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Abstract. Poisson–Nernst–Planck (PNP) systems are considered in the case of vanishing per-
manent charge. A detailed case study, based on natural categories described by system boundary
conditions and flux, is carried out via simulation and singular perturbation analysis. Our results
confirm the rich structure inherent in these systems. A natural quantity, the quotient of the Debye
and characteristic length scales, serves as the singular perturbation parameter. The regions of va-
lidity are carefully analyzed by critical comparisons and contrasts between the simulation and the
perturbation solution, which can be represented in closed form.
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Introduction. We shall pursue our investigation of the properties of the steady-
state PNP equations, initiated in the previous paper [9]. In order to make the pre-
sentation as self-contained as possible, we very briefly recall the basic problem.

We are concerned with the distributions p and n of two species of ions, respectively,
with unit positive and unit negative charges. The distribution of these ions is the result
of the balance between a diffusive process and the action of an electric potential φ,
which is itself controlled by the ion distributions. Thus, the potential is governed by
the Poisson equation, viz.,

λ2φ′′ − n+ p = 0,(1)

while the following Nernst–Planck equations govern the distributions of ions, which
are assumed to have identical mobilities:

n′ − nφ′ = Jn,(2)
p′ + pφ′ = −Jp.(3)

The system (1)–(3) is generally referred to in the literature as an electrodiffusion
system (cf. [10]). It has been shown to be well posed in [6]. Two remarks must be
made at this stage. First, the above equations are written in dimensionless units. We
refer the reader to [9] for a discussion of the nondimensionalization process. We draw
attention to the dimensionless parameter λ2, which is related to the ratio of the Debye
length to a characteristic length scale. We shall say more about this parameter in
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632 V. BARCILON, D.-P. CHEN, R. S. EISENBERG, AND J. W. JEROME

what follows. Secondly, these equations are one dimensional. Strictly speaking, for the
physiological applications we have in mind (cf. [5]), we would have liked to consider
the same problem in tubelike channels. However, many physiological channels are
long and narrow. By exploiting the smallness of the aspect ratio, we can often reduce
these problems to one-dimensional ones, as was done in [1]. This is our justification
for considering this case. The dimensionless spatial variable x will therefore span the
interval [0, 1]. Derivatives with respect to x are indicated by primes.

To understand the motivation of this paper, it might be helpful to review briefly
those results of [9] which will be useful here. Several of these results are related to
what were called “simple boundary conditions,” viz.,

p = n = cL, φ = V for x = 0,(4)
p = n = cR, φ = 0 for x = 1.(5)

These boundary conditions arise naturally if the ion distributions obey charge
neutrality at the endpoints. Depending on the ordering of cL and cR, as well as the
sign of V , p lies either above or below n and φ is either concave or convex. In all cases

IV ≥ 0,(6)

where

I = Jn + Jp(7)

is the total ionic current. These results are valid for all values of λ. In addition, the
solution is uniquely determined.

For general boundary conditions, namely,

p = pL, n = nL, φ = V for x = 0,(8)
p = pR, n = nR, φ = 0 for x = 1;(9)

the only rigorous results obtained dealt with the number of crossings of the p and n
distributions.

Since the ion distributions are not controlled at the ends of channel but rather
are determined by the processes present in the baths on either side of the membrane,
these general boundary conditions are very relevant physiologically. We would like
to explore the resulting profiles by other means. In this paper, we shall use both
asymptotic and numerical techniques to examine these boundary conditions.

The asymptotic analysis will be confined to the case where the dimensionless
parameter λ is small. In fact, to stress this restriction, we shall change our notation
and write

λ2 = ε2 << 1.(10)

It so happens that for the physiological cases of interest, λ is of order 10−2 and
thus small. This is the value which we shall also use in our numerical investigations
of the problem.

As is implicit in [9], we shall see that many of the results for simple boundary
conditions do not hold for general ones. In particular, the curvature of φ is not
of one sign. Also, the inequality (6) no longer holds. In other words, the sign of
V does not determine the direction of the current. Fortunately, by using matched
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PERTURBATION AND SIMULATION STUDY OF PNP 633

asymptotic expansions, we shall be able to derive complete, explicit expressions for
all the zeroth-order fields. However, the numerical calculations will show that such
asymptotic expansions, even for the same value of ε, do not always have the same
degree of reliability.

There are other reasons for embarking on an asymptotic analysis of the problem.
It hints at certain combinations of parameters which determine the global results.
In particular, we shall see that

√
nRpL/pRnL expV and

√
pRnR/pLnL determine

the signs of zeroth-order fluxes. Unfortunately, this is just a hint, and there is no
guarantee that such a lower-dimensional manifold exists for all values of λ.

Finally, we should mention one more reason for undertaking an asymptotic anal-
ysis. It is related to the fact that the same problem (i.e., with general boundary
conditions) has already appeared in the literature [3]. Unfortunately, an error in
the approach of Cohen and Cooley [3] vitiates their results. We shall review their
approach and indicate where their analysis requires remediation.

