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Stochastic trajectories are described that underly classical diffusion between known concentrations.
The description of those experimental boundary conditions requires a phase space using the full
Langevin equation, with displacement and velocity as state variables, even if friction entirely
dominates the dynamics of diffusion, because the incoming and outgoing trajectories have to be told
apart. The conditional flux, probabilities, mean first-passage times, and contents~of the reaction
region! of the four types of trajectories—thetranstrajectoriesLR andRL and thecis trajectoriesLL
andRR—are expressed in terms of solutions of the Fokker–Planck equation in phase space and are
explicitly calculated in the Smoluchowski limit of high friction. With these results, diffusion in a
region between fixed concentrations can be described exactly as a chemical reaction for any
potential function in the region, made of any combination of high or low barriers or wells. ©1995
American Institute of Physics.
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I. INTRODUCTION

Diffusion has been analyzed by classical field theory1,2

starting with Fick, and also, at higher resolution, by th
theory of stochastic processes describing the trajectorie
diffusing particles.3,4 Classical theory is based on the canon
cal experimental setup for diffusion, where particles diffu
from a region of one concentration to another. Surprisingly
stochastic theory is not available that describes trajectorie
this situation. Theories of stochastic diffusion in the conte
of chemistry or biology often analyze a restricted case, wh
particles diffuse over a high barrier. Trajectories diffusin
over arbitrary barriers seem not to have been analyzed in
context.

This paper calculates the statistical properties of the r
dom trajectories of diffusion using stochastic differenti
equations5–7 to describe the dynamics of ionic motion. Th
Langevin model is used for the calculation of the probab
ties of the four types of trajectories—thetrans trajectories
LR andRL and thecis trajectoriesLL andRR—as well as
for the calculation of the mean first-passage times and a
age contents of the reaction region. With this analysis all
statistical properties of the four types of trajectories can
determined for any shape potential function and any frictio
In the limit of high friction, reduced problems are derived fo
each type of trajectory that yield explicit formulas for~con-
ditional! probabilities, contents~of the reaction region!, and
residence times~i.e., mean first passage times!. The trans
unidirectional components of flux, studied in biology wit
radioactive tracers for many years, correspond to the con
tional probabilities, and are also the~conditional! contents
divided by the mean first passage time.

Interestingly, in this setup the velocity distribution of th
ions is not Maxwellian, even in the limit of high friction, bu
rather contains an asymmetric term proportional to flux.
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This work started as an attempt to describe the stochas
motion of ions through single biological channels, protein
molecules that open to form a pore allowing ions to move
across cell membranes.8 Interestingly, this is the same prob-
lem that motivated Fick—who was both a physiologist and
physical chemist8,9—to invent classical diffusion theory. The
biological problem is described at the end of Sec. IX.

II. THE SETUP, FRICTION, AND DIFFUSION

We represent the experimental setup of Fick by a reac
tion region separating two baths in which concentrations an
potentials are maintained fixed. The ions inside~and outside!
the reaction region move by diffusion and transport in an
electrical field. The electrical field arises from the distribu-
tion of charge in the reaction region and at its boundaries,
distribution that must be expected to change as experimen
conditions are changed. Thus, the potential functionF(x) is
expected to vary if the species or concentrations of ions i
the baths or the electrical potential there is changed. Th
diffusion arises from the thermal collisions of the ion with
surrounding waters and protein. Motion is collision domi-
nated because the atoms move with thermal velocity~Å/ps!
in a liquid with very little empty space; in a typical experi-
ment an ion undergoes hundreds, thousands, or millions
collisions ~or more!! as it moves from one boundary at one
concentration to another.

Although friction in liquids is characterized by memory
kernels, we simplify the calculations by assuming a~position
and species dependent! effective friction coefficient,b(x)
~see Ref. 10!. This coefficient would ideally be an output of
a numerical simulation of molecular dynamics. The friction
coefficient we use is an effective parameter; it is expected
be independent of conditions under a reasonable range
concentrations, electric fields, and temperatures. That is
1767)/1767/14/$6.00 © 1995 American Institute of Physicsct¬to¬AIP¬license¬or¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcr.jsp
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1768 Eisenberg, Kłosek, and Schuss: Diffusion as a chemical reaction
say, the structure of the memory kernels is not expected
vary much as the flux is manipulated experimentally
changing concentration, potential, etc. over the pertin
range.

III. THE MATHEMATICAL MODEL AND THE
NERNST–PLANCK EQUATION

We present the Nernst–Planck~i.e., Smoluchowski!
model so the paper is reasonably self-contained. The reac
region is located on thex-axis betweenx50 andx51; the
bathing solutions are on either side of the reaction regi
between2`, x,0 and 1, x,`. The concentration of ions
in the reaction region,r(x), satisfies the Nernst–Planc
equation in Stratonovich form5,6 ~see Appendix A for nondi-
mensionalization!

d

dx
D~x!F ddx r~x!1

1

e

dF~x!

dx
r~x!G50 for 0, x,1,

~3.1!

whereD(x) is the diffusion coefficient ande is dimension-
less temperature~not necessarily small!. Also the concentra-
tion of ions in the baths satisfies the three-dimensio
Nernst–Planck equation in2`, x,0 and 1, x,`, with
F(x,y,z)>const. andD(x,y,z)5const. In order to avoid
solving the Nernst–Planck equation in all three domains
multaneously, we approximate the solution in both baths
constant concentrations. Therefore, the boundary conditi
for Eq. ~3.1! are

r~0!5CL , r~1!5CR . ~3.2!

Integrating Eq.~3.1! once, we obtain

D~x!Fdr~x!

dx
1
1

e

dF~x!

dx
r~x!G52J, ~3.3!

whereJ is the~spatially and temporally constant! flux. Inte-
grating again and using the boundary conditions Eq.~3.2!,
we obtain

r~x!5e2F~x!/eH @CRe
F~1!/e2CLe

F~0!/e#

3

*0
xeF~s!/e

ds

D~s!

*0
1eF~s!/e

ds

D~s!

1CLe
F~0!/eJ . ~3.4!

In particular, ifD(x)[D, Eq. ~3.4! reduces to

r~x!5
CRe

F~1!/e2CLe
F~0!/e

*0
1eF~s!/eds

e2F~x!/eE
0

x

eF~s!/eds

1CLe
@F~0!2F~x!#/e. ~3.5!

Using Eq.~3.4! in Eq. ~3.3!, we obtain

J5
CLe

F~0!/e2CRe
F~1!/e

*0
1eF~s!/e

ds

D~s!

. ~3.6!
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For constantD(x)5D, Eq. ~3.6! reduces to the well known
expression8

J5D
CLe

F~0!/e2CRe
F~1!/e

*0
1eF~s!/eds

. ~3.7!

If the concentrationsCL and CR are time dependent, Eq.
~3.7! can be easily generalized by solving the time depende
Nernst–Planck equation.

The stochastic dynamics underlying the Nernst–Planc
equation is thereducedLangevin equation4

b~x!ẋ1
dF~x!

dx
5A2b~x!eẇ, ~3.8!

wherex(t) is the position of the ion at timet, F(x) is the
electric potential,b(x) is the friction coefficient,e is nondi-
mensional temperature, andẇ is standard Gaussian white
noise~see Appendix A!. The friction and noise terms in Eq.
~3.8! are related by the Einstein fluctuation-dissipation
principle.3–6

The inhomogeneous boundary condition for the Nernst
Planck equation corresponding to the reduced Langev
equation~3.8! leads to difficulties, because it requires the
region outside the channel to bebotha source~of trajectories
entering the channel! and an absorber~of trajectories leaving
the channel!. In Eq. ~3.8!, however, all trajectories that origi-
nate at the boundary are immediately absorbed there a
never get anywhere, an undesirable, presumably unrealis
phenomenon observed directly, at considerable comput
tional cost, in the simulations of Ref. 11.

Exiting and entering trajectories differ only by the sign
of their velocities; one is positive and the other negative, bu
velocity is not a state variable in the reduced Langevin equa
tion ~3.8!. Obviously, if a stochastic theory is to separate
entering from exiting trajectories, it must analyze and de
scribe the velocity of ions as well as their displacement. Th
distinction between entering~positive velocity at the left
boundaryx50! and exiting ~negative velocity! trajectories
cannot be made in the reduced Langevin equation. In co
trast, the full Langevin equation4,6,12,13

ẍ1b~x!ẋ1
dF~x!

dx
5A2b~x!eẇ, ~3.9!

describes random ionic trajectories in a phase space with tw
state variables, displacement,x(t), and velocity,v[ ẋ(t).
Thus, the distinction between entering and exiting trajecto
ries is automatic; one hasv.0 at the left entrance and the
other hasv,0 there. The full Langevin equation describes
the underlying dynamics of these trajectories. The Fokker
Planck equation, involving both displacement and velocity, i
needed to describe the probability density function of thes
trajectories, and its evolution. Therefore, we must use the fu
Fokker–Planck equation rather than the Nernst–Planck
describe diffusion, even if friction is large.
No. 4, 22 January 1995t¬to¬AIP¬license¬or¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcr.jsp
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1769Eisenberg, Kłosek, and Schuss: Diffusion as a chemical reaction
IV. THE LANGEVIN AND FOKKER–PLANCK
EQUATIONS; THE NERNST–PLANCK EQUATION
RECOVERED

A concentration boundary condition does not imply an
particular physical process at the entrance and exit of t
reaction region. The ions simply move in and out of a regio
where friction and potential change from their values in th
free solution outside the reaction region. Indeed, in a re
experimental situation the concentration is not absolute
fixed at this boundary; rather it is measured and changes
held small enough so they do not matter, as shown by dire
experimentation.~In some situations, e.g., currents throug
biological Ca11 channels, significant concentration change
always accompany current flow under realistic conditions!
The trajectories of ions at an edge of the reaction region a
complex and oscillate strongly@particularly as friction domi-
nates,b→`, and trajectories approach those of Eq.~3.8!# but
they are unconstrained by specialized physical structure
experimental apparatus. Some trajectories~thecis ones! start
at the boundary and end there.~In many situations, most
trajectories are of thecis type.! Other trajectories~the trans
ones! enter the reaction region and end on the opposite sid
Both sets of trajectories flow without noticeably changin
the concentration or potential in the baths because of t
experimental apparatus and procedures used to maintain
concentration boundary condition.

A description of the random current requires separa
calculation of the properties of incoming and outgoing ion
These ions are distinguished by the different signs of the
velocity of motion and so a theory must describe both th
position and the velocity of the ion.

The velocity can be introduced into the Langevin equ
tion ~3.9! explicitly as a second state variablev(t), forming a
two-dimensional system

ẋ5v,
~4.1!

v̇52b~x!v2
dF~x!

dx
1A2b~x!eẇ~ t !.

The random trajectories, [x(t),v(t)], defined by the system
Eq. ~4.1!, describe the motion of the ion in phase space bo
inside the reaction region and outside, in the baths. T
boundaries of the reaction region in phase space are the li
x50, 2`, v,`, andx51, 2`, v,`. In the real system
of baths and reaction region, ions that reach the left end w
v .0 enter the reaction region, whereas those that reach t
end, coming from the right withv, 0, exit the reaction re-
gion and diffuse into the external solution. The other end
analogous. The concentration boundary conditions~main-
tained by experimental apparatus! enforce this behavior. In
the bath on the left, that is, forx, 0, the ionic motion is
described by the Langevin equation~4.1! with b(x)5const.
andF8(x)50, and the experimental apparatus maintains
~nearly! constant concentration of each species and a~nearly!
constant electrical potential~analogously on the right!. In-
deed, these properties are what we mean by ‘‘concentrat
boundary condition.’’

Inside the reaction region the ionic motion is describe
by the Langevin equation~4.1! with the friction coefficient
J. Chem. Phys., Vol. 102,Downloaded¬09¬Jan¬2003¬to¬144.74.27.122.¬Redistribution¬subjec
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b(x) and potentialF(x) of the reaction region. That poten-
tial function is determined by the spatial distribution of all
charge~fixed and mobile, in the reaction region and at the
boundaries! and must be expected to change shape if th
electrical potential in the baths or the concentrations of ion
there are changed. Bothb(x) andF(x) may undergo a dis-
continuity at the entrance to the reaction region. However
the random trajectories defined by the Langevin equatio
remain continuous. They may enter the reaction region o
either side and exit on either side with certain probabilities
Thus, no boundary conditions are imposed at the ends of th
reaction region.

The stationary joint probability density function of find-
ing a random ionic trajectory at a point (x,v) in phase space
is denoted byp(x,v). The marginal probability density of
finding an ion at the pointx with any velocity,p(x), is given
by

p~x!5E
2`

`

p~x,v !dv. ~4.2!

If given concentrations,CL andCR , are measured at the ends
of the reaction region, then

p~0!5CL , p~1!5CR . ~4.3!

These are exactly the boundary conditions~3.2! for the
Nernst–Planck equation~3.1!.

