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Permeation Through the Calcium Release Channel of Cardiac Muscle
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ABSTRACT Current voltage (/-0 relations were measured from the calcium release channel (CRC) of the sarcoplasmic
reticulum of cardiac muscle in 12 KCI solutions, symmetrical and asymmetrical, from 25 mM to 2 M. I-V curves are nearly
linear, in the voltage range ±150 mV 12kT/e, even in asymmetrical solutions, e.g., 2 M 11 100 mM. It is awkward to describe

straight lines as sums of exponentials in a wide range of solutions and potentials, and so traditional barrier models have
difficulty fitting this data. Diffusion theories with constant fields predict curvilinear I-V relations, and so they are also
unsatisfactory. The Poisson and Nernst-Planck equations (PNP) form a diffusion theory with variable fields. They fit the data
by using adjustable parameters for the diffusion constant of each ion and for the effective density of fixed (i.e., permanent)
charge P(x) along the channel's "filter" (7-A diameter, 10 A long). If P(K) is described by just one parameter, independent of
x (i.e., P(x) = PO = -4.2 M), the fits are satisfactory (RMS error/RMS current = 6.4/67), and the estimates of diffusion
coefficients are reasonable DK = 1.3 x 10-6Cm2/S, Dc, = 3.9 x 1 -6 cm2/s. The CRC seems to have a small selectivity filter
with a very high density of permanent charge. This may be a design principle of channels specialized for large flux. The
Appendix derives barrier models, and their prefactor, from diffusion theories (with variable fields) and argues that barrier
models are poor descriptions of CRCs in particular and open channels in general.

INTRODUCTION

The calcium release channel (CRC) of the sarcoplasmic
reticulum of striated muscle is a complex, interesting, and
important channel through which calcium ions flow from
their storage site (in the sarcoplasmic reticulum) to their
active site on the thin filament (Melzer et al., 1995). The
channel controls and "catalyzes" this flux (from place to
place) much as an enzyme catalyzes flux from reactant to
product (Moczydlowski, 1986; Eisenberg, 1990; Andersen
and Koeppe, 1992). In the cardiac CRC, gating is governed
by the calcium concentration near part of the channel pro-
tein (Fabiato, 1983; Wier, 1990). In the skeletal CRC,
gating is controlled allosterically by a protein in a neigh-
boring membrane, the dihydropyridine receptor of the T-
tubular system, which responds to the potential across the T
membrane (Rios and Pizzaro, 1991; Schneider, 1994). The
skeletal CRC is also regulated by Ca2+-dependent mecha-
nisms (Coronado et al., 1994; Meissner, 1994). Despite the
similarity of the proteins, the gating of the cardiac and
skeletal CRCs is quite different, making the CRC a subtle
and interesting, as well as important and complex system
(Coronado et al., 1994; Meissner, 1994). This paper de-
scribes the permeation of KCI ions through the cardiac
CRC; similar experiments on other monovalent ions and on
skeletal CRC are well under way.
The mechanism of permeation of ions through the CRC

has received considerable attention (Williams, 1992; Coro-
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nado et al., 1994; Meissner, 1994). The CRC displays an
unusually large ion conductance for monovalent cations
(-750 pS with 250 mM K+ as the current carrier) and
divalent cations (-150 pS with 50 mM Ca2+). The current-
voltage (I-V) relations of (single open channels of) CRC are
surprisingly linear, even when measured from -150 to
+ 150 mV, even when the solutions bathing the channel are
strikingly different. Traditional models of permeation,
widely used in channology (Hille, 1975; Hille and
Schwartz, 1978; Eisenman and Horn, 1983; Lauger, 1991;
Andersen and Koeppe, 1992; Hille, 1992), describe ionic
trajectories as a series ofjumps over barriers. They imagine
that ions move through a channel's pore by hopping over
barriers, without collisions with other atoms. However,
"there is now rather direct evidence that diffusion in dense
fluids does not occur by individual molecular 'jumps' over
distances of the order of a molecular diameter" (Tyrrell and
Harris, 1984). (The textbook of Berry et al. (1980, p. 845)
explains why diffusion occurs by hopping in gases but not
in liquids. Hopping can occur in gases because they are
mostly empty space. It cannot occur in liquids because they
are condensed phases with little empty space: "[T]he prin-
cipal difference between a dilute gas and a liquid is... the
multiplicity of simultaneous interactions in the liquid. In a
dilute gas a typical molecule is usually outside the force
fields of all other molecules and only occasionally in the
force field of one other molecule [during a] binary collision,
whereas in a liquid a typical molecule is usually within the
force fields of, say, 10 nearest neighbor molecules and is
never completely free of the influence of other molecules.")

Barrier/hopping models have been applied to CRCs
(Tinker et al., 1992), but they have several difficulties (see
Appendix). Practically speaking, barrier models naturally
predict an exponential dependence of current on voltage: N
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large barriers, of height Wj, produce currents that are more
or less sums of exponentials of the form 7a exp(Wje/k). It
takes a large N to describe a roughly linear I-V relation,
from -80 to +80 mV, some 6kTle (Tinker et al., 1992).
When the potential range is extended to l2kT/e (i.e., ± 150
mV), exponential functions vary over a range of some e
1.6 X 105, and their sums become awkward (although
possible) descriptions of roughly linear I-V relations.

Another description of permeation uses diffusion theories
(Goldman, 1943; Hodgkin and Katz, 1949; Levitt, 1982,
1984, 1985, 1986, 1987; Cooper et al., 1985, 1988a,b; Chiu
and Jakobsson, 1989; Barcilon et al., 1993; Eisenberg et al.,
1995), which give nonlinear I-V relations in their traditional
form as "constant field" theory (Goldman, 1943; Hodgkin
and Katz, 1949; discussed and derived in Chen et al., 1992,
1995b, 1997; Tang et al., 1997). Diffusion theories have
often been considered crude macroscopic approximations,
but recent work (Barcilon et al., 1993; Eisenberg et al.,
1995) clarifies their atomic basis and shows (rigorously,
using mathematics alone) that simple differential equa-
tions-which might seem to be macroscopic approxima-
tions but are not-can describe the statistical properties of
the flux of discrete ions overa potential barrier of any shape.
(Differential equations with continuous independent and
dependent variables are commonly used (Feller, 1957,
1971; Karlin and Taylor, 1975, 1981) in the theory of
stochastic processes (e.g., the probability theory of Brown-
ian motion of particles and atoms) to describe the movement
(i.e., the probability or other statistics of trajectories like
flux or mean first passage time) of discrete particles and
atoms.) These differential equations can be solved analyti-
cally and then, in many cases, simple integrals can describe
the flux (or its rate constant), the contents of the channel,
and the (conditional) mean first passage times of individual
ions (see Appendix, Eq. 4).

If ions diffuse over a high barrier, the flux is described by
an exponential expression (see Appendix, Eq. 5), long
known (Kramers, 1940; Chandler, 1978) and experimen-
tally tested (Fleming et al., 1986; Schroeder and Troe, 1993)
in the chemical literature. The same exponential expression
(Eq. 5 of the Appendix) is apparently used throughout the
chemical literature. Hanggi et al. (1990) wrote the historic
definitive review of the chemical literature, which cites
some 700 references. Fleming and Hanggi (1993) review
the more recent literature.
The high barrier expression of the chemical literature,

including its prefactor, display the dependence of flux on
the partition function or entropy of activation (Robinson and
Holbrook, 1972; Chandler, 1978; Hynes, 1985, 1986; Beme
et al., 1988). It also displays the dependence of the entropy
of activation (and flux) on the underlying physical param-
eters of the channel and permeating ion, namely, on the
diffusion coefficient of each ion, on the length of the chan-
nel, on the temperature, and on the height of the potential
barrier (see Appendix, Eqs. 5 and 6).

In contrast to the expression of the chemical literature, the

els of open channels; Hille, 1992) does not display the
dependence of activation entropy on the underlying physical
parameters. It uses a prefactor, kT/h, that is independent of
physical parameters (except temperature) and an exponent
that is implicitly assumed (in the papers we know of) to vary

only as the potential energy varies. Thus traditional barrier
models are likely to give misleading results if used to
compare experiments in which the prefactor (i.e., activation
entropy) or diffusion coefficient is likely to change, e.g.,

experiments involving different ions (with different diffu-
sion coefficients, in all likelihood, and thus different pref-
actors and activation entropies); experiments with mutated
or modified channels (which are likely to have modified
potential barriers and thus modified prefactors and activa-
tion entropies); and experiments with different concentra-
tions of ions (which are likely to shield fixed charge differ-
ently, have different potential barriers (Eisenberg, 1996),
and thus have different prefactors and activation entropies).

