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Introduction

Predicting function from structure is a goal as old as
molecular biology, indeed biology itself: the first
glimpse of the anatomy of an animal, like the first
glimpse of the anatomy of a protein, must have raised the
question “*How does it work?”’ The recent outpouring
of protein structures (e.g., Creighton, 1993), often of en-
zymes in atomic detail (Singh & Thornton, 1995), has
raised the same question again and again, and in a most
frustrating way, at least for me, because the question is so
often answered by description, not analysis. Of course,
every biologist knows that a complex structure must be
described before its biological function can be analyzed.'
But every physicist knows that description is not under-
standing. Indeed, if description is mistaken for under-
standing, vitalism will soon replace physics as the basis
of biology.

Understanding enzymes is an important goal of
modern biology because enzymes catalyze and control
most of life’s chemistry. Enzymatic action depends on
the diffusion of substrate and product, the conformation
change of the enzyme, and the quantum chemistry of its
active site. All must be analyzed in terms of physical
models if enzymatic function is to be understood. The
quantum chemistry of systems like enzymes is not well
understood because enzymes are flexible structures of
many atoms in a condensed phase, containing little
empty space, and so are difficult to analyze with Schro-
dinger’s equation (Parr & Yang, 1989; Bader, 1990;
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Schatz & Ratner, 1993). The movements of the sib-
strate, product, and enzyme must also be understood,
presumably as a result of electromechanical models, like
Langevin equations (Kramers, 1940; Gardiner, 1985;
Hynes, 1985, 1986; Hanggi, Talkner & Borkovec, 1990;
Fleming & Hinggi. 1993). Movements of substrate and
product have been studied in this tradition, but move-
ment of the protein (i.e., conformation changes) have
rarely been connected to the physics that govern them.

Conformation changes are widely used to explain
biological function (Alberts et al., 1994) and are un-
doubtedly common and important mechanisms, although
perhaps not quite as common as sometimes assumed.
I suspect that the idea of conformation change was orig-
inally introduced to seek “*. . . the ultimate source of the
antonomy, or more precisely, the self-determination that
characterizes living beings in their behavior’> (Monod,
1972, p. 78%). The identification and description of these
conformation changes is one of the main tasks of molec-
ular biologists. But the description of the conformation
change (as allosteric, or whatever) is not the same as a
physical understanding. Without a physical model of ca-
talysis and conformation change, understanding of enzy-
matic function is not possible. The physical model of
conformation change will use the language of electro-
diffusion, because the atoms that move inside the protein
are usually charged, and always diffuse, according to
Langevin equations much like those that describe ionic
motion in solutions.

A physical model of electrodiffusion is feasible and
various forms have been used to analyze transport pro-
cesses in biology for more than a century. Recently, the

*in a chapter entitled ‘Microscopic cybernetics.’



nonlinear Poisson-Boltzmann equation (PB,, for short),
has been widely used to analyze (the average properties
of) diffusion in enzymes (Davis & McCammon, 1990;
Honig & Nicholls, 1995; Hecht et al., 1995, is particu-
larly important because it provides direct experimental
verification of the theory; also: Warwicker & Watson,
1982; Klapper et al., 1986; Gilson, Sharp & Honig, 1988;
Davis et al., 1991). PB,, is a major contribution to our
understanding, but PB,, is not a theory of enzymatic func-
tion, because it describes only electrodiffusion—and that
at equilibrium. It is not a theory of catalysis or confor-
mation change. The question then arises whether a sig-
nificant biological function can be understood just from
an understanding of electrodiffusion?

Electrodiffusion is a main determinant of the trans-
port of substances across biological membranes. Under-
standing membrane transport has been an important goal
of biology for more than a century because it governs so
much of life. In particular, membranes—in their role as
gate-keepers to cells—are responsible for signaling in
the nervous system; for coordination of the contraction
of skeletal muscle and the heart, forcing its muscle to
function as a pump. Membranes contain receptors or ef-
fectors for many drugs and natural substances that con-
trol the lite of cells.

The classical analysis of biological transport as just
a form of diffusion has, however, been only partially
successful (see Hille, 1989; Liuger, 1991, for a modern
perspective). Such analysis usually assumed that diffu-
sion occurred in systems of fixed structure, in particular
of fixed cross sectional area, but we now know that the
area for diffusion is modulated and controlled in most
biological systems by the opening and closing of pores,
namely channels in membrane proteins (Hille, 1992).
Indeed, determining the number of open channels and
their modulation is a main task of physiologists nowa-
days (Alberts et al., 1994; Hille, 1992).

The Open Channel

Although modulation of opening is a complex process,
and opening itself may be as well, a channel, once open,
forms a simple well-defined structure of substantial bio-
logical importance. An open channel should be ‘‘wholly
interpretable in terms of specific chemical [or physical]
interactions . . .”> (Monod, 1972, p. 78). The age old
question ‘‘How does it work?”” should be easier to an-
swer when ‘it” is an open channel, than when it is any-
thing else, at least any other class of proteins of such
general significance.

The starting place” for a theory of open channels is

* Electrodiffusion in biology occurs in a phase with little empty space,
in which friction and interactions predominate and so the starting point
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a theory of electrodiffusion rather like that used previ-
ously to describe membranes. The theory uses Poisson’s
equation to describe how charge on ions and the channel
protein create electrical potential; it uses the Nernst-
Planck equations to describe migration and diffusion of
ions in gradients of concentration and electrical potential.
Combined.” these are also the ‘‘drift-diffusion equa-
tions”” of solid state physics, which are widely, if not
universally used to describe the flow of current and the
behavior of semiconductors (Ashcroft & Mermin, 1976)
and solid-state devices, like transistors (Sze, 1981; Sel-
berherr, 1984; Rouston, 1990; Lundstrom, 1992). The
drift-diffusion equations describe the shielding or screen-
ing of permanent or fixed charge whereby the ions in the
ionic atmosphere in and around a (channel) protein help
determine the potential profile of its pore, a phenomena
long known to be biologically important (Franken-
haeuser & Hodgkin, 1957; McLaughlin, 1989; Green &
Andersen, 1991). Mathematical difficulties have been
limiting, however, and so attention has usually been fo-
cused on the ionic atmosphere at the surface of the mem-
brane or ends of the channel, and not the co- and counter
ions within the channel’s pore.

Many theories focus on systems at equilibrium in
which all fluxes are essentially zero. In the latter case,
the PNP equations reduce to the (one-dimensional) PB,
equations. A great deal of important work has been done
on PB,, and in some ways PB, is the most physical
theory of proteins now available; nonetheless, it is of
limited use in understanding the open channel because
the natural biological function of channels occurs only
away from equilibrium (as does the biological function
of most enzymes!). The biological function of both
channels and enzymes is usually flux.

Significant flux flows even at the reversal potential
of a typical, imperfectly selective channel. Fluxes are
zero only in a perfectly selective channel at its reversal
potential, which is indeed only then an equilibrium po-
tential. A generalization of the PB,, equations is needed
to predict flux and PNP is one such generalization. In-
terestingly, the potential profiles of semiconductors have

for a theory of channels should be a theory of liquids or condensed
phases. As Berry, Rice and Ross put it in their textbook (1980, p. 844.
emphasis added): **. . . the principle difference between a dilute gas and
aliquid . . . [is that] in a dilute gas a typical molecule is usually outside
the force fields of all other molecules and only occasionally in the force
field of one other molecule (binary collision), whereas in a liquid a
typical molecule is usually within the force field of, say, 10 nearest-
neighbor molecules and is never completely free of the influence of
other molecules.”” The starting place must not be a theory of gas phase
kinetics, like Eyring rate theory. because it is likely to miss the impor-
tant effects of interactions (i.e., friction), that dominate the properties of
liquids (Purcell, 1977; Berg, 1983) but not gases.

“We call the combination PNP to emphasize the importance of the
electric potential and the analogy with solid state physics.
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Fig. 1. A schematic drawing of the open channel showing some of the
forms of charge and the surface or Donnan potential.

a quite restricted repertoire of behavior at equilibrium.
Semiconductors cannot be transistors, switches, or am-
plifiers in the absence of current, or even in the presence
of just small currents, and so an equilibrium theory can
be expected to give only limited insight into the reper-
toire of natural functions of channels, even if it could
calculate one.

Many theories of ion movement include only some
types of charge (e.g., permanent charge is usually ig-
nored in the electrochemical literature cited below). But
all charge is likely to have global effects, at least judging
from work on charge at the ends of channels (Green &
Andersen, 1991). Thus. the whole system, containing all
types of charge and flux, has to be analyzed if the bio-
logical function of the open channel is to be predicted
successfully from its structure.

PNP Theory

The mathematical difficulties in the analysis of the full
system have been largely overcome because a rapid and
accurate (numerical) integration procedure is now avail-
able (even though a qualitative analytical theory is not
known). PNP theory can now predict the current through
an open channel given its structure and distribution of
fixed (i.e., permanent) charge in a few seconds of com-
puter time. Indeed, once the structure of the open chan-
nel is known, and thus the distribution of its permanent
charge, along with diffusion constants, PNP theory pre-
dicts its properties—the fluxes and current through it—in
all experimental conditions of varying concentrations
and transmembrane potentials. Figure | illustrates the
several components of charge in PNP and Fig. 2 shows
how the structural data (i.e., permanent charge, length
and diameter of the channel; and the dielectric constants)
plus experimental conditions (i.e., potentials and concen-
trations in the baths) determine the output of the theory,
namely current-voltage relations. PNP theory is the nu-
merical procedure described in the Appendix, which
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Fig. 2. All the inputs to the PNP theory and the usual output, the
current-voltage relation (for given concentrations in the bath). The PNP
theory is the numerical procedure specified in the Appendix, which
solves numerically Poisson’s differential equation (Al) simultaneously
with the integrated Nernst-Planck equations (A7) using the boundary
conditions (A2)—(AS5).

PNP =

solves Poisson’s differential Eq. (A1) simultaneously
with the integrated Nernst-Planck equations (A7) using
the boundary conditions (A2)—(AS).

Preliminary work shows that PNP theory—using a
few (say, five) adjustable parameters—fits a wide range
of data, taken from many solutions, that is difficult to fit
with traditional models (Franciolini & Nonner, 1994a,b;
Kienker, DeGrado & Lear, 1994; Chen et al., 1995a,b;
Kienker & Lear, 1995). PNP automatically predicts a
wide repertoire of behavior, because it is nonlinear and
the potential profile in the channel and its pore (which is
an output, not assumption, of the theory) changes signif-
icantly with experimental conditions. A post-hoc quali-
tative understanding of this behavior is possible in many
cases, but PNP is a mathematical theory, a set of coupled
nonlinear differential equations, describing interactions
arising from all types of charge, and flux. It is rarely
possible to predict the behavior of such systems before
they are solved, and it is not always possible to rational-
ize the behavior of such systems post hoc, in a few
words, particularly if several terms in the (mathematical)
solution, or types of charge (some positive, some nega-
tive) are significant.’

PNP theory fits a wide range of data because shield-
ing usually has global effects, spreading across the entire

° Before trying to summarize the physics and properties of PNP, one
should count the number of pages used by textbooks to describe and
rationalize the behavior of a transistor, even as it works in a restricted
range of bias voltages and currents (Ashcroft & Mermin. 1976; Sze,
1981; Selberherr. 1984; Rouston. 1990; Lundstrom, 1992). Of course,
if the bias voltages are changed. the qualitative properties of the tran-
sistor change, for example, from an amplifier to a switch or limiter, and
each qualitative property requires extensive discussion, because each
property arises from a different distribution of electric field and flux of
holes and electrons, even though the profile of permanent charge re-
mains the same. This is not the only case where a few equations speak
louder than thousands of words (compare Euclid (1956) with Birkhoff
and MacLane (1953): Ch. 7, 1953).



channel. If solutions or membrane potential are
changed, the ionic atmosphere of counter and co-ions in

and near a channel (and thus the potential and contents of

the channel’s pore) change, as they must, if potential and
concentrations simultancously satisfy Poisson and
Nernst-Planck equations.  Our calculations show
changes of potential of several kzT/e in most locations
when typical solution changes are made. In loose terms,
we can say that small changes in pei charge in and near
the channel make significant changes in potential and
even bigger changes in tlux: potential is a sensitive func-
tion of net charge, and flux depends exponentially on the
potential profile @®({).° The ionic atmosphere and
shielding are major determinants of & channel’s proper-
ties.