The joint pdf p(x,v) satisfies the stationary Fokker–
Planck equation4–6

Lp~x,v ![2v
]p

]x
1b~x!e

]2p

]v2

1
]

]v Fb~x!v1
dF~x!

dx Gp50 ~4.4!

in a large stripxL,x,xR , 2`, v,`, wherexL! 0 and
xR@1 are points where sources or sinks are placed in order
maintain the fixed concentrations on both sides of the reac
tion region. Note, however, that no boundary conditions are
specified or imposed at the ends of the reaction region,x50
andx51. The properties of the variables atx50 andx51 are
derived later as part of the solution to the problem.

The time dependent Fokker–Planck equation is

]p~x,v,t !
]t

5Lp~x,v,t !. ~4.5!

Equation~4.4! can also be written in the form of a conserva-
tion law

2“x,v•J~x,v !50 for ~x,v !PD , ~4.6!

where the probability flux density vectorJ(x,v) is defined as
usual for this two dimensional problem,6 by

J~x,v ![S vp~x,v !

2@b~x!v1F8~x!#p~x,v !2b~x!e
]p~x,v !

]v
D .
~4.7!

Note thatJ(x,v) describes the flux of probability; the rela-
tion of this flux to the ionic flux through the reaction region
remains to be seen.
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We study the standard Smoluchowski expansion of t
full time dependent Fokker–Planck equation6 to make the
paper reasonably self-contained. Denote the time depend
pdf by p(x,v,t); scaleb(x) by its maximum,B; write

b~x!5Bb0~x!; ~4.8!

and scale time byt5Bt8. For largeB the timet8 is slow, so
that the time dependent Fokker–Planck equation become

Bb~x!
]

]v S e
]

]v
1v D p~x,v,t8!1F2v

]

]x
1
dF~x!

dx

]

]vG
3p~x,v,t8!1

1

B F2
]

]t8
p~x,v,t8!G

[SBL01L11
1

B
L2D p~x,v,t8!50, ~4.9!

where

L0p~x,v,t8![b0~x!
]

]v S e
]

]v
1v D p~x,v,t8!, ~4.10!

L1p~x,v,t8![F2v
]

]x
1
dF~x!

dx

]

]vGp~x,v,t8!, ~4.11!

and

L2p~x,v,t8![2
]

]t8
p~x,v,t8!. ~4.12!

Expanding the density in an asymptotic series in negati
powers ofB,

p~x,v,t8!5p0~x,v,t8!1
1

B
p1~x,v,t8!1

1

B2 p
2~x,v,t8!

1••• , ~4.13!

we obtain the following hierarchy of equations:

L0p
0~x,v,t8!50, ~4.14!

L0p
1~x,v,t8!52L1p

0~x,v,t8!, ~4.15!

L0p
2~x,v,t8!52L1p

1~x,v,t8!2L2p
0~x,v,t8!,

~4.16!

and so on. From Eq.~4.14! we obtain

p0~x,v,t8!5
e2v2/2e

A2pe
P0~x,t8!, ~4.17!

whereP0(x,t8) is yet an undetermined function. The inte
grable solution of Eq.~4.15! is given by

p1~x,v,t8!5
e2v2/2e

A2pe
H 2

1

b0
F]P0~x,t8!

]x

1
1

e

dF~x!

dx
P0~x,t8!Gv1P1~x,t8!J ,

~4.18!

where P1(x,t8) is another undetermined function. Using
Eqs. ~4.17! and ~4.18! in Eq. ~4.16! and integrating with
respect tov, we obtain
J. Chem. Phys., Vol. 102,Downloaded¬09¬Jan¬2003¬to¬144.74.27.122.¬Redistribution¬subjec
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]t8
5

]

]x H 1

b0~x! Fe ]P0~x,t8!

]x

1
dF~x!

dx
P0~x,t8!G J . ~4.19!

ScalingB back into Eq.~4.20! and settingp(x,t)[P0(x,t8),
we obtain the Smoluchowski model

]p~x,t !

]t
5

]

]x H 1

b~x! Fe ]p~x,t !

]x
1
dF~x!

dx
p~x,t !G J .

~4.20!
Note that Eq.~4.20! has the Stratonovich form.5,6 In the
steady state, we obtain

]

]x H 1

b~x! Fe ]p~x!

]x
1
dF~x!

dx
p~x!G J 50, ~4.21!

wherep(x)[limt→`p(x,t).
Proceeding as above, we find thatP1(x,t8)50. Note that

the Smoluchowski equation~4.21! is identical to the station-
ary Nernst–Planck equation~3.1!. Returning to the expan-
sion ~4.13!, we find that the expansion of the pdf is given by

p~x,v,t !;
e2v2/2e

A2pe
H p~x,t !2

1

b~x!
F]p~x,t !

]x

1
1

e

dF~x!

dx
p~x,t !Gv1OF 1

b2~x!
G J . ~4.22!

The total probability flux in thex direction is calculated
from Eq. ~4.7! @see, e.g., Eq.~5.7!# as

T ~x,t ![E
2`

`

vp~x,v,t !dv

;2
1

b~x! Fe ]p~x,t !

]x
1
dF~x!

dx
p~x,t !G

1OF 1

b2~x!G . ~4.23!

It follows that away from equilibrium the pdf depends
on flux, no matter what the friction,so that we obtain an
expansion in the Smoluchowski limit~previously derived in
another context14!

p~x,v,t !;
e2v2/2e

A2pe
Fp~x,t !1

T ~x,t !v

e
1OF 1

b2~x!
G J .
~4.24!

Formula ~4.24! differs from the usual high friction
~Smoluchowski! approximation to the joint pdfp(x,v,t) ~see,
e.g., Refs. 4, 6, 12, 13!. The usual high friction expansion
neglects the flux termT (x,t)v/e inside the braces of Eq.
~4.24!. It stops after the first termp(x,t). When the usual
approximation to the joint pdf is substituted into the integra
in the flux formula~4.23!, the resulting flux in thex direction
vanishes, no matter what the potential or values of oth
parameters. Therefore, the usual high friction approximatio
is valid only when fluxes vanish or are vanishingly small
e.g., at equilibrium or when barriers are sufficiently high tha
the system is essentially at equilibrium. If, however, a finit
No. 4, 22 January 1995t¬to¬AIP¬license¬or¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcr.jsp
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1771Eisenberg, Kłosek, and Schuss: Diffusion as a chemical reaction
flux is imposed experimentally,and thus always present no
matter what the friction,as in most laboratory situations
then both terms, viz.,

p~x,t !1
T ~x,t !v

e
,

must be retained in Eq.~4.24!. The presence of both term
insures that Eq.~4.24! is valid for all values of flux, thus for
all barrier shapes. The termT (x,t)v/e is responsible for the
difference between our analysis, e.g., of chemical reacti
and most earlier work.

Note that Eqs.~4.23! and ~4.24! recover the one-
dimensional flux of the Nernst–Planck equation~3.1! from
the two-dimensional Fokker–Planck equation. The fix
concentration boundary conditions~4.3! give in a straightfor-
ward manner the boundary conditions~3.2! for the Smolu-
chowski equation~4.21!.

V. EXIT PROBABILITIES AND EXIT TIMES

One of the goals of this paper is to calculate the statis
cal properties of each of the four kinds of trajectories,LL,
LR, RL, andRR. These trajectories are described by~con-
ditional! probability density functions, their residence time
in the reaction region~also called first passage times!, and
the fluxes of each of the four kinds of trajectories. The re
tion of these partial fluxes of probability to the flux of ions i
the Nernst–Planck equation cannot be assumed; it is on
the outputs of this paper.

In order to calculate the conditional probabilityP(LuL)
of trajectories to exit on the left, given that they entered
the left, we have to isolate the influx of probability from th
left from that on the right. Each of these unidirectional pro
ability fluxes~to use the physiologists’ words! is further split
into its cis and transcomponents, into conditional fluxes~to
use the probabilists’ words!, e.g.,

T ~L !5T ~LuL !1T ~RuL !. ~5.1!

Here T ~•! describes the flux of probability, not ions. Th
conditional probability of thecis trajectoriesLL is

P~LuL !5
T ~LuL !

T ~L !
, P~RuL !512P~LuL !5

T ~RuL !

T ~L !
,

~5.2!

as is obvious by simply counting trajectories. Using simil
notation, we obtain

P~RuR!5
T ~RuR!

T ~R!
, P~LuR!512P~RuR!5

T ~LuR!

T ~R!
.

~5.3!

Thus, the calculation of the exit probabilities of ions th
entered on the left consists in splitting the probability influ
T (L) into thecis flux T (LuL) and thetrans flux T (RuL),
and applying Eqs.~5.2!. Next, we must expressT (LuL) and
T (RuL) in terms of the solution of an appropriate bounda
value problem. In order to isolate the probability flux ente
ing on the left, we have to eliminate the flux entering on t
right. Therefore, we impose a zero-influx condition on th
right but we do not impose any boundary condition on t
left. Instead, we solve the problem in the intervalxL,x,1,
J. Chem. Phys., Vol. 102,Downloaded¬09¬Jan¬2003¬to¬144.74.27.122.¬Redistribution¬subjec
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assuming that far away in the solution on the left there is
mechanism that maintains the given concentration th
~e.g., a source!.

Interestingly, in experiments radioactive tracer is ofte
placed onjust one side of a reaction region or the other
estimate the ionic fluxesJ(RuL) and J(LuR), really the
steady state and mean value of the fluxes. In this particu
experimental situation, the probability flux and the ion
fluxes coincide, if the incoming flux in both cases is norma
ized to 1.

We denote byp(x,vuL) the pdf of trajectories that ente
the reaction region on the left while the right end is blocke
for entering trajectories. The total influx on the left is then

T ~L !5E
0

`

vp~0,vuL !dv. ~5.4!

The functionp(x,vuL) is the solution of the Fokker–Planck
equation~4.4! in the strip xL,x,1, 2`, v,` with the
boundary condition

T ~1,vuL !•n50 for v,0, ~5.5!

wheren is the unit outer normal to the boundary. The boun
ary condition~5.5! can be written as a condition for the pd
p(x,vuL) as

p~1,vuL !50 for v,0. ~5.6!

Thecis flux T (LuL) and thetransflux T (RuL) are the con-
ditional effluxes of probability defined in terms of the flu
vectorJ(x,v) of Eq. ~4.7! by

T ~LuL ![E
2`

0

J~0,vuL !•ndv52E
2`

0

vp~0,vuL !dv,

~5.7!

T ~RuL ![E
0

`

J~1,vuL !•ndv5E
0

`

vp~1,vuL !dv. ~5.8!

Similarly, T (RuR) is calculated from the pdfp(x,vuR) that
satisfies the Fokker–Planck equation~4.4! in the strip
0, x,xR , 2`, v,` with the boundary condition

p~0,vuR!50 for v.0. ~5.9!

As above, we have

T ~RuR![E
0

`

J~1,vuR!•ndv5E
0

`

vp~1,vuR!dv,

~5.10!

T ~LuR![E
2`

0

J~1,vuR!•ndv52E
2`

0

vp~1,vuL !dv.

~5.11!

Next, we calculate the conditional residence times, a
called mean first passage times~MFPTs!, t̄( j u i ), ~i5L,R,
j5L,R!, taken by an ion that enters at endi of the reaction
region ~with velocity pointing into the reaction region! to
reach endj of the reaction region~with velocity pointing out
of the reaction region!, given that it exits there. Note that in
general the~unconditional! mean first passage time fromi to
j is infinite, because there is a finite probability that ions w
exit on the other side and so never get toj ; that is, the time
No. 4, 22 January 1995t¬to¬AIP¬license¬or¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcr.jsp
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1772 Eisenberg, Kłosek, and Schuss: Diffusion as a chemical reaction
they take to get toj is infinite. The contribution of those
trajectories to the mean first passage time to reachj is infi-
nite and thus so is the MFPT. Theconditional MFPT is,
however, finite because conditioning selects only those
jectories that do get toj . The infinite MFPT’s found in the
analytical treatment of the mean flux11 showed clearly the
need for an explicit stochastic analysis of the problem.

Consider the conditional mean time,t̄(LuL), taken by an
ion that enters the reaction region on the left to exit t
reaction region, given that it exits on the left. Note that t
trajectories of such ions are conditioned on both end poi
of their path rather than on just the initial point. Now, t
distinguish the two cases, we define the general diffus
~i.e., random! process [x(t),v(t)] and its subset the~doubly!
conditioned random process [x* (t),v* (t)], with trajectories
that begin in the bath on the left with positive velocitie
having the steady state~but not equilibrium! distribution of
that bath, and reach the left end of the reaction region w
negative velocities~and therefore leave the reaction region!,
before they reach the right end. If the random first pass
time of any trajectory to the left is calledtL , and that to the
right is called tR , the terminal condition is the even
$tL,tR%.