Traditional barrier models have quantitative difficulties
as well in describing currents found in most open channels
(Conley, 1996a,b, 1997) because the diffusion coefficients
that they ignore have large effects: friction reduces the flux
substantially in a condensed phase, as one might expect in
a system with little empty space, like a liquid (Berry et al.,
1980) or protein (McCammon and Harvey, 1987; Brooks et
al., 1988). When the correct prefactor is used, flux is re-

duced by a factor of -2 X I04 (for K+ in the CRC channel,
as we shall see), if the barrier height is held constant. When
the correct prefactor is used, the barrier height must be
reduced by lOkT/e loge 2 X 104 to produce the same flux,

namely the current observed experimentally. Thus fitting
experimental data with a traditional channel model is im-
possible, if the correct prefactor is used, because barriers
must be larger than, say, -3kTle if the traditional model is
to make any sense. A traditional model, using the correct
prefactor, and the dimensions and diffusion coefficient for
CRC that we report here, predicts a conductance of some 2
picosiemens, in 100 mM KCl, if the barrier is a parabola
3kTle high, compared to the hundreds of picosiemens we

measure under those circumstances.
Diffusion and barrier theories both include the effects of

the electrical potential within the channel. The electric field
(i.e., potential profile) depends on all charged species, those
in the solutions, those that form the channel protein, and
those that support the membrane potential. Most of these
change as bath concentrations and membrane potential are

changed, and so it is necessary (Eisenberg, 1996) to com-

pute (or measure) the electric field (i.e., the profile of
electrical potential) under each experimental condition, that
is to say, at each transmembrane potential and in each pair
of bathing solutions, as is done, for example, in the Poisson-
Boltzmann, Gouy-Chapman, and Debye-Huckel treatments
of electrochemistry. Otherwise, the assumed profile of po-
tential will be inconsistent with the charges present in the
system.
The Poisson-Boltzmann theory (Davis and McCammon,

"Eyring" high barrier expression (of traditional barrier mod-
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of open channels, because it assumes zero flux. In its place,
we use a self-consistent combination of the Poisson equa-
tion of electrostatics, and the Nernst-Planck equation of
electrodiffusion, that allows current to flow. Combined, the
Poisson and Nernst-Planck equations form probably the
simplest self-consistent generalization of the Boltzmann
factor of classical channology (e.g., p. 12 of Hille, 1992) or
of Poisson-Boltzmann theory to nonequilibrium situations.
This system of equations is nearly the same as the drift-
diffusion theory used to describe the movement of charged
particles in many physical systems (Ashcroft and Mermin,
1976; Sze, 1981; Selberherr, 1984; Mason and McDaniel,
1988; Rouston, 1990; Spohn, 1991; Balian, 1992; Chen et
al., 1992; Lundstrom, 1992; Chen and Eisenberg, 1993a;
Mahan, 1993; Jerome, 1995). Chen and Eisenberg, (1993a)
derived and applied these equations to channels and called
them PNP to emphasize the importance of the Poisson
equation. (PNP is apparently the first self-consistent theory
(i.e., one in which the potential profile is computed from the
charges present) of channels; it is certainly not the best, and
probably not the last. A three-dimensional theory that in-
cludes atomic detail, short-range electrostatic forces and
other chemical interactions, stochastic behavior, single fil-
ing, and dehydration/resolvation phenomena at ion entry
would clearly be much better.) The PNP equations describe
the electric field, the probability of location (which we call
the concentration), and current flow of ions through the
open channel.

In the present work, the single-channel currents of the
cardiac CRC were recorded in KCI solutions, using the
planar lipid bilayer method. Although Ca2+ movement
through CRC is of the greatest importance, we chose to use
K+ as the main current carrier because calcium ions have
complex effects on both permeation and gating (Tinker et
al., 1992; Tripathy and Meissner, 1996).

Analysis of single-channel currents with the PNP equa-
tions indicates that the I-V relations of CRC (in KCI solu-
tions ranging from 25 mM to 2 M over a voltage range of
-150 to +150 mV) might arise from a channel with a
(spatially) uniform density of (effectively one-dimensional)
permanent charge in its selectivity filter. If the channel is
described in more detail (i.e., if the permanent charge P(x)
is described by four parameters), the I-V relations are fit
better. More experimentation is needed to justify the more
elaborate description.
The Appendix discusses the difficulties of barrier models

and suggests, in view of these, that they have outlived their
usefulness as models of open channels.

THEORY AND METHODS

Theory

A combination of the Poisson equation of electrostatics and
the Nernst-Planck equations predicts the current flow
through the open channel (for given membrane potentials

and pairs of concentrations of permeant ions) while simul-
taneously predicting the shape of the electric field. The
theory is described in detail in an expository article (Eisen-
berg, 1996) and derived in the original papers: Eisenberg et
al. (1995) provide a stochastic derivation of the Nermst-
Planck part of the theory; Chen et al. (1992) and Chen and
Eisenberg (1993a) derive the electrostatics.
The predictions of the PNP theory depend on the atomic

structure of the selectivity filter of the channel, which is
rarely known at all, and hardly ever in sufficient detail on
the time scale of permeation. The theory in its practical
application must then describe the channel in an approxi-
mate way, by its length and diameter, and (most impor-
tantly) by its (spatially and temporally averaged) effective
one-dimensional profile P(x) of permanent (i.e., fixed)
charge. (Permanent charge is the charge on an atom when
the nearby electric field is zero. It is the largest charge
(usually by far) on an atom involved in a polar or ionic
chemical bond, even in a strong electric field. Permanent
charge does not include the mobile ions in the channel's
pore, or the dielectric (i.e., polarization) charge induced by
the electric field. Permanent charge is the intrinsic charge
determined by the quantum mechanical properties of the
atoms and molecule, and is tabulated for all atoms of amino
acids in standard programs describing the molecular dynam-
ics of proteins, e.g., CHARMM and MOIL (Brooks et al.,
1983; Elber et al., 1993). Surprisingly few atoms in proteins
have negligible permanent charge according to the "look-
up" tables of these standard programs.)

Fortunately, it is simple to solve the PNP equations
numerically, once one knows how, although learning how
was not simple. Duan Chen has developed a rapid, stable,
and accurate numerical method (Chen et al., 1992, 1997;
Chen and Eisenberg, 1993a; Jerome, 1995), and the code for
implementing that method is available to anyone who re-
quests it. (The same method was previously discovered by
semiconductor physicists and is presented in texts (Lund-
strom, 1992; Jerome, 1995). Chen's program is written in
FORTRAN 77 and has been compiled, and runs easily on a
number of systems. A Windows '95 version is available
from Steve Traynelis of the Department of Pharmacology,
Emory University (Atlanta, GA). Both versions can be
picked up (with instructions and examples) by anonymous
FTP from location/pub/Eisenberg/PNP at alexandria.rpslmc.
edu (i.e., IP address 144.74.3.21) or through the Internet on
the World Wide Web at location http://aixS50.phys.
rpslmc.edu/pnp.html) (i.e., IP address http:H1144.74.27.66/
pnp.html).)
The inputs of either version of PNP are the concentrations

and potentials in the baths; the length, diameter, and dielec-
tric constant of the channel's pore; the diffusion coefficients
of permeable ions in the channel; and the permanent charge
density P(x). If P(x), etc., were known experimentally, this
program would then predict the I-V relations of the open
channel in all solutions.
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Determining parameters

Too little is known about the structure of the selectivity
filter of CRC (or most other channels) to determine the
permanent charge density in one or three dimensions, and
too little is known about the internal dielectric properties,
ionization state, or dynamics of atoms within a protein (e.g.,
their electrical interaction with the ions in the channel's
pore) on the time scale of permeation to determine the
effective charge density (relevant to permeation), even in
those channels for which the crystal structure is known. For
this reason, the effective charge profile P(x) must be esti-
mated by fitting the PNP theory to the experimental data
itself, i.e., by minimizing the sum of the squared deviation
between experimental data and theoretical prediction.
Of course, the charge profile estimated this way is not as

well determined as we would wish; we would like to know
that charge profile in atomic detail, on the time scale of
permeation. But in a certain sense that detail is not relevant
to the I-V curves reported here. Those curves can be pre-
dicted, as we shall see, by just a few parameters, by using
the PNP equations. Thus the only role of the atomic detail
(in predicting permeation of the type measured here) is to
determine those few (average effective) parameters needed
to predict I-V curves. We imagine that those few parameters
(and the PNP equations) are sufficient because they more or
less correctly describe shielding, and once shielding is more
or less correctly described, the atomic details of structure
(not involved in shielding) are not so important. This sim-
plification is helpful because neither measurements of struc-
ture nor simulations of motion are likely to be possible on
the time and length scale of permeation (- 100 ns, 0.1iA) for
some years. We are certainly aware how fortunate we are:
clearly this simplification does not apply to all properties of
the channel and probably not to some characteristics of
permeation, as well. Many properties should depend on the
atomic details of channel structure.
The curve-fitting procedures used here to determine P(x)

