation of classical diffusion in
terms of the Wiener process leads to a Wiener path integral, which can split the net flux into unidirectional
fluxes. These unidirectional fluxes are infinite, though the net flux is finite and agrees with classical theory. We
find that the infinite unidirectional flux is an artifact caused by replacing the Langevin dynamics with its
Smoluchowski approximation, which is classical diffusion. The Smoluchowski approximation fails on time
scales shorter than the relaxation timeyDf the Langevin equation. We find that the probability of Brownian
trajectories that cross an interface in one direction in unit tiheequals that of the probability of the
corresponding Langevin trajectories)iit=2. That is, we find the unidirectional flusource strengjmeeded
to maintain average boundary concentrations in a manner consistent with the physics of Brownian particles.
This unidirectional flux is proportional to the concentration and inversely proportionalto leading order.

We develop a BD simulation that maintains fixed average boundary concentrations in a manner consistent with
the actual physics of the interface and without creating spurious boundary layers.

DOI: 10.1103/PhysRevE.71.026115 PACS nunider02.50-r, 31.15.Kb, 05.40-a

[. INTRODUCTION description has to be used on the other side. This poses the
o o ) ) fundamental question of how to describe the particle trajec-
The prediction of ionic currents in protein channels oftgries at the interface, which is the subject of this paper.

biological membranes is one of the central problems of com- \We address this problem for Brownian dynami@&D)
putational molecular biophysics. None of the existing con-simulations, connected to a practically infinite surrounding
tinuum descriptions of ionic permeation captures the richbath by an interface that serves as both a source of particles
phenomenology of the patch clamp experimefits It is  that enter the simulation and an absorbing boundary for par-
therefore necessary to resort to particle simulations of théicles that leave the simulation. The interface is expected to
permeation proced®2-7]. Computer simulations are neces- reproduce the physical conditions that actually exist on the
sarily limited to a relatively small number of mobile ions, boundary of the simulated volume. These physical conditions
due to computational difficulties. Thus a reasonable simula@re not merely the average electrostatic potential and local
tion can describe only a small portion of the experimentalconcentrations at the boundary of the volume, but also their
setup of a patch clamp experiment: the channel and its imfluctuation in time. It is important to recover the correct fluc-
mediate surroundings. The inclusion in the simulation of afuation, because the stochastic dynamics of ions in solution
part of the bath and its connection to the surrounding bat{'® nonlinear, du.e to the coupl!ng between the electrostatic
are necessary, because the conditions at the boundaries of i;@d and the motion of the mobile charges, so that averaged

channel are unknown, while they are measurable in the batipoundary conditions do not reproduce correctly averaged
nonlinear response. In a system of noninteracting particles

away from the channel. incorrect fluctuation on the boundary may still produce the
Thus the trajectories of the particles are described indi- y may P

. A . . .~ correct response outside a boundary layer in the simulation
vidually for each particle inside the simulation volume, while region[8]
outside the simulation volume they can be described only by The boundary fluctuation consists of arrival of new par-

fchelrfstatlsbncal propﬁrtleg. Itlfo_llows tgathon one S'?ﬁ of lgheﬂcles from the bath into the simulation and of the recircula-
Interface between the simulation and the surrounding bath, o particles in and out of the simulation. The random

the description of the particles is discrete, while a continuurr}mtiOn of the mobile charges brings about the fluctuation in

both the concentrations and the electrostatic field. Since the
simulation is confined to the volume inside the interface, the
*Electronic address: amits@post.tau.ac.il new and the recirculated particles have to be fed into the
"Electronic address: schuss@post.tau.ac.il simulation by a source that imitates the influx across the
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A. SINGER AND Z. SCHUSS PHYSICAL REVIEW H1, 026115(2009

interface. The interface does not represent any physical de- *

vice that feeds trajectories back into the simulation, but is JnedX,t) = Ir(X,t) = Jr(X,1) =f vp(xv,t)dv.  (6)
rather an imaginary wall, which the physical trajectories of w

the diffusing particles cross and recross any number of times. |n contrast, the net flud(x,t) in the DE cannot be split
The efflux of simulated trajectories through the interface isthis way, because velocity is not a state variable. Actually,
seen in the simulation; however, the influx of new trajecto-the trajectories of a diffusion process do not have well-
ries, which is the unidirectional flufUF) of diffusion, has to  defined velocities, because they are nowhere differentiable