The singly conditioned pdfp(x,v,tuL) is the probability
density of finding a trajectory of the~general! process
[x(t),v(t)] at the point (x,v) at time t, given that it started
on the left. The trajectory can exit either on the left or on t
right. On the other hand, the doubly conditioned p
p* (x,v,tuL,L) represents the probability density of finding
trajectory of the general process [x(t),v(t)], given that it
starts on the left and also ends on the left, that is to say, gi
that the trajectory is a member of the doubly condition
class of trajectories, the process [x* (t),v* (t)]. Note that the
trajectories [x* (t),v* (t)] form but one of the several classe
of trajectories of the unconditional process [x(t),v(t)].

The pdfp(x,v,tuL) is the solution of the time dependen
Fokker–Planck equation~4.5! with the boundary condition
~5.5!. It is shown in Ref. 7, p. 195, pp. 261–263, Eq.~9.1! in
particular, that the pdfs of the doubly and singly condition
processes are related by

p* ~x,v,tuL,L !5p~x,v,tuL !
Pr~tL,tRux,v !

Pr~tL,tRuL !
. ~5.12!

The conditional MFPT is given by7,14,15

t̄~LuL !5E
0

`E
D
E p* ~x,v,tuL,L !dx dv dt ~5.13!

5E
0

`E
D
E p~x,v,tuL !

Pr~tL,tRux,v !

Pr~tL,tRuL !
dx dv dt.

(5.14)

Denoting P(Lux,v)[Pr(tL,tRux,v) and P(LuL)
5Pr(tL,tRuL) @see Eq.~5.2!#, we can write Eq.~5.14! as

t̄~LuL !5
1

P~LuL !
E
D
E p~x,vuL !P~Lux,v !dx dv.

~5.15!

We now have to calculate the two probability function
in the double integral. The functionp(x,vuL) is the solution
J. Chem. Phys., Vol. 102,Downloaded¬09¬Jan¬2003¬to¬144.74.27.122.¬Redistribution¬subjec
a-

e
e
ts

n

th

ge

e
f

en
d

d

of the boundary value problem~4.4!, ~5.6! with a line of
sources atx5xL . The functionP(Lux,v) is the probability
that a trajectory starting at (x,v) exits on the left. It follows5

thatP(Lux,v) is the solution of the backward equation

v
]P~Lux,v !

]x
1b~x!e

]2P~Lux,v !

]v2

2Fb~x!v1
dF~x!

dx G ]P~Lux,v !

]v
50 ~5.16!

with the boundary conditions

P~Lu0,v !51 for v,0,
~5.17!

P~Lu1,v !50 for v.0.

The function P(Rux,v)512P(Lux,v) satisfies the same
backward equation,

v
]P~Rux,v !

]x
1b~x!e

]2P~Rux,v !

]v2

2Fb~x!v1
dF~x!

dx G ]P~Rux,v !

]v
50 ~5.18!

with the boundary conditions

P~Ru0,v !50 for v,0,
~5.19!

P~Ru1,v !51 for v.0.

Assuming T (L)51, the double integral
*D*p(x,vuL)dxdv is the contents of the reaction region, be-
cause nothing enters on the right. The double integral

N~LuL ![E
D
E p~x,vuL !P~Lux,v !dx dv ~5.20!

is therefore the conditional contents ofLL trajectories in the
reaction region.

It can be shown~see Appendix B! that rather than cal-
culating the double integral in Eq.~5.15!, the conditional
MFPT, t̄(LuL), can be calculated from the solution of the
following boundary value problems. First, calculate
p(x,vuL) from the boundary value problem~4.4!, ~5.6!, as
described above, then calculate the solution to anoth
boundary value problem, now withp(x,vuL) as asource
density, for an unknown quantityq(x,vuL),

Lq~x,vuL !52p~x,vuL ! for ~x,v !PD ~5.21!

with the boundary conditions

q~0,vuL !50 for v.0,
~5.22!

q~1,vuL !50 for v,0.

Then, according to Eqs.~5.15! and ~5.7! we have the nearly
symmetrical equation

t̄~LuL !5
*2`
0 vq~0,vuL !dv

*2`
0 vp~0,vuL !dv

5
2*2`

0 vq~0,vuL !dv

T ~LuL !
.

~5.23!

In view of Eq. ~5.7!, Eqs.~5.15! and~5.23! can be writ-
ten as
No. 4, 22 January 1995t¬to¬AIP¬license¬or¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcr.jsp



t

n

r

i

-

as

1773Eisenberg, Kłosek, and Schuss: Diffusion as a chemical reaction
T ~LuL !5
N~LuL !

t̄~LuL !
, ~5.24!

in analogy with the unconditional formula given in Refs. 4
13, and 15.

The other conditional mean first passage times can
calculated from

t̄~RuL !5
1

P~RuL !
E
D
E p~x,vuL !P~Rux,v !dx dv,

~5.25!

whereP(Rux,v) is the probability that a trajectory starting a
(x,v) exits on the right,

t̄~RuR!5
1

P~RuR!
E
D
E p~x,vuR!P~Rux,v !dx dv,

~5.26!

and

t̄~LuR!5
1

P~LuR!
E
D
E p~x,vuR!P~Lux,v !dx dv.

~5.27!

VI. CIS AND TRANS PROBABILITIES AND FLUXES

We turn now to the large friction expansion of the pd
p(x,vuL) considered in Sec. V. The large friction expansio
of the pdf p(x,vuL) is not as obvious as that ofp(x,v) in
Sec. IV. The difference between the expansions arise fro
the boundary conditions and their interpretation. Since n
restrictions were imposed at the boundary on entering a
exiting trajectories in the treatment of Sec. IV, no bounda
layers arise in the Smoluchowski expansion~4.13!–~4.22!. In
contrast, in Sec. V a boundary condition~5.6! is used to
separate unidirectional probability fluxes, and so a bounda
layer is present atx51. A similar situation was considered in
Refs. 16, 14, and 17.

Now, we further split the unidirectional probability
fluxes into theircis and trans components. In particular, to
split the incoming flux from the left into its components, we
simply take the flux of the Fokker–Planck equation, with th
boundary condition~5.6! at x50 that the Smoluchowski ex-
pansion~4.22! produces, and split it into itscis and trans
components. Specifically, the solution is given in the str
0, x,1, 2`, v,` by the expansion

p~x,vuL !5
e2v2/2e

A2pe
Fp~xuL !1b.l.~x,v !1

T v

e
1h.o.t.G ,

~6.1!

with the following notation: b.l.(x,v) means the value at the
point (x,v) of the boundary layer formed atx51, h.o.t.
means ‘‘higher order terms in powers of 1/B.’’ The reduced
density,p(xuL), is the solution of the Smoluchowski equa
tion

d

dx S 1

b~x!
$@F8~x!p~xuL !#81ep9~xuL !% D50

for 0,x,1 ~6.2!
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with an absorbing condition at the right end point.@The right
end point for p(xuL) is actually located atxR*51
1 O(1/b).14,16,17# The boundary layer, b.l.(x,v) that arises
from the boundary condition atx51, is transcendentally
small atx50,14,17 because the reaction region@0,1# is much
longer than the boundary layer on the right. Nearx50 the
boundary layer function~from the other side! b.l.(x,v), is a
smooth function. The probability current~i.e., the probability
flux! of p(xuL), denotedT , is constant in the interval 0, x
,1. This gives

p~xuL !5
T

e
e2F~x!/eE

x

1

b~s!eF~s!/eds, ~6.3!

so that

p~0uL !5
T

e
e2F~0!/eE

0

1

b~x!eF~x!/edx. ~6.4!

Now, the incoming probability current on the left~none flows
on the right!! is given by

T ~L !5E
0

`

vp~x,vuL !dv5A e

2p
p~0uL !

1E
0

`

b.l.~0,v !vdv1
T

2
, ~6.5!

and the outgoing flux on the left is given by

T ~LuL !52E
2`

0

vp~x,vuL !dv

5A e

2p
p~0uL !2E

2`

0

b.l.~0,v !vdv2
T

2
.

~6.6!

Neglecting the contribution of the remote boundary layer,
we may, and using Eqs.~6.1! and ~6.4!, we obtain

T ~L !5
T

A2pe
e2F~0!/eE

0

1

b~x!eF~x!/edx1
T

2
. ~6.7!

The trans flux is given by

T ~RuL !5T ~L !2T ~LuL !5T . ~6.8!

Now, by Eq.~5.2!,

P~RuL !5
T ~RuL !

T ~L !

5
T

T

A2pe
e2F~0!/e*0

1b~x!eF~x!/edx1
T

2

5
1

1

A2pe
e2F~0!/e*0

1b~x!eF~x!/edx1
1

2

. ~6.9!

If the incoming probability fluxT (L) is normalized to 1,
thenT 5P(RuL). This gives
No. 4, 22 January 1995t¬to¬AIP¬license¬or¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcr.jsp
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1774 Eisenberg, Kłosek, and Schuss: Diffusion as a chemical reaction
T 5
1

1

A2pe
e2F~0!/e*0

1b~x!eF~x!/edx1
1

2

. ~6.10!

It should be noted thatT does not necessarily represe
the physical ionic current, because in the physical probl
there are no boundary conditions at the ends of the reac
region that correspond to the no flux conditions introduced
the mathematics to define and separate the unidirectio
probability fluxes.

In the limit of largeb, we obtain

P~RuL !5A2pe
eF~0!/e

*0
1b~x!eF~x!/edx

. ~6.11!

Similarly,

P~LuR!5A2pe
eF~1!/e

*0
1b~x!eF~x!/edx

. ~6.12!

Trajectories must go either to the left or right—they are n
stored in the channel—and so the probabilities ofcis trajec-
tories are simply the complement of thetrans probabilities,
as mentioned previously in Eqs.~5.2! and ~5.3!,

P~LuL !512P~RuL ! ~6.13!

and

P~RuR!512P~LuR!. ~6.14!

Nernst–Planck flux in terms of conditional exit
probabilities

It has always been intuitively clear that a relation shou
exist between the unidirectional fluxes of the flux formu
~3.6! and the conditional probabilities of the trajectories th
carry that flux. However, the proper stochastic definition
those unidirectional fluxes and conditional probabilities w
not clear ~see Ref. 11! and so the implementation of the
intuition was not known.

Our analysis shows that the conditional fluxes~i.e., the
unidirectional fluxes of ions! are proportional to the condi-
tional exit probabilities~6.11! and~6.12!, the proportionality
constant being the concentration at the source of the tra
tories. In particular, the Nernst–Planck flux formula Eq.~3.6!
can be written as

J5a@CLP~RuL !2CRP~LuR!#, ~6.15!

where the numerical factora is given by

a5A 1

2pe
. ~6.16!

The net ionic flux from left to right, Eq.~3.6!, is therefore the
difference between the probability fluxes, normalized by t
concentrations on both sides of the reaction region.@If
CL , CR are time dependent, Eq.~6.15! can be generalized
by solving the time dependent Smoluchowski equatio
~4.20! and ~3.7!.#

Simulations show@Ref. 11, Eq.~7.5!# that the flux for-
mula Eq.~3.6! can be expressed in terms of the relative nu
bers of random trajectories that start inside the reaction
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gion at a distanceDx from an absorbing boundary and make
it across the reaction region to the other boundary. Thes
numbers were related to an analytical expression@Ref. 11,
Eq. ~2.24!# that was derived from the Nernst–Planck model
Equation~6.15! provides a probabilistic derivation of both
the analytical and statistical results of Ref. 11.

Physiologists have estimated the components~‘‘unidirec-
tional fluxes’’! of the ~mean steady-state! net flux by placing
radioactive tracer on one side of a system or the other sin
radioactive isotopes became available in the 1940s. Thus, t
physiologists’ unidirectional fluxes correspond precisely to
one set of trajectories, described by one set of condition
probabilities, or the other, as they should if the probabilistic
and tracer analysis consider the same trajectories, albeit
quite different experimental and theoretical traditions. Note
however, that physiologists have usually ignored the exis
ence of cis fluxes and their contribution to open-channel
noise~see Sec. IX!, perhaps because their mean value is zer
in the steady-state measured in traditional experiments.

VII. RESIDENCE TIMES (MFPTs)

The conditional mean first passage timest̄( i u j ), ~i
5L,R, j5L,R! can also be calculated in the large friction
limit. We use the approximation Eq.~6.1! with Eq. ~6.3! for
p(x,vuL) in the double integral in Eq.~5.15!. The large fric-
tion approximation toP(Rux,v) is found directly from the
backward equation~5.18!. Using the expansion

P~Rux,v !5P0~Rux,v !1
1

B
P1~Rux,v !1••• , ~7.1!

we find thatP0(Rux,v) is independent ofv @we denote it by
P0(Rux)# and that it satisfies the reduced backward equatio

e
d2P0~Rux!

dx2
2F8~x!

dP0~Rux!

dx
50 ~7.2!

with the boundary conditions

P0~Ru0!50, P0~Ru1!51. ~7.3!