are described in some detail by Chen et al. (1997). Briefly,
a set of parameters is chosen as an initial guess, e.g.,
diffusion coefficients Dj for each ion and parameters Pk that
describe the profile of permanent charge P(x). Solving the
PNP equations then predicts the current flow in a pair of
solutions at a given membrane potential (and the profiles of
potential and concentration through the channel as well).
Using one pair of diffusion coefficients Dj and one profile
of permanent charge P(x) for the selectivity filter, the PNP
model is solved for every potential and pair of concentra-
tions at which current was measured. A minimization rou-
tine (Chen et al., 1997) is used repeatedly to modify (it is
hoped, to improve) the initial guess of Dj and the parameters
Ik of P(x). The parameter estimates are modified (according
to the scheme that is the essence of the nonlinear curve-
fitting software) until the sum of squared residuals between
predicted and measured currents cannot be improved further
(or the parameter estimates no longer change appreciably).
The resulting values are "best least-squares" estimators of

the parameters in the PNP model and give the "best fit" of
the theory to the data. These estimators are well determined
by the data presented here if the permanent charge P(x) of
CRC is described by the simplest function, according to the
tests of singular values and tests using constrained param-
eter values described in detail by Chen et al. (1997). The
spatially uniform profile P(x) = PO = -4.2 M fits the data
quite well (Fig. 1). Not surprisingly, more detailed descrip-
tions of the profile P(x) fit the data better, as we shall see,
but it is not clear whether the improved fit is meaningful,
given the likely presence of systematic error in theory and
experiments. Nonner et al. (unpublished studies) investi-
gated a number of families of functions that form a "com-
plete basis" (i.e., that can sum to represent any reasonable
function, the way sine waves do in a Fourier series), and
sums of Bessel functions seemed best, at least for the
present channel:

P(x) = P1 + f32JO('rx/d) + !33JO(2-irx/d) + ,34Jo(3Trxld)
(1)

where x is the location along the channel of total length d,
JO is a Bessel function of the first kind of order zero, and the
Pk are parameters that characterize the (effectively one-

dimensional) distribution of fixed charge in the channel and
are determined by curve fitting. That is to say, fewer terms
of this series of Bessel functions were needed to fit the data
than of series of other functions. The best fit profiles P(x)
determined with Bessel functions and step functions were
indistinguishable, when even eight step functions were
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FIGURE 1 The permanent charge profile adopted as the best estimate of
P(x). The current-voltage relations measured in several solutions, fit with
a uniform, spatially independent permanent charge, P(x) = PO = -4.2 M,
diffusion coefficients DK = 1.3 X 10-6 Cm2/S, DC, = 3.9 X 10-6 Cm2/S,
and dielectric constants of 2, 5, and 10. Curves for e = 2 and e = 5 are
indistinguishable. Singular values were (9016, 306, 14). The theory fits
quite well, with RMS error/RMS current = 6.4/67 summed over all
solutions.
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used, as is illustrated later, in Fig. 7. When these more
detailed descriptions of P(x) are used, the parameter values
remain reasonably well determined, although some search-
ing (by varying the initial guesses of parameter values)
among local minima (in the value of the sum of squared
residuals) was necessary to find the best fit.

Measurement of single-channel currents

Single-channel measurements were performed (Xu et al.,
1996) between 230C and 25°C by fusing proteoliposomes
containing the purified cardiac muscle Ca2+ release channel
with Mueller-Rudin-type bilayers containing phosphati-
dylethanolamine, phosphatidylserine, and phosphatidylcho-
line in the ratio 5:3:2 (25 mg of total phospholipid per ml
n-decane). The side of the bilayer to which the proteolipo-
somes were added was defined as the cis side. A strong
dependence of single-channel activities on cis [Ca2+] was

used to indicate that the large cytosolic ("foot") region of
the channel faced the cis chamber. The potential on the
trans side of the bilayer was defined as the ground (zero).
Single-channel currents were recorded in 2 mM KHEPES,
pH 7.5 buffer containing 4 ,uM Ca2+ and the [KClJ listed in
Table 1. Data acquisition and analysis were performed with
a commercially available software package (pClamp, Ver-
sion 6.0.3; Axon Instruments).

RESULTS

The current-voltage relations of the open CRC channel were

measured in the KCI solutions listed in Table 1 and are

shown in Fig. 2, A-D. In both symmetrical and asymmet-
rical solutions, nearly linear I-V curves were obtained from
-150 mV to + 150 mV. Although linear I-V relations are

hardly a surprise when the concentrations of permeant ions
on both sides of the channel are the same, they are more of
a surprise when the concentrations are very different. One
might expect the current flow to rectify simply because the
average concentration of ions in the channel presumably
depends on whether ions flow from high to low or low to
high concentrations, particularly if those concentrations dif-
fer by a factor of 10-20.
The lines in Fig. 2, A-D, are predicted by PNP equations

when the channel has an effective fixed charge of P(x) =

P0 = -4.2 M and the diffusion coefficients are DK = 1.3 X
10-6 cm2/s and Dc1 = 3.9 x 10-6 cm2/s. The concentration
PO = -4.2 M is equivalent to a charge of 0.97e spread
uniformly along a selectivity filter of 10 A length, giving a

linear charge density of -0.097e/A. The fact that the esti-
mated total charge is so close to an integer has not escaped

our attention, although it has not captured it either. The
estimate is probably a coincidence, but only structural in-
formation will tell for sure.

There is some significant misfit between theory and ex-

periment in highly asymmetrical solutions, and at large
potentials, but overall the fits are quite good: if concentra-
tions are used to describe the solutions, as in the figures
shown here, the fit is 6.4/67 (RMS residual/RMS current)
from 314 measured currents in 12 solutions. If activities are

used, the fit is 4.9/67. Because the estimates of the error of
each measured I-V point are not available, the RMS residual
is used instead of the x2 statistic.
The misfit was systematically investigated by fitting each

I-V curve (from each pair of solutions) one at a time,
allowing only one parameter to vary, keeping the other
parameters at their mean values. For example, the data in
the 250 11 50 mM solution were fit by varying only the
permanent charge density while all other parameters were
kept at their mean value. (The resulting fit was, of course,
much improved.) The I-V data from this pair of solutions
were then fit another time, by varying only the diffusion
coefficient DK. Repeating this process for all solutions (and
for each of the three adjustable parameters) shows that
either a mean change in permanent charge of 5.7%, or a
mean change in DK of 5.7%, or a mean change in DCI of
458% is needed to produce optimal fits to the I-V curves
measured in each solution. The very large value for the
required change in Dc1 reflects how badly that variable is
determined by our data, theory, and analysis. This is hardly
surprising, given how little current is carried by the coion
Cl- (in the conditions we study). The channel contains
between 0.001 and 0.1 CF- (co)ions, depending on condi-
tions, whereas it contains close to one K+ (counter)ion, in
accord with the (net) permanent charge of the channel
protein of nearly -le.

The singular values of the fit (Chen et al., 1997) were

{9016, 306, 14}, suggesting that the values of two param-

eters (presumably, PO and DK) are well determined. The
correlation functions (Table 2, determined from 314 data
points) show that the conductance is determined with equal
weight by both the concentration of cations (counterions) in
the channel's pore (which is determined almost entirely by
the fixed charge P0 = -4.2 M le in the lo-A length of
the selectivity filter) and by the diffusion coefficient of the
counterion K+. The conductance of a channel of uniform
large charge should depend on the product of the concen-

tration and mobility (i.e., diffusion coefficient) of the per-

meable ions (common sense, buttressed by the analytical
results of Syganow and von Kitzing (1995) and Peskin
(personal communication)). The concentration of permeable

TABLE I Solutions

Concentration (mM)

Cis 250 250 250 250 250 250 250 1000 1000 1000 1000 2000
Trans 250 2000 1000 500 100 50 25 1000 500 250 100 100
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FIGURE 2 Current-voltage relations measured in the solutions indicated. The lines are the best fits of PNP with the parameters shown in Tables 2 or

4. The fits of the two models are not distinguishable by eye. Note that small (5.7%) changes in the value of the uniform fixed (i.e., permanent charge) could

account for all of the deviations between theory and experiment (see text for details).

ions, in turn, is given to a good approximation by the
concentration of permanent charge (because the system is
approximately, but not exactly, electrically neutral, as in
many ion exchange systems with a high density of fixed
charge). Thus the effect of permanent charge and diffusion
coefficient on the current is more or less the same, in a given

pair of solutions and at a given transmembrane potential. It
is not surprising then that estimates of these parameters are

highly correlated (as in other barrier crossing problems; cf.
Fleming and Hanggi, 1993).
On the other hand, the requirement that a single value of

diffusion coefficient and a single value of charge density fit

A
Current voltage relations

200.0

150.0

Cl

C:
C
CU
0

0L)

c

c

CO

CD

100.0

50.0

0.0

-50.0

-100.0 [......