1. Singular perturbation study. Consider the PNP equations, which we re-
write here as

ε2φ
′′ − n+ p = 0,(11)

n
′ − nφ

′
= Jn,(12)

p
′
+ pφ

′
= −Jp(13)

in Ω = (0, 1) with general boundary conditions

p(0) = pL > 0, n(0) = nL > 0,(14)
p(1) = pR > 0, n(1) = nR > 0,(15)

φ(0) = V, φ(1) = 0.(16)

We think of λ = ε as a small parameter, and we use the method of matched asymptotic
expansion to derive the solutions, particularly those to be computed later in the
simulations.

1.1. The interior solution. First, we look for an approximate solution in the
interior of the form

φ = Φ(0) + εΦ(1) + · · · ,(17)
n = N (0) + εN (1) + · · · ,(18)
p = P (0) + εP (1) + · · · .(19)

From the point of view of limit process expansions, these series are obtained by holding
x fixed and letting ε ↓ 0. To zeroth order in ε, the problem reduces to

N (0) − P (0) = 0,(20)

N (0)
′
−N (0)Φ(0)

′
= J (0)

n ,(21)

P (0)
′
+ P (0)Φ(0)

′
= −J (0)

p .(22)

Note that (20) implies that we have charge neutrality in the interior and therefore

P (0) = N (0) = C(0).(23)
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634 V. BARCILON, D.-P. CHEN, R. S. EISENBERG, AND J. W. JEROME

Adding and subtracting the flux formulas, we deduce that

J (0) = 2C(0)
′
,

−I(0) = 2C(0)Φ(0)
′
.

Clearly,

C(0) =
J (0)

2

(
x+ a(0)

)
.(24)

Thus, the concentrations are linear in x. Also,

Φ(0) = − I(0)

J (0) ln(x+ a(0)) + b(0).(25)

These interior solutions, which contain the four unknown constants J (0), I(0), a(0),
and b(0), cannot in general satisfy all the six boundary conditions (14)–(16). Thus,
different representations for the solution must be valid near the endpoints of the
interval. These are the boundary layer representations, which we consider next.

1.2. The boundary layer solutions. We consider the left boundary layer, i.e.,
the one near x = 0, first. We introduce the stretched coordinate

x = εζ

and express the various fields in terms of this coordinate as

p(εζ; ε) = $(ζ; ε),
n(εζ; ε) = µ(ζ; ε),
φ(εζ; ε) = ψ(ζ; ε).

Each of these fields is written as an asymptotic series, namely,

$(ζ; ε) = $(0)(ζ) + ε$(1)(ζ) + · · · ,
µ(ζ; ε) = µ(0)(ζ) + εµ(1)(ζ) + · · · ,
ψ(ζ; ε) = ψ(0)(ζ) + εψ(1)(ζ) + · · · .

These representations are obtained by holding ζ fixed and letting ε ↓ 0. The problem
for the leading order fields is

0 = $
(0)
ζ +$(0)ψ

(0)
ζ ,

0 = µ
(0)
ζ − µ(0)ψ

(0)
ζ ,

−ψ(0)
ζζ = $(0) − µ(0),(26)

with

$(0)(0) = pL,

µ(0)(0) = nL,

ψ(0)(0) = V.

To this formulation we must add the requirement that these boundary layer fields
match the interior fields in some domain where both representations are valid (see
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PERTURBATION AND SIMULATION STUDY OF PNP 635

[8]). As a consequence of this matching, further boundary conditions are obtained,
which we shall give shortly. First, we integrate the boundary layer version of the
Nernst–Planck equations and write

$(0) = pLe
−ψ(0)+V ,(27)

µ(0) = nLe
ψ(0)−V .(28)

Substituting these expressions for the concentrations in the Poisson equation, we see
that

−ψ(0)
ζζ = pLe

−(ψ(0)−V ) − nLe
(ψ(0)−V ).(29)

We can also integrate this equation once after multiplying it by ψ(0)
ζ :

−1
2
(ψ(0)
ζ )2 +

1
2
(c(0))2 = −pL(e−(ψ(0)−V ) − 1) − nL(eψ

(0)−V − 1).(30)

Further progress requires a consideration of the matching of the two representations.
This is usually done by introducing an intermediate variable such as xα, where

xα = ε−αx,
xα =ε1−αζ,

and 0 < α < 1 and by investigating the result of the limit process {xα fixed ε ↓ 0}.
For our problem, however, the results of this matching procedure are so intuitive that
we can dispense with the intermediate steps and simply state the ensuing conditions,
which are

C(0)(0) = $(0)(∞),
C(0)(0) = µ(0)(∞),
Φ(0)(0) = ψ(0)(∞),(31)

as well as

ψ
(0)
ζ (∞) = 0.(32)

Let us examine the consequences of these matching conditions. From the expres-
sion (27) for the concentration of the positive ions, we have

$(0)(∞) = pLe
−ψ(0)(∞)+V .