Thus,

P0~Rux!5
*0
xeF~s!/eds

*0
1eF~s!/eds

. ~7.4!

Next, we combine the expression~5.25! for t̄(RuL) and the
expression~6.11! for P(RuL); the expressions~6.1! and~6.3!
for p(x,vuL); and the expressions~7.1! and~7.4! for P(Rux),
and write

t̄~RuL !5
1

e*0
1eF~s!/eds

E
0

1

e2F~x!/e

3F E
x

1

b~s!eF~s!/edsE
0

x

eF~s!/edsGdx ~7.5!

after normalizing the entrance probability flux density
vp(x,vuL) by T (L)51. Similarly, we obtain

t̄~LuL !5
T

e~12T !*0
1ef~x!/edx

E
0

1

e2F~x!/eds
No. 4, 22 January 1995t¬to¬AIP¬license¬or¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcr.jsp
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3F E
x

1

b~s!eF~s!/edsE
x

1

eF~s!/edsGdx, ~7.6!

where T is given by Eq.~6.10!. In particular, for a free
particle ~no external field! with large constant friction@b(x)
5 const.@1# we obtain

t̄~LuL !5
1

3
A2p

e
. ~7.7!

The mean time an ion spends in the reaction regio
given that it entered on the left, is given by

t̄~L !5 t̄~LuL !P~LuL !1 t̄~RuL !P~RuL !

5E
D
E p~x,vuL !@P~Lux,v !1P~Lux,v !#dx dv

5E
D
E p~x,vuL !dx dv. ~7.8!

Using the same approximations as above, we find that

t̄~L !5A2p

e

*0
1e@F~0!2F~x!#/e*x

1b~s!eF~s!/eds dx

*0
1b~x!eF~x!/edx

. ~7.9!

In particular, for a free particle,

t̄~L !5
1

2
A2p

e
. ~7.10!

We observe that as the frictionb(x)→` @see Eq.~4.8!#,
the trans probability P(RuL) vanishes and thetrans time
t̄(RuL) becomes infinite. Obviously,P(LuL)→1, but t̄(LuL)
remains finite, namely,

lim
b~x!→`

t̄~LuL !5T `E
0

1

e2F~x!/eds

3F E
x

1

b0~s!eF~s!/edsE
x

1

eF~s!/edsGdx,
~7.11!

where

T `5A2p

e

eF~0!/e

*0
1b0~ t !e

F~x!/edx*0
1eF~x!/edx

. ~7.12!

In the large friction limit, the mean time that an ion enterin
on the left spends in the reaction region is given by

lim
b~x!→`

t̄~L !5A2p

e

*0
1e@F~0!2F~x!#/e*x

1b0~s!eF~s!/edsdx

*0
1b0~x!eF~x!/edx

.

~7.13!

The ~apparently paradoxical! finite value oft̄(LuL) and
of t̄(L) even in the large friction limit can be understood a
follows. Consider the simplest example of an overdamp
free particle, with constant frictionb, that enters the reaction
region on the left with positive velocityv0. On the average,
it will penetrate into the reaction region a distanc
x05v0/b.

18 The mean time for a Brownian particle with
diffusion coefficientD to exit the interval@0,1# from an ini-
J. Chem. Phys., Vol. 102,Downloaded¬09¬Jan¬2003¬to¬144.74.27.122.¬Redistribution¬subjec
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s
d

tial point x0 is x0(12x0)/D.
5 SinceD is inversely propor-

tional to b,18 we find that the mean exit time remains finite
even asb→ `.

VIII. HIGH BARRIERS

The traditional analysis of chemical kinetics~Ref. 4!
uses rates to describe flux over large barriers, and so we
should specialize our results to that case. We consider, with-
out loss of generality, the unidirectional flux intoCR50, for
the overdamped~Smoluchowski! case of high friction, put-
ting a source atx5xL and an absorbing boundary atx51.
The Smoluchowski equation is given by

d

dx S 1

b~x!
$@F8~x!p~xuL !#81ep9~xuL !% D52d~x2xL!,

~8.1!

with the boundary condition

p~1uL !50. ~8.2!

The solution of Eqs.~8.1!, ~8.2! is

p~xuL !5
T

e
e2F~x!/eE

x

1

b~s!eF~s!/eH~s2xL!ds, ~8.3!

whereH(x) is the Heaviside step function. Now, we assume
that the potentialF(x) forms a well with its bottom atx50,
say, and with a top at a pointx5xC , where 0, xC,1. Small
e represents a high barrier.

Assuming a constant concentration,CL , at x50, we get
from Eq. ~8.3! in the limit of smalle

T 5
CLvC

b~0!A2pe
e2DF/e, ~8.4!

where the barrier height is given by

DF[F~xC!2F~0!

and

vC[A2F9~xC!,

see Ref. 11.
This equation isnot identical to Kramers’ formula4 be-

cause that traditional result expresses the flux in terms of the
total population of reactant molecules rather than their con-
centration. The reactant population is the integral ofp(xuL)
in the reactant well, that is,

NL[E
xL

xC
p~xuL !dx.

Using Eq.~8.3!, we obtain Kramers’ result,4

T 5
NLv0vC

2pb~0!
e2DF/e, ~8.5!

where

v0[AF9~0!.

It is interesting to calculate the conditional MFPTs in the
limit of a high barrier. Assuming for simplicity thatb(x)5b
5const., we obtain fore !1 ~see Appendix C!,
No. 4, 22 January 1995t¬to¬AIP¬license¬or¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcr.jsp
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t̄~RuL !;
p

2A 8

2p
21

b

vC
2

~8.6!

and

t̄~LuL !;
2p

v0
. ~8.7!

It is remarkable that the conditional MFPTs are independe
of the barrier height in this limit. But the conditional mean
first-passage timet̄(RuL) @of Eq. ~8.6!# is a property of just
those trajectories that cross the barrier and make it to t
other side. The other trajectories—theLL ones—do not
cross the barrier at all; they exit at the absorbing bounda
after their~conditional mean! first-passage timet̄(LuL), cf.
Eq. ~8.7!.

IX. SUMMARY AND DISCUSSION

A. Flux and high friction

In this paper, we show that the full Langevin equation
rather than the reduced Smoluchowski equation, is needed
describe ions diffusing from one concentration to anothe
whatever the friction. Even if ionic motion along the trajec
tories of the Langevin equation~3.9! is grossly overdamped,
the system is not in equilibrium because flux is present. T
velocity distribution is not Maxwellian@see Eq.~4.24!#, but
rather contains an asymmetric term, proportional to the flu
of ions. In addition, the displacement and velocity of ove
damped ions are not independent, as is the case in equi
rium or nearly equilibrium systems~e.g., systems with high
barriers!, but rather significantly correlated.@Indeed, that is
why flux flows in the consistent treatment of high friction
given in Eqs.~4.23! and ~4.24!.# It follows that the joint
probability density function of displacement and velocit
does not factor into a solution of the Smoluchowski~Nernst–
Planck! equation multiplied by a Maxwellian density of ve-
locities ~that has zero net flux!, as is usually stated.4,6,13

Obviously, a theory that implies zero flux should not b
used to predict flux. The traditional Smoluchowski limit im
plies a Maxwellian distribution of velocities and zero flux. I
cannot consistently describe a finite flux. It should not b
used to describe experiments performed away from equil
rium, in which flux is present.

B. Chemical reaction as a diffusion

Our analysis shows that diffusion between concentrati
boundary conditions can be described as a chemical react
without approximation, no matter what the shape of the p
tential barrier between reactant and product, because e
unidirectional flux in Eq.~6.15! and Eq.~3.6! is strictly pro-
portional to the concentration at its source, for a potenti
barrier of any shape. Thus, each unidirectional flux—an
their difference the net flux—follow the law of mass actio
~if barriers are independent of concentration! no matter what
the shape of the potential barrier that limits conversion~i.e.,
diffusion! from reactant to product, if they flow between re
gions of fixed concentrations.
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Chemistry is built upon the idea of a reaction, in the
simplest caseA
B, where a boldface uppercase letter, e.g.
A, represents the concentration of speciesA, B likewise, and

 represents the process convertingA to B. In the simplest
case, the process is described by the law of mass actio
giving a rate of reaction~i.e., rate of change of concentration
of productB! described by a rate constant, independent o
time and concentration ofA andB. The simplest case is the
paradigm of a chemical reaction; it is the archetype that i
taught in elementary courses, and it is the mold into whic
other more complex cases are cast.

The idea of a chemical reaction is generalized in phys
cal chemistry into a process in a multidimensional phas
space, in which the movement of a particle along the reactio
path, over barriers and through wells of potential, describe
the conversion ofA to B, and the concentrations ofA andB
generally appear as boundary conditions. In most cases, th
generalization has been studied in the limit of high barriers
because the speciesA andB are well defined in that case,
and the analysis of the conversion process is dramatical
simplified if flux is determined only at one location, the top
of a barrier ~see Sec. VIII!. One difficulty with the high
barrier approximation, however, is that it implies a near equ
librium, nearly no flux system. Another is that it tends to
obscure the role of boundary conditions, namely the conce
trations of reactantA and productB. If of interest, the effect
of boundary conditions and flux must be reinstated later, a
ter they have been approximated away, and that is difficult t
do without introducing inconsistencies.

The analysis presented here gives boundary condition
and partial differential equations equal weight, thereby in
creasing the reality and complexity of the mathematica
analysis. Nonetheless, analytical expressions for the flux a
derived with simple physical and stochastic meaning; th
approximation of high barriers can still be invoked, but now
after the problem has been solved and the role of bounda
conditions and flux has been displayed explicitly and consis
tently.

To our surprise, this approach, that starts by making
simple problem complex~because it does not assume large
barriers!, leads eventually to a simple result, valid under a
range of conditions including large barriers. In fact, the flux
formula Eq.~6.15!, true for all shapes and sizes of potentia
barriers, is so simple that further approximation seems un
necessary, and unwise. For example,aP(BuA)CA is the
~unidirectional! flux of A⇀B andaP(AuB)CB is the flux of
B⇀A, with the obvious change of notation from location to
species. Indeed, the chemical reaction

A

kb

kf
B, ~9.1!

provides an irresistible generalization of the idea of rat
‘‘constant’’ to chemical reactions with concentration bound-
ary conditions and arbitrary potential barriers, using the ob
vious definitionskf5aP(BuA) andkb5aP(AuB).

With this generalization, the law of mass action~with
rate constant independent of concentration! will be trueeven
if barriers are low, if concentrations at the boundaries are
maintained and the barriers are independent of concentratio
o. 4, 22 January 1995¬to¬AIP¬license¬or¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcr.jsp
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Of course, the same chemical reaction doesnot follow
simple rate laws if other boundary conditions are impos
For example, if the same chemical reaction~i.e., a stochastic
process with the same dynamics, with the same profile
potential barriers, same diffusion coefficients and so on, d
fering only in its behavior at the boundaries of the system! is
studied after a sudden change of concentration of specieA,
the time course of the relaxation of concentration ofA or B
will not in general be exponential~if barriers are low for
example! and simple rate laws do not apply. The law of ma
action does not apply in its simplest formulation. We see th
that the experimental imposition of concentration bounda
conditions may lead to significant simplification in analys
e.g., in the case of small barriers.

Our version of the law of mass action may be useful in
number of other cases as well as in the case of small barr
~1! when the other approximations of high barrier theo
~e.g., location away from the boundary! are not appropriate;
~2! when the dependence on boundary conditions is itself
practical interest~as in the biological application!; ~3! when
species are not well determined, for example, when an in
mediate species lying ‘‘between’’A andB is observed ex-
perimentally and that species does not lie between two h
barriers.

C. Numerical simulations

The explicit formulas for the conditional probabilities
fluxes, contents, and residence times given in this paper
valid when friction is large. In many applications, howeve
closed form expressions for the solution of the Fokke
Planck equation, or its approximation, are not available,
example, if the system is not overdamped, if ions intera
directly with each other, or if the Fokker–Planck equation
coupled to other differential equations, e.g., to the Poiss
equation determining the electrostatic potential. In the
cases, numerical simulations of trajectories or numerical
lutions of the partial differential equations are needed.

Even in the most general case, the conditional probab
ties, fluxes, contents, and residence times given in this pa
~and the relations among them! remain well defined. The
probability measures can be estimated from numerical sim
lations of ion dynamics if analysis is not practicable. Th
formulation presented here allows much more efficient sim
lations of trajectories than used previously11 because all tra-
jectories are used to estimate parameters.

When simulating the Langevin equation, trajectori
have to be started atx5 0 andv. 0, and atx51 andv, 0.
The velocitiesv should be chosen at random, from the no
equilibrium distribution Eq.~6.1!, cf. Eq.~4.24!. Whenever a
trajectory exits the strip domain, it should be terminated.