PNP theory is significant as a theory of an important
biological phenomena—open channel permeation—-
arising from a simple physical mechanism, electrodiftu-
sion. But it is also important in the more general context
of proteins and enzymes as well, because PNP theory
shows by implication, if not derivation or proof, that any
property of a protein will be strougly influenced by
changes in the electric field, whether gating of a channel,
mediated or active transport of a ‘permease’, conforma-
tion changes in an enzyme, or catalysis itself. Indeed, we
suspect that many of these processes will be dominated
by the electric field and its change in shape. PNP adds
another example’ to those already known, in which the
electric field dominates the biological function of a pro-
tein (see also Warshel, 1981; Warshel & Roussell, 1984,
Davis & McCammon, 1990; Warshel & Agvist, 1991;
Honig & Nicholls, 1995).

Electrodiffusion in Semiconductors, Solutions,
and Channels

The fundamental physical process in transistors and
semiconductors is the migration and diffusion of charged
quasi-particles—holes and electrons—in electric fields
and gradients of concentration, just as the fundamental
process in channels is the diffusion of ions, and perhaps
quasi-particles, as well. In electrochemistry and semi-
conductor physics, the (mean) electric field is usually
described by Poisson’s equation® (that specifies how
charge creates potential)

© Eq. (2) illustrates the dependence of flux on potential and concentra-
tion within the channel. Eq. (A7) illustrates the dependence of concen-
tration on potential. Understanding the dependence of potential requires
numerical solution of the full set of PNP equations, see Appendix, p. 30
and footnote 15.

7 a particularly convincing and biologically relevant example, in the
parochial opinion of channologists like me.

¥ Variables, dimensions of variables, brief explanation and references
can be found in the Appendix.
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Symbols and terms are discussed in the Appendix.

Electrodiffusion is usually described by the Lan-
gevin equation (that describes individual trajectories:
Kramers, 1940; Gardiner, 1985; Eisenberg, Klosek &
Schuss, 1995) or the Nernst-Planck equations (that de-
scribe the probability density function of these trajecto-
ries). Here, the Nernst-Planck equations are written in
the integrated form we have found most useful.
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These equations can be written exactly as rate equations
for any potential profile ®({) (see Egs. (A9) and (A10) in
the Appendix), with rate constants given by specific sta-
tistics of the underlying random atomic trajectories
(Eisenberg, Klosek, & Schuss, 1995). In this way, tra-
ditional rate constant models can be connected to PNP
theory; the important difference being that the rate con-
stants of PNP theory are coupled to the entire (nonlinear)
system. They depend on the entire potential profile
@({), which in turn depends on all experimental condi-
tions (for example, the imposed concentrations in the
baths C‘j(L) and C(R) and the imposed transmembrane
potential V).

The Nernst-Planck equations are fundamentally
nonlinear because the conductance of ionic solutions de-
pends on concentration.” The Nernst-Planck equations
are fundamentally coupled because they depend on the
potential profile ®({) which in turn depends on every-
thing else in the system, through the Poisson equation.
Thus, as the concentration changes, the migration of ions

“ This essential point is easily obscured by the several forms of equa-
tions and the plethora of parameters used to describe migration—
believe it or not. conductance, conductivity, mobility (conventional and
absolute), and diffusion constant are all used in elementary texts (Bock-
ris & Reddy, 1970; Bard & Faulkner, 1980) and advanced treatments
(e.g., Justice, 1983)! The essential point is that the conductance of a
given volume of solution depends on the concentration of ions in the
solution and the conductance appears as a coefficient of a derivative in
the Nernst-Planck differential equations. Concentration varies over a
wide range in most systems and so linearized approximations cannot
describe their qualitative properties.
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changes. even if everything else is constant. The Poisson
equation is nonlinear (in the present context) and coupled
because the net charge of ions eZ/;I-C,(x) is one of the
source terms in the equation, but that term depends on
the concentration of ions Cy(x), which is an output of the
Nernst-Planck equations (see Eq. (A7) of the Appendix),
which in turn depend on the potential profile ®({) as we
have just stated.

The nonlinearity of the coupled Poisson and Nernst-
Planck equations allows a richness of behavior that we
use every day, given the role of solid-state electronics in
our technology and economy. Transistors are semicon-
ductors designed to do specific jobs, to have nonlinear
properties that arise in part from the nonlinearity of the
Nernst-Planck equations, in part from the nonlinearity of
their coupling to the Poisson equation discussed later in
this paper. The distribution of permanent charge is cho-
sen by the designer of the transistor to create the shape of
the electric field he wishes, thereby making an otherwise
uninteresting homogeneous lump of pure silicon into a
switch, an amplifier, a detector. An entire computer can
be built solely out of a network of transistors that obey
the Nernst-Planck (and Poisson) equations. All written
knowledge, and all mathematical operations, can be
stored or executed by a computer, and so mathematical
solutions to the Nernst-Planck (and Poisson) equations
can have a rich range of behavior!

The PNP equations can themselves produce the mi-
croscopic cybernetics thought by some philosophers of
science to be characteristic (or defining) of life (Monod,
1972, p. 68-80), even in the absence of the allosteric
conformation changes they had postulated. Allosteric
conformation changes arise, of course, from the move-
ment of charged particles, described by equations much
like PNP, and so both electrodiffusion and conformation
change can themselves have the rich nonlinear behavior
of transistors, which indeed is richer than the nonlinear
behavior of traditional (rate theory) models of allostery
(Monod, 1972). Of course, no one yet knows if channels
actually perform these cybernetic functions by changing
the shape of their electric field, and if such functions are
important for the life of the animal as a whole, as likely
as it seems, given their importance in semiconductor
technology.

Traditional Models of Open Channels:
Rate Constants

Traditional models usually describe the structure of
channel proteins as a distribution of potential, ‘a poten-
tial of mean force” which in turn determines rate con-
stants that describe open channel permeation, or gating
(Andersen & Koeppe, 1992; Hille, 1992) or changes in
conformation in general (Hill, 1977; Walsh, 1979; Hill,
1985). Such models are both too flexible and too rigid,
in my opinion. They are too flexible because the oper-
ational definition of ‘state’ (in a condensed phase dom-

inated by friction, like a protein and its pore) is often
vague and indeterminate: states and adjustable parame-
ters can be added too easily to make a model fit too wide
a range of data.'’ They are too rigid because the rate
constants of barrier models are nearly always assumed to
be independent of concentration of ions (or substrate)
and that is nearly impossible, given the importance and
variability of shielding in any system with mobile
charge.

A theory can easily be checked to see if it is con-
sistent with modern ideas of condensed phases (see foot-
note 3). Flux in a condensed phase always depends on
friction; it is wise then to check that the theory being
used displays the dependence of flux on the diffusion
constant or a derived parameter. Many do not (Hill,
1977, Walsh, 1979; Hill, 1985; ¢f. theories of condensed
phases, Chandler, 1978; Hynes, 1985, 1986; Berne,
Borkovec & Straub, 1988; Fleming & Hinggi, 1993).
Unfortunately, nearly all rate constant theories of gating
and open channel permeation do not display the role of
friction (the large literature in these fields can be reached
through the references in Hille, 1992, Andersen and
Koeppe, 1992, Liuger, 1991, and Eisenman and Horn,
1983).

A traditional theory can also be checked to see if it
is consistent with the laws of electricity: it is consistent
it and only if the potential profile satisfies Poisson’s
equation (and the rate constants in it are computed from
the potential profile, ¢f. Egs. (A9) and (A10) of the Ap-
pendix). In one-dimension this means the second spatial
derivative (the curvature) of the potential must cqual”
(at every location) the sum (at that location) of all
charges in the model, including partial charges found on
nearly every atom of a protein (see pp. 8 and 17). If the
charges in the model do not add up to the second deriv-
ative, the model is inconsistent and incorrect. This check
has to be repeated in each experimental situation (e.g.,
for each set of bath concentrations and potentials) and at
each location in the system. Rate theories of gating and
permeation (loc. cit.) never satisfy this condition (to the

10+« an excess of flexibility [in a theory] may well turn power into

weakness. For a theory that explains too much ultimately explains very
little. Its indiscriminate use invalidates its usefulness and it becomes
empty discourse. Enthusiasts and popularizers, in particular, do not
always recognize the subtle boundary that separates a heuristic theory
from a sterile belief; a belief which, instead of defining the actual
world, can describe all possible worlds.”” (Jacob, p. 22, 1982; cf.
Monod, 1972, p. 69 et seq.). If Jacob and Monod had realized the
relation of their work to that of Bardeen, Brittain, and Shockley; if they
had known that rate constants can only be derived from nonlinear
theories like PB,, or PNP that have a wide range of *‘oriented, coherent,
and constructive’” behavior, perhaps the literature of allosteric models
would be smaller. It presumably would not include so many papers that
use underdetermined rate and state models to describe complex exper-
imental systems of unknown structure.

" ignoring units, for the sake of simplicity in writing.



best of my knowledge), when used to describe a range of
experimental conditions, since they never compute the
rate constants from solutions of PNP or other self-
consistent field equations. They usually assume rate
constants independent of bath concentration and trans-
membrane potential. Many diffusion theories of perme-
ation do not satisfy this check either because they de-
scribe a range of experimental conditions with a single or
precomputed potential profile (e.g., Levitt, 1986; Coo-
per, Gates & Eisenberg, 1988a,b; Chiu & Jakobsson,
1989; Barcilon et al., 1993; Eisenberg, Klosek & Schuss,
1995).

These comments concerning consistency apply to
theories which use rate constants to describe open chan-
nel permeation or gating (/oc. cit.) even if those theories
do not explicitly contain potential profiles, because rate
constants always depend on the underlying potential pro-
file. Even in the simplest most approximate theories of
gas phase kinetics—like Eyring rate theory—rate con-
stants are exponential functions of barrier height, i.e., the
maximum of the potential profile ®({) (Wigner, 1938;
Laidler, 1969; Johnson, Eyring & Stover, 1974; Skinner
& Wolynes, 1980; Truhlar & Garrett, 1984; Truhlar,
[saacson & Garrett, 1985). In more general theories—
which provide the basis for rate theories in condensed
phases and from which they must be derived (Chandler,
1978, Hynes, 1985, 1986; Berne, Borkovec & Straub,
1988; Fleming & Hinggi, 1993)—the rate constant also
depends exponentially on the potential profile ®(L) (cf.
Eisenberg, Klosek & Schuss, 1995, and Eq. (A9) and
(A10) of the Appendix). In either case, anything that
changes the potential profile will change the rate con-
stant, often dramatically. Thus, rate constants of tradi-
tional theories—whether of gating, permeation, or ‘ac-
tive’ transport—are likely to vary with experimental con-
ditions, just as potential profiles vary.'?

A protein or channel assumed to have an unchanging
electric field is unrealistic because it almost certainly
will violate the equations of the electric field'”; it is also
likely to be a dead protein, unable to respond to its en-
vironment, the way live proteins do. In my opinion, bi-
ological control mechanisms are likely to modulate the
electric field in channels and proteins, thereby initiating
and governing conformational changes, as well as driv-
ing ‘catalysis’, analogous to permeation through the open
channel (Moczydlowski, 1986; Eisenberg, 1990;
Andersen & Koeppe, 1992).

"> 1f the permeation pathway is occluded in a closed channel, one
would expect permeant ions to have much less effect on the opening
process than on open-channel permeation, or on the closing process, for
that matter.

' except under the conditions when constant field theory is a decent
approximation (Chen & Eisenberg, 1991, and references therein).
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Sources of Diffusion

Permeation and diffusion are driven by gradients in con-
centration, which are the sources of flux. These concen-
trations are the sources of mass and free energy, if we use
language of thermodynamics; they are the sources of the
concentration and potential fields, if we use the language
of the 19th century physics; they are the source of tra-
jectories, if we use the language of probability theory and
stochastic processes.

In biological membranes and channels, the concen-
tration gradients arise from ions in the baths adjoining
the membrane. The concentrations of these ions are
maintained by ancillary experimental or biological sys-
tems that supply the ions equivalent to those that move
through the channel and so sustain the free energy of the
baths.

The concentrations in the baths are, in fact, usually
taken as the only sources for diffusion; ions are not sup-
plied within the channel, nor can they appear there spon-
taneously. Semiconductors are a little different because
of the recombination process, but this is usually ignored
in theories. Recombination does not occur in channels or
solutions containing only strong electrolytes like Na®,
K*, Ca*™, or CI". It can occur in other situations,
see p. 10.

Sources of the Electric Field

The sources for the electric field that drive the drift (i.e.,
migration) of ions are more complex than the sources for
diffusion, whether in semiconductors, solutions, or chan-
nels. The sources are the several kinds of electrical
charge in the system, each type with its own properties.