be calculated so as to reproduce the physical conditions, agith probability 1[10]. These trajectories cross and recross
mentioned above. Thus the UF is the source strength of th@very pointx infinitely many times in any time interval
influx and also the number of trajectories that cross the inft t+At], giving rise to infinite UF’s. However, the net dif-
terface in one direction per unit time. S fusion flux is finite, as indicated in E€R). This phenomenon
The mathematical problem of the UF begins with the deyas discussed in detail [r11], where a path integral descrip-
scription of diffusion by the diffusion equation. The diffusion tion of diffusion was used to define the UF. The unidirec-
equation(DE) is often considered to be an approximation of tional diffusion flux, however, is finite at absorbing bound-
the Fokker-Planck equatidifPB in the Smoluchowski limit  aries, where the UF equals the net flux. The UF's measured
of large damping. Both equations can be written as the conp giffusion across biological membranes by using radioac-

servation law tive tracer[1] are in effect UF's at absorbing boundaries,
p because the tracer is a separate ionic spgti2ls
—=-V.J. (1) An apparent paradox arises in the Smoluchowski approxi-
A mation of the FPE by the DE; namely, the UF of the DE is
The flux densityd in the diffusion equation is given by infinite for all v, while the UF of the FPE remains finite,

even in the limity— oo, in which the solution of the DE is an
1 approximation of that of the FPEL3]. The “paradox” is
Jx,H = _;,[SVP(X’t) —f)p(x.B], 2 resolved by a new derivation of the FPE for Langevin dy-
namics(LD) from the Wiener path integral. This derivation
where y is the friction coefficientor dynamical viscosity  is different than the derivation of the DE or the Smolu-
e=kgT/m, kg is Boltzmann’s constanT, is absolute tempera- chowski equation from the Wiener integrdbee, e.g.,
ture, andmis the mass of the diffusing particle. The external[17-20) by the method of Kad21]. The new derivation
acceleration field i$(x) and p(x,t) is the density(or prob-  shows that the path integral definition of UF in diffusion,
ability density of the particles9]. The flux density in the as first introduced if11], is consistent with that of UF in
FPE is given by where the net probability flux density vectorthe FPE. However, the definition of flux involves the limit

has the components At—0, that is, a time scale shorter thanyl/on which
the solution of the DE is not a valid approximation to that of
‘JX(vayt) = vp(xyvyt)a the FPE

This discrepancy between the Einstein and Langevin de-
J,(x,v,t) ==y —f(x)]p(x,v,t) - eyV,p(x,v,t). (3)  scriptions of the random motion of diffusing particles was
hinted at by both Einstein and Smoluchowski. Eins{did]
remarked that his diffusion theory is based on the assumption
that the diffusing particles are observed intermittently at
short time intervals, but not too short, while Smoluchowski
\/7 [15] showed that the variance of the displacement of Lange-

= w,

The densityp(x,t) in the diffusion equatioril) with (2) is
the probability density of the trajectories of the Smolu-
chowski stochastic differential equation

x=—f(x)+ (4) vin trajectories is quadratic infor times much shorter than
Y the relaxation time 1y, but is linear int for times much

wherew(t) is a vector of independent standard Wiener pro-onger than 14, which is the same as in Einstein’s theory of

cessegBrownian motions O"ff“SiO'? [_161' e e . .
The densityp(x,v,t) is the probability density of the The infinite unidirectional diffusion flux imposes serious
phase space trajectories of the Langevin equation limitations on BD simulations of diffusion in a finite volume

embedded in a much larger bath. Such simulations are used,
X+ yx = f(x) + \Z, W. (5)  for example, _in s@mulations of ion permeation in pr_otein
] ) ] channels of biological membrangs|. If parts of the bathing
In practically all conservation laws of the ty[t&#) Jis a  sojutions on both sides of the membrane are to be included in
net flux densityector. It is often necessary to splititinto two the simulation, the UF’s of particles into the simulation have
unidirectional components across a given surface, such thgd pe calculated. Simulations with BD would lead to increas-
the net fluxJ is their difference. Such splitting is pretty ob- ing influxes as the time step is refined.
vious in the FPE, because the veloaityat each poink tells The method of resolution of the said “paradox” is based
the two UF's apart. Thus, in one dimension, on the definition of the UF of the LD in terms of the Wiener
o 0 path integral, analogous to its definition for the BD[IL].
JLR(X,1) :f vp(x,0,0dv,  Jr (X,1) :_f vp(x,v,t)dv, The UFJ (x,t) is the probability per unit timet of trajec-
0 - tories that are on the left ofat timet and are on the right of
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x at timet+At. We show that the UF of BD coincides with Profx(t + At) = x,v(t + At) = v}
that of LD if the time unitAt in the definition of the unidi-