On account of the matching conditions (31), the above relation implies that

C(0)(0) = pLe
−Φ(0)(0)+V .

Similarly, by considering the concentration of the negative ions, we deduce that

C(0)(0) = nLe
Φ(0)(0)−V .

Therefore, by looking at the product and ratio of these two relations we see that(
C(0)(0)

)2 ≡ 1
4
(J (0))2 (a(0))2 = pLnL(33)
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636 V. BARCILON, D.-P. CHEN, R. S. EISENBERG, AND J. W. JEROME

and

Φ(0)(0) ≡ − I(0)

J (0) ln a(0) + b(0) =
1
2

ln
pL
nL

+ V.(34)

Thus, we have obtained two relations between the constants I(0), J (0), a(0), and b(0).
We shall get two additional relations from a consideration of the right boundary layer
and thus determine completely the interior solution.

In order to consider the right layer boundary problem, we introduce the appro-
priate stretched variable

η =
−1 + x

ε
(35)

and write the various fields as

p(1 + εη; ε) = $̃ (η, ε),
n(1 + εη; ε) = µ̃(η; ε),
φ(1 + εη; ε) = ψ̃(η; ε).(36)

We follow a procedure similar to the earlier one for the left boundary layer; namely, we
consider the limit expansions obtained by holding η fixed and letting ε ↓ 0. Omitting
various steps, we simply state that the concentrations are given by

$̃ = pRe
−ψ̃(0)(η),(37)

µ̃ = nRe
ψ̃(0)(η).(38)

By means of matching considerations, we then get(
C(0)(1)

)2 ≡ 1
4
(J (0)(1))2

(
1 + a(0))2 = pRnR,(39)

Φ(0)(1) ≡ − I(0)

J (0) ln
(
1 + a(0))+ b(0) =

1
2

ln
(
pR
nR

)
.(40)

As a result, from (34) and (40), we have

eΦ
(0)(1)−Φ(0)(0) =

√
pRnL
nRpL

e−V .(41)

It is easily seen that the product J (0)a(0) is nonnegative. Therefore, if we assume that
J (0) and a(0) are positive, we deduce that

J (0) = 2{(pRnR)1/2 − (pLnL)1/2}.(42)

From the expressions for Φ(0)(1) and Φ(0)(0), we see that

ln
(
pRnL
nRpL

)
= −2

I(0)

J (0) ln
(

1 + a(0)

a(0)

)
+ 2V.(43)

Also, from (33) and (39), we have

1 + a(0)

a(0) =
√
pRnR
pLnL

.
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PERTURBATION AND SIMULATION STUDY OF PNP 637

6

-

1

1

√
pRnR

pLnL

√
pRnL

nRpL
e−V

I < 0
J < 0

I > 0
J < 0

I < 0
J > 0

I > 0
J > 0

FIG. 1. The relations between the signs of I = I(0), J = J(0) and the parameters.

Therefore (see Fig. 1 for sign information),

−I(0) =
ln
(
pRnL

nRpL

)
− 2V

ln
(
pRnR

pLnL

) J (0).(44)

Thus, for pL, nL, nR, pR fixed, I(0) is a linear function of V , and the sign of I(0) is
related to the sign of Φ(0)(0)−Φ(0)(1). In summary, the interior fields are completely
determined and can be written as

C(0) =
√
pLnL(1 − x) +

√
pRnR x,(45)

Φ(0)(x) = Φ(0)(0)(1 − F (x)) + Φ(0)(1)F (x),(46)

where

F (x) =
ln
{

1 − x+
(
pRnR

pLnL

)1/2
x
}

ln
(
pRnR

pLnL

)1/2 .(47)

We now return to the boundary layer version of the Poisson equation at the
left end or, more accurately, its integrated form (30). The matching condition (32),
together with the fact that ψ(0)(∞) = 2−1 ln(pL/nL) + V , implies that

c(0)
2

= 2(
√
pL − √

nL)2.(48)

Therefore, if we introduce the new variable

s = e(ψ
(0)(ζ)−V )/2,(49)

then (30) becomes

s
′
= ± 1√

2

(
nL

1/2s2 − pL
1/2).(50)
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638 V. BARCILON, D.-P. CHEN, R. S. EISENBERG, AND J. W. JEROME

For ease of writing, we also define

a =
(
pL
nL

)1/4

and rewrite the previous equation as

s
′

a

(
1

s− a
− 1
s+ a

)
= +

√
2nL.(51)

An investigation of the consequences of choosing the + sign shows that this sign is
inadmissible. Integrating both sides of (51) with respect to ζ, we see that

s =
a(1 + t)
1 − t

,(52)

where

t =
(

1 − a

1 + a

)
e+

√
2nLaζ .(53)

Thus, depending on the boundary conditions, one of the following three cases must
hold.