For example, only the charge in the baths, on the
boundary of the system, connected to amplifiers, pulse
generators or batteries, maintains the trans-membrane
potential. That charge must be maintained by a contin-
uous supply of energy from the outside world because
flux flows across the channel dissipating energy and pro-
ducing heat. Flux allows states (i.e., combinations of
¢(x) and Ci(x)) that otherwise cannot occur. Thus, a the-
ory without flux (e.g., PB,) may miss the most interest-
ing states and behaviors of a channel as it would miss
most of the interesting states and behavior of transistors
(which do not do much if they must start from a zero
current condition and remain in or near to equilibrium:
the amplification and switching which are the most im-
portant functions of transistors cannot occur at or near
equilibrium).

The other types of charge (described below) also
help create the electric field. They, however, cannot sup-
ply energy in the steady-state because they are not on a
boundary of the system and so are not connected to an
energy source outside the system.



R.S. Eisenberg: Computing the Field in Proteins and Channels

In free solution, the dominant charge is usually the
mobile charge (i.e., ions) supplied at the boundaries of
the system (i.e., at the electrodes) by the experimental
apparatus that maintains the electrode potentials.

In channels or semiconductors, the dominant charge
is usually the permanent charge because it has such a
high density, several molar if described as a volume
charge density, even if formal charges are absent (see pp.
8 and 17). The qualitative properties of the electric
field in channels (and semiconductors), as well as its
quantitative current voltage (IV) relations, are deter-
mined by the distribution of permanent charge, with a
strong assist from the mobile charge (the ions) support-
ing the trans-membrane potential (analogous to the bias
potential of a two terminal transistor).

Charge creates the electric field according to Cou-
lomb’s law (if the charge is discrete) or Poisson’s equa-
tion (if the charge is distributed). The equations of the
classical electric field describe the mapping between
charge and potential both in the macroscopic world and
in quantum chemistry (Hellman-Feynman theorem:
Feynman, 1939; Deb, 1981; Mehra, 1994, p. 71; cf.
Bader, 1990; Parr & Yang, 1989). All charge must be
included in whichever equation(s) apply, because the ef-
fects of the dominant charge are significantly modified
by the other charges. Linking potential and charge re-
quires simultaneous solution of equations which describe
how the electric field is created by charge (e.g., Poisson’s
equation) and how charge flows and diffuses (e.g., the
Nernst-Planck equations), and how energy is supplied to
the system (boundary conditions). Together, these equa-
tions automatically describe the interactions of the dif-
ferent types of charge and the fields they create. Tradi-
tional theories of physics uses the Poisson and Nernst-
Planck equations for this purpose, describing the mean
concentrations and potentials (i.e., fields) of classical
physics, but other theories are possible, and probably
needed to describe the detailed properties (e.g., nonideal
ratios of unidirectional fluxes of tracers, Jacquez, 1985;
Hille, 1989; Chen & Eisenberg, 1993b) of correlated
motions of random trajectories in single filing systems
like channels.

Poisson’s Equation in Semiconductors

Poisson’s equation has been used for some 40 years by
solid-state physicists to describe the mean electrical field
in semiconductors (Roosbroeck, (1950) and Shockley,
(1950)). Coupled to the Nernst-Planck equations, Pois-
son’s equation describes the many semiconductor de-
vices with a wide range of characteristics. These equa-
tions are coupled to each other because the ions that
create the electric field (as described by Poisson’s equa-
tion) flow and so are modified by the electric field (as
described by the Nernst-Planck equations).

The combined Poisson and the Nernst-Planck equa-
tions have been derived and are used in several different
experimental and theoretical traditions in physics and
chemistry (Ashcroft & Mermin, 1976; Mason &
McDaniel, 1988; Spohn, 1991; Balian, 1992; Jerome,
1995; at equilibrium see references to PB, most impor-
tantly, Davis & McCammon, 1990; Hecht et al., 1995;
also, Honig & Nicholls, 1995), where they have been
tested explicitly many times by simulation and experi-
ment. The drift diffusion equations are tested implicitly
every time we use a semiconductor device designed with
them. There is little question in these fields that the
equations are consistent with the laws of mathematics
and physics, and (in particular) that they handle self-
energy self-consistently in the mean field approxima-
tion'*; for example, energetics are discussed at length in
the literature of PB,,, where self-energy is handled as it is
in PNP but at equilibrium (e.g., MacKerell, Sommer &
Karplus, 1995; Antosiewicz, McCammon & Gilson,
1994; Gilson et al., 1993; Sharp & Honig, 1990; Jayaram
et al.,, 1989; Gilson & Honig, 1988). The meaning of
energy in a dissipative, nonlinear, nonequilibrium, and
open system like PNP is discussed later in this paper, on
p. 1.

We will discuss the validity of PNP as a description
of open ionic channels in some detail later, starting on p.
13. Suffice it to say here that the PNP equations are a
mean field theory—probably the simplest self-consistent
mean field theory—that has proven helpful in many
other fields, even where they are only approximately
valid and the microscopic meaning of their parameters is
not fully understood. The theory has been widely used
with some success in many fields (¢f. footnote 26). The
most serious problem with the theory is usually the
meaning of its parameters, that is to say, the relation of
its effective parameters to the underlying parameters of
atoms and their stochastic motion.

Semiconductors, Solutions, and Channels

The analogy between current flow in ionic channels and
solutions and other physical systems has been obvious
for a long time but the analogy has not been very pro-
ductive because most physical systems (e.g., semicon-
ductors) contain permanent charge (doping) and ionic
solutions do not. A (particular) distribution of perma-
nent charge is what turns a semiconductor into a transis-
tor, for example, and ionic solutions cannot be transistors
because they do not have permanent charge.'> But chan-
nels have a large density of surface charge lining their

' Jakobsson, 1993, p. 34, feels otherwise, however.



tiny pore and so the analogy between semiconductors
and channels is likely to be useful.

Permanent charge is more widely distributed and
concentrated in proteins than is sometimes realized (see
p. 17). Permanent charge is found in most atoms and
bonds of proteins, not just in atoms with formal charges;
many atoms of proteins contain between 0.1 and 0.6
elementary charges, for example, the carbon, nitrogen,
oxygen, and perhaps even hydrogen in the amide bonds
that link every amino-acid in a protein (Schultz &
Schirmer, 1979; Fersht, 1985; McCammon & Harvey,
1987; Brooks, Karplus & Pettitt, 1988; Creighton, 1993).
The charge on each of these atoms is nearly as significant
as a formal charge on a carbonyl or amine group of the
protein, or, for that matter, on a permeating ion like Na™
or CI”. The charge of each of these atoms contributes
significantly to the electric field in and around channels
and other proteins.

Electrical Forces in Chemistry

Electric fields are so important for channels and proteins
because electrical forces dominate chemical phenomena.
Indeed, in a certain sense, all of chemistry arises from
electric charge and its interactions according to Cou-
lomb’s law:

**. .. all forces on atomic nuclei'® in a molecule

can be considered as purely classical attractions

involving Coulomb’s law. The electron cloud

distribution is prevented from collapsing by

obeying Schrodinger’s equation.”” (Feynman,

1939).
For this reason, any description of a protein must de-
scribe its electron cloud and nuclei, which form the dis-
tribution of electrical charge in the protein: its permanent
charge. Any description of the movement of ions
through a channel protein should keep track of all the
charges in and around the channel for the same reason:
the electrical charge determines the forces on the perme-
ating ions, as well as the forces that make the protein
move, the forces that drive its conformational changes.

Charge in Channels

The electric field in a channel arises from charge. PNP
theory includes four types of charge:

'S When P(x) = 0 and & = 0, the PNP equations describe current flow
in free solution (Bockris & Reddy, 1970). Syganow and von Kitzing
(1995) and Park et al. (1996) describe some of the conditions under
which ohmic behavior can arise from these nonlinear equations.

'® Nuclei contain nearly all the mass of atoms, while occupying a
negligible volume, and electrons move where the nuclei move and
carry them (in the Born-Oppenheimer approximation: Parr & Yang,
1989). Thus, forces on nuclei determine the acceleration of atoms, both
of their nuclei and electrons.
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(i) the permanent charge on the channel protein that
arises from its chemical structure. Permanent charge is
often called bound charge (Griffiths, 1981; Purcell, 1985,
Ch. 10) but that phrase is unfortunate because mobile
charge is also bound to proteins, in a very real sense.
Permanent charge is sometimes called fixed charge, but
that phrase is also unfortunate (at least on the atomic
scale) because the permanent charge is highly flexible,
see p. 14.

(ii) the contents of the channel, namely, the charge
in the channel’s pore carried by the (average) concentra-
tion of ions there. The concentration of ions in the chan-
nel’s pore both determines and is determined by the elec-
tric field.

The double role of charge, as cause and effect of the
field, can easily cause difficulties. That is exactly why
the electric field was so difficult for 19th century phys-
icists to understand, according to several historical ac-
counts (Buchwald, 1985; Hunt, 1991; Siegel, 1991). In-
deed, until the discovery of the electron, at the end of that
century, the distinctions between permanent and induced
charge were not understood. The electric field is, how-
ever, no more complicated than gravitational interactions
of deformable (¢f. ‘polarizable’) objects of similar mass,
like binary stars. There, too, the location and shape of
the sources are both determined by and determine the
gravitational force.

Gravitation is not usually considered in this light
(except by astronomers) because we usually compute
gravitational forces between rigid objects of very differ-
ent mass. Then, only one object determines the field, to
a good approximation. The essential tact about electric-
ity is that this approximation rarely applies: most objects,
e.g., atoms and ions, have about the same amount of
charge and many can move and deform ('polarize’) in
the electric field.)

(ii1) the dielectric charge (that we call induced or
polarization charge: Griffiths, 1989, Ch. 4; Purcell, 1985,
Ch. 10) which is traditionally described by the volume
density of (hypothetical) dipoles (of infinitesimal size)
that represent the small movements of electrons and nu-
clei (etc.) induced by the electric field. Dielectric or po-
larization charge is defined as the induced charge move-
ment (dipole moment per unit volume, to be precise)
proportional to the local electric field.

Induced charge with more complex properties is
usually described as a component of mobile charge that
varies with the electric field. The ions inside a channel’s
pore form a concentration of mobile charge that varies
nonlinearly with the electric field.

Polarization or induced charge does nor include di-
poles independent of the electric field, so it does not
include the macroscopic dipoles of say a carbonyl group,
even though carbonyls are invariably called a ‘polar’
group! In our system of definitions, that kind of charge
is described as part of the permanent charge.
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(iv) boundary charge, namely, charge applied at the
boundaries of the system during the experiment (by elec-
tronic and chemical apparatus) to keep the potential and
concentrations (nearly) constant at those places.

Everyone who does experiments knows how impor-
tant it is to measure and/or control the concentrations and
potentials on both sides of channels that together deter-
mine the thermodynamic driving force, the gradient of
electrochemical potential. These concentration and po-
tentials supply the energy, charge, and matter that make
currents and fluxes flow. They are the sources of free
energy for channel phenomena and so, if they vary,
nearly everything measured also varies.

For precisely the same reasons, theory must describe
these sources carefully. In the present case (and usually)
the sources are on the boundaries of the system, and are
given by boundary conditions, when the system is de-
scribed in three dimensions.

Shielding of ‘Surface’ Charge

Permanent charge on the surface of membranes (or at the
ends of channels) attracts ions of opposite sign from the
(overall) electrically neutral bathing solution, and
thereby creates an ionic atmosphere with net charge
(analogous to the ionic atmosphere of Debye-Hiickel the-
ory, here called the diffuse double layer or Gouy-
Chapman layer (see extensive references in the channel
context in Bockris and Reddy (1970), Bard and Faulkner
(1980), McLaughlin (1989) and Green and Andersen
(1991), are gateways to the electrochemistry literature).
This charge produces a potential drop in the surrounding
bathing solution, called the surface potential in physical
chemistry, and the built-in potential in semiconductor
physics. If the concentration of ions in the bath is very
high, compared to the density of surface charge, the ionic
atmosphere ‘shields’ or ‘screens’ the surface charge, and
the surface or Donnan potential extends only a short
distance into the bath. If the concentration of ions is low,
the surface charge is hardly shielded, and the Donnan
potential extends far into the solution.

In semiconductors, screening has long been known
to be important. That literature of thousands of papers
can be reached through Selberherr (1984) Rubinstein
(1990) and Jerome (1995). In electrochemistry, screen-
ing has not been analyzed as carefully, usually because
models have been reduced to avoid mathematical diffi-
culties by ignoring one of the types of charge or another
(c¢f- p- 8), or by setting flux to zero (e.g., de Levie &
Moriera, 1972; de Levie, Seidah & Moreira, 1972; de
Levie & Seidah, 1974; de Levie, Seidah & Moreira,
1974; Brumleve & Buck, 1978; Mafé, Pellicer &
Aguilella, 1986, 1988; Mafé, Manzanares & Pellicer,
1988, 1990; Murphy, Manzanares, Mafé & Reiss, 1992;

Nahir & Buck, 1993; Guiraro, Mafé, Manzanares &
Ibédfiez, 1995, who used the name Poisson-Nernst-
Planck).