. e . 1
rectional diffusion flux is exactly =p(x,v,t+ At) = 0(At) + ——
i p(x.v ) =0(At) 2o ymit

At=—, (7) b o
Y X f f P(&, 7, 8(x = £ = nAt)

a —00

o= n-[-yp+f(HIALP
4eyAt

concentration is maintained on the average at the interface in
a BD simulation. The strength of the left sourdg is to
leading order independent of the efflux and depends on the

concentratiorC,, the damping coefficieny, the temperature 1o understand Eq12), we note that given that the displace-
¢, and the time steft, as given in Eq(27). To leading order  ment and velocity of the trajectory at timeare x(t)=¢

We find the strength of the source that ensures that a given
Xe p{ }dg d». (12

itis and v(t)=#, respectively, then according to EL0), the
1 displacement of the particle at timte-At is deterministic,

JRr= \/LCL+O<—). (8) independent of the value afw, and isx=£&+ pAt+o(At).
myAt Y Thus the probability density functio(pdf) of the displace-

We also show that the coordinate of a newly injected parMent is &(x=&-nAt+o(At)). It follows that the displace-
ticle has the probability distribution of the residual of the Ment contributes to the joint propagatd?) of x(t) andu(t)
normal distribution. Our simulation results show that no spu2 multiplicative factor of the Diracs function. Similarly,
rious boundary layers are formed with this scheme, whiléEd- (11) means that the conditional pdf of the velocity at
they are formed if new particles are injected at the boundanfime t+At, givenx(t)=¢ andv(t)=7, is normal with mean
The simulations also show that if the injection rate is fixed,7+[—y»+f(§]At+0o(At) and variance 2yAt+o(At), as re-
there is depletion of the population as the time step is reflected in the exponential factor of the propagator. If trajec-
fined, but there is no depletion if the rate is changed accordories are terminated at the ends of an finite or infinite inter-
ing to Eq.(8). val (a,b), the integration over the displacement variable

In Sec. Il, we derive the FPE for the L[B) from the extends only to that interval.

Wiener path integral. In Sec. Ill, we define the unidirectional The basis for our analysis of the UF is the following new
probability flux for LD by the path integral and show that is derivation of the Fokker-Planck equation from E#2). In-
indeed given by Egs6). In Sec. IV, we use the results of tegration with respect tg gives

[13] to calculate explicitly the UF in the Smoluchowski ap-

proximation to the solution of the FPE and to recover the p(x,v,t + At)

flux (2). In Sec. V, we use the results [df1] to evaluate the

UF of the BD trajectorie$4) in a finite time unitAt. In the - + ;f _

limit At— 0 the UF diverges, but if it is chosen as in Ed), olay Ve ymAt) PO mAt 7.1

the UF’s of LD and BD coincide. In Sec. VI we describe the 2

a BD simulation of diffusion between fixed concentrations xe p{— [v = 7= [= yn+f(x= 7AD]AL] }dn-
and give results of simulations. Finally, Sec. VIl is a sum- 4eyAt

mary and discussion of the results. (13

Il. DERIVATION OF THE FOKKER-PLANCK EQUATION Changing variables to
FROM A PATH INTEGRAL

The LD (5) of a diffusing particle can be written as the Yy [= yn+ fx = AD]AL

phase space system \2eyAt
k=v, b=-y+f(x)+2ey W, (9 and expanding in powers d¥t, the integral takes the form
This means that in timat the dynamics progresses accord- 1
ing to p(x,v,t+At) = =
V27a[1l - yAt + o(At)]
X(t+ At) = x(t) + v(t)At + o(At), (10