-1 50.0
-1 50.0

C

150.0

200.0

o [KCI]J,=2M, [KCI],,,=100mM /
o [KCI]d=lM, [KCI],=500mM

. -[KCI]aX25mMj.[KCI.00m4.M.

0

q/D/ 0

,' 9' ,

50.0 ..
CL
C

Q

0)

C')

v [KCI]d-=250mM, [KCI]"=50mM
+ [KCI]d,=250mM, [KCI],.,=250mM
O [KCI"d=25OmM, [KCI"an=2M

-50.0

-150.0 L
-20C 200.0

1 342 Biophysical Journal

).0



Permeation Through the Calcium Release Channel

TABLE 2 Parameter estimates: uniform permanent charge

Correlation coefficient

Parameter estimate (±SD) DK DCI P0

1.25 X 10-6 Cm2/S (±0.13) = DK 1 -0.88 -0.998
3.87 X 10-6 Cm2/S (±0.44) = DCI -0.88 1 -0.88
-4.17 M (±0.45) = PO -0.998 -0.88 1

A total of 314 data points from 12 solutions were used to estimate the
parameters and correlation coefficients.

all of the data measured over a wide range of solutions and
potentials allows the parameters to be separately estimated.
At the reversal potentials (for example), the fixed charge
density and the diffusion coefficients do not have the same
effects. Thus measurements there, at that most traditional
place, near the reversal potential, when the total current is
nearly zero, allow separate identification of the parameters.

Curve fits with constrained parameter values and the
analysis of singular values of the curve fits (both as de-
scribed in Chen et al., 1997) show that our estimates of
parameters are reliable, within reasonable bounds, despite
the correlations reported. It also should be noted that esti-
mates of changes of parameters between wild type and
mutants of channels of known three-dimensional structure
(Tang et al., 1997) are within 5% of the values known from
their crystal structures.

In the calculations of this paper, the channel's filter (i.e.,
the narrow region that essentially determines open channel
permeation) was chosen to have a length of 10 A (Tu et al.,
1994; Tinker and Williams, 1995). The channel diameter
was chosen to be 7 A because choline+, Tris+, and glucose
can permeate (Meissner, 1986; Smith et al., 1988), whereas
sucrose cannot (Meissner, unpublished studies). The dielec-
tric constant (Ep) of 5 was chosen as a reasonable number.
The choice of the value has surprisingly little effect (for this
particular profile of permanent charge), as shown in calcu-
lations that examined the fits for different values ranging
from = 2-10, with a given profile of P(x). The fits were
not distinguishable and the estimates of parameter values
were nearly the same (Fig. 1).
The atomic interpretation of the profile of charge P(x)

shown in Fig. 1 is of great interest and should be reevaluated
once the structure of the selectivity filter is known and a

TABLE 3 Dependence of rate constants on ion
concentration and potential

K+ rate K+ rate Cl- rate Cl- rate
Transmembrane constant constant constant constant kb
potential V (mV) kf (K+) kb(K+) kf (Cl-) (Cl-)

,us5 I usI1 LsAs
KCl: 25011250 mM

0 mV 148 8.92 412 6838
100 mV 585 0.737 34.0 2.70 x 104

KCl: 2501150 mM
0 mV 59.7 0.722 828 6.85 x 104
100 mV 163 4.12 x 10-2 47.4 1.87 X 105

more realistic theory is available. But some discussion is
worthwhile, even with our present limited knowledge and
theory (because our work shows that little atomic detail is
needed to predict the properties of the open channel). Thus
the substantial number of coordinates needed to specify the
location and momenta of the atoms of CRC must "average
out" to determine permeation; i.e., it must be somehow
possible to reduce the coordinates of all the atoms of the
protein to just the three (time-independent) numbers that
determine permeation in the solutions shown in Table 1.
This averaging is dramatic because of the size of the chan-
nel protein and because of the gap between the (shortest)
time scale of atomic motion (say, 5 X 10-16 s) and the
(shortest) time scale of measurements of permeation (say,
5 x 10-6 s). The number of coordinates needed to specify
the location and momentum of the atoms of the channel is
large, six times the number of atoms. The number of coor-
dinates needed to specify how these fluctuate in time is
much larger, because positions fluctuate significantly many
times during the measurement of a single estimate of open-
channel current; in fact, they fluctuate some 1010 = (5 X
10-6)/(5 X 10- 16) times. The number of atoms necessary to
determine the potential in a 1-cm3 bilayer setup (if Cou-
lomb's law is used instead of Poisson's equation) is very
large (some 1020). Thus direct computation of the current,
by "adding up" successful trajectories, poses certain diffi-
culties, given the finite word length and round-off error of
numbers in computers. And direct computation of the po-
tential seems impossible. Rather, a theory of the average
current and average potential themselves will be needed to
predict the biologically important properties of the open
channel, namely, the effects of membrane potential and
concentration on current flow. PNP is one such theory,
perhaps the simplest.
What is surprising is that such an averaged description of

the channel protein, using only three parameters (if one
counts the diffusion constants as properties of the protein),
can predict the averaged current, the I-V relations measured
in such a range of conditions. Of course, the atomic details
of the protein are important for other functions of the
channel (e.g., gating) and for other characteristics of per-
meation as well (e.g., selectivity).

Although the insignificance of atomic detail surprised us,
it did not surprise several of our collaborators who are
professional mathematicians or chemists. The experimental
data had a simple structure, and so they expected that a
theory would involve only a few adjustable parameters, if
the theory described the underlying physics more or less
correctly. In this physical/mathematical approach, the chan-
nel should be described with no more detail than is needed
to predict the data (that describe the phenotype of the
system, its biologically interesting function).
The equations of the theory then transform the (sparse)

atomic detail of the structure of the channel into predictions
of its function, its I-V curves. They do this by predicting the
profiles of ion concentration and potential along the chan-
nel-for every transmembrane potential and each pair of
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TABLE 4 Parameter estimates: nonuniform permanent charge P(x)
Correlation coefficient

Parameter estimate (±SD) DK DCI (32 33 14

1.48 X 10-6 Cm2/S (±0.2) = DK 1 -0.91 -0.87 -0.69 -0.01 0.29
4.12 X 10-6 Cm2/S (±0.9) =DC- -0.91 1 -0.94 0.86 0.097 -0.42
-4.82 M (+ 1.1) = p -0.87 -0.94 1 -0.92 -0.31 0.62
8.12 M (+2.0) = 12 -0.69 0.86 -0.92 1 0.15 -0.50
-4.09 M (±8.0) = 13 -0.01 0.097 -0.31 0.15 1 -0.93
- 9.95 M (+11.3) = 14 0.29 -0.42 0.62 -0.50 -0.93 1

The permanent charge is P(x) = J3l + P2JO (-rTxld) + 933JO(27rx/d) + f34JO(3iifx/d), where d is the length of the channel, and JO is a Bessel function of the
zero order. A total of 314 data points from 12 solutions were used to estimate the parameters and correlation coefficients.

concentrations (equation 9 of Chen et al., 1997)-and from
the profiles, the current flow (equation 11 of Chen et al.,
1997).

Figs. 3 A and 4 A show the potential profiles predicted by
the PNP equations in particular solutions. Figs. 3 B and 4 B
show the concomitant profiles of concentration. Note that
the horizontal axis has different (linear) scales inside the
channel and in the baths to accommodate the different
Debye lengths in the different regions.

In the PNP equations, the parameters that determine the
I-V relations also determine the profiles of potential and
concentration. No other parameters enter at all. The shape
and size of the profiles of concentration are different in
different solutions-indeed, they are different at different
transmembrane potentials-because the contents of the
channel depend on the driving force (i.e., free energy dif-
ference) between the channel interior and both baths. If the
contents of the channel vary, and the permanent charge
density stays fixed, the total charge must vary, and so, on

the most general of principles, the potential must vary. Thus
the potential profile is different in different solutions and,
indeed, at different transmembrane potentials. Flux and the
rate constants that describe it tend to be an exponential
function of transmembrane potential V and of the potential
profile qp(x), as can be seen by combining Eqs. 2 and 4 of the
Appendix, and so the effects on current and rate constants
are severalfold. A table of the forward and backward rate
constants for K+ and Cl- are given in the legend of Fig. 4.