In channology, the effect of surface charge on open
channel permeation has also received much attention, see
Apell et al., 1977; McLaughlin et al., 1981; McLaughlin
et al., 1983; Dani, 1986; Green, Weiss & Andersen,
1987; Jordan, 1987, Kell & DeFelice, 1988; Peskoff &
Bers, 1988; Jordan et al., 1989; McLaughlin, 1989; Cai
& Jordan, 1990; Mathias et al., 1991; Green & Andersen,
1991.

In channology, the effect of surface charge on gating
phenomena has been studied for many years (at least
since Frankenhaeuser & Hodgkin, 1957; Chandler,
Hodgkin & Meves, 1965; Gilbert & Ehrenstein, 1984, is
a review; see also Hille, 1992). Divalent ions and pH
also have large effects on gating. Both have been
explained by their effect on the surface potential
(McLaughlin et al., 1981; McLaughlin, 1989; Green &
Andersen, 1991), although there is a huge literature in-
vestigating other more specific effects of the divalents
(Hille, 1992, is a gateway to that literature).

In channology, the effect of shielding of the protein
charge in the channel’s pore has received less attention,
although some reduced models have been developed
(e.g., Teorell, 1953; see also Mauro, 1962; Bruner,
1965a,b, 1967, Aqvist & Warshel, 1989; Edmonds,
1994) and Peng et al., 1992, and Zambrowicz and Co-
lombini, 1993, apply Teorell’s theory (in essence) to
modern data.

In channology (or anywhere else), what has been
very difficult to develop has been a computable treat-
ment of shielding that includes flux and allows coupling
of the effects of all types of charge.

Only recently have computers been fast enough, and
numerical techniques sophisticated enough to analyze
the entire system, involving as it does coupled nonlinear
partial differential equations describing flux in the pres-
ence of surface, induced, and fixed (i.e., permanent)
charge (first successfully treated, in semiconductors,
Fatemi, Jerome & Osher, 1991; later, independently, in
channels, by Chen, ¢f. Chen & Eisenberg, 19935). Our
results using these new methods reinforce what others
have suggested (Green and Andersen, 1991): surface
charge has global effects; all types of charge in the chan-
nel interact with each other. Thus, understanding and
predicting the effects of bath concentration and trans-
membrane potential requires the simultaneous solution
of a system of nonlinear differential equations (Poisson
and Nernst-Planck equations) and boundary conditions,
including all types of charge.

It would be very helpful to have a reduced version of
PNP which predicted the qualitative properties of cur-
rents and fluxes as experimental conditions or protein
structure as changes. An equilibrium model (e.g., a ver-
sion of PB,)) does not seem helpful: comparison of equi-
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librium and nonequilibrium situations in one dimension
(Chen et al., 1995) have shown that the equilibrium dis-
tribution of potential is a surprisingly poor approxima-
tion to the nonequilibrium situation. We have tried to
find a simple way to predict the nonequilibrium effects
of PNP without solving the entire problem by manipu-
lating the physical components of @(x). For example we
have subtracted surface potentials, polarization effects,
potential profiles at zero current, and so on seeking an
invariant curve—a single (reduced) profile of potential
that would characterize the channel protein itself (inde-
pendent of the subtracted effects). We have not suc-
ceeded: the reduced profiles we have evaluated have
been as sensitive to concentration and frans-membrane
potential as the original @(x). Physicists and engineers
have also been unsuccesstul in constructing a reduced
version of their drift-diffusion equations, despite strong
incentives (e.g., the qualitative design of new transistors
and many decades of trying (Coughran et al., 1994)).
We and others have not given up this quest, but for now
we must be content with the rapid, accurate, and conve-
nient numerical solution of the model. The solution is
easy to compute, and the program to compute it is avail-
able on request, but it must be recomputed for each ex-
perimental condition or each distribution of permanent
charge. We do not know how to make qualitative pre-
dictions of the effects of change in permanent charge
(i.e., protein structure), bath concentrations, or trans-
membrane potential.

Changes in Permanent Charge

In most situations the distribution of permanent charge
on a protein does not change. The exceptions, however,
are of considerable biological importance. When the
conformation of a channel protein changes for whatever
reason, its distribution of permanent charge will change.
When transmitters or second messengers bind to a pro-
tein (or phosphorylate it), they add or subtract charge and
are likely to induce a conformational change. Both will
change the distribution of permanent charge significantly
and thereby change the electric field even if they are
formally neutral, because nearly all transmitters and mes-
sengers are zwitterions or polar (otherwise, they would
not be very soluble in water!). Indeed, a conformation
change in any membrane protein will almost certainly
modulate the electric field in the nearby lipid membrane
and adjacent channels, thereby initiating and governing
gating and open channel permeation.

When the chemical nature of the protein changes
because of changes in covalent bonds, the distribution of
permanent charge will also change. Obvious examples
are phosphorylation (that produces local concentrations
of P, = [H,PO,] + [HPO; ]) and changes in ionization of
the acidic or basic groups in the protein (that produce
local concentrations of H;O" or OH™) caused by changes
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in pH. If phosphorylation (or ionization, see next para-
graph) actually occurs within a channel’s pore, it will
change the concentration and species of current carriers
there, as well as permanent charge. In that case, the
dragging of ions through the pore by P, H;O", or OH™
(and vice versa) might play an important role in active
transport (Hille, 1989; Liuger, 1991) or some types of
gating (Hille, 1992).

Field Dependent Ionization

Experiments show (Tanford & Kirkwood, 1957; Edsall
& Wyman, 1958) that the electric field can significantly
change the ionization (i.e., permanent charge) of proteins
by changing the effective pK, of hydrolyzable (often
called ‘ionizable’) groups—Glu, Asp, Arg, Lys, His.
The effects found experimentally have been extensively
analyzed by the mean field Poisson-Boltzmann (PB,)
theory (Straatsma & McCammon, 1991; Yang et al.,
1992; Antosiewicz, McCammon & Gilson, 1994; Potter,
Gilson & McCammon, 1994; Rajasekaran, Jayaram &
Honig, 1994; MacKerell, Sommer & Karplus, 1995).
Of course, all the energy terms in PB,, or PNP contribute
to the change in pK,. In channel proteins, these include
the energy of the membrane potential (i.e., of the charges
on the boundary the membrane and in the bath), of the
ions in the channel, of the permanent charge, of the in-
duced charge, and of mechanical and electrical forces in
the boundary conditions themselves (e.g., the ‘dielectric
pressure’).

The possibility that permanent charge in a channel’s
pore is modulated by membrane potential or phosphor-
ylation (etc.) is tantalizing because such modulation
might provide a link between the physics of the open
channel and the elaborate biochemical mechanisms that
control channel function (Gilbert & Ehrenstein, 1970;
Cramer et al., 1995, p. 628). Ionizable residues are
found in putative pore forming regions of many channels
(review: Perachia, 1994) and mutations in them often
have profound effects on channel function and modula-
tion, both on gating and on open channel permeation
(Miller, 1989; Sigworth, 1994; Montal, 1995, and refer-
ences therein). If significant ionizable charge is present
within a channel’s pore, complex interactions will occur:
charge creates the field, the field modifies the charge,
and the potential barriers to permeation will surely
change in an interesting way, at least in PNP theory, and
probably in the real channel as well, both transiently and
at steady-state.'”

'7 It should be mentioned that ‘activation curves’ showing the voltage
dependence of many rate constants of (macroscopic) gating (Hodgkin
& Huxley, 1952; Hille, 1992) have the shape of titration curves or their
derivatives with respect to potential.
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Energy in Electrodiffusion Systems

The idea of energy is considerably more subtle than it
sometimes seems, if systems are dissipative, nonlinear,
and open, let alone chaotic, thus violating, in many re-
spects, the assumptions made in elementary treatments of
thermodynamics or mechanics. Explicit analysis of the
mechanics of nonlinear mechanical systems containing
just a few components, like a driven dissipative pendu-
lum (Ben-Jacob et al., 1982; Kupferman et al., 1992),
shows the need for careful thought and mathematical
treatment before extending the laws of thermodynamics
to nonequilibrium nonlinear systems.

Usual treatments of energy in mechanical systems
require'® the boundary conditions of the system to be
*holonomic’'”. These treatments can be extended to fric-
tional systems if Rayleigh’s dissipation function can be
defined (Goldstein, 1980, p. 21-25, p. 62). Most treat-
ments of irreversible thermodynamics depend on the def-
inition of such a function (e.g., Katchalsky & Curran,
1965). Treatments of energy in an equilibrium, quasi-
thermodynamic theory like PB,, (loc. cit., and also Gilson
& Honig, 1988; Jayaram et al., 1989; Sharp & Honig,
1990; Gilson et al., 1993; Antosiewicz, McCammon &
Gilson, 1994) cannot themselves define Rayleigh’s func-
tion because those theories assume equilibrium, and at
equilibrium, atoms and charges have zero (mean) veloc-
ity, velocity dependent potentials do not appear (Gold-
stein, loc. cit.), no flux flows, and so frictional forces and
dissipation are zero, as well.

It is not clear a priori whether Rayleigh’s dissipation
function can be defined for a general electrodiffusion
system because diffusion is strongly coupled to the elec-
tric field, and the system (with coupling) is inherently
dissipative, nonlinear and open, with flux of energy and
matter (and charge) across its boundaries, as we have
mentioned many times. The work needed to move
charge in a protein or channel (e.g., to ionize residues in
a channel) may or may not be describable by a path-
independent energy function (even in principle: Griffiths,
1989, p. 187). It remains to be seen.

Whether or not energy and dissipation functions can
be defined for these systems—and I surely hope they
can!—any theory using energy as a variable must keep
careful track of all its components.

' As Goldstein puts it in the second edition of his classic text (p. 64,
op. cit): **A good deal has been written about Hamilton’s principle for
nonholonomic systems. and most of it is wrong (including some things
that were said in the first edition). . .. [Rund, 1966, concludes that]
Hamilton’s principle is applicable only to holonomic systems.””

' which for present purposes, can be crudely read as ‘isolated’ al-
though there is much more to the idea than that (Goldstein, 1980, p. 11,
also see items listed under ‘constraints’ in his index).
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(1) energy of all the types of charge in the channel
(cf: p- 8);

(2) chemical energy, i.e., the free energy associated
with the concentration, and entropy of each mobile spe-
cies;

(3) energy losses to friction everywhere in the sys-
tem and in the boundary conditions. To analyze these,
the model probably needs to be extended, like the hy-
drodynamic model, to include explicit equations describ-
ing the conservation of mass, energy, and momentum
and the generation and flow of heat (Huang, 1987, p. 96;
Lundstrom, 1992; Chen, Eisenberg, Jerome & Shu,
1995; Jerome, 1995);

(4) energy flows in the boundary conditions and the
apparatus that maintains them;

(5) energy changes associated with volume changes
in the system (Conti et al., 1984; Zimmerberg & Parse-
gian, 1986; Zimmerberg, Bezanilla & Parsegian, 1990;
Peng et al., 1992; Rayner, Starkus, Ruben, Alicata, 1992;
Vodyanoy, Bezrukov & Parsegian, 1993).

It is not wise to pick and choose among the compo-
nents of energy or to ascribe biological significance to just
one component without good reason. Each component of
energy arises in a different part of the system, with its own
characteristics, including time course, some of which (like
solvation) are much shorter (0.01 psec, Stratt, 1995) than
ion permeation (0.1 usec: Cooper, Jakobsson & Wolynes,
1985; Chiu & Jakobsson, 1989; Barcilon et al., 1993;
Eisenberg, Klosek & Schuss, 1995), others, like slow con-
formation changes (e.g., of slow inactivation) much longer
than permeation. It is not clear which of the components of
energy should be included when calculations are made of
the rate constants or state probabilities of a channel (or
protein), using the ‘Boltzmann equation” (Hille, 1992, p.
12). Do the state probabilities of a conformation change
(for example) depend only on the electrical energy of the
charge that moves during that conformation change in an
unvarying profile of potential, as is usually assumed in
channology (loc. cit.)? Or do the probabilities also depend
on the energies of other charges, on the energy lost to
friction, on the energy involved in changing the volume or
potential profile, and on the energy flow in the boundary
conditions?