The following data should be recorded and process
according to the formulas of Sec. V:

~1! The number ofRL, LR, LL, andRR trajectories.
~2! The duration of the trajectory.
~3! The exit point of the trajectory, that is,L or R, andv at

the exit point.

Even in the general case, where dynamics are complex
do not follow the Langevin equation, diffusion can still b
J. Chem. Phys., Vol. 102,Downloaded¬09¬Jan¬2003¬to¬144.74.27.122.¬Redistribution¬subjec
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treated as a chemical reaction with no approximation, pro
vided that the potential functions and diffusion coefficients
are not significant functions of the concentration of reactan
or product. If they are significant functions, the representa
tion of the system as a chemical reaction will probably mis
lead more than inform and so should be replaced by dire
consideration of the experimental observables, e.g., conce
trations and fluxes in traditional experiments.

D. Biological applications

This work was motivated by the biological problem that
interested Fick, the motion of ions across biological mem
branes. In the biological context~of, for example, ion perme-
ation through channels in membranes8!, barriers cannot be
assumed large because many channels are selected by ev
tion to pass large currents and fluxes;19 concentration bound-
ary conditions are unavoidable~in contrast to chemical prob-
lems, where concentration boundary conditions are ofte
obscured by high barriers!; and stochastic properties are rou-
tinely measured. Thus, we are forced to a stochastic theory
ionic permeation, the first installment of which is presente
here; the stochastic analysis of diffusion between concentr
tion boundary conditions.

Ionic channels determine the diffusive flows in the bio-
logical systems that originally interested Fick. Before chan
nels were studied individually, macroscopic currents wer
usually interpreted as flows through a fixed area of homoge
neous membrane. We now know that ions flow through ind
vidual protein molecules—ion channels—that can open an
close. The number of open channels is anything but fixed
the phenomenon of gating, and thus the time dependent ph
nomena of channels, arise from changes in the number
open channels and thereby in the area of membrane throu
which current flows. Traditional interpretations of macro-
scopic currents must be discarded, because the macrosco
currents come from a varying number of channels; trad
tional theories can be retained, but now as descriptions
flow through one protein molecule, a single open channel.

A single open channel is a unique object for investiga
tion. It is a single protein molecule performing a natura
function of great biological and medical significance, fully as
important for the life of cells as the catalytic functions of
most proteins~i.e., enzymes!. The mechanism of channel
function is much simpler than of enzymes, because covale
bonds do not change as ions permeate channels. For mille
~at least since Aristotle!, a goal of biological research has
been the prediction of function, given structure. For nearly
century and a half, ever since molecules were discovered a
kinetic theory was invented, biologists have dreamed of pre
dicting function from atomic structure, using physical theory
Channels are a more promising subject for such resear
than any class of proteins of comparable biological an
medical importance, in the opinion of at least one of us.19

E. Open channel noise and the counter model

Current flow through a single open channel is noisy, s
characteristically noisy that it begs for a stochastic descrip
tion and identification, if not analysis. A stochastic theory o
No. 4, 22 January 1995t¬to¬AIP¬license¬or¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcr.jsp



open channel noise has been presented by Frehland and
co-workers20 and has been used to interpret experimental
results21–23in normal conditions and when ‘‘slow ions’’~i.e.,
blockers! are present. This theory, however, describes the
movement of ions in solution by Eyring’s rate theory, origi-
nally derived to describe the flux of atoms in gas phase
chemical reactions, occurring without friction or interatomic
collisions. Rate theory can be reworked into a transition state
theory useful in condensed phases, like liquids or proteins
where friction and interatomic collisions dominate kinetics,24

but the theory, reworked or not, requires potential barriers to
be large and far removed from the ends of the channel@see,
e.g., Eq.~8.4!#; in either case the role of concentration gra-
dients is obscured, even though concentrations have promi-
nent effect in diffusion and biological phenomena.

The traditional description of ionic flow by the Nernst–
Planck equation with prescribed concentration boundary
conditions gives an expression for the net ionic flux as a
function of the concentrations and the potential in the chan-
nel @see Eq.~3.6!#. This function depends linearly on the
concentrations and depends exponentially on the values of
the potential at the endpoints~and on its exponential inte-
gral!. Thus, for example, if the values of the potential at the
endpoints are equal, exchanging the concentrations reverses
the flux.

There are several properties of the ionic current mea-
sured in real single channels that are hard to accommodate in
Nernst–Planck theories. These include current fluctuations,
nonlinear dependence of the flux on concentration~satura-
tion!, blocking of the channel by slow ions, properties of
ratios of unidirectional fluxes, asymmetry of channel phe-
nomena, and so on~Ref. 8, pp. 374–389!. In addition,
Nernst–Planck models exclude the notion of a channel that
admits one ion at a time~a single ion channel!.

In order to account for these phenomena in single ion
channels, we are analyzing a stochastic model, in which the
channel is viewed as a paralyzable counter, similar to the
Geiger counter of radioactive decays. In this model a single
ion channel is ‘‘paralyzed’’ for the time it is occupied by an
ion. The randomness of the model arises because the motion
of an ion inside the channel is diffusive and therefore ran-
dom, so are the time spent in the channel and the time to the
arrival of the next ion to the channel; and also ions can enter
and exit the channel on either side with certain probabilities.

The random times the channel is occupied or empty ac-
count for the fluctuations in open channel current seen ex-
perimentally, as they do in theories of shot noise. The finite
time that an ion has to spend inside the channel before exit-
ing accounts for the saturation in flux as concentration is
increased. It also accounts for blocking of the channel by
slow ions.

The stochastic model of the ionic current requires the
stochastic description of the ionic trajectories presented here.
The stochastic analysis of an ionic channel as a counter of
ions will be given in a separate publication.25
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APPENDIX A: NONDIMENSIONALIZATION

We introduce the following notation. The two sources
are placed at the origin and atd. We assume that the motion
of an ion of massm and total chargeze, where z is the
valence of the ion, diffusing in a liquid bath, can be de-
scribed by the Langevin equation

m
d2x̃

dt̃ 2
1mb̃~ x̃!

dx̃

dt̃
1ze

dF̃~ x̃!

dx̃
5A2mkTb̃~ x̃!

dw̃

dt̃
,

~A1!

where b̃( x̃) is the state dependent friction coefficient~per
unit mass!, k Boltzmann’s constant,T is absolute tempera-
ture, andw̃ is standard Brownian motion. The functionF̃( x̃)
represents the electric potential in the reaction region. We
introduce dimensionless variables according to Table I. Note
that the dimensionless length of the reaction region is 1. The
scaling factor for the potential,DF, was chosen to represent
the barrier height, if one is well defined. Otherwise it is the
thermal energy. This scaling is necessary to keep track of the
various orders of magnitude in the Fokker–Planck equation
when we use the high friction expansion in Secs. VI and VII.
Following earlier practice,5,15 we usee to describe nondi-
mensional temperature; it need not be small.

APPENDIX B: CALCULATION OF THE CONDITIONAL
MFPT FROM BOUNDARY VALUE PROBLEMS

The conditional contents,N(LuL), of LL trajectories in
the channel is given by the double integral Eq.~5.20! if
T (L)51, as mentioned in Sec. V. We show below that

N~LuL !52E
2`

0

vq~0,vuL !dv, ~B1!

whereq(x,vuL) is the solution of the boundary value prob-
lem Eqs.~5.21! and ~5.22!.

First, we observe that according to Ref. 15, the probabil-
ity of exit at x50, given the initial point (x,v) in D , is the
total efflux of probability on the left in a stationary problem
with a source at (x,v) and no influx atx50 andx51. That
is,

Pr~tL,tRux,v ![P~Lux,v !52E
2`

0

hp~0,hux,v !dh,

~B2!

whereP(Lux,v) is as defined in Sec. V, andp(j,hux,v) is
the solution of the boundary value problem

Lj,h p~j,hux,v !52d~j2x!d~h2v !

for ~j,h!PD and ~x,v !PD ~B3!

with the no influx boundary conditions

p~0,hux,v !50 for h.0 ~B4!

p~1,hux,v !50 for h,0. ~B5!
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From the definition Eqs.~5.20! and ~B2!, it follows that

N~LuL !52E
D
E Fp~x,vuL !E

2`

0

hp~0,hux,v !dhGdx dv

52E
2`

0

hq~0,huL !dh,

where we define

q~j,huL ![E
D
E p~x,vuL !p~j,hux,v !dx dv.

Applying the forward operatorL @in the variables~j,h!# to
q(j,huL) and noting that it can be exchanged with the
double integral because it acts on nonintegrated variables, we
obtain from Eq.~B3!,

Lj,hq~j,huL !52E
D
E p~x,vuL !d~j2x!

3d~h2v !dx dv

52p~j,huL !, ~B6!

which is Eq.~5.21!. The boundary conditions Eq.~5.22! fol-
low from Eqs.~B4! and ~B5!.

APPENDIX C: THE CONDITIONAL MFPT FOR HIGH
BARRIERS

With the assumptions of Sec. IX, we have to evaluate
t̄(RuL) from Eq. ~7.5! in the limit e !1. First, we note that
in this limit

I[E
0

1

eF~s!/eds;
A2pe

vC
eF~xC!/e. ~C1!

Next, we define

C~x![E
0

x

eF~s!/eds

and note thatC~1!5I . For b(x)5b5const.,

t̄~RuL !5
b

eI E0
1

e2F~x!/e@ I2C~x!#C~x!dx. ~C2!

Asymptotically, C(xC);
1
2I and so, for simplicity, we as-

sume the exact equality

C~xC!5 1
2 I . ~C3!

Then, the integrand in Eq.~C2! peaks atxC . Indeed, writing
the exponent of the integrand in the form

U~x![
2F~x!

e
1 log@ I2C~x!#1 log C~x!, ~C4!

we find that

U8~x!5
2F8~x!

e
1

C8~x!

C~x!
2

C8~x!

I2C~x!
,

U9~x!5
2F9~x!

e
1

C9~x!

C~x!
2

C82~x!

C2~x!
2

C9~x!

I2C~x!

2
C82

@ I2C~x!#2
.

Settingx5xC in Eq. ~C5!, noting thatF8(xC)50, and using
Eq. ~C3!, we find thatU8(xC)50. Furthermore, using Eq.
~C1!, we find that

U9~xC!5
vC
2

e S 12
8

2p D[2
v82

e
, ~C5!

where

v8[vCA 8

2p
21. ~C6!

It follows that the integral in Eq.~C2! can be calculated by
the Laplace method,26 yielding Eq.~8.6!.

The asymptotic calculation oft̄(LuL) is simpler, because
the integrand in Eq.~7.6! is maximal atx50. Assuming that
F(x) has a local minimum atx50, using the Laplace expan-
sion, and Eq.~C1!, we obtain Eq.~8.7!.
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Comment on Nadler, Schuss, Singer (2005) and Singer and Schuss (2005) 
Bob Eisenberg April 16 2010 

 
The boundary layer that is the problem in the Eisenberg, Klosek, Schuss paper is not a 
practical problem because measurements should not and usually are not taken at the 
absorbing electrode. Rather a “four electrode arrangement” is used, as is described in 
electrochemistry textbooks: a separate pair of electrodes are used to measure potential 
that carry no current at all. These simply report the electrical potential at some location 
away from the absorbing electrode. Precautions are taken that the concentrations used in 
analyzing experiments also do not include the boundary layer at the absorbing boundary. 
 
A significant difficulty with the EKS, NSS and SS papers is—as it is in all these 
treatments (Eisenberg 2006)—the cavalier treatment of charged solutes as if they do not 
generate an electrical potential. The papers in this group do not compute the potential 
from the charge distribution. Thus, the boundary layers and behaviors reported would in 
practice be expected to be very different for solutions of ions like NaCl, or solutions with 
mixed monovalent and divalent ions. 
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A NOTE ON THE NON-DIMENSIONALIZATION IN EKS*

Boaz Nadler
September 1998

We start from the dimensional equation

m¨̃x+ β̃ ˙̃x+ ze
d̃φ

dx̃
=

√
2β̃kT ˙̃w (1)

In this equation, w̃ is dimensional, with dimension [sec1/2]. We scale the variables in the
following way,

x̃ = Lx, φ̃ =
kT

ez
φ, t̃ =

L√
kT/m

t, β̃ =

√
kT/m

L
β. (2)

Insertion of this scaling into the dimensional equation, and use of the scaling identity
w1(αt) =

√
αw2(t) for Gaussian noise, yields the non-dimensional equation,

d2x

dt2
+ β

dx

dt
+
dφ

dx
=

√
2βẇ. (3)

In this equation ẇ denotes non-dimensional standart white noise.
We now consider the value of the non-dimensional parameter β. From the scaling we

have that

β = L

√
m

kT
β̃ =

L

D

√
kT

m
(4)

With a typical value of L = 30Å for the length of the channel, D = 10−10m/s2 for
the diffusion coefficient, and m = 60mp, where mp is the proton’s mass, we obtain that
β = 6100.