These conclusions depend on very general arguments and
not on any details of our PNP equations. In fact, this
argument is simply a fancy way of saying that shielding is
a dominant determinant of the potential profile (and thus
flux), a fact long accepted in the Debye-Huckel theory of
ionic solutions, the Gouy-Chapman theory of interfaces, and
the Poisson-Boltzmann theory of proteins, although not
perhaps in enzymology (Hill, 1977, 1985; Walsh, 1979;
Stryer, 1995) or channology (Hille, 1975, 1992).
The concentration profiles (Figs. 3 B and 4 B; note the

logarithmic vertical axis) show that the selectivity filter of
CRC is mainly occupied by K+ ions, under the conditions
shown, and the occupancy (by K+) is much less dependent
on transmembrane potential than is the profile of potential,
according to PNP. The occupancy by K+ (at zero and at
±100 mV membrane potential) ranged from 0.96 to 1.04,

depending on the solutions. The profiles of Cl- change
much more than the profiles of K+, ranging from 0.001 to
0.12 under the same conditions, but the change has a small
effect on conductance, because the Cl- concentrations are
much smaller than the K+ concentration. The concentration
of K+ ions is "buffered" by the high concentration of
(mostly negative) permanent charge lining the pore of CRC,
and it is this "buffering of counterions" that gives rise to the
constant conductance (linear I-V curves) seen in our exper-
iments. This buffering may also explain why PNP works as
well as it does as a description of CRC, when similar
theories do not predict the properties of bulk solutions very
well: according to our analysis, the important region of CRC
is well buffered from external disturbance by the high
density of fixed charge lining the channel's pore, as long as
the concentration of permeant is not too large. However,
this buffering does not explain why PNP fits quite well I-V
relations from channels with much lower densities (Chen et
al., 1997) and more complex profiles of permanent charge
(Chen et al., 1995b, 1997; Tang et al., 1997).

Previous work (Chen et al., 1997) predicts that changes in
membrane potential and bath concentration produce large
changes in the predicted potential profile in a synthetic
channel with some -0.5 M permanent charge density
spread along some 20-A length. The filter of the CRC
channel is more highly charged and seems shorter than that,
as one might expect in a natural channel. The CRC filter
seems to have a net permanent charge of some -4 M,
corresponding to - 1 electron charge spread uniformly
along its 10-A length. Thus its potential profile is very
sensitive indeed to the ionic atmosphere nearby, in the baths
and the channel's pore.

Perhaps one sees here a hint of a biological principle
governing the design of channels and the regulation of
open-channel permeation. Perhaps the CRC channel is a
rigid molecule designed to pack as high a density of fixed
charge in as small a region as possible, producing as little
friction as possible for the permeating ion. Perhaps the CRC
channel is designed just so a simple mechanism like shield-
ing will be the dominant determinant of its conductance. In
this way, evolution could ensure a simple relation between
the permanent charge (controlled by the genome) and the
current through the channel (one of the genome's pheno-
types). The design has the added advantage of being ho-
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FIGURE 3 (A) Profile of the potential in symmetrical 250 mM solutions.
Note the large region in which the potential in the baths differs from its
bulk value (for this reason the scale of the horizontal axis is different inside
the channel, 0 < x < 10 A, and outside the channel in the baths, x < 0 and
x > 10 A). This region is so large because the concentration of permanent
charge at the ends of the channel is so large (see Fig. 1) compared to the
concentration of the bathing solutions. The Debye length in the channel is
thus much shorter than the Debye length in the bath. The potential profiles
are clearly sensitive functions of transmembrane potential and bath con-

centration. See caption of Fig. 4. (B) Profile of the concentration of anions
and cations in symmetrical 250 mM solutions with a logarithmic vertical
axis and different horizontal scales inside and outside the channel. The
concentration profiles show much less dependence on transmembrane
potential and bath concentration than the potential profiles. This is to be
expected from a channel like CRC with (nearly) linear I-V relations, and is
not found in channels with more complex profiles of fixed charge and thus
more complex I-Vcharacteristics (Chen et al., 1995b, 1997; Tang et al., 1997).
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FIGURE 4 (A) Profile of the potential in asymmetrical 250 11 50 mM
solutions. Note the large region in which the potential in the baths differs
from its bulk value (for this reason the scale of the horizontal axis is
different inside the channel, 0 < x < 10 A, and outside the channel in the
baths, x < 0 and x > 10 A). The potential profiles are clearly sensitive
functions of transmembrane potential and bath concentration. (B) Profile of
the concentration of anions and cations in asymmetrical 250 11 50 mM
solutions with a logarithmic vertical axis and different horizontal scales
inside and outside the channel. The forward and backward rate constants
for the permeation of each ion are determined by the potential profiles as

shown in the Appendix, Eqs. 2-4. The dependence is considerable, as

documented in Table 3. Roughly speaking, in this channel, changing one

solution from 250 mM to 50 mM changes the rate constants by a factor of
2-10; changing the transmembrane potential by 100 mV changes the
forward and backward rate constants by a factor of 10.
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meostatic in the concentration of permeating ions (but not
homeostatic in the electrical potential, of course, presum-
ably because physics makes that difficult, if not impossi-
ble); that is to say, the concentration of permeant is well
buffered from external disturbance by the high density of
fixed charge, as long as the concentration of permeant is not
too large.

Fig. 5 shows the potential profile predicted within the
selectivity filter of the CRC with asymmetrical 250 11 50 salt
at a transmembrane potential of 100 mV if 1) there were no
ions in the channel or bath (solid line), 2) if ions are present
in the baths but not in the pore (dashed line); 3) if ions are
permeable (dot-dashed line). The difference in the curves
shows the potential change produced by ions in the chan-
nel's pore. Those ions shield the permanent charge of the
channel and change the potential profile by several kT/e.
The figure also shows that mobile ions significantly modify
the shape of the potential profile and thus produce an
additional change in ionic flux. (Comparing the solid line or
dashed line with the dot-dashed line shows that even the
sign of the curvature, and hence the net charge in the pore,
is altered.)

Because no current flows when no ions are present, the
difference in curves in Fig. 5 provides some estimate of the
importance of nonequilibrium effects. When current flows,
the potential profile is nearly linear (in this channel under
these conditions); when current is not allowed to flow, the
profile is nonlinear. The nonlinearity in potential is several
kT/e and thus will change current flow more than several-
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FIGURE 5 Potential profile of CRC with asymmetrical 250 11 50 salt if
there were no ions in the channel or bath ( ), if there were ions in the
baths but not in the channel's pore (--- -), and if the ions were permeable
(- * -). Note that potential profiles vary substantially with concentration,
and so the rate constants given in Eq. 4 will also vary with concentration.

fold, given the exponential relation of flux and potential.
The deviation from equilibrium is not a small effect. Thus
theories constrained to equilibrium, like Poisson-Boltz-
mann, are unlikely to successfully predict current flow
through a channel. It seems unwise to analyze the electro-
statics of a channel at equilibrium, or in a bath devoid of
ions, as in most simulations of molecular dynamics, if the
goal is to understand the phenotype and biological function
of the open channel, namely, the flux of these ions.

Fig. 6 provides a direct comparison of the best fits of PNP
and a traditional four-barrier model using the parameters of
cardiac CRCs reported in Tinker et al. (1992). The program
implementing the barrier model was kindly provided by
Osvaldo Alvarez (Alvarez et al., 1992). The prefactor kT/h
was used, so our calculation overlaps those of earlier mod-
els. The fits by the barrier model were reasonable in sym-
metrical solutions but qualitatively unsatisfactory in the
presence of asymmetrical salts. It may be possible to fit the
data by a barrier model using a large number of parameters
and kT/h as a prefactor; however, use of the standard pref-
actor of chemical physics (see Appendix) would prevent
any theory with large barriers from fitting the data. Barrier
theory, if used with the correct prefactor, cannot predict
currents larger than a certain amount (corresponding to the
smallest barrier that can still be called "large"). In the
present case, barrier models cannot predict the observed
currents, if the theories use the standard prefactor of chem-
ical physics, and barriers are 3kTle or larger. In fact, a
barrier of 3kTle predicts an open-channel conductance for
CRCs of some 2 picosiemens, in 100 mM KCI, if the correct
prefactor is used, compared to the hundreds of picosiemens
we measure under those circumstances. On the other hand,
PNP fits the conductance in this and all of the other solu-
tions we have studied, using only a few parameters, that
have reasonable values.

Not surprisingly, PNP fits the data better if more complex
profiles of permanent charge are used. Two such profiles
were determined (by curve fitting) by using the sum of four
Bessel functions (Eq. 1) or an eight-step function. The
complex profiles shown in Fig. 7 produce fits that are
indistinguishable by eye from those shown in Fig. 2, A-D,
but the statistics of the fits are improved significantly (RMS
residual = 5.8 versus 6.4 with uniform PO). The significance
of this improvement over the result with a uniform profile of
fixed charge is not clear, but the more complex profiles are
shown here because preliminary measurements on the
CRCs of skeletal muscle suggest that differences in the two
channel isoforms may be resolvable in this way.