Difficulties of this sort arise in any quasi-thermo-
dynamic treatment of nonequilibrium systems and have
motivated me, following in the footsteps of many others
working on other systems (cf. Ben-Jacob et al., 1982;
Kupterman et al., 1992, and references in footnote
26), to abandon equilibrium models of channels,
both of the equilibrium PB,, or irreversible flavor, and to
use kinetic models with explicit dynamics, of the several
available flavors, namely molecular, Langevin, or hydro-
dynamics (Elber et al., 1995; Eisenberg, Klosek &
Schuss, 1995; Chen & Eisenberg, 1993a; D.P. Chen et
al., 1995, submirted) or PNP (loc. cit.).



All Charge Produces the Electric Field

The electric field, that determines the energy, arises from
charge according to Poisson’s equation, which itself is
just a restatement of Coulomb’s law.

To describe a channel or protein, either Poisson’s
equation or Coulomb’s law needs to include as its
sources all the types of charge described on p. 8 because
each helps produce the field. The equations need to de-
scribe how the charge and potential at the boundaries of
the baths and the boundaries of the channel (at its walls)
change as experimental conditions change, e.g., as con-
centrations or potentials are changed in the bath: the
sources (boundary conditions) in the theory must, of
course, have the same properties as the charge in the
physical world.

Interestingly, traditional theories of ionic solutions
(see references in Bockris & Reddy, 1970; Bard &
Faulkner, 1980) and liquids (see references in Allen &
Tildesley, 1990), and simulations of molecular dynamics
(Evans & Morriss, 1990; Hoover, 1991; Mareschal &
Holian, 1992; Lowe, Frenkel & Masters, 1995), even of
channels (reviewed in Roux & Karplus, 1994), often pay
little attention to charge on the boundaries®® and the re-
sulting macroscopic electric fields, and so cannot deal
with many phenomena of channels, membranes, cells (or
tissues, for that matter), which are produced by charge at
the boundary of the protein or bathing solutions. These
theories cannot describe the ‘far fields’ or general bound-
ary conditions that produce resting or electrotonic poten-
tials (Jack, Noble & Tsien, 1975) of nerve and muscle
cells, or syncytical tissues (Eisenberg & Mathias, 1980)
or long insulated conductors bathed in an ocean of salt
water, for that matter (i.e., the Atlantic cable: Kelvin,
1855, 1856). They cannot describe the qualitative mech-
anism of the action potential (Hodgkin & Huxley, 1952;
Hodgkin, 1971, 1992) because that involves feedback
between the membrane potential (i.e., boundary poten-
tial) and the potential within and current flowing through
a single channel molecule (Hodgkin, 1958). Much re-
cent work on liquids, ionic solutions, and proteins has
been devoted to dealing correctly with just the Dirichlet
far field condition of (uniform) zero electrical potential
at infinity (using Ewald sums or reactions fields, viz.:

** or boundary conditions in general, following the philosophy stated
clearly in Goldstein. 1980, p. 16: “*On this [atomic] scale all objects,
both in and out of the system, consist alike of molecules, atoms, or
smaller particles. exerting definite forces, and the notion of constraint
becomes artificial and rarely appears.”” This philosophy may be appro-
priate when atoms or clusters of atoms are isolated (either naturally or
experimentally, so physicists can study their inherent properties with-
out disturbance by the outside world). It clearly is inappropriate in a
system like a channel in a membrane which naturally interacts with the
macroscopic electric field created by the rrans-membrane potential.
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Friedman, 1975; Yoon & Lenhoff, 1990; Sharp, 1991;
Zauhar, 1991; Gao & Xia, 1992; Saito, 1994: Tannor et
al., 1994; Rashen et al., 1994; Chen et al., 1994: Tironi
etal., 1995). That work will soon be extended, no doubt,
to include other boundary conditions of the electric field
(Jackson, 1975; Griffiths, 1989), and of cells and tissues
(Eisenberg & Johnson, 1970; Jack, Noble & Tsien, 1975;
Mathias et al., 1979) and of electrodiffusion. Then, it
can describe how macroscopic electrical, diffusional, or
biological systems actually function.

Solving the PNP Equations Means Computing the
Electric Field

The PNP system of equations can be solved simulta-
neously, without approximation, using the numerical
methods described in the Appendix. Even though PNP is
a quite complex, coupled set of nonlinear differential
equations, the underlying physical principles are simple:
all types of charge in the channel, and at its ends, have
interacting effects on the distribution of potential and
concentration in the channel. The shape of the electric
field is found to change substantially, even qualitatively,
by some k,T7e in most locations, in hundreds of different
calculations simulating real experimental conditions, like
those used in the laboratory, in which concentrations of
ions are changed in the baths. Modulation of the electric
field in channels is the rule, not the exception. As ex-
perimental conditions change, the potential profile
changes.

Nonetheless, the surface of a channel or protein has
often been described as a more or less unvarying set of
potential barriers over which flux diffuses (e.g., Levitt,
1986; Cooper, Gates & Eisenberg, 1988¢,b; Chiu & Ja-
kobsson, 1989; Barcilon et al., 1993; Eisenberg, Klosek
& Schuss, 1995) with a rate constant independent of the
concentration of ions in the bath or channel. Hill (1977),
Walsh (1979), Hill (1985), Hille (1992), Andersen and
Koeppe (1992), Lauger (1991) and Eisenman and Horn
(1983) are examples of this extensive literature of rate
constant models. Such models of flux over barriers
(whether using rate constants or not) implicitly describe
the surface of a protein as an unvarying potential pro-
file—a ‘potential of mean force’ in the technical lan-
guage of statistical mechanics—thereby ignoring the ef-
fects of shielding, even though those effects can be large
at the ends of the channel (loc. cit. and see Egs. (A2)—
(A4) of the Appendix) and in its pore (cf. Egs. (A9) and
(A10) of the Appendix) and are large in many other
physical systems (as described on p. 9). Unfortunately,
most theories of open channels are subject to these crit-
icisms whether they describe permeation by rate con-
stants or diffusion over barriers loc. cit. These theories
do not allow the rate constants or barrier shapes to vary
as concentration or frans-membrane potential varies and
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so they imply unrealistic properties of the electric field.
In fact, if used over a range of experimental conditions,
they are inconsistent with the laws showing how charge
creates an electric field, namely Poisson’s equation or
Coulomb’s law.

The Surface of a Protein is a Distribution of
Charge, Not Potential

A channel (or a protein, for that matter) can certainly be
described as a distribution of potential under one set of
conditions. Indeed, it can be described as the same dis-
tribution of potential under another set of conditions, as
long as all the charges (¢f. p. 8) in the system stay the
same. But if concentrations, or frans-membrane poten-
tial are changed (or if the protein binds a substrate or
transmitter, or if it changes conformation), charges will
change and so will the potential-of-mean-force.”'

After any charge in the system changes, a profile of
the potential-of-mean-force can still be used to describe
the channel protein, but it will be a different profile with
a different size and shape. The potential-of-mean-force
might conceivably stay the same at one location, but only
if that location is connected to a battery that supplies or
withdraws charge to compensate for changes in other
types of charge. The potential profile can stay the same
only if many locations are connected to (different) bat-
teries, each of which supplies or withdraws the charge
necessary to keep its potential constant.

Describing a protein as a potential surface is equiv-
alent to describing that surface as a source of potential,
i.e., as a Dirichlet boundary condition, a surface where
the potential is fixed. A surface of matter cannot be a
source of potential, described by a Dirichlet boundary
condition, unless it is a metai connected to a battery.
The surface of a protein is neither metallic, nor con-
nected to multiple batteries and so the surface of a pro-
tein must be described as a distribution of permanent
charge.” Only the permanent charge stays constant as
experimental conditions vary and change the mobile
charge (i.e., ions) in a channel and at its boundaries. If
those mobile charges vary, the total charge varies, and so
does the potential. Thus, as experimental conditions are
varied, as the potential or concentrations in the bath are
varied, the electric field varies because the charge in the
channel’s pore and at its boundaries vary, even if the
(fixed) charge on the protein stays the same. The electric
field is modulated by changes in experimental condi-
tions: modulation is the rule, not the exception.

VIt the conformation changes, the distribution of permanent charge
will change as well, of course.

2 This is to a first approximation; to a second approximation, dielectric
properties must also be included as they are in our analysis (¢f. Eq. 1).
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Because the flux through a channel is an exponential
function of the potential profile ®({),>* modulation of
the electric field tends to govern the qualitative proper-
ties of channels. In this way, changes in the contents of
the channel can govern the qualitative properties of cur-
rent flow.

Validity of PNP Theory

Eisenberg, Klosek & Schuss, 1995 (following the simu-
lations of Cooper, Jakobsson & Wolynes, 1985; Chiu &
Jakobsson, 1989; and the lead of Barcilon et al., 1993)
proved the validity of the Nernst-Planck (NP) part of the
theory for discrete atomic systems without single filing.
E. Barkai, R.S. Eisenberg and Z. Schuss (1995) submit-
ted, are extending the theory to single ion channels. Us-
ing only mathematics, Eisenberg, Klosek and Schuss
(1995) showed that the NP equations describe the mean
of the probability density function for location in systems
dominated by friction, in which atoms follow the Lan-
gevin model of atomic motion, i.e., Newton’s laws plus
fluctuations caused by atomic collisions.

The Langevin model is the starting place for most
theories of atomic motion in condensed phases (Kramers,
1940; Gardiner, 1985). Even if the system is not entirely
dominated by friction, and the full Langevin equation is
needed, or the friction has complex properties, and the
generalized Langevin equation is needed (Hynes, 1985,
1986; Berne, Borkovec & Straub, 1988; Hinggi, Talker
& Borkovec, 1990; Fleming & Hinggi, 1993; Tucker-
man & Berne, 1993), Eisenberg, Klosek and Schuss
prove (using mathematics alone) that something very
like Nernst-Planck is appropriate (their Eq. 6.15). Sur-
prisingly, the main results of their analysis depend only
on mathematical identities. All that is necessary for their
proof is the existence of conditional probabilities of lo-
cation. The conditional probabilities can be directly de-
rived from simulations of molecular dynamics (without
using even the generalized Langevin equation, e.g., see
Barcilon et al., 1993, Figs. 4 and 5) or from the Onsager-
Machlup action formulation of Newton’s laws in the
presence of thermal agitation (Onsager & Machlup,
1953; see modern application: Elber, 1996).

Thus, there seems little question of the validity of
the NP equations for a stochastic discrete atomic system.
They describe the mean value of the probability density
function of location of ions within the open channel.
The question then is how to compute the mean potential
used in the NP equations.

The Mean Potential

The Poisson equation can describe a potential on many
time scales and it can describe the mean potential pro-

2% See Eq. (AB).
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duced by mean charge. In the PNP theory of channels, it
describes the mean field approximation to the potential
in the open channel produced by the average distribution
of permanent, mobile, and induced charge (¢f. Eq. (1)).
In particular, it describes the potential averaged over the
5 psec needed to measure a single digital sample of mean
current (because of instrumentation and signal to noise
problems). Five psec is much slower than the time
scales that determine the energetics of solvation (0.01
psec, Stratt, 1995), or typical atomic motions in proteins
(0.1 psec) and so averaging of these motions is neces-
sary. Five usec is also slow compared to the time scale
of ion permeation: a univalent ion crossing a membrane
every 160 nsec carries | pA of current and a single ion
takes roughly the same time for its (first) passage across
a channel, namely, its mean first-passage time (MFPT),
estimated by Cooper, Jakobsson and Wolynes (1985);
Chiu and Jakobsson (1989); Barcilon et al. (1993);
Eisenberg, Klosek & Schuss (1995).

The time and length scale of atomic motions is
known (Berry, Rice & Ross, 1980) from experiment
(e.g.. measurements of temperature factors of proteins by
x-ray diffraction: Frauenfelder, Petsko & Tsernoglou,
1979; Parak & Knapp, 1984; McCammon & Harvey,
1987; Brooks, Karplus & Pettitt, 1988; Smith et al.,
1990; Kuriyan et al., 1991); from general theoretical con-
siderations (e.g., kinetic theory, McQuarrie, 1976; Gar-
rod, 1995); most vividly from the simulations of molec-
ular dynamics in general (Burkert & Allinger, 1982; see
Davidson, 1993, which introduces a review of the ‘state
of the art’: Chem. Reviews, 93(7), 1993); from simula-
tions of proteins (Brooks, Karplus & Pettitt, 1988; Mc-
Cammon & Harvey, 1987); and from simulations of
channel proteins, in particular gramicidin (reviewed in
Roux & Karplus, 1994), including our own (Elber et al.,
1995). The range of time scales in proteins is remark-
ably large: experiments show conformation changes
ranging from 1077 sec to 10" sec (Brooks, Karplus &
Pettitt, 1988: Table I, p. 19).