We now compute the average non-dimensional time to enter the channel, assuming
free diffusion outside. This dimensional time is given by

τarrival =
1

2πρDrch

(5)

Thus the non dimensional time is given by

tarrival =

√
kT/m

L
τarrival. (6)

With typical values ρ = 100mM, rch = 3Å, and D = 10−10m/s2, we obtain that in non
dimensional units, tarrival = 6000, i.e. of the order of β.

∗Eisenberg, R. S., Klosek, M. M., and Schuss, Z. (1995) Diffusion as a chemical reaction:
Stochastic trajectories between fixed concentrations. J. Chem. Phys. 102, 1767-1780.
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We consider the trajectories of particles diffusing between two infinite baths of fixed concentrations
connected by a channel, e.g., a protein channel of a biological membrane. The steady state influx and
efflux of Langevin trajectories at the boundaries of a finite volume containing the channel and parts of the
two baths is replicated by termination of outgoing trajectories and injection according to a residual phase
space density. We present a simulation scheme that maintains averaged fixed concentrations without
creating spurious boundary layers, consistent with the assumed physics.

DOI: 10.1103/PhysRevLett.94.218101 PACS numbers: 87.16.Dg, 83.10.Mj
Introduction.—We consider particles that diffuse in a
domain � connecting two regions, where fixed, but pos-
sibly different, concentrations are maintained by connec-
tion to practically infinite reservoirs. This is the situation in
the diffusion of ions through a protein channel of a bio-
logical membrane that separates two salt solutions of dif-
ferent fixed concentrations [1].

Continuum theories of such diffusive systems describe
the concentration field by the Nernst-Planck equation with
fixed boundary concentrations [1–4]. On the other hand,
the underlying microscopic theory of diffusion describes
the motion of the diffusing particles by Langevin’s equa-
tions [2,4–6]. This means that on a microscopic scale there
are fluctuations in the concentrations at the boundaries.
The question of the boundary behavior of the Langevin
trajectories (LT), corresponding to fixed boundary concen-
trations, arises both in theory and in the practice of particle
simulations of diffusive motion [7–14].

When the concentrations are maintained by connection
to infinite reservoirs, there are no physical sources and
absorbers of trajectories at any definite location in the
reservoir or in �. The boundaries in this setup can be
chosen anywhere in the reservoirs, where the average
concentrations are effectively fixed. Nothing unusual hap-
pens to the LT there. Upon reaching the boundary they
simply cross into the reservoir and may cross the boundary
back and forth any number of times. Limiting the system to
a finite region necessarily puts sources and absorbers at the
interfaces with the baths, as described in [15].

The boundary behavior of diffusing particles in a finite
domain � has been studied in various cases, including
absorbing, reflecting, sticky boundaries, and many other
modes of boundary behavior [16,17]. In [18] a sequence of
Markovian jump processes is constructed such that their
transition probability densities converge to the solution of
the Nernst-Planck equation with given boundary condi-
tions, including fixed concentrations and sticky bounda-
ries. Brownian dynamics simulations with different bound-
05=94(21)=218101(4)$23.00 21810
ary protocols seem to indicate that density fluctuations near
the channels are independent of the boundary conditions, if
the boundaries are moved sufficiently far away from the
channel [19]. However, as shown in [20], many boundary
protocols for maintaining fixed concentrations lead to the
formation of spurious boundary layers, which in the case
of charged particles may produce large long range fluc-
tuations in the electric field that spread throughout the
entire simulation volume �. The analytic structure of these
boundary layers was determined in [21,22], following
several numerical investigations (e.g., [23]).

It seems that the boundary behavior of LT of particles
diffusing between fixed concentrations has not been de-
scribed mathematically in an adequate way. From the
theoretical point of view, the absence of a rigorous mathe-
matical theory of the boundary behavior of LT diffusing
between fixed concentrations, based on the physical theory
of the Brownian motion, is a serious lacuna in classical
physics.

It is the purpose of this Letter to analyze the boundary
behavior of LT between fixed concentrations and to design
a Langevin simulation that does not form spurious bound-
ary layers. We find the joint probability density function of
the velocities and locations, where new simulated LT are
injected into a given simulation volume, while maintaining
the fixed concentrations. As the time step decreases the
simulated density converges to the solution of the Fokker-
Planck equation (FPE) with the imposed boundary condi-
tions without forming boundary layers.

Trajectories, fluxes, and boundary concentrations.—We
assume fixed concentrations CL and CR on the left and
right interfaces between � and the baths B, respectively,
with all other boundaries of � being impermeable walls,
where the normal particle flux vanishes. We assume that
the particles interact only with a mean field, whose poten-
tial is ��x�, so the diffusive motion of a particle in the
channel and in the reservoirs is described by the Langevin
equation (LE)
1-1  2005 The American Physical Society
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�x� ��x� _x�rx��x� �
���������������
2��x�"

q
_w;

x�0� � x0; v�0� � v0;
(1)

where ��x� is the (state-dependent) friction per unit mass,
" is a thermal factor, and _w is a vector of standard inde-
pendent Gaussian 	-correlated white noises [6].

The probability density function (PDF) of finding the
trajectory of the diffusing particle at location x with ve-
locity v at time t, given its initial position, satisfies the FPE
in the bath and in the reservoirs,

@p
@t

��v �rxp���x�"�vp

�rv � ���x�v�rx��x�	p;

p�x;v;0jx0;v0��	�x�x0;v�v0�:

(2)

In the Smoluchowski limit of large friction the stationary
solution of (2) admits the form [5]

p�x;v� �
e�jvj2=2"

�2�"�3=2

�
p�x� �

J �x� � v

"
�O

�
1

�2

��
(3)

where the flux density vector J �x� is given by

J �x� � �
1

��x�

�
"rp�x� � p�x�r��x�

�
�O

�
1

�2

�
;

and p�x� satisfies

�r � J �x� � r �
1

��x�
f"rp�x� � p�x�r��x�g � 0:

In one dimension, the stationary PDFs of velocities of the
particles crossing the interface into the given volume are

pL�v� 
e�v2=2"�������

2�"
p f1� Jv

"CL
g

1
2 �

J
CL

�������
2�"

p
for v > 0;

pR�v� 
e�v2=2"�������

2�"
p f1� Jv

"CR
g

1
2 �

J
CR

�������
2�"

p
for v < 0;

(4)

where J is the net probability flux through the channel.
The source strengths (unidirectional fluxes at the interfa-
ces) are given by [5]

JL �

�������
"
2�

r
CL �

J

2
�O

�
1

�2

�
;

JR �

�������
"
2�

r
CR �

J

2
�O

�
1

�2

�
:

(5)
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Application to simulation.—Langevin simulations of ion
permeation in a protein channel of a biological membrane
have to include a part of the surrounding bath, because
boundary conditions at the ends of the channel are un-
known. The boundary of the simulation has to be interfaced
with the bath in a manner that does not distort the physics.
This means that new LT have to be injected into the
simulation at the correct rate and with the correct distribu-
tion of displacement and velocity, for otherwise, spurious
boundary layers will form [20].

Consider a single simulated trajectory that jumps ac-
cording to the discretized LE (1)

x �t� �t� � x�t� � v�t��t;

v�t��t� � v�t��1� ��t� � rx��x�t���t

�
���������
2"�

p
�w�t�;

(6)

where �w is normally distributed with zero mean and
variance �t. The trajectory is terminated when it exits �
for the first time. The problem at hand is to determine an
injection scheme of new trajectories into � such that the
interface concentrations are maintained on the average at
their nominal values CL and CR and the simulated density
profile satisfies (3).

To be consistent with (3), the injection rate has to be
equal to the unidirectional flux at the boundary (5). New
trajectories have to be injected with displacement and
velocity as though the simulation extends outside �, con-
sistently with the scheme (6), because the interface is a
fictitious boundary. The scheme (6) can move the trajec-
tory from the bath B into � from any point � 2 B and with
any velocity �. The probability that a trajectory, which is
moved with time step �t from the bath into � or from �
into the bath, will land exactly on the boundary is zero. It
follows that the PDF of the point �x;v�, where the trajec-
tory lands in � in one time step, at time t0 � t��t, say,
given that it started at a bath point ��;�� (in phase space)
is, according to (6),

Prfx�t0��x;v�t0��vjx�t���;v�t���g

�
	�x�����t�

�4�"��t�3=2

�exp
�
�
jv��� ����r������tj2

4"��t

�
�o��t�:

(7)

The stationary PDF p��;�� of such a bath point is given in
(3). The conditional probability of such a landing is
Prfx;vjx 2 �; � 2 Bg �

R
R3 d�

R
B d� Prfv�t0� � v; x�t0� � xj�;�gp��;��

Prfx 2 �; � 2 Bg
; (8)
where the denominator is a normalization constant such
that Z

R3
dv

Z
�
dxPrfx;vjx 2 �; � 2 Bg � 1:
Thus the first point of a new trajectory is chosen according
to the PDF (8) and the subsequent points are generated
according to (6), that is, with the transition PDF (7), until
the trajectory leaves �. By construction, this scheme
1-2
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recovers the joint PDF (3) in �, so no spurious boundary
layer is formed.

As an example, we consider a one-dimensional
Langevin dynamics simulation of diffusion of free particles
between fixed concentrations on a given interval.
Assuming that in a channel of length L

�CL � CR�
���
"

p

�L
� CL;
0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

C
(x

)

x
0 0.002 0.004 0.006 0.008 0.01

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

C
(x

)

x

FIG. 1 (color online). Left panel: Concentration against dis-
placement of a LD simulation with injecting particles according
to the residual distribution (9) (top trace, blue online), and
according to the Maxwellian velocity distribution (10) exactly
at the boundary (bottom trace, red online). The two graphs are
almost identical, except for a small boundary layer near x � 0 in
the residual distribution. Right panel: Zoom in of the concen-
tration profile in the boundary layer x < 0:01 �

���
"

p
=�.

21810
which means that � is sufficiently large, the flux term in
Eq. (3) is negligible relative to the concentration term. The
concentration term is linear with slope J and thus can be
approximated by a constant, so that p��� � p�0� �
O���1� in the left bath. Actually, the value of p�0� � 0
is unimportant, because it cancels out in the normalized
PDF (8), which comes out to be
Prfx; vjx > 0; � < 0g �
expf� v2

2"�1����t�2	g

2"�t
�����������������������
1� ���t�2

p � erfc
�

�����������������������
1� ���t�2

4"��t

s �
x
�t

� v
1� ��t

1� ���t�2

��
: (9)
In the limit �t ! 0 we obtain from Eq. (9)

Prfx; vjx > 0; � < 0g !
2	�x�H�v����������

2�"
p e�v2=2"; (10)

where H�v� is the Heaviside unit step function. This means
that with the said approximation, LT enter at x � 0 with a
Maxwellian distribution of positive velocities. Without the
approximation the limiting distribution of velocities is (4).
Note, however, that injecting trajectories by any
Markovian scheme, with the limiting distribution (10)
and with any time step �t, creates a boundary layer [20].

A Langevin dynamics (LD) simulation with CL � 0,
CR � 0, and the parameters � � 100, " � 1, L � 1, �t �
10�4 with 25000 trajectories, once with a Maxwellian
distribution of velocities at the boundary x � 0 (bottom
trace on the left panel and top trace on the right panel, red
online) and once with the PDF (9) (top trace on the left
panel and bottom trace on the right panel, blue online)
shows that a boundary layer is formed in the former, but not
in the latter (see Fig. 1).

An alternative way to interpret Eq. (9) is to view the
simulation (6) as a discrete time Markovian process
�x�t�;v�t�� that never enters or exits � exactly at the
boundary. If, however, we run a simulation in which par-
ticles are inserted at the boundary, the time of insertion has
to be random, rather than a lattice time n�t. Thus the time
of the first jump from the boundary into the domain is the
residual time �t0 between the moment of insertion and the
next lattice time �n� 1��t. The probability density of
jump size in both variables has to be randomized with
�t0, with the result (9).
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Brownian simulations and unidirectional flux in diffusion
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The prediction of ionic currents in protein channels of biological membranes is one of the central problems
of computational molecular biophysics. Existing continuum descriptions of ionic permeation fail to capture the
rich phenomenology of the permeation process, so it is therefore necessary to resort to particle simulations.
Brownian dynamicssBDd simulations require the connection of a small discrete simulation volume to large
baths that are maintained at fixed concentrations and voltages. The continuum baths are connected to the
simulation through interfaces, located in the baths sufficiently far from the channel. Average boundary con-
centrations have to be maintained at their values in the baths by injecting and removing particles at the
interfaces. The particles injected into the simulation volume represent a unidirectional diffusion flux, while the
outgoing particles represent the unidirectional flux in the opposite direction. The classical diffusion equation
defines net diffusion flux, but not unidirectional fluxes. The stochastic formulation of classical diffusion in
terms of the Wiener process leads to a Wiener path integral, which can split the net flux into unidirectional
fluxes. These unidirectional fluxes are infinite, though the net flux is finite and agrees with classical theory. We
find that the infinite unidirectional flux is an artifact caused by replacing the Langevin dynamics with its
Smoluchowski approximation, which is classical diffusion. The Smoluchowski approximation fails on time
scales shorter than the relaxation time 1/g of the Langevin equation. We find that the probability of Brownian
trajectories that cross an interface in one direction in unit timeDt equals that of the probability of the
corresponding Langevin trajectories ifgDt=2. That is, we find the unidirectional fluxssource strengthd needed
to maintain average boundary concentrations in a manner consistent with the physics of Brownian particles.
This unidirectional flux is proportional to the concentration and inversely proportional toÎDt to leading order.
We develop a BD simulation that maintains fixed average boundary concentrations in a manner consistent with
the actual physics of the interface and without creating spurious boundary layers.