DISCUSSION

It seems clear that a simple theory of an open channel can
predict the permeation of K+ and CF- through the selectiv-
ity filter of the CRC channel in a wide variety of concen-
trations and a wide range of transmembrane potentials, if the
theory computes the potential profile along the channel
instead of assuming it.
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The theory does not fit perfectly, of course, particularly at
large currents and in high salt concentrations; this might
have many causes. Interestingly, if concentrations in the
bath are replaced by activities, fit is significantly improved,
particularly in the 2 M 11 100 mM and 250 mM 11 2 M
solutions. The RMS residual for all solutions is then reduced
to 4.9 pA. The original and residual misfits may come from
ambiguities in the calculation and definition of activity in
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)del a uniform profile. Its singular values are {7621, 281, 22.7, 15.7, 1.83,
0.426}, and so the parameters shown in Table 4 seem to be quite well
determined. When an additional term (35JO(4irx/d) was added to improve
the estimate of P(x), the best least-squares value of its coefficient 35 =
-0.52 was much smaller than the other coefficients, the average magnitude
of which was some 6.7 M. The SVD showed that 13s was reasonably well
determined: the singular values were {7645, 277, 22.6, 15.7, 1.97, 0.569,
0.222), and so it seems that just the three Bessel functions (and constant)
of this figure "exhaust the [information content of] the data." They describe
the permanent charge as well as it can be described, given the limitations
of theory and experiment. The data were also fit with a profile of perma-
nent charge made of the sum of eight step functions. Note that it converges
to give much the same estimate of diffusion coefficients and profile of
permanent charge.

the bath: no one knows how to compute activity coefficients
a priori in concentrated (i.e., physiological) ionic solutions
(see the 18 references cited by Krukowski et al., 1995).
When spatial gradients of activity are present (as in the bath
and in the channel in the present situation), one faces a

nonequilibrium problem. No one yet knows how to define
variables analogous to free energy or activity away from
equilibrium (Keizer, 1987; Lee and Rasaiah, 1994; Schon-
ert, 1994; Vlad and Ross, 1995).

Misfits might also be produced by other phenomena not
included in the theory, such as nonequilibrium effects, e.g.,

1) water flow, which must be present in these asymmetrical
solutions; 2) a drop in electrical or chemical potential pro-

duced by flux across an "access resistance" (see Chen and
Eisenberg, 1993b); 3) heating of the solution, ions, and/or
protein (Chen et al., 1995a); or by other effects, e.g., 4) a

small change in structure (6% would do; see Results), which
is not unlikely when ionic strength ranges from 20 mM to
2 M; or 5) by an effect of the electric field (really of the
electrochemical potential) on the ionization state of acidic
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or basic residues of the channel protein, i.e., an effect of
large electrochemical potentials on the density of permanent
charge (Warshel and Russell, 1984; Davis and McCammon,
1990; Honig and Nichols, 1995).

Nonetheless, the wonder is that PNP fits such a wide
range of data so well. Evidently, water flow, access resis-
tance, and changes in ionization or conformation (of more
than 6%!) are not too important, at least for this channel
under these conditions.
We suspect that PNP fits this well because it is a self-

consistent theory that computes the potential profile from all
of the charges present. PNP is the first and perhaps simplest
theory of this type, but it has obvious deficiencies (Eisen-
berg, 1996): it neglects atomic detail and short-range elec-
trostatic forces that are likely to be important to some
channel functions, e.g., selectivity between ions. It ignores
the entry and exit processes where an ion dehydrates and
resolvates. It treats single filing only as a consequence of
average (i.e., continuum) electrostatic repulsion, and it does
not include additional effects of the repulsion between in-
dividual ions (Bek and Jakobsson, 1994), although those
additional discrete effects may not be very important when
permanent charge is large enough to buffer and thus sub-
merge other phenomena, like the effects of discreteness of
charge. It does not treat unidirectional fluxes individually,
but lumps them together into a net flux (thereby removing
any terms common to both the unidirectional influx and
efflux), and so PNP (in its present form) cannot be used to
predict the ratios of unidirectional fluxes characteristic of
single-file systems (Eisenberg et al., personal communica-
tion). Each of these deficiencies must be addressed. We
(and others) are trying. In particular, a preliminary version
of PNP that includes single filing, using the method of
Barkai et al. (1996), has been developed by Schuss (Schuss
et al., personal communication).

In the meantime, however, the success of PNP in fitting
such a wide range of currents, with qualitatively different
dependence on transmembrane potential, in so many solu-
tions, and in some five channel types (Chen et al., 1995b,
1997; Tang et al., 1997), suggests that the theory should be
used as a guide and target for experimentation on the open
channel, instead of barrier models (see Appendix) and tra-
ditional diffusion models (e.g., constant field).

Such experimentation will show where the evident theo-
retical deficiencies of PNP limit its practical utility. Exper-
iments with porin (a channel of known structure) and mu-
tants (with known changes in permanent charge) will cast
light on the meaning of the effective parameters of the
theory. Preliminary work (Tang et al., 1997) suggests that
changes in the parameters are reliably estimated by curve
fitting with PNP, showing that the change in permanent
charge is not an effective but an actual parameter, at least
for that channel under those conditions. Measurements with
monovalent ions other than K+ will show if the diffusion
coefficients estimated with PNP behave as they do in free
solution. Measurements with mixtures of monovalents will

Clearly a theory that treats occupancy as cavalierly as PNP
should fail when describing permeation in (a range of)
mixed solutions. But it is important to see where, how, and
why PNP does fail, so that the appropriate improvements
can be made without making the theory too complex to be
of practical use in fitting the large data sets of experimental
results (from many pairs of solutions).

Similarly, measurements should be made in divalent so-

lutions, and in mixtures of mono- and divalent ions. Di-
valents are of particular interest in the cardiac CRC channel,
because the channel exists to transport Ca2+. Ca2+ flux is its
phenotype. Theories of divalents in bulk solution do not do
well in a wide range of concentrations, if at all in physio-
logical concentrations or in mixed solutions. (This litera-
ture, which is particularly relevant for CRCs, can be found
through the classical papers of bioelectrostatics (McLaugh-
lin et al., 1981; McLaughlin, 1989) and in the recent chem-
istry literature (Kjellander and Mitchell, 1994; Booth et al.,
1995; Ennis et al., 1995; Kjellander, 1995; Hummer et al.,
1996; Kalko et al., 1996; Mehler, 1996).) Nonetheless, PNP
should be tried even in these cases, to see where and how it
fails, to focus theoretical attention on the practical issues
that demand resolution. Logically, this work would be done
on channels with known structure, that allow calcium per-

meation (e.g., the porins), but interest and support for work
on CRCs is understandably high, and so perhaps work will
not proceed in logical order.

Despite (or because of) its simplicity and success in
fitting data, PNP is a frustrating theory, particularly when
shielding effects are large, because they are so nonlinear and
hard to predict a priori without actual numerical calculation.
The shielding effects we find in CRCs are surprisingly large
because the channel filter is (apparently) so short and nar-

row (- 10 by 7 A) (see Results for references), and its wall
is so highly charged (-4 M, corresponding to -le in the
channel filter, according to the results presented here). The
potential profile within a conducting channel is thus very
different (e.g., often by kT/e at many locations) from what
it would be in an empty channel, a hypothetical channel
without ions to shield the permanent charge of the protein,
or from what it would be in a filled channel at equilibrium
that did not conduct current.
The nonlinear equations of PNP are straightforward-

nearly trivial-to compute, once one knows how, although
(re)inventing how (Chen et al., 1992; Chen and Eisenberg,
1993a; Chen et al., 1997; compare with the semiconductor
literature cited in Jerome, 1995, and Lundstrom, 1992) and
learning why (Jerome, 1995) were not at all straightforward.
But after-the-fact calculations do not permit the understand-
ing all scientists seek, before experiments or computations
are done. After a computation is done, the profiles of
concentration and potential along the channel (that are out-
puts of the theory) clearly explain why currents vary the
way they do, as permanent charge, transmembrane poten-
tial, or concentrations are changed. But before the compu-
tation, those profiles, particularly the most important, the

show if PNP can describe selectivity among these ions.
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Study of the I-V relations predicted by PNP in many
solutions might help in developing insight into its qualita-
tive behavior, and many such plots have been made (mostly
by our collaborator and friend Wolfgang Nonner, who has
generously shared them with us). But "the goal of comput-
ing is insight, not numbers," and that goal has not yet been
reached by extensive computation of PNP.
More promising is the analytical path. Barcilon et al.

(1997) and Charles Peskin (personal communication) have
used singular perturbation theory (cf. Kevorkian and Cole,
1996) to determine general qualitative properties of the PNP
equations. Peskin has made particular progress by exploit-
ing the large value of the permanent charge (in his Lecture
Notes on Neurobiology). Peskin et al., (unpublished studies)
are working on a related analysis of PNP itself, which
should yield insight into CRC behavior, because it can be
reasonably described by a uniform large P(x) = PO.

Clearly, much more work is needed to test and then (it is
hoped) exploit the PNP model of CRC. Measurements
should be made in a wide variety of monovalent ions, to see
if selectivity (of this type) is reasonably described. Modifi-
cations of the protein should be made (particularly of the
permanent charge), and the effects on I-V curves predicted
and measured. Most importantly, the theory and experi-
ments should be extended to include the divalent ions of
greatest functional interest in this channel.