. xfx e 2duy p(x —v(1 + yAt)At
v(t+At)=v(t) +[- y(t) + f(x(t)) JAt + V2e y Aw + 0(At), —o

(11) + 0(At),v(1 + yAt) + uy2e yAt
where Aw~ A(0,At); that is, Aw is normally distributed = f(x)At(1 + yAt) + o(At),1). (14
with mean 0 and varianc&t. This means that the probability
density function evolves according to the propagator Reexpanding in powers dft, we get
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p(x = v(1 + yAt)At + 0(At),v(1 + yAt) + uy2s yAt tor, and integration with respect tfixes ¢ at x— nAt, so
- f(x)At(1 + yAt) + o(At),t) 1
J r(X1,0) = lim —fJ p(x — 7At, ,t)d7 dx
apx,v,t)  Jp(xv,t [ — — _
= p(xv,1) - vAt p(x,v )+ p(X,v )[vyAt+u\e’23yAt At—0 At X-mAt<x;
X ov 1 (” X1
Pp(x,v,t = lim = dnf p(u, 7,t)du
- f(X)At+ o(At)] + sszt% + 0(At), a0 AtJg X~ nAt
so Eq.(14) gives :f 7P(Xy, 7,)d 7. (18)
0
p(x,v,t) 1 ap(x,v,t)
p(x,v,t+At) — 1— YAt T yAtht o Expression(18) is identical to Eq.(16).
At M[vv- f()] IV. SMOLUCHOWSKI APPROXIMATION TO THE
1-yAt v UNIDIRECTIONAL CURRENT
eyAt &Zp(x,zv,t) +O(A?), The following calculations were done if13] and are
1-yAt v shown here for completeness. In the overdamped regime, as

Dividing by At and taking the limitAt—0, we obtain the Y~ *: the Smoluchowski approximation fix, v, 1) is given

Fokker-Planck equation in the form

px,u,t)  ap(xu,t)  a o2 1] apxt) 1
P =-v x +5{[w—f(x)]P(x,v,t)} p(x,u,t)~?ﬁm{p(x,t)—;{—pg( )—;f(x)p(x,t) v
#p(x,,1)
+87T2", (15) +o<%/2>}, (19

which is the conservation lawl) with the flux components ) . .
(3). The UF J_a(x.,1) is usually defined as the integral of Where the marginal densitp(x,t) satisfies the Fokker-
J(x,v,1) over the positive velocitie§13], and references F'anck-Smoluchowski equation

therein—that is,

px,t)  Ppxt) 9
Y =¢ -

oc 7 — —Lf(¥)p(x,0)]. (20)
‘]LR(let) = j vp(xlvvat)dv . (16) A x x
0 According to Egs(16) and(19), the UF is
To show that this integral actually represents the probability 2
of the trajectories that move from left to right acrogsper e [T e
unit time, we evaluate below the probability flux from a path IR t) = . vP(Xy,v,Hdv = o \2me p(x.D
integral.
1f dp(x,t) 1 1
_ _{M _ _f(x)p(x,t):|v + O(—)}dv
yL x e ¥
I1l. UNIDIRECTIONAL FLUX OF THE LANGEVIN
EQUATION € 1| dp(x,t)
= Z—D(Xl,t) - 2—[8— = fO)p(x,t)
The instantaneous unidirectional probability flux from left 7" Y oX
to right at a pointx; is defined as the probability per unit 1
time (At), of Langevin trajectories that are to the lefbafat +0 ? . (21
time t (with any velocity and propagate to the right &f at
time t+At (with any velocity, in the limit At— 0. This can Similarly, the UF from right to left is
be expressed in terms of a path integral on Langevin trajec-
tories on the real line as 0 (e
X © o0 9 ‘]RL(let) == f vp(xlyvit)dv = _p(xlft)
D) = lim — 1ng dxf d f o - am
1 = . U—
= a0 At) . Ty ) ! —o  \AeymAt = { ap(x,t) 1
—| e/ = f(X)p(x,1) +O(—).
X P&, 7,0 8x ~ £~ mAY) 2l P 7
- -~ yp+f(O]AL}? (22
I R R e VR ()Y } .
4deyAt

Both UF's in Egs(21) and(22) are finite and proportional to
Integrating with respect to eliminates the exponential fac- the marginal density at;. The net flux is the difference
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JnedXq,t) = I r(Xq,t) = Iri(Xg, 1)

:—3 PY _tpn |, 29

as in classical diffusion theofy1 3,22.