(1) If nL = pL, then ψ(0)(ζ) ≡ V .
(2) If nL < pL, then

ψ0(ζ) = V + 2 ln

(
a(1 + 1−a

1+ae
−a√

2nLζ)

1 − 1−a
1+ae

−a√
2nLζ

)
,(54)

which is an increasing function of ζ on [0,∞) and is such that V ≤ ψ(0)(ζ) ≤ V +2 ln a.
(3) If nL > pL, the solution given by (54) is a decreasing function of ζ, with

V + 2 ln a ≥ ψ(0)(ζ) ≥ V .
Using (27), (28), and (54), we now have the following explicit formulas for$(0)(ζ),

µ(0)(ζ) on [0,∞):

$(ζ) =
√
pLnL

(
1 − 1−a

1+ae
−a√

2nLζ

1 + 1−a
1+ae

−a√
2nLζ

)2

.(55)

µ(ζ) =
√
pLnL

(
1 + 1−a

1+ae
−a√

2nLζ

1 − 1−a
1+ae

−a√
2nLζ

)2

.(56)

Similar results hold for ψ̃(0)(η), viz.,
(1) If nR = pR, ψ̃(0)(η) ≡ 0 on (−∞, 0).
(2) If nR < pR, then

ψ̃0(η) = 2 ln

(
a(1 + 1−a

1+ae
a
√

2nRη)

1 − 1−a
1+ae

a
√

2nRη

)
,(57)

which is a decreasing function of η in the interval (−∞, 0].
(3) If nR > pR, then the solution given by (57) is increasing on (−∞, 0].
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PERTURBATION AND SIMULATION STUDY OF PNP 639

Using (37), (38), and (57), we have the following expressions for $̃(0)(η), µ̃(0)(η) on
(−∞, 0]:

$̃0(η) =
√
pRnR

(
1 − 1−a

1+ae
a
√

2nRη

1 + 1−a
1+ae

a
√

2nRη

)2

.(58)

µ̃0(η) =
√
pRnR

(
1 + 1−a

1+ae
a
√

2nRη

1 − 1−a
1+ae

a
√

2nRη

)2

.(59)

1.3. Uniformly valid approximations. As is usual with the method of
matched asymptotic expansions (cf. [8]), uniformly valid approximations are obtained
by first adding the boundary layer solutions to the interior solutions and then subtract-
ing the common parts. Carrying out this simple program, we see that the uniformly
valid approximation to the various fields is given as follows.

THEOREM 1.1. We have the following on [0, 1]:

φ(x) = ψ(0)(ε−1x) + Φ(0)(x) + ψ̃0(ε−1(1 − x)) − 1
2

ln
pRpL
nRnL

− V +O(ε),(60)

n(x) = nLe
[ψ(0)(ε−1x)−V ] + C(0)(x)

+ nRe
[ψ̃(0)(ε−1(x−1))] − (pLnL)1/2 − (pRnR)1/2 +O(ε),(61)

p(x) = pLe
[−ψ(0)(ε−1x)+V ] + C(0)(x)

+ pRe
[−ψ̃(0)(ε−1(x−1))] − (pLnL)1/2 − (pRnR)1/2 +O(ε).(62)

Remark. We can use the result of section 5 in [9] concerning the contraction
principle on a sufficiently short interval by replacing the boundary layer theory with a
contraction mapping theory on boundary layers of width d. By selecting the number
d to be equal to θε for sufficiently small θ, the mapping is a contraction in right and
left layers. This can be combined with the interior solution as above.

1.4. Remarks on the paper by Cohen and Cooley. In [3], Cohen and
Cooley consider the case of several species with concentrations ci, but for the restricted
case of ions with unit charge; i.e.,

Z2
i = 1.

Thus in their notation the governing equations are

−ε2φ′′ =
∑
i

Zici,(63)

−Ji = c′i + Ziciφ
′.(64)

The boundary conditions are the general boundary conditions; i.e., charge neutrality
has not been assumed. We know that the problem for many ions of the same charge
is identical to the problem for two ions, viz.,

−ε2φ′′ = p− n,(65)
Jn = n′ − nφ′,(66)

−Jp = p′ + pφ′,(67)
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640 V. BARCILON, D.-P. CHEN, R. S. EISENBERG, AND J. W. JEROME

where

n =
∑
i

1 − Zi
2

ci, p =
∑
i

1 + Zi
2

ci,(68)

Jn = −
∑
i

1 − Zi
2

Ji, Jp =
∑
i

1 + Zi
2

Ji.(69)

The authors of [3] prefer to work with the electric field rather than the potential; this
is not advisable, since the boundary conditions are prescribed for φ rather than E. In
fact, this is the source of one of the inconsistencies in their paper. Be that as it may,
we follow the analysis of [3] and write the system as