The rms deviations of atoms from their mean po-
sitions are significantly larger (op. cit.), and the motions
more violent, than imagined in traditional theories of
channel permeation (Hille, 1992; Andersen & Koeppe,
1992; ¢f. Purcell, 1977; Berg, 1983). For example, com-
paring a snapshot of a simulation of a gramicidin channel
with one taken some 10 psec later shows that most atoms
are more than 1 A away from where they were initially.
If the electrostatic potential is computed from each snap-
shot, striking variations are found. The potential at most
locations has changed more than k;7/e: Coulomb’s law
shows that a | A displacement of a carbonyl oxygen
(containing ~0.6¢ of charge), produces a potential
change >1 k;zT/e at distances of a few Angstroms (e.g.,
Israelachvili, 1985, Ch. 3). Thus, potential profiles in
pores change substantially at least every 10 psec; they
are likely to fluctuate® (by several k,7/e) many times
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indeed while one sample of open channel current is mea-
sured (~5 usec).

It is the fluctuating potential that determines the cur-
rent measured in channel experiments. The experimental
measurement of current is taken over such a long time
period (compared to atomic or ionic motions) that it is
necessarily an average. Thus, the potential that deter-
mines the measured current must be an average too, of
some sort or other. The functions being averaged vary
wildly, containing some 5 psec/(MFPT = 1077) = 50 to
5 usec/(Solvation time period = 107 = 5 x 10® fluc-
tuations in the 5 psec period of a single current measure-
ment. The average cannot be determined by simply sum-
ming the potential determined in individual simulations
because that summation procedure is numerically (inher-
ently) ill-determined.?> Furthermore, the various averag-
ing procedures of equilibrium statistical mechanics do
not apply to these systems far from equilibrium, and
attempts to use them have not been successful (Allen &
Tildesley, 1990, Ch. 8-11; Evans & Morriss, 1990;
Hoover, 1991; Haile, 1992: Ch. 8; Mareschal & Holian,
1992); indeed, problems with equilibrium statistical me-
chanics have led some authors to propose a radical re-
working of the ‘thermodynamic’ theory of flux (see ex-
periments of Keizer and Chang (1987) and Hjelmfelt and
Ross (1995) and discussion and references in Keizer
(1987a,b) and Vlad and Ross (1994a,h) and Peng et al.
(1995)). Rather, the average must be determined sepa-
rately, by its own theory, just the way the average of the
trajectories of a Brownian motion®® are determined by
Fokker-Planck equations (Arnold, 1974; Schuss, 1980;
Gardiner, 1985; Gard, 1988), not by actually adding up
the trajectories.

The nature of the average potential depends on the
atomic properties of the channel, as it does in any mac-
roscopic condensed phase. If the motions of the perme-
ating ion (or more precisely the permion) are much
slower than the atomic motions surrounding it, the Har-
tree self-consistent field (SCF) approximation (Ashcroft
& Mermin, 1976; Kittel, 1976) is usually invoked: the
effective potential for an ion is determined from the av-
eraged locations of the other charges, i.e., atoms.

It is certainly possible to imagine or build a system

** These rapid fluctuations probably account for the very large open
channel noise we (and others) have observed at high frequencies. Be-
low (say) 10 kHz—where open channel noise has been reported—these
rapid large fluctuations presumably ‘average out’ to zero.

** The slightest rounding error. error in truncation of the sum. or sys-
tematic error would dominate the estimate of such a sum.

¢ Mathematically speaking, the trajectories are ‘functions of un-
bounded variation,” oscillating an infinite number of times in any finite
interval, no matter how small (Wong & Hajek, 1985, p. 53) and thus are
hard to evaluate, represent, or approximate in a finite simulation or
calculation.
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where macroscopic flux does not depend solely on the
averaged potential, but rather depends on some ex-
tremely weighted average or particular extreme value of
the fluctuating atomic potential, and so the SCF approx-
imation fails. But if macroscopic properties depend on
such extraordinary events, they cannot be described lit-
erally by classical macroscopic theories of average prop-
erties like Maxwell’s equations and diffusion equations
of Fick’s law, or statistical mechanics as built on the
Boltzmann transport equation. Classical macroscopic
theories of matter are literally valid only when the aver-
ages of atomic trajectories are well behaved.

Most theories of condensed phases, solid state, or
gas phases assume that the mean dependent variables
(like potential) obey the macroscopic laws of electrostat-
ics, and the fluxes are described by macroscopic laws of
diffusion of charged particles, i.e., the Nernst-Planck
equations, even though the electrical potential and other
parameters are known (by direct experimental measure-
ment in many of these sciences) to fluctuate wildly on
atomic scales of length and time. These theories®’ all
use macroscopic laws like Poisson’s equation and the NP
equations to predict macroscopic measurements. They
all use SCF and effective parameters to describe macro-
scopic properties as averages of atomic trajectories. And
all these macroscopic theories fit a wide range of the
phenomena seen in ordinary experiments—the ordinary
phenomena of classical physics. Of course, they cannot
describe the extraordinary phenomena of modern physics
(e.g., conduction of current by holes in semiconductors),
precisely because those phenomena depend on correla-
tions that are ignored in the averages of traditional mac-
roscopic theory.

PNP theory must be viewed then as a continuum
theory of the mean field much like the other continuum
theories of nineteenth century physics. It was the tri-
umph of nineteenth century physics to realize that simple
statements of seemingly vague conservation laws be-
come powerful and specific predictors of complex ex-
perimental phenomena (e.g., water waves breaking on a
shoreline) when converted to mathematical form (e.g.,
partial differential equations) and coupled to boundary
conditions (to describe the source of energy and flow)
and constitutive relations (e.g., Ohm’s law, Fick’s law)
that describe the mean flux of uncorrelated particles.

7 Bolizmann transport equation: McQuarrie. 1976; Résibois & de
Leener, 1977: Berry, Rice & Ross, 1980; Cercignani, 1988: Spohn,
1991: Balian. 1992: Lundstrom, 1992; Cercignani, [llner & Pulvirenti,
1994; Garrod. 1995: condensed phase theory: Kramers, 1940; Gar-
diner, 1985: Hynes. 1985, 1986; Hinggi, Talkern & Borkovec, 1990:
Antosiewicz et al.. 1994: Sharp & Honig, 1990; Fleming & Hinggi,
1993: solid state: Ashcroft & Mermin, 1976; Cox, 1993; gases: Chap-
man & Cowling, 1970; Hirschfelder, Curtiss & Bird, 1954; Mason &
McDaniel, 1988.
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PNP is perhaps the simplest theory that describes the
diffusion and migration of ions in the presence of an
electric field that also computes the field from the
charges present; in that sense, it is the simplest mean
field theory consistent with the laws relating charge and
electrical potential. But it certainly is not the only such
theory: others may in fact be much better descriptions of
the correlated motion of ion, water, and atoms (of the
channel protein) that accompany permeation (convinc-
ingly shown experimentally by Rosenberg & Finkelstein,
1978a,b; Levitt et al., 1978; Finkelstein & Andersen,
1981; Dani & Levitt, 1981; Levitt, 1984; Finkelstein,
1987; Hille, 1992; and shown in simulations (Chiu et al.,
1989; Roux & Karplus, 1991; Roux & Karplus, 1994;
Elber et al., 1995)).

Quasi-Particles as Correlated Motions in a
Mean Field

It is instructive to consider how the correlated motions of
extraordinary phenomena are analyzed in other sciences
(Ashcroft & Mermin, 1976; Mason & McDaniel, 1988;
Cox, 1993) where direct measurements of atomic and
transport properties are routine, along with extensive
simulations (Bird, 1994). In these sciences, mean-field
theories are common, despite the universality of corre-
lated motions, and mean field theories like PNP (or iden-
tical to PNP: Ashcroft & Mermin, 1976: Ch. 28 and 29)
are used successfully to fit a wide range of qualitative
and quantitative behavior (Mahan, 1993). The PNP
equations appear because they arise from conservation
laws (that are true no matter what are the details of the
atomic motion) and simple constitutive laws, like Fick’s
law, which approximately describe a wide range of sys-
tems. But these mean field theories are often not literally
true as descriptions of motions of individual atoms, be-
cause the atomic motions are extraordinarily correlated.
Rather, the mean field theories are used®® to describe
collective motions as if they arose from the rigid body
translation of a group of atoms (Goldstein, 1980: Ch. 5).
The (sometimes hypothetical) rigid body is called a
‘quasi-particle.”* One of the main goals in the study of
such physical systems is to establish the existence of
such quasi-particles (by experiment, simulation, and the-
ory) and to determine their conservation laws, laws of
motion, and effective parameters.

Consider, for example, the extraordinary phenomena
of ferromagnetism, superconductivity, and polarons (Ch.

** A mathematician might say ‘‘they are used figuratively’> when
speaking of those cases where the quasi-particle and its behavior cannot
be rigorously derived from the underlying atomic dynamics.

** The discussion of quasi-particles in Ziman (1960), Smith and Jensen
(1989), Ch. 5, and Ashcroft and Mermin (1976) were particularly help-
ful to me.
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33 & 34 of Ashcroft & Mermin, 1976; Mahan, 1993, Ch.
5 & 9; Ch. 6.2 of Cox, 1993). Classical mean field theo-
ries cannot describe these phenomena, but SCF is still
used: correlated motions that were described improperly
in the simplest mean field theories are analyzed in detail,
and summarized as the motions of a quasi-particle in a
SCF mean field. Examples of quasi-particles are not
hard to find: a phonon, polaron, or Cooper pairs are such
quasi-particles; indeed, even the hole and ‘electron’ of
solid state physics are not real particles, but rather quasi-
particles with mass and other properties quite different
from real particles, for example, electrons in free space.
The mean field approach is retained and extended to
these quasi-particles, but the objects moving in the mean
field are no longer the ‘real’ atoms or molecules them-
selves. Rather, they are groups of atoms whose corre-
lated motions allow them to be described as quasi-
particles with definite properties that follow their own
law of motion, obeying the macroscopic laws of diffu-
sion and electrostatics,”” albeit using effective parame-
ters which are only indirect representations of the com-
plex underlying atomic properties, and so have numerical
values that are not immediately understandable (e.g.,
negative mass of an ‘electron’ in a semiconductor,
Spenke, 1958, p. 58-60; Kittel, 1976, p. 200).

It is actually necessary to construct a theory of the
correlated motions, instead of the atomic motions, in
many cases, because the numerical averaging needed to
link atomic motions and experimental observations is
impossible to actually perform. Indeed, in some cases
(when flux flows or dimensionality is reduced: Allen &
Tildesley, 1990, Ch. 8-11; Evans & Morriss, 1990;
Hoover, 1991; Haile, 1992: Ch. 8; Mareschal & Holian,
1992; Lowe, Frenkel & Masters, 1995), the average may
not converge to a definite value no matter how long the
averaging goes on, and so the average may not exist, in
the mathematical sense of the word. Rather, a theory of
the observable property may have to be derived analyt-
ically to replace the uncomputable average of the trajec-
tories or correlation functions.

Quasi-Particles and PNP

It is well to remember this experience of other sciences
as we try to apply PNP to channels. We too are likely to

3% The physicist’s definition of a quasi-particle is analogous to the
biochemist’s definition of a (conformational) state of a protein. The
quasi-particle follows Langevin equations (Newton’s laws of motion
with noise added), although sometimes with peculiar conservation laws
arising from the wavelike nature of the underlying dynamics; the chem-
ical state follows the law of mass action; in both cases the existence of
the correlated motion (quasi-particle or state) is assumed. The law of
mass action (in condensed phases) can only be derived (as illustrated in
Eqgs. A8 & A9 of Appendix) from Langevin equations (loc. cit.); and so
the physicist’s approach has significant advantages, at least in my view.
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find a range of phenomena (e.g., of the open channel)
that are well described by the mean field theory pre-
sented in the Appendix, but with effective parameters
whose meaning can be difficult to sort out, because the
object moving in the mean field theory is not an atom or
molecule but a quasi-particle we call ‘a permion’ (Elber
et al., 1995), that moves along an effective reaction co-
ordinate, a twisted path, that is usually not perpendicular
to the membrane surface. Indeed, classical phenomena
of open channel permeation arise from the correlated
motion of the permeating ion and water, as transport
experiments convincingly showed some time ago:
(Rosenberg & Finkelstein, 1978a,b; Levitt et al., 1978;
Finkelstein & Andersen, 1981; Dani & Levitt, 1981;
Levitt, 1984; Finkelstein, 1987; Hille, 1992). The corre-
lated motions are, of course, also apparent in simulations
(Chiu et al., 1989; Roux & Karplus, 1991; Roux & Kar-
plus, 1994; Elber et al., 1995). Other classical phenom-
ena depend on the interactions of ions coming from dif-
ferent sides of the membrane (e.g., nonideal ratios of
unidirectional fluxes of tracers, Jacquez, 1985; Hille,
1989; Chen & Eisenberg, 1993h) and so must be de-
scribed by a theory that allows such interactions, for
example, a mean field theory of the correlated diffusion
of a permion in a single file (E. Barkai et al., 1995
submitted). Of course, the utility of this idea of a per-
mion remains to be established. Now, it is a compelling
and not very new image; eventually, it may become a full
fledged theory predicting selectivity, fluctuations, flux,
and blocking phenomena in open channels (Hille, 1992).