V. UNIDIRECTIONAL CURRENT IN THE
SMOLUCHOWSKI EQUATION

Classical diffusion theory, however, gives a different re-
sult. In the overdamped regime the Langevin equat®ris

reduced to the Smoluchowski equatidi
yx = f(X) + \2ey w. (24)

As in Sec. lll, the unidirectional probability curreffiux)

density at a poink; can be expressed in terms of a path

integral as

Jr(X,t) = Iim J r(Xq,t,AL), (25)
At—0

where

JLR(XI! t, At)

N e s
= 4778AtJ0 dgL d¢ exp{ 4e }{p(xl,t)

_\@t{ ul)p( 0+ (e g)apm,t)} o(A—;)}

(26)

It was shown in11] that
J r(Xq,1,Ab)

|t
=\ Pt 5 (f(x1>p<x1,t) 20l ))

VAt
o )
Similarly,
Jri(X,0) = Iim Jg (xq,t,AL),
At—0
where

JrL(Xy,t,At)

_ |y (. s
= 4778AJ0 dgL dgexp{ 4o }{p(xl,t)

+\'Xt{ g(l)p(xlat) +(¢- g)ap(Xl,t)} O(%>}

- \/7 (x3,t) - (f(xl)p(xl,t)—s p(&’;l't))

%)
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FIG. 1. The concentration profile of Brownian trajectories that
are initiated atx=0 with a normal distribution and terminated at
eitherx=0 or x=1.

If p(x;,t)>0, then bothJ g(X;,t) and Jg (X;,t) are infi-
nite, in contradiction to the result1) and (22). However,
the net flux density is finite and is given by

JnelXq,t) = Alimo {ILR(Xy, 1, AL) = Ji(Xg, 1, Ab)}

=Y e Lot - towptad |, (29
yL oX
which is identical to Eq(23).

The apparent paradox is due to the idealized properties of
the Brownian motion. More specifically, the trajectories of
the Brownian motion, and therefore also the trajectories of
the solution of Eq(24), are nowhere differentiable, so that
any trajectory of the Brownian motion crosses and recrosses
the pointx; infinitely many times in any time intervdk,t
+At] [23]. Obviously, such a vacillation creates infinite UF’s.

Not so for the trajectories of the Langevin equati@j.
They have finite continuous velocities, so that the number of
crossing and recrossing is finite. We note that settjdd
=2 in Egs.(27) and(28) gives Eqgs(21) and(22).

VI. BROWNIAN SIMULATIONS

Here we design and analyze a BD simulation of particles
diffusing between fixed concentrations. Thus, we consider
the free Brownian motiofi.e.,f=0in Eq. (4)] in the interval
[0,1]. The trajectories were produced as follovi&: Accord-
ing to the dynamicg4), new trajectories that are started at
x(—At)=0 move tox(0)=(v2e/y)|Aw|. (b) The dynamics
progresses according to the Euler scherietAt)=x(t)
+(\2e/y)Aw. (c) The trajectory is terminated (t)>1 or
X(t)<0. The parameters are=1, y=1000, andAt=1. We
ran 10 000 random trajectories and constructed the concen-
tration profile by dividing the interval into equal parts and
recording the time each trajectory spent in each bin prior to
termination. The results are shown in Fig. 1. The simulated
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FIG. 2. The concentration profile of Brownian trajectories that  FIG. 3. (Color onlin@ The concentration profile of Brownian

are initiated ak=0 with the residual of the normal distribution and trajectories that are initiated &0 and terminated at eith&=0 or

terminated at eithex=0 or x=1. x=1. Three different time stepg@t=4,1,0.25 were used, but the

injection rate of new particles remained constant. Refining the time

concentration profile is linear, but for a small depletion layerSteP decreases the concentration profile.

near the left boundary=0, where new patrticles are injected.

This is inconsistent with the steady-state DE, which predictsources, as predicted by Eq®7) and (28). Figure 4 de-

a linear concentration profile in the entire inter{@J1]. The  scribes the concentration profiles for three different values of
discrepancy stems from pafa) of the numerical scheme, At and source strengths that are proportional tgAlt/ The
which assumes that particles enter the simulation intervatoncentration profiles now converge whan— 0. The key
exactly atx=0. Howeverx=0 is just an imaginary interface. to this remedy is the calculation of the UF in diffusion.