ε2E′ = p− n,(70)
(p+ n)′ − (p− n)E = α,(71)
(p− n)′ − (p+ n)E = −G,(72)

where

α = −Jp + Jn, G = Jp + Jn;(73)

i.e., G is the current and α is the negative of the total mass flux. Actually, they
eliminate p− n altogether and make use of

C ′ − ε2EE′ = α,(74)
ε2E′′ − CE = −G,(75)

where C = p+ n. Of course, one of these equations can be integrated to yield

C = αx+ β +
ε2

2
E2,

where β is a constant of integration. In order to bring out the physical meaning of
the various terms, they rewrite this equation as

C = αx+ (pL + nL) +
ε2

2
(E2 − E2

0)

=
[
pR + nR − pL − nL − ε2

2
(E2

1 − E2
0)
]
x+ (pL + nL) +

ε2

2
(E2 − E2

0).(76)

This is the expression which they choose to use in order to eliminate C from the
problem. The result is

ε2E′′−
{[
pR + nR − pL − nL − ε2

2
(E2

1 − E2
0)
]
x+ (pL + nL) +

ε2

2
(E2 − E2

0)
}
E+G = 0.

They then attempt to get an asymptotic solution of this equation for ε << 1. In the
process of deriving the asymptotic expansion, they make two errors. The first stems
from the fact that they do not solve the boundary layer equations. Rather, they
“guess” the form of the solution in the boundary layer and substitute this functional
form into the equation to determine some of the minor dependencies. The second error
stems from the fact that they assume that constants such as E0, E1 are O(1). In our
approach, we actually solve the boundary layer equations and can check a posteriori
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PERTURBATION AND SIMULATION STUDY OF PNP 641

that the form assumed in [3] is not the correct one. We also find in the process
that the potential has very steep gradients near the endpoints. This means that the
electric fields near the endpoints are very large and that E0, E1 are in fact of order
O(ε−1). The two errors are inextricably tied to each other. Indeed, an incorrect order
for E0, E1 leads to an incorrect boundary layer equation, into which is substituted an
incorrect functional form of the solution.

2. Numerical simulations and discussion. In this section, we shall present
simulations for appropriately selected parameter sets, with the following goals:

(i) The illustration of the qualitative features developed in sections 3 and 4 of [9],
(ii) A careful comparison of the (numerical) solution with that calculated by

singular perturbation methods. Both the interior solution and the uniformly valid
approximation (also called the full solution) are studied for the singular perturbation
case.

The PNP systems (equations (1)–(3)), with boundary conditions (equations (4)–
(6)), are solved numerically by Gummel’s iteration [4]. The details of the discretiza-
tion are described in [2] and are discussed in the following section. We have used a
30Å-long channel and a relative dielectric constant of 80 in our simulation. It takes
only a few seconds to calculate both the numerical solution and the singular per-
turbation solutions with 3000 equidistant gridpoints on our IBM/RS6000 model 550
workstation.

For such a channel, the value of the parameter ε is 8.7 × 10−2. Since the square
of this parameter is small, the singular perturbation analysis ought to provide good
approximations to the various fields as well as to the overall current and flux. However,
since the leading asymptotic expressions are independent of various parameters such
as ρL = pL/nL and ρR = pR/nR, the accuracy of expressions is difficult to assess.
To that end, we shall systematically compare the approximations derived in section
1 with the numerical simulations of the exact solutions. Recall that in terms of the
numbers ρL, ρR, the primary categories can be described by

(BC1) : ρL ≤ 1, ρR ≥ 1,(77)
(BC2) : ρL ≤ 1, ρR ≤ 1,(78)
(BC3) : ρL ≥ 1, ρR ≤ 1,(79)
(BC4) : ρL ≥ 1, ρR ≥ 1.(80)

All the figures displaying the concentrations and potential fields also display either
the corresponding interior fields, given in (45), (46), or the uniformly valid approxi-
mations, given in (60)–(62). Also, we have listed in Table 1 the values of the fluxes
and currents obtained by asymptotic techniques, with the corresponding computed
numerical values.

The total flux of the singular perturbation interior solution is computed according
to (42) and the electric current according to (44). The individual fluxes are computed
from the combination of the total flux and electric current. To evaluate the fluxes
according to the uniformly valid approximation, we use the potential profile of (60)
and the values of pL=$(0), pR=$̃(0), nL=µ(0), nR=µ̃(0) in the formulas

Jn =
nRe

V − nL∫ 1
0 e

φ0−φ(x)dx
,(81)

Jp = − pRe
−V − pL∫ 1

0 e
−φ0+φ(x)dx

(82)
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642 V. BARCILON, D.-P. CHEN, R. S. EISENBERG, AND J. W. JEROME

TABLE 1
Parameters used in the numerical simulations.