It is even possible that the phenomena we call (sin-
gle channel) gating will be best described as the motion
of a quasi-particle (perhaps, the permion; more likely a
quasi-particle with different properties, a ‘gate-on’) that
follows its own laws of motion (i.e., Langevin equation)
with probability density described by something like
PNP. If that motion occurs over a high barrier, its mean
time course will be exponential and rate theory will be a
good approximation, as it is to most phenomena of single
channel gating (McManus & Magleby, 1988; McManus
et al., 1988; McManus & Magleby, 1991).

PNP is thus an appropriate mean field theory of the
rapidly fluctuating atomic scale potentials of the open
channel, as long as averages are taken on the time scale
at which current is measured (e.g., over 5 pusec, which is
long compared to the permeation time of a single ion),
and as long as the system is reasonably homogenous for
that 5 psec.

Homogeneity of the Open State

The homogeneity of states of proteins cannot be assumed
(Frauenfelder, 1985; Ansari et al., 1985; Frauenfelder,
Sligar & Wolynes, 1991) and so it is fortunate that the
homogeneity of the open state of a channel is known
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directly from experimental measurements of single chan-
nel currents on the biological time scale. Measurements
of open channel noise (chiefly from Sigworth’s lab, start-
ing with Sigworth, 1985; for more recent references see
Heinemann & Sigworth, 1991, also Hainsworth, Levis &
Eisenberg, 1995) show little correlation between succes-
sive samples of the current records: currents hardly vary
within one channel opening or from opening to opening,
or even experiment to experiment (when recording con-
ditions are the same). The variance and power spectrum
within a single prolonged opening is the same as the
variance from opening to opening (op. cit.). Because
these measurements are made on the actual time scale of
biological function, they estimate the inhomogeneity rel-
evant for that biological function. In fact, they show
directly that the open channel is quite homogeneous on
the functionally relevant time scale. Of course, they say
nothing about much faster time scales; inhomogeneity of
the type seen by Frauenfelder (1985), Ansari et al.
(1985); Frauenfelder, Sligar and Wolynes (1991) might
well exist on the picosecond time scale while the channel
appeared homogeneous on the gsec time scale of perme-
ation.

The homogeneity of currents observed experimen-
tally (on the functionally relevant time scale) implies an
underlying structural homogeneity of the open state of
channel proteins, on the same time scale: that is the time
scale in which the mean quantities of PNP theory are
computed (namely, the parameters and variables of Eqs.
(1) and (2)). The conformation and the shape of the elec-
tric field must be reasonably constant and nearly the
same whenever the channel is open on the time scale of
psec; otherwise, the experimentally measured currents
would not be reasonably constant and nearly the same on
that time scale.®'

The question is what do the words ‘reasonable’ and
‘nearly the same’ mean? I believe this question can be
answered directly from experimental data because the
open channel noise itself is a measure of the inhomoge-
neity of the open state. Indeed, it is an upper bound on
the inhomogeneity of the open state because open chan-
nel noise can arise in other ways besides inhomogeneity.

In fact, the measured current is a more sensitive
measure of the homogeneity of the open state than the
potential profile: current through a channel is an expo-
nential function of the potential profile ®({) in nearly all
theories (e.g., as shown explicitly in Eq. (A8), left hand
side, Appendix), and the concentration is also a steep

*''The subconductance states and flickers commonly seen in wide
bandwidth recordings of channels also set bounds on the validity of our
argument: they are probably a measure of another kind of inhomoge-
neity of the open state, distinct from that observed in measurements of
open channel noise.
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function of potential as shown on the right hand side of
Eq. (A7); consider special case with C(R) =0, V., =0.
Thus, if single channel current is found to be reasonably
constant experimentally, the contents of the channel are
likely to be reasonably constant, and the potential protile
is likely to be even more constant.

We should thus not be surprised that open channel
noise is reasonably well behaved in most channels. It
does not differ from instrumentation noise by more than
a factor of 2x in the papers of Sigworth (where it is often
less than that) or Hainsworth, or in most other channels.
Indeed, if uncertainty in the level of open channel current
is comparable to the mean amplitude of open channel
current, or if the current fluctuates significantly (say
rMs deviation > 10% of open channel current) on a time
scale comparable to the (mean) duration of open channel
current, the records do not fit within the paradigm of
single channel recording (Bean et al., 1969; Hladky &
Haydon, 1970; Neher & Sakmann, 1976; Ehrenstein &
Lecar, 1977; Sigworth & Neher, 1980; Neher, 1982; Sak-
mann & Neher, 1983, 1995) and are likely neither to
have been pursued (very far) nor to have been reported
(in full length publications).

The homogeneity of the open state is particularly
interesting, because states of proteins in general are not
considered so homogeneous (op. cit). The homogeneity
of the open state is probably a consequence of the time
scale of permeation and the high density of fixed (i.e.,
permanent) charge along its wall. If that charge is re-
ferred to the volume of the channel’s pore, its concen-
tration is several molar; e.g., in gramicidin, in which the
carbonyl oxygen’s make up the wall of the channel, each
3 A turn of the helix contains about 0.6e, giving a con-
centration of permanent charge of 2.6 Molar. Such a
highly charged tunnel is likely to change potential dra-
matically if its contents change and leave substantial
fixed charge unshielded on the psec time scale. And it
may be impossible for such a large potential to be sus-
tained for the functionally relevant time of 5 usec, with-
out the channel returning to a closed state. It seems pos-
sible that an open state of a channel is a quite special
state, the only state (within some tolerance, of course) in
which the contents of the channel-—and thus its potential
profile—are compatible with substantial flux. In this
view, the open state is a conditional state; any of the
many conditions (e.g., thermal fluctuations in concentra-
tion or conformation) that might perturb its balance of
mobile and permanent charge would likely interrupt cur-
rent flow, thereafter removing the protein from the open
state. A closed channel would then be characterized by
many states (i.e., potential profiles), while an open chan-
nel would be characterized by just one (within a certain
tolerance, of course). If sufficiently well defined, the
open state might be viewed as an (electrostatic) eigen-
state of the protein, forming the ionic wire postulated by
Rosenbusch (1988).
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PNP as a Mean Field Theory

We conclude that the potential of PNP theory is a well-
defined mean potential appropriate to describe current
flowing in open channels on time scales longer than
some 5 psec. PNP should be viewed as the first order
SCF theory of flux in channels relating mean potentials
and currents and concentrations using effective parame-
ters appropriate for the dynamics of ions and channel
atoms on the 5 psec time scale.

PNP theory does for channels, in the presence of
flux, what PB, theory has done so successfully for pro-
teins in the absence of flux (for some time now). PNP is
a practical theory because of the advances in numerical
analysis that allow quick computation of the full coupled
nonlinear system. As far as we know, PNP is the first
channel theory to solve the full set of equations involving
induced, surface, and fixed charge, and flux through the
channel. It is certainly not the only such theory, nor can
it be expected to be the best; one dealing more realisti-
cally with single filing would clearly be better.

Profile of Permanent Charge

The profile of permanent charge is perhaps the most
interesting effective parameter of PNP theory, because it
determines the qualitative properties of the open channel
(as doping determines the qualitative properties of tran-
sistors, along with the bias voltages) and because it can
be moditied so easily nowadays by changes in the amino
acid sequence of proteins once the gene for that protein
is known and cloned. Of course, only the primary struc-
ture—the sequence of amino acids—can be read from
the genome: although that sequence is thought to deter-
mine the three dimensional folding pattern of the poly-
peptide chain, only nature knows how to do that (Creigh-
ton, 1992): no one can predict three dimensional struc-
ture (indeed even refine a bad guess) at the present time.
We have seen (on page 13) how sensitive the potential
profile is to the location of charge, and so we can see
how difficult it is to guess the biologically relevant pro-
file of permanent charge without knowing the three di-
mensional structure, heroic attempts notwithstanding.
Nonetheless, changes in the primary sequence, which
may be assumed (with various degrees of certainty) to
leave the rest of the three dimensional structure essen-
tially unchanged, can often be interpreted (Miller, 1989;
Perachia, 1994; Sigworth, 1994; Montal, 1995, and ref-
erences therein). Indeed, some changes have strikingly
specific results, presumably because they mimic a single
amino acid substitution that evolution found useful,
sometime ago.

Successful and complete investigation of structure
function relations, of course, will need measurement of
structure. Three-dimensional structures are much harder
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to resolve than primary sequences, but some channel
structures are now known at atomic resolution (e.g.,
Cowan et al., 1992) and more will be. The question then
is how do we determine the one dimensional distribution
of permanent charge of PNP theory from the three di-
mensional structure of the channel protein (on the one
hand) or the current voltage relations of the open channel
(on the other)? Certainly, there should be a good quali-
tative agreement (i.e., location and number of maxima
and minima) between the potential computed by three
dimensional PB,, theory and that used in one dimensional
PNP theory (in the zero flux and zero membrane poten-
tial condition used in PB,, theory). But the quantitative
relation is hard to predict, because it will depend on the
meaning of the effective parameters of PNP and PB,
theory. That meaning depends on the structure and dy-
namics of the channel protein, on the psec time scale of
permeation, because the relation of charge and potential
depends on the shielding (i.e., polarization) within the
channel protein itself and the dominant source of shield-
ing is the movement of the (charged) atoms of the pro-
tein. These are difficult problems theoretically and ex-
perimentally in every field, not just in proteins and PNP
theory. Nor can they easily be solved by simulation.
Effective parameters can rarely be derived (by mathe-
matics alone) from models of atomic structure and mo-
tion in any system, including those known much better
than proteins.

It is best now simply to ask these questions, waiting
for another day, when perhaps answers will be available,
at least for a specific channel. Perhaps, when we know
the answers for a few specific channels, generalizations
and conclusions concerning the atomic meaning of ef-
fective parameters will emerge.

General Rules

Our analysis implies general rules independent of the
limitations of mean-field, or quasi-particle theories. 1
believe any theory must explicitly display the depen-
dence of flux and current on the diffusion constant of the
system: in liquids, solutions, and other condensed
phases, nothing can be assumed independent of friction.
I believe any theory must be consistent with the proper-
ties of the electric field and so

(1) the theory must compute the electric field, not
assume it.

(2) the theory must compute the electric field from
all types of charge (cf. p. 8).

(3) the theory must never assume that a potential is
maintained constant at some location in matter (as ex-
perimental conditions are changed), unless that location
is connected by a wire to experimental apparatus which
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serves as a source of energy and charge (i.e., a battery or
amplifier).

(4) the theory must recompute rate constants when
experimental conditions change, because anything that
changes the electric field is almost certain to change rate
constants. A protein or channel with an unchanging
electric field is likely to be a dead protein, unresponsive
to its environment, at least compared to natural proteins
or channels.

(5) If the theory is to compute the current flow or
flux on the experimental time scale of usec (or longer),
it must use a mean potential, averaged or computed (by
some scheme or other) on the same time scale.

Conclusion

A theory that follows these rules will predict a live chan-
nel, a live wire whose electric field (flux, and thus rate
constants) will vary with experimental and biological
conditions. The rich behavior of transistors (and the
computers made from them) arises from that variation of
the electric field with conditions (i.e., boundary poten-
tials). Perhaps, some of the oriented, coherent, and con-
structive behavior of channel proteins (that help form the
‘microscopic cybernetics’ of life)*! arises the same way,
by variation of the shape of the field (and the resulting
effects on channel permeation and gating, and thus trans-
port). We must learn to compute the field if we are to
understand how ‘it works, whether ‘it’ is a transistor,
channel, or protein.

This paper describes the work of my collaborators as much as my own:
it is a joy to have shared this adventure with Duan Chen and our
extraordinary coworkers, Victor Barcilon, Ron Elber, Joe Jerome,
Mark Ratner, and Zeev Schuss. [t is an even greater joy to thank them.
My colleagues at Rush have contributed in more ways than I can
enumerate: I am particularly gratetul to Eduardo Rios for helping me
interact with the classical traditions of the field and for his many other
questions and suggestions (which stimulated, among other things, foot-
notes 15, 16, 24).