Had the simulation been run on the entire line, particles
would hop into the simulation across the imaginary boundary
atx=0 from the left, rather than exactly at the boundary. This

iy distibution of the disiance an entering partcle covers, B EINSEI(14] and SmoluchowsHi1s](see alsg16)
‘pointed out that BD is a valid description of diffusion only at

not given its previous location, is not normal, but rather it is;. g .
. L . times that are not too short. More specifically, the Brownian
the residual of the normal distribution, given by

VIl. SUMMARY AND DISCUSSION

(30

f(x) = cf p{ (_y)z} dy,

600

500

— dt=4
— dt=1
—dt=0.25

‘\|‘l“H\)‘i
‘\.‘ L
whereg?=2¢At/y andC is determined by the normalization i
condition [;f(x)dx=1. This gives

(31) i ‘

fxX) =/ — erfc( X )
20 VZ‘T Z a00 Bt 1 E

Rerunning the simulation with the entrance @), we MLl
obtained the expected linear concentration profile, withou i ]
any depletion layergsee Fig. 2. Injecting particles exactly i
at the boundary makes their first leap into the simulation toc g
large, thus effectively decreasing the concentration profile 100
near the boundary.

Next, we changed the time stefpt of the simulation,
keeping the injection rate of new particles constant. The 0
population of trajectories inside the interval was depleted
when the time step was refingsee Fig. 3. A well-behaved FIG. 4. (Color onlin@ The concentration profile of Brownian
numerical simulation is expected to converge as the time stegajectories that are initiated a0 and terminated at eithe=0 or
is refined, rather than to result in different profiles. Thisx=1. Three different time step@t=4,1,0.25 are shown, and the
shortcoming of refining the time step is remedied by replacinjection rate of new particles is proportional toviAt. Refining the
ing the constant-rate sources with time-step-dependenime step does not alter the concentration profile.

0.2 03 0.5

X

0.1 0.4
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approximation to the Langevin equation breaks down atecover the UF of LD. At points away from the boundary,
times shorter than 1y, the relaxation time of the medium in where correct UF's do not have to be recovered, the simula-
which the particles diffuse. tion can proceed in coarser time steps.

In a BD simulation of a channel the dynamics in the chan- The above analysis can be generalized to higher dimen-
nel region may be much more complicated than the dynamsions. In three dimensions the normal component of the UF
ics near the interface, somewhere inside the continuum batlector at a poink on a given smooth surface represents the
sufficiently far from the channel. Thus the net flux is un- number of trajectories that cross the surface from one side to
known, while the boundary concentration is known. It follow the other, per unit area atin unit time. Particles cross the
that the simulation should be run with source streng#¥%  interface in one direction if their velocity satisfiesn(x)

and (28): >0, wheren(x) is the unit normal vector to the surfacexat
thus defining the domain of integration for E®).
IR~ /LCL + }‘]neb JrL~ /LCR_ }‘]net- The time course of injection of particles into a BD simu-
myAt 2 myAt 2 lation can be chosen with any interinjection probability den-

. . . ) sity, as long as the mean time between injections is chosen so
H’o_wever, Jnet IS unknown, so neglecting it relative 10 ya; the source strength is as indicated in EQ3%) and(28).
(Ve/ myADC, g will lead to steady-state boundary concentra-gqr example, these times can be chosen independently of

tions that are close, but not necessarily equalt@ndCr.  each other, without creating spurious boundary layers.
Thus a shooting procedure has to be adopted to adjust the

boundary fluxes so that the output concentrations agree with
C. andCg, and then the net flux can be readily found.

According to Egs.(27) and (28), the efflux and influx The authors thank Dr. Shela Aboud for pointing out the
remain finite at the boundaries and agree with the fluxes oflepletion phenomenon in BD simulations. The authors were
LD if the time step in the BD simulation is chosen to be partially supported by research grants from the Israel Science
At=2/y near the boundary. If the time step is chosen differ-Foundation, U.S.-Israel Binational Science Foundation, and
ently, the fluxes remain finite, but the simulation does notDARPA.
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