DOI: 10.1103/PhysRevE.71.026115 PACS numberssd: 02.50.2r, 31.15.Kb, 05.40.2a

I. INTRODUCTION

The prediction of ionic currents in protein channels of
biological membranes is one of the central problems of com-
putational molecular biophysics. None of the existing con-
tinuum descriptions of ionic permeation captures the rich
phenomenology of the patch clamp experimentsf1g. It is
therefore necessary to resort to particle simulations of the
permeation processf2–7g. Computer simulations are neces-
sarily limited to a relatively small number of mobile ions,
due to computational difficulties. Thus a reasonable simula-
tion can describe only a small portion of the experimental
setup of a patch clamp experiment: the channel and its im-
mediate surroundings. The inclusion in the simulation of a
part of the bath and its connection to the surrounding bath
are necessary, because the conditions at the boundaries of the
channel are unknown, while they are measurable in the bath,
away from the channel.

Thus the trajectories of the particles are described indi-
vidually for each particle inside the simulation volume, while
outside the simulation volume they can be described only by
their statistical properties. It follows that on one side of the
interface between the simulation and the surrounding bath
the description of the particles is discrete, while a continuum

description has to be used on the other side. This poses the
fundamental question of how to describe the particle trajec-
tories at the interface, which is the subject of this paper.

We address this problem for Brownian dynamicssBDd
simulations, connected to a practically infinite surrounding
bath by an interface that serves as both a source of particles
that enter the simulation and an absorbing boundary for par-
ticles that leave the simulation. The interface is expected to
reproduce the physical conditions that actually exist on the
boundary of the simulated volume. These physical conditions
are not merely the average electrostatic potential and local
concentrations at the boundary of the volume, but also their
fluctuation in time. It is important to recover the correct fluc-
tuation, because the stochastic dynamics of ions in solution
are nonlinear, due to the coupling between the electrostatic
field and the motion of the mobile charges, so that averaged
boundary conditions do not reproduce correctly averaged
nonlinear response. In a system of noninteracting particles
incorrect fluctuation on the boundary may still produce the
correct response outside a boundary layer in the simulation
region f8g.

The boundary fluctuation consists of arrival of new par-
ticles from the bath into the simulation and of the recircula-
tion of particles in and out of the simulation. The random
motion of the mobile charges brings about the fluctuation in
both the concentrations and the electrostatic field. Since the
simulation is confined to the volume inside the interface, the
new and the recirculated particles have to be fed into the
simulation by a source that imitates the influx across the

*Electronic address: amits@post.tau.ac.il
†Electronic address: schuss@post.tau.ac.il
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interface. The interface does not represent any physical de-
vice that feeds trajectories back into the simulation, but is
rather an imaginary wall, which the physical trajectories of
the diffusing particles cross and recross any number of times.
The efflux of simulated trajectories through the interface is
seen in the simulation; however, the influx of new trajecto-
ries, which is the unidirectional fluxsUFd of diffusion, has to
be calculated so as to reproduce the physical conditions, as
mentioned above. Thus the UF is the source strength of the
influx and also the number of trajectories that cross the in-
terface in one direction per unit time.

The mathematical problem of the UF begins with the de-
scription of diffusion by the diffusion equation. The diffusion
equationsDEd is often considered to be an approximation of
the Fokker-Planck equationsFPEd in the Smoluchowski limit
of large damping. Both equations can be written as the con-
servation law

]p

]t
= − = ·J. s1d

The flux densityJ in the diffusion equation is given by

Jsx,td = −
1

g
f«=psx,td − fsxdpsx,tdg, s2d

whereg is the friction coefficientsor dynamical viscosityd,
«=kBT/m, kB is Boltzmann’s constant,T is absolute tempera-
ture, andm is the mass of the diffusing particle. The external
acceleration field isfsxd and psx ,td is the densitysor prob-
ability densityd of the particlesf9g. The flux density in the
FPE is given by where the net probability flux density vector
has the components

Jxsx,v,td = vpsx,v,td,

Jvsx,v,td = − fgv − fsxdgpsx,v,td − «g=vpsx,v,td. s3d

The densitypsx ,td in the diffusion equations1d with s2d is
the probability density of the trajectories of the Smolu-
chowski stochastic differential equation

ẋ =
1

g
fsxd +Î2«

g
ẇ, s4d

wherewstd is a vector of independent standard Wiener pro-
cessessBrownian motionsd.

The densitypsx ,v ,td is the probability density of the
phase space trajectories of the Langevin equation

ẍ + gẋ = fsxd + Î2«g ẇ. s5d

In practically all conservation laws of the types1d J is a
net flux densityvector. It is often necessary to split it into two
unidirectional components across a given surface, such that
the net fluxJ is their difference. Such splitting is pretty ob-
vious in the FPE, because the velocityv at each pointx tells
the two UF’s apart. Thus, in one dimension,

JLRsx,td =E
0

`

vpsx,v,tddv, JRLsx,td = −E
−`

0

vpsx,v,tddv,

Jnetsx,td = JLRsx,td − JRLsx,td =E
−`

`

vpsx,v,tddv. s6d

In contrast, the net fluxJsx,td in the DE cannot be split
this way, because velocity is not a state variable. Actually,
the trajectories of a diffusion process do not have well-
defined velocities, because they are nowhere differentiable
with probability 1 f10g. These trajectories cross and recross
every point x infinitely many times in any time interval
ft ,t+Dtg, giving rise to infinite UF’s. However, the net dif-
fusion flux is finite, as indicated in Eq.s2d. This phenomenon
was discussed in detail inf11g, where a path integral descrip-
tion of diffusion was used to define the UF. The unidirec-
tional diffusion flux, however, is finite at absorbing bound-
aries, where the UF equals the net flux. The UF’s measured
in diffusion across biological membranes by using radioac-
tive tracer f1g are in effect UF’s at absorbing boundaries,
because the tracer is a separate ionic speciesf12g.

An apparent paradox arises in the Smoluchowski approxi-
mation of the FPE by the DE; namely, the UF of the DE is
infinite for all g, while the UF of the FPE remains finite,
even in the limitg→`, in which the solution of the DE is an
approximation of that of the FPEf13g. The “paradox” is
resolved by a new derivation of the FPE for Langevin dy-
namicssLDd from the Wiener path integral. This derivation
is different than the derivation of the DE or the Smolu-
chowski equation from the Wiener integralssee, e.g.,
f17–20gd by the method of Kacf21g. The new derivation
shows that the path integral definition of UF in diffusion,
as first introduced inf11g, is consistent with that of UF in
the FPE. However, the definition of flux involves the limit
Dt→0, that is, a time scale shorter than 1/g, on which
the solution of the DE is not a valid approximation to that of
the FPE.

This discrepancy between the Einstein and Langevin de-
scriptions of the random motion of diffusing particles was
hinted at by both Einstein and Smoluchowski. Einsteinf14g
remarked that his diffusion theory is based on the assumption
that the diffusing particles are observed intermittently at
short time intervals, but not too short, while Smoluchowski
f15g showed that the variance of the displacement of Lange-
vin trajectories is quadratic int for times much shorter than
the relaxation time 1/g, but is linear in t for times much
longer than 1/g, which is the same as in Einstein’s theory of
diffusion f16g.

The infinite unidirectional diffusion flux imposes serious
limitations on BD simulations of diffusion in a finite volume
embedded in a much larger bath. Such simulations are used,
for example, in simulations of ion permeation in protein
channels of biological membranesf1g. If parts of the bathing
solutions on both sides of the membrane are to be included in
the simulation, the UF’s of particles into the simulation have
to be calculated. Simulations with BD would lead to increas-
ing influxes as the time step is refined.

The method of resolution of the said “paradox” is based
on the definition of the UF of the LD in terms of the Wiener
path integral, analogous to its definition for the BD inf11g.
The UFJLRsx,td is the probability per unit timeDt of trajec-
tories that are on the left ofx at timet and are on the right of
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x at time t+Dt. We show that the UF of BD coincides with
that of LD if the time unitDt in the definition of the unidi-
rectional diffusion flux is exactly

Dt =
2

g
. s7d

We find the strength of the source that ensures that a given
concentration is maintained on the average at the interface in
a BD simulation. The strength of the left sourceJLR is to
leading order independent of the efflux and depends on the
concentrationCL, the damping coefficientg, the temperature
«, and the time stepDt, as given in Eq.s27d. To leading order
it is

JLR =Î «

pgDt
CL + OS1

g
D . s8d

We also show that the coordinate of a newly injected par-
ticle has the probability distribution of the residual of the
normal distribution. Our simulation results show that no spu-
rious boundary layers are formed with this scheme, while
they are formed if new particles are injected at the boundary.
The simulations also show that if the injection rate is fixed,
there is depletion of the population as the time step is re-
fined, but there is no depletion if the rate is changed accord-
ing to Eq.s8d.

In Sec. II, we derive the FPE for the LDs5d from the
Wiener path integral. In Sec. III, we define the unidirectional
probability flux for LD by the path integral and show that is
indeed given by Eqs.s6d. In Sec. IV, we use the results of
f13g to calculate explicitly the UF in the Smoluchowski ap-
proximation to the solution of the FPE and to recover the
flux s2d. In Sec. V, we use the results off11g to evaluate the
UF of the BD trajectoriess4d in a finite time unitDt. In the
limit Dt→0 the UF diverges, but if it is chosen as in Eq.s7d,
the UF’s of LD and BD coincide. In Sec. VI we describe the
a BD simulation of diffusion between fixed concentrations
and give results of simulations. Finally, Sec. VII is a sum-
mary and discussion of the results.

II. DERIVATION OF THE FOKKER-PLANCK EQUATION
FROM A PATH INTEGRAL

The LD s5d of a diffusing particle can be written as the
phase space system

ẋ = v, v̇ = − gv + fsxd + Î2«g ẇ. s9d

This means that in timeDt the dynamics progresses accord-
ing to

xst + Dtd = xstd + vstdDt + osDtd, s10d

vst + Dtd = vstd + f− gvstd + f„xstd…gDt + Î2«g Dw + osDtd,

s11d

where Dw,Ns0,Dtd; that is, Dw is normally distributed
with mean 0 and varianceDt. This means that the probability
density function evolves according to the propagator

Probhxst + Dtd = x,vst + Dtd = vj

= psx,v,t + Dtd = osDtd +
1

Î4«gpDt

3E
a

bE
−`

`

psj,h,tddsx − j − hDtd

3expH−
fv − h − f− gh + fsjdgDtg2

4«gDt
Jdj dh. s12d

To understand Eq.s12d, we note that given that the displace-
ment and velocity of the trajectory at timet are xstd=j
and vstd=h, respectively, then according to Eq.s10d, the
displacement of the particle at timet+Dt is deterministic,
independent of the value ofDw, and is x=j+hDt+osDtd.
Thus the probability density functionspdfd of the displace-
ment is d(x−j−hDt+osDtd). It follows that the displace-
ment contributes to the joint propagators12d of xstd andvstd
a multiplicative factor of the Diracd function. Similarly,
Eq. s11d means that the conditional pdf of the velocity at
time t+Dt, given xstd=j and vstd=h, is normal with mean
h+f−gh+ fsjdgDt+osDtd and variance 2egDt+osDtd, as re-
flected in the exponential factor of the propagator. If trajec-
tories are terminated at the ends of an finite or infinite inter-
val sa,bd, the integration over the displacement variable
extends only to that interval.