More specific thanks are due to Lou DeFelice, who suggested that 1
write this paper; to Joe Blum, who requested the Appendix; to Duan
Chen, who suggested the metaphor of the dead channel locked into one
occupancey state: to Olaf Andersen, who motivated me to relate PNP to
traditional treatments of surface charge; to Tom DeCoursey, who sug-
gested the ideas in footnote 12 and 31, among others: to Ron Elber,
who first used the phrase characteristic (i.e., eigen-) state to describe
the open channel; to Richard Henderson, who forced me to think
clearly about fluctuations, their means and meaning; and to Zeev
Schuss and Eberhard von Kitzing for illuminating discussions of the
idea of energy.

[ have no words that can express my gratitude for the steadfast support

of Dr. Andrew Thomson and the National Science Foundation. With-
out that, this work could not have been done.

2 paraphrase of Monod, 1972, p. 45.
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These words were written with BMV 540 ringing in my mind, thanks
to Jill.
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Appendix

PNP Theory

The historical antecedents to PNP and its relationship to PB, theory
(e.g.. of shielding), which is close, have been discussed in the text (p.
9). Our contributions have been reported in a series of papers starting
with Barcilon (1992). Barcilon considers the full three dimensional
problem and derives the appropriate form of the perturbation expan-
sion. Incidentally, (in a result overlooked by many biophysicists) he
solves analytically the electrostatic problem of a finite length cylinder
embedded in a thin membrane, giving two different exact expressions
for the potential, thus contributing importantly to the electrostatic prob-
lem posed first (I believe) by Parsegian, 1969.%* Barcilon et al. (1992)
and Chen et al. (1991) derive and solve the one-dimensional theory
without permanent charge. They show when a constant (electric) field
or constant gradient (of concentration) can approximate the full equa-
tions (without permanent charge). Chen and Eisenberg (1993a) put
permanent charge in the theory; Chen and Eisenberg (1993b) introduce
nonequilibrium boundary conditions that allow a channel of one struc-
ture to produce single filing, and flux coupling reminiscent (in some
ways) of mediated transporters. Interestingly, it has just come to our
attention that the theory of bulk ternary ionic solutions includes flux
coupling (Wendt. 1965) of positive or negative sign (Vitagliano &
Sartorio. 1970). Eisenberg (1996) embeds PNP theory in a hierarchy of
models of different resolutions; Park et al. (1995) analyze the qualita-
tive properties of the theory in the absence of permanent charge and
built-in potentials. Chen et al. (1995) generalize PNP theory to include
explicit equations for the conservation and flow of heat, energy, and
mass. Eisenberg. Klosek and Schuss (1996) derive (just) the Nernst-
Planck equations from a stochastic analysis of flux over barriers begun
in Barcilon et al. (1993). Barkai, Eisenberg & Schuss (1995) extend
the stochastic analysis to a one ion channel.

Because of this extensive documentation, here we only state the
main equations used to predict the results of a typical experiment in
which the single channel current 7 is studied as a function of the
trans-membrane potential applied to the baths V, ., in a variety of
solutions of different composition C0) and C(d). The theory used to
predict this current starts with Poisson’s equation (written here in di-
mensional form), which determines the potential ¢ (units: volts) from
the charges present (cf. p. 8)

Permanent

Change Channel Contents

5

o N
—E,,?Osﬂzi;—z: eP(x) + ezzl(/,(x)

]

Induced Change
+ E[A(] = x/d) — @(x)]

Deviation from
Constant Field (A 1 )

**and subsequently analyzed (Levitt, 1978, 1982, 1984, 1985, 1986,
1988; Jordan, 1982, 1983, 1984, 1987).
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The concentrations P(x) and Cj(x) are the (mean) numbers of particles
per unit volume, e.g., cm . The dielectric properties of the channel
protein and its watery pore (radius r, length d) are described by the
permittivity of free space €, (units: coulombs - volt™' - em™): the (di-
mensionless) dielectric constants €, and €, respectively, and the
effective dielectric parameter & = 2el,e(,/r21n(d/r). defined and derived in
Barcilon (1992): discussed Chen & Eisenberg (1993a).

The meaning of the permanent (i.e., fixed) charge and channel
contents are clear. The induced charge term is not so obvious, but
rather is the outcome of the analysis of average potential and flux in the
full three dimensional PNP equations (Barcilon et al., 1992; Chen et al.,
1991; Chen & Eisenberg. 1993a). Nonetheless, the induced charge
term is intuitively pleasing; when the electric field is spatially con-
stant—described then by a spatially linear potential profile A(1 — x/d)—
no polarization charge is induced according to Poisson’s equation,
because the second derivative of the linear potential is zero i.e.,
d*1dx*(A[1 — x/d1) = 0. Thus, it is pleasing that the difference between
the actual potential and the potential of the constant field, namely A(1
— x/d) — @(x) is the polarization term in equation (Al).

Donnan Potential

Permanent charge at the ends of the channels creates Donnan or built-in
potentials in the baths ®,(0), ®(d) (dimensionless: ® = eq/k,T).
These are the surface potentials studied extensively in membrane bi-
ology (McLaughlin (1989); Green & Andersen, 1991) and are easily
computed because the bathing solutions are made of (nearly) equal
amounts of cations and anions, viz., E,z,C,(L) = _;;/C,-(R) = 0. Then,

P0) + 4C (L)CH(L) + P(0)

O,(0) = log,

265(1) (A2)
P’(d) + 4C,(R)Co(R) + P(d)
D, (d) = log, 2CL(R) (A3)

The potentials on each end of the pore, and from one end to the other,
are

D(0) = B, (0) + V.

appl

O(d) = Py (d)

kT
A= @p(0) — @y(d) + v Vappl (Ad)

Note that the potential A is nor the trans-membrane potential Vippi
applied to the baths). The baths are assumed at equilibrium, even when

current flows, so
Ci0) = CL)exp[—z,Py,,(0))

Cid) = C,(R‘)exp[fz_,(l’h](d)] (AS5)
Nernst-Planck equations determine the flux J; of each ion

Diffusion Migration
; dod
+z,Ci(x) i

; H dC;
VA dx (A6)

where D; is its diffusion constant.



The Nernst-Planck equation {(A6) can be integrated analytically to
give expressions for the concentration of ions in the channel. namely
the channel’s contents

.
CALY - exp 2V — DO - J e L)AL

Cio= ”
J‘m exp 2 Q)T

CAR) - expl=5,P(0)] - f(: exp 5 L)dg

o
RN 4
<£) exp 2(0)dC (AT)

+

The PNP theory is the simplest mean field theory because it assumes
that the mean potential and concentrations of Poisson’s equation are
identical to the mean potential and concentrations in the NP equations.
The system of equations (Al) and (A6) or (A7) are self-consistent
because they can be (and must be) solved simuitaneously. The poten-
tial depends on the concentrations C;(x) through the Poisson equation
(A1) but the concentrations also depend on the potential through the
integrated Nernst-Planck equations (A7), Indeed. the concentrations
depend exponentially on the potential profile d(Z). Once the potential
protiic is set. the distribution of concentration is determined and cannot
change. In that sense, assuming a single profile ®({) is equivalent to
Iocking a channel into a specific occupancy state. from which it cannot
move as fong as the potential profile itselt does not change.

A different integration of the Nernst-Planck equations shows that
flux {and the observable. the electric current /) also depends exponen-
tially on the potential profile ().

Calyexp(zV o0 CAR) N
J,=D, Lt p ’ =t D end

1 / izl J
fl) exp 7 @(0)d

o .
f“ exp Z;P(C)dC J (A8)

While the numerators of these terms can be written as functions of
(just) the electrochemical potential, the denominators cannot (Chen &
Eisenberg. 1993b; Eisenberg, 1995). The denominator and tlux itself
depends exponentially on @({). the electrical potential profile itself
(not the electrochemical potential), which in turn depends on all the
variables and parameters of the system through Poisson’s equation
(Al). Once the potential profile is set, the flux is determined. In that
sense. assuming a potential profile is equivalent to locking a channel
into a specific conducting state. from which it cannot move as long as
the potential protile does not change.

Each term of equation (A8) describes the (so-called) unidirec-
tional flux measured by tracers (usually radioactive isotopes) moving
into a medium of (nearly) zero tracer concentration (see precise defi-
nition of unidirectional flux in Chen and Eisenberg (1993b), and ref-
erence to the extensive literature in, for example. Jacquez (1985)).
The fluxes can also be written as a chemical reaction (without approx-
imation, for any potential barrier provided concentration boundary con-
ditions are in force)

k. (A9)

in which the rate constants are the conditional probabilities of the
underlying ditfusion process described by a full Langevin equation and
boundary condtions (Eisenberg, Klosek & Schuss. 1995, Eq. 4) that can
be solved if dominates. viz.,
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D expl2)V,0) )

k= Prob{RIL} =—7 :
f() exp z®L)dC

D

j

k= Prob{LIR)} = -
f() exp 7 ®L)dl

(A10)

These expressions are not as obvious as they seem: until this work was
done. it was not clear whether a rate constant formulation like Eqs.
(A9) and (A10) could be derived for potential barriers of arbitrary
shape.™ The conditional probabilities are in fact specified as the so-
Jution of a rather involved partial differential equation and boundary
conditions (the full Fokker-Planck equation): showing that took us
some seven years (Cooper. Gates & Eisenberg. 1988a; Barcilon et al.,
1993: Eisenberg, 1996). only at the end of which was the simple ex-
pression (A10) derived.™

Numerical Solution

The design and choice ot the numerical procedure for solving PNP is
critical for the success of the calculations (Fatemi. Jerome & Osher,
1991: Jerome. 1995). The procedure was developed independently by
Chen. e.g.. Chen & Eisenberg. 19934. Severe numerical difficulties
arise with other methods of solving the system of Eqs. (Al) and (A6)
and boundary conditions (A2)-(AS5) (e.g., successive approximation to
integral equations: Chen, Barcilon & Eisenberg. 1991: stift differential
equation solvers: see electrochemistry literature. chiefly from Buck and
Mafé’s group. op. cit.).

The coupled nonlinear system of equations (Al) and (A6) is
solved numerically by substituting the integrated Nernst-Planck equa-
tion (A7), which is precisely equivalent to the differential Nernst-
Planck equation (A6). into a discretized version of the Poisson equation
(Al). We start with a reasonable initial guess. say (a discretized ver-
sion of) the constant field potential

o x\| kgT
Oy, initial guessy=1\1- i Vippl T Poi{0) = @) | + ©py(d)
(A1)

That initial guess of the potential profile is substituted into the right
hand side of (a discretized version of) the integrated Nernst-Planck
equation (A7) to determine the congruent initial guess of concentration
C(x; initial guess) and that guess is substituted into the right hand side
of Poisson’s equation. which is then solved (it is linear!). The resulting
estimate of the potential @(x; first iterate) is substituted into the inte-
grated Nernst-Planck equation (A7) and so determines a first-iterate of
the concentration profiles Cj(x; first iterate). These two first-iterates
@(x; first iterate) and C/(x; first iterate) are substituted into the right
hand side of Poisson’s equation (A1), which is again solved, now to
determine the second-iterate @(x; second iterate). a better approxima-
tion to the potential profile. The second-iterate of potential determines
a second-iterate of concentration by Eq. (A7): together. the two second-
iterates determine the third-iterate of potential. and so on for ten iter-

* Indeed, it is still not known whether diffusion can be written as a
chemical reaction (without approximation for any potential profile) for
any other boundary conditions.

* The existence of Eq. (A9) surprised me. and amused many of my
collaborators. given my oft-stated opinions. if not prejudices, about rate
and state models (e.g.. Cooper, Gates & Eisenberg, 1988a,b).
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ations which typically converge in less than one second to better than
one part in 10'2 on our workstation, an IBM RS/6000 Model 550.
Each iteration involves a solution of the (discretized version) of Pois-
son’s equation at 4,000 points of a uniform spatial mesh and yields a
potential profile d({). and concentration profiles C(x) for one applied
potential V, ., and one set of concentrations C(L) and C(R). From
these profiles, the flux J; and current / at that potential V. and, for
those concentrations, are calculated by Eq. (A8). Repeating the calcu-
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lation at different potentials produces an IV curve in some 100 seconds
of computer time if 1(¥’Llpp,;C][L]:Cj[R]) is determined at 100 values of
Vyppi- Of course. a different IV curve is computed for each set of
concentrations CJ(L), C,.(R).

The program that executes this numerical procedure is written in
FORTRAN 77 and is available to anyone who requests it. The program
has compiled and run easily on a number of systems and is a useful, if
not necessary. aid to understanding the behavior of the PNP equations.