pL nL pR nR V Jp Jn J I ε
JSPIS

p JSPIS
n JSPIS ISPIS

JSPFS
p JSPFS

n JSPFS ISPFS

1 1 4 4 2 1.29 7.45 6.16 8.74 8.72×10−2

1.32 7.33 6.00 8.66
1.32 7.33 6.00 8.66

1 1 4 4 8 1.22×101 2.05×101 8.27 3.27×101 8.72×10−2

1.43×101 2.03×101 6.00 3.46×101

1.43×101 2.03×101 6.00 3.46×101

1 3 4 2 1 −8.21×10−1 1.36 2.19 5.43×10−1 8.72×10−2

−8.64×10−1 1.33 2.19 4.66×10−1

−8.31×10−1 1.35 2.18 5.17×10−1

0.1 30 4 2 1 −5.22 −5.53 −3.05×10−1 −1.08×101 8.72×10−2

−6.01 −3.82 2.19 −9.83
−5.31 −5.30 1.41×10−2 −1.06×101

10 0.3 4 2 1 8.11 2.23 −5.88 1.04×101 8.72×10−2

7.68 2.28 −5.30 1.01×101

8.13 2.23 −5.90 1.04×101

1 6 6 9 1 −3.10 6.82 9.93 3.73 5.81×10−2

−3.53 6.27 9.80 2.74
−3.18 6.66 9.84 3.49

1 6 6 9 4 1.04×101 2.35×101 1.30×101 3.39×101 5.81×10−2

1.43×101 2.41×101 9.80 3.84×101

1.05×101 2.49×101 1.44×101 3.54×101

4 1 1 9 4 1.72×101 2.04×101 3.16 3.16×101 5.81×10−2

1.33×101 1.53×101 2.00 2.86×101

1.66×101 1.95×101 2.91 3.62×101

Note: SPIS denotes the singular perturbation interior solution, and SPFS denotes the singular
perturbation full solution.

as the values of the approximated boundary conditions. Those values are the values of
the uniformly valid approximation for concentrations evaluated at the two boundaries.

In Fig. 2, we show the concentration profiles and the electric potential profile
for the case of simple boundary conditions (Case 1). The curves show the basic
features summarized in section 3.3 of [9], and they are φx < 0, φxx ≥ 0, n ≥ p,
nx, px ≥ 0. The fact that IV, J ≥ 0 is supported in Table 1. Note the agreement with
Theorems 3.1 and 3.2. The singular perturbation interior solution and the uniformly
valid approximation are identical for simple boundary conditions; therefore, they give
the same fluxes and electric current in Table 1. In Fig. 2(a), the electric potential is
monotonic decreasing and is concave upward. In Fig. 2(b), the singular perturbation
solution gives p(x) = n(x), and these identical curves are intermediate between the
calculated p(x) and n(x) of the solution for the case V = 2. However, it gives a less
accurate solution when V is increased to V = 8, as expected, because the singular
perturbation solution is independent of V .

Figure 3 compares the numerical solution with the singular perturbation interior
solution for both BC1 and BC4, as developed in section 4 of [9]. Figure 3(a) shows the
electrical potential profiles. The solid lines indicate the numerical solutions, and the
dashed lines the singular perturbation interior solutions. On the same graph, we show
the comparison of three choices of boundary conditions which have the same product
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Singular Perturbation Interior/Full Solution

p for V=2

n for V=2

(b)

FIG. 2. The electric potential profile and concentration profiles for the simple boundary condi-
tion, Case 1. Dimensionless concentration and potential units employed. Original units of 100 mM
and 25 mV, resp.
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FIG. 3. The comparison of the numerical solution and the singular perturbation interior solution
for the general boundary conditions BC1 and BC4.

p(0)n(0). Figure 3(a) shows the remarkable confirmation of Lemma 4.4, in that when
I ≥ 0 (the case p(0) = 1, n(0) = 3), then the electric potential is a decreasing function;
however, the other instance of BC1 in that figure (p(0) = .1, n(0) = 30) leads to a
negative current and a nonmonotone potential. Figure 3(a) also clearly shows that
even though the singular perturbation interior solution is a reasonable approximation
for the case p(0) = 1, n(0) = 3 of BC1, it is not a good approximation for other choices
of BC1 or for BC4 when p(0) and n(0) are very different. The concentration profiles
show more contrast in Fig. 3(b). The singular perturbation interior solution (SPIS)
gives the same profile for all three choice of parameters. In the SPIS, p(x) = n(x),
shown by the dot-dashed line, which falls between the profile of the numerical solution
of p and n only when p(0) = 1, n(0) = 3. But the SPIS does not at all approximate
the other two numerical solution profiles of BC1 and BC4. The numerical solutions
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FIG. 4. The comparison of the numerical solution and the singular perturbation full solution
for the general boundary condition BC1.

consistently satisfy Proposition 4.3. Thus, we see the crossing pattern predicted by
that result. Also, a version of Theorem 4.6 for BC4 holds; IJ ≤ 0 and the curve for
p dominates that for n.