The basis for our analysis of the UF is the following new
derivation of the Fokker-Planck equation from Eq.s12d. In-
tegration with respect toj gives

psx,v,t + Dtd

= osDtd +
1

Î4«gpDt
E

−`

`

psx − hDt,h,td

3expH−
fv − h − f− gh + fsx − hDtdgDtg2

4«gDt
Jdh.

s13d

Changing variables to

− u =
v − h − f− gh + fsx − hDtdgDt

Î2«gDt

and expanding in powers ofDt, the integral takes the form

psx,v,t + Dtd =
1

Î2pf1 − gDt + osDtdg

3E
−`

`

e−u2/2du p„x − vs1 + gDtdDt

+ osDtd,vs1 + gDtd + uÎ2«gDt

− fsxdDts1 + gDtd + osDtd,t…. s14d

Reexpanding in powers ofDt, we get
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p„x − vs1 + gDtdDt + osDtd,vs1 + gDtd + uÎ2«gDt

− fsxdDts1 + gDtd + osDtd,t…

= psx,v,td − vDt
]psx,v,td

]x
+

]psx,v,td
]v

fvgDt + uÎ2«gDt

− fsxdDt + osDtdg + «gu2Dt
]2psx,v,td

]v2 + osDtd,

so Eq.s14d gives

psx,v,t + Dtd −
psx,v,td
1 − gDt

= −
1

1 − gDt
vDt

]psx,v,td
]x

+
Dt

1 − gDt

]psx,v,td
]v

fvg − fsxdg

+
«gDt

1 − gDt

]2psx,v,td
]v2 + OsDt3/2d.

Dividing by Dt and taking the limitDt→0, we obtain the
Fokker-Planck equation in the form

]psx,v,td
]t

= − v
]psx,v,td

]x
+

]

]v
hfgv − fsxdgpsx,v,tdj

+ «g
]2psx,v,td

]v2 , s15d

which is the conservation laws1d with the flux components
s3d. The UF JLRsx1,td is usually defined as the integral of
Jxsx1,v ,td over the positive velocitiessf13g, and references
thereind—that is,

JLRsx1,td =E
0

`

vpsx1,v,tddv. s16d

To show that this integral actually represents the probability
of the trajectories that move from left to right acrossx1 per
unit time, we evaluate below the probability flux from a path
integral.

III. UNIDIRECTIONAL FLUX OF THE LANGEVIN
EQUATION

The instantaneous unidirectional probability flux from left
to right at a pointx1 is defined as the probability per unit
time sDtd, of Langevin trajectories that are to the left ofx1 at
time t swith any velocityd and propagate to the right ofx1 at
time t+Dt swith any velocityd, in the limit Dt→0. This can
be expressed in terms of a path integral on Langevin trajec-
tories on the real line as

JLRsx1,td = lim
Dt→0

1

Dt
E

−`

x1

djE
x1

`

dxE
−`

`

dhE
−`

`

dv
1

Î4«gpDt

3psj,h,tddsx − j − hDtd

3expH−
hv − h − f− gh + fsjdgDtj2

4«gDt
J . s17d

Integrating with respect tov eliminates the exponential fac-

tor, and integration with respect toj fixes j at x−hDt, so

JLRsx1,td = lim
Dt→0

1

Dt
E E

x−hDt,x1

psx − hDt,h,tddh dx

= lim
Dt→0

1

Dt
E

0

`

dhE
x1−hDt

x1

psu,h,tddu

=E
0

`

hpsx1,h,tddh. s18d

Expressions18d is identical to Eq.s16d.

IV. SMOLUCHOWSKI APPROXIMATION TO THE
UNIDIRECTIONAL CURRENT

The following calculations were done inf13g and are
shown here for completeness. In the overdamped regime, as
g→`, the Smoluchowski approximation topsx,v ,td is given
by

psx,v,td ,
e−v2/2e

Î2pe
Hpsx,td −

1

g
F ]psx,td

]x
−

1

e
fsxdpsx,tdGv

+ OS 1

g2DJ , s19d

where the marginal densitypsx,td satisfies the Fokker-
Planck-Smoluchowski equation

g
]psx,td

]t
= «

]2psx,td
]x2 −

]

]x
ffsxdpsx,tdg. s20d

According to Eqs.s16d and s19d, the UF is

JLRsx1,td =E
0

`

vpsx1,v,tddv =E
0

`

v
e−v2/2e

Î2pe
Hpsx,td

−
1

g
F ]psx,td

]x
−

1

e
fsxdpsx,tdGv + OS 1

g2DJdv

=Î «

2p
psx1,td −

1

2g
F«

]psx,td
]x

− fsxdpsx,tdG
+ OS 1

g2D . s21d

Similarly, the UF from right to left is

JRLsx1,td = −E
−`

0

vpsx1,v,tddv =Î «

2p
psx1,td

+
1

2g
F«

]psx,td
]x

− fsxdpsx,tdG + OS 1

g2D .

s22d

Both UF’s in Eqs.s21d ands22d are finite and proportional to
the marginal density atx1. The net flux is the difference
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Jnetsx1,td = JLRsx1,td − JRLsx1,td

= −
1

g
F«

]psx,td
]x

− fsxdpsx,tdG , s23d

as in classical diffusion theoryf13,22g.

V. UNIDIRECTIONAL CURRENT IN THE
SMOLUCHOWSKI EQUATION

Classical diffusion theory, however, gives a different re-
sult. In the overdamped regime the Langevin equations9d is
reduced to the Smoluchowski equationf9g

gẋ = fsxd + Î2«g ẇ. s24d

As in Sec. III, the unidirectional probability currentsfluxd
density at a pointx1 can be expressed in terms of a path
integral as

JLRsx1,td = lim
Dt→0

JLRsx1,t,Dtd, s25d

where

JLRsx1,t,Dtd

=Î g

4p«Dt
E

0

`

djE
j

`

dz expH−
gz2

4«
JHpsx1,td

− ÎDtF−
zfsx1d

2«
psx1,td + sz − jd

]psx1,td
]x

G + OSDt

g
DJ .

s26d

It was shown inf11g that

JLRsx1,t,Dtd

=Î «

pgDt
psx1,td +

1

2g
S fsx1dpsx1,td − «

]psx1,td
]x

D
+ OSÎDt

g3/2D . s27d

Similarly,

JRLsx1,td = lim
Dt→0

JRLsx1,t,Dtd,

where

JRLsx1,t,Dtd

=Î g

4p«Dt
E

0

`

djE
j

`

dz expH−
gz2

4«
JHpsx1,td

+ ÎDtF−
zfsx1d

2«
psx1,td + sz − jd

]psx1,td
]x

G + OSDt

g
DJ

=Î «

pgDt
psx1,td −

1

2g
S fsx1dpsx1,td − «

]psx1,td
]x

D
+ OSÎDt

g3/2D . s28d

If psx1,td.0, then bothJLRsx1,td and JRLsx1,td are infi-
nite, in contradiction to the resultss21d and s22d. However,
the net flux density is finite and is given by

Jnetsx1,td = lim
Dt→0

hJLRsx1,t,Dtd − JRLsx1,t,Dtdj

= −
1

g
F«

]

]x
psx1,td − fsx1dpsx1,tdG , s29d

which is identical to Eq.s23d.
The apparent paradox is due to the idealized properties of

the Brownian motion. More specifically, the trajectories of
the Brownian motion, and therefore also the trajectories of
the solution of Eq.s24d, are nowhere differentiable, so that
any trajectory of the Brownian motion crosses and recrosses
the pointx1 infinitely many times in any time intervalft ,t
+Dtg f23g. Obviously, such a vacillation creates infinite UF’s.

Not so for the trajectories of the Langevin equations9d.
They have finite continuous velocities, so that the number of
crossing and recrossing is finite. We note that settinggDt
=2 in Eqs.s27d and s28d gives Eqs.s21d and s22d.

VI. BROWNIAN SIMULATIONS

Here we design and analyze a BD simulation of particles
diffusing between fixed concentrations. Thus, we consider
the free Brownian motionfi.e., f =0 in Eq. s4dg in the interval
f0,1g. The trajectories were produced as follows:sad Accord-
ing to the dynamicss4d, new trajectories that are started at
xs−Dtd=0 move to xs0d=sÎ2« /gduDwu. sbd The dynamics
progresses according to the Euler schemexst+Dtd=xstd
+sÎ2« /gdDw. scd The trajectory is terminated ifxstd.1 or
xstd,0. The parameters are«=1, g=1000, andDt=1. We
ran 10 000 random trajectories and constructed the concen-
tration profile by dividing the interval into equal parts and
recording the time each trajectory spent in each bin prior to
termination. The results are shown in Fig. 1. The simulated

FIG. 1. The concentration profile of Brownian trajectories that
are initiated atx=0 with a normal distribution and terminated at
eitherx=0 or x=1.
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concentration profile is linear, but for a small depletion layer
near the left boundaryx=0, where new particles are injected.
This is inconsistent with the steady-state DE, which predicts
a linear concentration profile in the entire intervalf0,1g. The
discrepancy stems from partsad of the numerical scheme,
which assumes that particles enter the simulation interval
exactly atx=0. However,x=0 is just an imaginary interface.
Had the simulation been run on the entire line, particles
would hop into the simulation across the imaginary boundary
at x=0 from the left, rather than exactly at the boundary. This
situation is familiar from renewal theoryf24g. The probabil-
ity distribution of the distance an entering particle covers,
not given its previous location, is not normal, but rather it is
the residual of the normal distribution, given by

fsxd = CE
−`

0

expH−
sx − yd2

2s2 Jdy, s30d

wheres2=2«Dt /g andC is determined by the normalization
conditione0

`fsxddx=1. This gives

fsxd =Î p

2s
erfcS x

Î2s
D . s31d

Rerunning the simulation with the entrance pdffsxd, we
obtained the expected linear concentration profile, without
any depletion layersssee Fig. 2d. Injecting particles exactly
at the boundary makes their first leap into the simulation too
large, thus effectively decreasing the concentration profile
near the boundary.

Next, we changed the time stepDt of the simulation,
keeping the injection rate of new particles constant. The
population of trajectories inside the interval was depleted
when the time step was refinedssee Fig. 3d. A well-behaved
numerical simulation is expected to converge as the time step
is refined, rather than to result in different profiles. This
shortcoming of refining the time step is remedied by replac-
ing the constant-rate sources with time-step-dependent

sources, as predicted by Eqs.s27d and s28d. Figure 4 de-
scribes the concentration profiles for three different values of
Dt and source strengths that are proportional to 1/ÎDt. The
concentration profiles now converge whenDt→0. The key
to this remedy is the calculation of the UF in diffusion.

VII. SUMMARY AND DISCUSSION

Both Einsteinf14g and Smoluchowskif15g ssee alsof16gd
pointed out that BD is a valid description of diffusion only at
times that are not too short. More specifically, the Brownian

FIG. 2. The concentration profile of Brownian trajectories that
are initiated atx=0 with the residual of the normal distribution and
terminated at eitherx=0 or x=1.

FIG. 3. sColor onlined The concentration profile of Brownian
trajectories that are initiated atx=0 and terminated at eitherx=0 or
x=1. Three different time stepssDt=4,1,0.25d were used, but the
injection rate of new particles remained constant. Refining the time
step decreases the concentration profile.

FIG. 4. sColor onlined The concentration profile of Brownian
trajectories that are initiated atx=0 and terminated at eitherx=0 or
x=1. Three different time stepssDt=4,1,0.25d are shown, and the
injection rate of new particles is proportional to 1/ÎDt. Refining the
time step does not alter the concentration profile.
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approximation to the Langevin equation breaks down at
times shorter than 1/g, the relaxation time of the medium in
which the particles diffuse.

In a BD simulation of a channel the dynamics in the chan-
nel region may be much more complicated than the dynam-
ics near the interface, somewhere inside the continuum bath,
sufficiently far from the channel. Thus the net flux is un-
known, while the boundary concentration is known. It follow
that the simulation should be run with source strengthss27d
and s28d:

JLR ,Î «

pgDt
CL +

1

2
Jnet, JRL ,Î «

pgDt
CR −

1

2
Jnet.

However, Jnet is unknown, so neglecting it relative to
sÎ« /pgDtdCL,R will lead to steady-state boundary concentra-
tions that are close, but not necessarily equal, toCL andCR.
Thus a shooting procedure has to be adopted to adjust the
boundary fluxes so that the output concentrations agree with
CL andCR, and then the net flux can be readily found.

According to Eqs.s27d and s28d, the efflux and influx
remain finite at the boundaries and agree with the fluxes of
LD if the time step in the BD simulation is chosen to be
Dt=2/g near the boundary. If the time step is chosen differ-
ently, the fluxes remain finite, but the simulation does not

recover the UF of LD. At points away from the boundary,
where correct UF’s do not have to be recovered, the simula-
tion can proceed in coarser time steps.

The above analysis can be generalized to higher dimen-
sions. In three dimensions the normal component of the UF
vector at a pointx on a given smooth surface represents the
number of trajectories that cross the surface from one side to
the other, per unit area atx in unit time. Particles cross the
interface in one direction if their velocity satisfiesv ·nsxd
.0, wherensxd is the unit normal vector to the surface atx,
thus defining the domain of integration for Eq.s6d.

The time course of injection of particles into a BD simu-
lation can be chosen with any interinjection probability den-
sity, as long as the mean time between injections is chosen so
that the source strength is as indicated in Eqs.s27d ands28d.
For example, these times can be chosen independently of
each other, without creating spurious boundary layers.
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