APPENDIX: RATE CONSTANTS IN CHANNOLOGY

Rate models are used so widely in channology (Hille, 1975; Hille and
Schwartz, 1978; Eisenman and Horn, 1983; Lauger, 1991; Andersen and
Koeppe, 1992; Hille, 1992, are modem references) that we think it neces-
sary to show explicitly how they arise in a diffusion theory applied to open
channels.

Rate models of channels grew from the rate theory (sometimes called
"transition state theory") of chemical reactions developed in quantum
chemistry in the 1930s. Despite its popularity then, chemists realized that
rate theory must be derived (Laidler and King, 1983). It is not a funda-
mental physical law of either quantum or statistical mechanics, and its use
must be justified by derivation, simulation, and experimentation.

Rate theory was derived in two different traditions: those of equilibrium
statistical mechanics (Johnson et al., 1974; Hille, 1975; Pechukas, 1976;
Chandler, 1978; Hille and Schwartz, 1978; Eisenman and Horn, 1983;
Levine and Bernstein, 1987; Steinfeld et al., 1989; Liauger, 1991; Andersen
and Koeppe, 1992; Hille, 1992) and diffusion theory (evidently started by
Kramers, 1940; see the definitive review of Hanggi et al., 1990, citing
some 700 other references; also see the textbook presentations of Berry et
al., 1980, and Robinson and Holbrook, 1972, and the recent book by
Fleming and Hanggi, 1993, which contains a number of articles joining the
two traditions).

The tradition of statistical mechanics has difficulty accommodating
flux, because flux of all types vanishes at equilibrium, where statistical
mechanics is derived. Thus phenomena that occur only when macroscopic
flux flows (e.g., friction or frictional heating) are not natural components
of theories in statistical mechanics.

The tradition of diffusion theory has difficulty accommodating atomic
detail. Frictional phenomena are natural parts of diffusion theories, but the
equations of molecular dynamics used to describe molecular motion in
atomic detail do not include diffusion coefficients or explicit treatments of
friction.

Statistical mechanics and diffusion theory must both be extended if their
relationship is to be understood. Equilibrium ideas (like free energy and its

components, energy and entropy) and atomic resolution must be present in
the (extended) diffusion theories; and nonequilibrium ideas, like friction,
must be present in the (extended) equilibrium theories.

The diffusion theory of channels started historically with the Nernst-
Planck equations, the diffusion equations describing the concentration of
charged particles, each of which following the random trajectory neces-
sarily produced by friction (Goldman, 1943; Hodgkin and Katz, 1949; Hall
et al., 1973; Levitt, 1982, 1984, 1985, 1986, 1987). Kim Cooper, then a
graduate student of the biophysicist Eric Jakobsson and physical chemist
Peter Wolynes, was (as far as we know) the first to use Langevin equations
to describe the random trajectory of ions in a channel (Cooper et al., 1985,
1988a,b). We (and others) followed his lead. Eisenberg et al. (1995)
provided a stochastic derivation of the Nernst-Planck equations, showing
how those equations describe the probability density function for the
location of an ion moving in a random trajectory. The stochastic derivation
rationalized the analysis and demonstrated the generality of the simulations
of Barcilon et al. (1993).

The stochastic derivation provides a pleasingly intuitive result. The flux
of trajectories (and ions) is the sum of two unidirectional fluxes, each the
product of a "source" concentration, "diffusion velocity" (Djld) and the
appropriate conditional probability:

J= d[kfCj(L) - kbCj(R)]
(2)

Unidirectional Efflux Unidirectional InMfiux

Cj (L) Prob{RIL} - Cj(R)(-)Prob{LIR}
Source Diffusion Conditional

Concentration Velocity Probability

Note that the total flux cannot itself be described (in any natural way) by
a (single unconditional) probability, nor can the mean first passage time or
contents of an ion in a channel. All of these quantities must be replaced by
the appropriate (pairs of) conditional quantities because a number of the
unconditional quantities are inflnite in perfectly finite and well-posed
situations, as found by Barcilon et al. (1993) and Eisenberg et al. (1995).

When the unconditional quantities are replaced by the appropriate
conditional quantities, the flux through the channel can be described in a
simple manner, e.g., as a unimolecular chemical reaction (Robinson and
Holbrook, 1972):

kf
L< '0R;

kb
(3)

where kf = Prob{RIL}; and kb - 2 Prob{LIR}

In words: each flux can be described as a (unidirectional) chemical reaction
without approximation, for any potential barrier (¢(x) with rate constants kf
and kb (units: s-), determined by the conditional probabilities and diffusion
velocities shown in Eq. 2, when concentration boundary conditions are in
force that describe mathematically the constant-concentration/constant-
potential conditions of a voltage-clamp experiment.

The conditional probabilities of Eqs. 2 and 3 require precise definition,
including two boundary conditions that doubly condition the underlying
trajectories, which must be described by the full (not reduced) Langevin
equation, to allow the double conditioning. It was the assignment of these
trajectories and boundary conditions that allowed Eisenberg et al. (1995) to
specify and solve this problem, using the techniques of Schuss (1980) and
Naeh et al. (1990).

The conditional probabilities of Eqs. 2 and 3 can be determined entirely
numerically, by computing a random walk, or by simulating a full or
reduced Langevin equation. All three numerical calculations are shown by
Barcilon et al. (1993) (e.g., Figs. 4 and 5) (see also Cooper et al., 1985;
Chiu and Jakobsson, 1989; Eisenberg et al., 1995). The conditional prob-
abilities might also be determined from the simulations in atomic detail of
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molecular dynamics (McCammon and Harvey, 1987; Brooks et al., 1988;
Haile, 1992) or by using the Onsager-Machlup action formulation of
Newton's laws, in the presence of thermal agitation (Onsager and Machlup,
1953; see modem application: Elber, 1996). The simulations fortunately
require much less time than the derivation (Eisenberg et al., 1995) of their
boundary conditions, which took many of us years of work (Cooper et al.,
1985, 1988a,b; Chiu and Jakobsson, 1989; Barcilon et al., 1993).

Equations 2 and 3 are derived by using stochastic identities that merely
assume the existence of conditional probabilities of location and so are true
for a wide range of stochastic trajectories. Thus the derivation establishes
the chemical reaction as a model of the open channel, and the meaning of
the Nernst-Planck equations mathematically, without physical argument
beyond that used in deriving the model of the open channel in the first
place.

In the general case we can conclude, then, that the chemical reaction and
Nernst-Planck equations are not a (perhaps vaguely derived) continuum
approximation, but rather are an exact representation and description, even
in atomic detail, if they use the conditional probability density functions of
the location of discrete particles, as defined above and in the cited refer-
ences. (See above. The meaning of the average potential profile p(x) of the
Nernst-Planck equations is more subtle, if not problematic, and is discussed
at length in Eisenberg (1996).)

In a special case, when friction is large (as in channels on the biological
time scale) and well behaved (characterized by a single number Dj for each
ionic speciesj), the statistics of the conditional trajectories (e.g., mean flux,
first passage times, and channel contents of left and right trajectories) can
be determined analytically (Eisenberg et al., 1995), using mathematical
techniques developed by Schuss. In that special case, the conditional
probability and rate constant can be written as

DjD exp(zjV)
D Prob{RIL} d=d2 Ild f exp[z;9o(x)/kT]dx (

The normalized transmembrane potential V is defined as V eVappi/kT.
If the potential profile4>(x) is dominated by a large barrier, and satisfies

certain other criteria, expressions for rate constants reduce to exponential
expressions (Section viii of Barcilon et al., 1993; and eq. 8.4 and 8.5 of
Eisenberg et al., 1995) reminiscent of rate expressions of reaction rate
theory used widely in channology (Hille, 1975; Hille and Schwartz, 1978;
Eisenman and Horn, 1983; Lauger, 1991; Hille, 1992). However, the
prefactor of (the exponential expression derived from) diffusion theory is
physically very different because it depends explicitly on friction, as noted
by many biophysicists (see Cooper et al., 1985, 1988a,b; Chiu and Jakobs-
son, 1989; Lauger, 1991; Roux and Karplus, 1991; Andersen and Koeppe,
1992; Barcilon et al., 1993; Crouzy et al., 1994; Eisenberg et al., 1995) and
even more physical chemists (Hanggi et al., 1990). For example,

high 0Djkf-barrie d i DjF"(Xmas)I exp[zjV - zj Dma(mxx )] (5)

PREFACTOR

There is no controversy in the chemical literature about this expression
or its prefactor. Exactly this expression is widely used there to describe the
flux over high barriers. (The large barrier result is derived in the equilib-
rium tradition in Robinson and Holbrook (1972); Johnson et al., (1974);
Pechukas (1976); Berry et al. (1980); Levine and Bernstein (1987); Stein-
feld et al. (1989). The prefactor in those expressions is not simply kTIh; it
includes a ratio of (factors of the grand) partition functions as well, and is
in agreement with much experimental data. Fleming et al. (1986) and
Schroeder and Troe (1993) both present and cite the large experimental
literature.