Although the singular perturbation interior solution does not yield good quanti-
tative results for the parameter choice of p(0) = .1, n(0) = 30 of BC1, the singular
perturbation full solution still gives a very accurate approximation. We show this in
Fig. 4. In Fig. 4(a), we show the comparison of the electric potential profiles of the
numerical solution with those from (60) for two choices of BC1, and we show only
the concentration profiles for p(0) = .1, n(0) = 30 in Fig. 4(b), because the interior
solution is a good approximation already for p(0) = 1, n(0) = 3. Figure 3 already has
shown the large deviation of the interior solution, (46), from the numerical solution,
which is also reflected in the value of the total flux in Table 1. But the curves of
the uniformly valid approximation, which incorporates the solution of the boundary
layers, can still closely follow the curves from the numerical solution—a great im-
provement over the interior solution. Our simulations thus show the boundary layers
are long range, even when the numerical value of ε is small. Despite the improvement
in using the full singular perturbation solution, the sign of the total flux differs from
the numerical solution because the absolute value of the flux is small in this case, and
small errors may cause the total flux to change its sign. For p(0) = 10, n(0) = 0.3, the
uniformly valid approximation improves even more. In this case, it faithfully gives very
accurate solutions in all aspects: the profiles, the total flux, and the electric current.

We recall from section 4 of [9] that BC1 and BC2 exhibit very different qualitative
behavior. In fact, for BC2, we expect that the curve for n will dominate the curve
for p, at least when IJ ≥ 0, according to Theorem 4.6 of [9]. This is confirmed by
the plots of Fig. 5. We also show comparisons of the numerical solution with the
singular perturbation solution for BC2. In Fig. 5, we plot the potential profile and
concentration profiles for the case of p(0) = 1, n(0) = 6, p(1) = 6, n(1) = 9, V = 1.
We plot the potential profile of the numerical solution, the profile of the singular
perturbation interior solution, and that of the singular perturbation uniformly valid
approximation. In Fig. 5(a), the solid line is the numerical solution, the dashed line
with triangle symbols is the profile of the singular perturbation interior solution, and
the long dashed line with circles is the profile of the singular perturbation uniformly
valid approximation. The graph clearly shows how the boundary layers and interior
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FIG. 5. The comparison of the numerical solution and the singular perturbation full solution
for the general boundary condition BC2.
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FIG. 6. The comparison of the numerical solution and the singular perturbation full solution
for the general boundary condition BC2 with a large V . The same convention is used as in Fig. 5.

solution make up the uniformly valid approximation, which is an accurate approxi-
mation for this case. In Fig. 5(b), the solid line and the dashed line are the numerical
solution of the p-concentration profile and the n-concentration profile, respectively.
The dot-dashed line is the p-concentration profile of the singular perturbation, and
the long dashed line is the n-concentration profile of the singular perturbation. The
plot of concentration profiles show the singular perturbation uniformly valid approxi-
mation and the numerical solution are nearly identical for this case. The comparison
of fluxes and the electric current in Table 1 confirms this conclusion.

In Fig. 6, we show the effect of large bias potentials. We keep the same concen-
tration boundary conditions and increase V to 5. We recall from the classification
scheme, introduced in section 4.1 of [9], that such crossing of parameter space may
reverse the sign of one of the individual flux components, and, indeed, this occurs.
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FIG. 7. The comparison of the numerical solution and the singular perturbation full solution
for the general boundary condition BC3 with a large V . The same convention is used as in Fig. 5.

According to the characterization, Jn > 0, Jp > 0, if and only if

max
(

ln
(
nL
nR

)
, ln

(
pR
pL

))
< V.(83)

We now expect both Jn and Jp to be positive, and this is confirmed by Table 1. In this
case, even though the electric potential profile of the singular perturbation uniformly
valid approximation shown in Fig. 6(a) does not differ much from the numerical
solution, the concentration profiles in Fig. 6(b) in fact do. The concentration profiles
of the singular perturbation uniformly valid approximation predict a charge neutral
central region, whereas the numerical solution gives no charge neutral region at all.
We can expect a large deviation in the fluxes and the electric currents from the two
calculations, as is shown in Table 1.

We show the comparison of the numerical solution with the singular perturba-
tion solution for BC3 in Fig. 7. The concentration plot shows again that there is a
large deviation of the singular perturbation uniformly valid approximation from the
numerical solution when V is large. The calculations with the same concentration
boundary conditions, but with V = 1, show both are nearly identical, as shown in
Fig. 5. Recall that BC3 is the mirror image of BC1. This is confirmed by the crossing
pattern of the concentration curves, consistent with the mirror image of Proposition
4.3 [9]. The potential profile is not monotone, and this is consistent with the fact that
I > 0. We would require I ≤ 0 to conclude that the potential is increasing, as the
counterpart to Lemma 4.4 [9]. Thus, the singular perturbation full solution gives an
accurate approximation in all the domains we have examined, except for the following
two cases: (1) large bias potential V and (2) significantly large values of ρL and/or ρR.

We shall now present a final summation. The PNP model describes a physically
simple system of ions, diffusing and migrating between regions of fixed concentration
and potential, ions that move in fields created by their own concentrations as well as
the boundary sources. As simple as the system is, it requires rather careful analysis,
because different behaviors occur depending on the relative direction of electrical and
concentration gradients.

When permanent charge is present, the richness of behavior is considerably in-
creased. Indeed, the PNP equations in a suitably complicated branched one-dimen-
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PERTURBATION AND SIMULATION STUDY OF PNP 647

sional domain can describe all the properties of an integrated circuit, thus a micro-
processor with memory, thus all the information that can be encoded or processed
by a computer! The qualitative properties of semiconductor devices are determined
by their one-dimensional distribution of permanent charge; it also seems likely that
many of the properties of ionic channels (in biological membranes) are determined
this way as well.

Thus, extension of our study to systems of permanent charge is of considerable
interest. The work of this paper suggests that each domain of driving forces will need
separate analysis. Each class of permanent charge distribution will also probably
require separate analysis. The interest of the PNP model with permanent charge is in
the richness of behavior it encompasses; it would be unrealistic (and disappointing)
to expect that such behavior could be described by universal formulas, valid in all
domains less vague than the global conservation of mass, charge, energy, etc.

Universal formulas describing quantitative properties in some domains (i.e., those
of engineering or biological importance) should not be shunned because of their limited
domains of validity. Semiconductors and channels change their qualitative properties
as boundary conditions are changed, and so analysis of the qualitative properties of
each domain would be of great use, and some beauty.

3. The discretization. We have taken advantage of the fact that the one-
dimensional Nernst–Planck equation (the drift–diffusion equation) can be integrated
analytically to yield a formula for the concentration of carriers of valence z for
x ∈ [L,R]:

c(x) =
1∫ R

L
ezφ(ζ)dζ

[
cLe

z(φL−φ(x))
∫ R

x

ezφ(ζ)dζ + cRe
z(φR−φ(x))

∫ x

L

ezφ(ζ)dζ

]
.(84)

c stands for p and n when z = 1 and z = −1, respectively. If we make a linear
approximation of the potential profile, letting

φ(x) = φL +
(φL − φR)
(xR − xL)

x for x ∈ [L,R] ,(85)

the carrier concentration is then well defined.
Therefore, if the following basis function is chosen between mesh points, in the

sense of a generalized spline,

ηi =
1

(xi+1 − xi)

[
1 −

∣∣∣∣ x− xi
xi+1 − xi

∣∣∣∣],(86)

we then can discretize the Poisson equation by expanding the function with this basis
set on the mesh. To obtain the expansion coefficient, we multiply the Poisson equation
by the function ηi and integrate over [xi−1, xi+1]. We get, for a uniform mesh,

ε2(φ(m+1)
i+1 − 2φ(m+1)

i + φ
(m+1)
i−1 )

=

(∑
k

z2
kc

(m,i)
k

)
(φ(m+1)
i − φ

(m)
i ) −

∑
k

zkc
(m,i)
k

−
∑
k

zk(c
(m,i+1)
k − c

(m,i)
k )f [zk(φ

(m)
i − φ

(m)
i+1)]

+
∑
k

zk(c
(m,i)
k − c

(m,i−1)
k )f [zk(φ

(m)
i − φ

(m)
i−1)] ,(87)
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where

f(τ) ≡


1
6 for τ = 0 ,
eτ −1−τ− 1

2 τ
2

τ2(eτ −1) for τ 6= 0 .
(88)

m denotes iteration index, i is the mesh point index, and zk is the valence of the kth
carrier species.

There is no need to discretize the drift–diffusion equation; the concentration can
be updated by (84) for each iteration. To ensure the continuity of flux, the flux will
be evaluated according to the analytic expression over the entire domain

Jk =
Dk∫ 1

0 e
zkφ(ζ)dζ

(ck(0)eφ(0) − ck(1)eφ(1)) .(89)

The experimental measured quantity—electrical current—is then evaluated by I =
πa2∑

k zkJk.
The convergence of this iteration has been studied in depth in the literature. For

this model, no difficulties were observed. However, the interpretation of the underlying
mapping as a contraction has proven fruitful (see [9]). A very revealing study, showing
that for certain parameter ranges the iteration can approach the solution and then
diverge, has been carried out in [7]. For the reader interested in the underlying
methodology, one is actually employing a global exponential fit to the continuity
subsystem, and a piecewise linear fit to the Poisson equation, linked to a system
decoupling fixed point iteration (Gummel iteration).
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