The large barrier result is derived in the diffusion tradition by Kramers
(1940), Gardiner (1985), Hynes (1985, 1986), Berne et al. (1988), Hanggi
et al. (1990), and Fleming and Hanggi (1993). Many derivations (in both
the equilibrium and diffusion traditions) are given by Hanggi et al. (1990),
as are a detailed discussion of the prefactor and numerous (-700) refer-
ences to the historical and modern literature. Fleming and Hainggi (1993)

describe the current state of knowledge: they include articles describing
experimental measurement of the prefactor, a succinct reconciliation of
equilibrium and rate constant traditions using variational theory, and a
powerful description of the limitations of any one-dimensional theory,
along with other useful articles.

It is important to note that many modern books and reviews on transport
(McQuarrie, 1976; Friedman, 1985; Ma, 1985; Chandler, 1987; Mason and
McDaniel, 1988; Smith and Jensen, 1989; Spohn, 1991; Balian, 1992;
Mahan, 1993; Bird, 1994; Cercignani et al., 1994; Garrod, 1995) hardly
mention barrier or rate models at all, preferring to deal with the general
situation, in which barriers can have any shape or size, which some
channologists prefer (Hall et al., 1973; Schuss, 1980; Levitt, 1982, 1984,
1985, 1986, 1987; Cooper et al., 1985, 1988a,b; Chiu and Jakobsson, 1989;
Barcilon et al., 1993; Eisenberg et al., 1995; Bek and Jakobsson, 1994).)

At first glance, the typical system of the chemical literature seems quite
different from a channel. In most chemical experiments involving flux over
high barriers, concentrations change as the flux flows, in contrast to most
channel experiments in which concentrations (and potentials) are kept
constant (as flux flows) by the active intervention of experimental equip-
ment (i.e., by stirring or perfusion and by the voltage/patch-clamp ampli-
fier). However, in one special case-when barriers are high enough-these
different experimental conditions produce similar fluxes (Barcilon et al.,
1993; Eisenberg et al., 1995): high enough barriers are rate-limiting in both
cases, even though experimental conditions are different, as are the bound-
ary conditions that describe them mathematically. When barriers are high
enough, the chemical and channel systems are nearly the same, probably
because in that special case the system is nearly at equilibrium and
experimental and boundary conditions do not matter very much.

The numerical value of the prefactor of Eq. 5 can be estimated easily if
the potential profile ¢)(x) is a symmetrical parabolic barrier spanning the
whole length d of the channel, with maximum size 4,max(xm,"), much larger
than the applied (i.e., transmembrane) potential V. Then, for example,

PARABOLIC

high barrier

d2\1 ICzjesmp(xm.)/k7 exp[-zje(pmax(xax)/kT]
PREFACTOR

(6)

where we use the dimensional potential (p(x) = (D(x)kT/e and xm, = dM2.
The diffusion (i.e., Kramers) prefactor depends on the diffusion coefficient
and channel length, which do not appear in the hopping prefactor kT/h at
all. The diffusion prefactor varies inversely with the (square root of the)
temperature, whereas the hopping prefactor depends linearly on tempera-
ture. The Kramers prefactor depends on the type of permeating particle; the
hopping prefactor is independent of the type of particle(!). These different
properties have made it easy for chemists to determine the prefactor that
actually describes the properties of solutions and condensed phases (Flem-
ing et al., 1986; Schroeder and Troe, 1993).
Now if the barrier is, say, 4kTIe high and 1 nm long and the diffusion

coefficient is some 1.3 X 10-6 cm2/s-as we find for K+ in the "filter" of
the CRC channel, which is not dissimilar to the values others find for other
channels (Dani and Levitt, 1981; Chen et al., 1995b, 1997; Tang et al.,
1997)-the numerical value of the (diffusion expression for the) prefactor
(for K+) is -2.8 X 108s- . The numerical value of the usual prefactor in
the hopping theory is kT/h, which is -2.2x 104 times larger, -6.3 x 10'2
s- at biological temperatures. As one might expect, ions hopping over
barriers experience much less friction than ions diffusing over them, and
the amount of friction will depend on the identity of the ion.

The effect of friction (i.e., the ratio of the two expressions for the
prefactor, one general, the other for K+) is numerically equivalent to a
change in the potential barrier of ln(2.2 X 104) lOkTIe. For example, a
barrier of height l3kTIe, analyzed with the kT/h prefactor, produces the
same rate constant as a barrier of height3kTle, analyzed with the Kramers
prefactor. Or, in a more ominous example, a barrier of lOkT/e-which is
more than large enough to be described by the high barrier approximation
in Eq. 5 or 6-becomes 0 kT/e, which cannot be described by a high
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barrier approximation, because it is no barrier at all. Indeed, almost all
barrier models of open channels use kT/h as a prefactor and postulate
barriers in the range of 3kT/e to l2kTle; for example, the barrier heights
used to model CRC are 5.5kTIe (table 1 in Tinker et al., 1992, p. 498).
Barrier models with such barriers cannot come close to fitting the open-
channel current found in most channels (Conley, 1996a,b, 1997) if the
correct prefactor is used.

It is evidently quite important to settle on the correct value of the
prefactor for channel permeation before a high barrier approximation is
used. The channel length d is unlikely to be short enough; the diffusion
coefficient Dj to be large enough, or the same for different ions; or the
potential barrier JIPmaxl to be large enough to allow kT/h to approximate the
diffusive prefactor:

2Di Iepaxa/T
d2 AR8/zecmxcTm>)lT

Of course, even if the numerical values were not too different, the
meaning of the prefactors would be very different, because their temper-
ature dependence is so different, and one depends on friction and the height
of the potential barrier, the identity of the permeating ion, and the length of
the channel, whereas the other looks more like a "constant of nature,"
independent as it is of the properties of the channel and ion.

Careful reading of the classical theories of barrier crossing in channol-
ogy (Hille, 1975, 1992; Hille and Schwartz, 1978) shows us how to
reconcile the two treatments. Those theories have defined a barrier height
by its free energy (temperature times entropy plus electrical energy), not its
(electrical) energy. In that case, the two treatments and prefactors can be
reconciled if the frictional prefactor of diffusion theory is equated to the
"activation entropy" of rate theory.

Unfortunately, the "activation entropy" is not likely to be small or have
a small effect, or be the same under all conditions of biological and
experimental interest, because the trajectories of the ion (that determine the
entropy) are quite different qualitatively and quantitatively in the bath and
in the channel. The motion is three-dimensional in the bath but (nearly)
one-dimensional in the channel; and the diffusion coefficient of ions in the
bath is generally much higher than in the channel's pore (Dani and Levitt,
1981).

The activation entropy of traditional barrier theories is more vaguely
defined than the prefactor of diffusion theory, until the dependence of
activation entropy on temperature, friction, and channel length is deter-
mined. This dependence is not derived or displayed in traditional theories
of barrier crossing or in most barrier models, either, and so data measured
with different permeating ions (and thus, most likely, unequal diffusion
coefficients), at different temperatures, or in systems with unequal channel
lengths, cannot be compared by using the "activation entropy" or "activa-
tion free energy" (Hille, 1975, 1992; Hille and Schwartz, 1978) formula-
tion. Measurements of the value and functional dependence of the prefactor
(on temperature, diffusion constant, etc.) are available in the chemical
literature (e.g., Fleming et al., 1986; Hanggi et al., 1990; Fleming and
Hanggi, 1993; Schroeder and Troe, 1993). They are incompatible with the
expression kT/h, and in fact are close to the Kramers expression (Eq. 5) or
its generalizations, under a wide range of conditions in many systems.

"Barrier heights" determined experimentally in channology (using rate
theory with the kT/h prefactor) represent the free energy barrier to ion
translocation. Free energies are, of course, a perfectly adequate represen-
tation of barrier heights (if barriers in open channels are in fact high), as
long as the free energy is not confused with the potential energy: free
energy includes entropy, and the entropy term changes current by a factor
of -2 X 104, as we have seen. Thus a verbal model or mathematical theory
(or simulation of molecular dynamics) must compute the entropy as well as
the energy if it is to be compared with experimental estimates of barrier
heights.

If a theory calculates just the barrier of potential energy-using Cou-
lomb's law or Poisson's equation or a verbal version of either, to describe
binding at a charged site, for example-it must not ignore the difference
between potential energy and free energy, it must not ignore the entropy
component of free energy, and it must not use kT/h as the prefactor, or large

errors (-2.2 x 104) will occur in predictions of the current or estimates of
barrier height (-10 kTle). In particular, molecular models of binding sites,
whether verbal or quantitative, must explicitly estimate both the energy and
entropy terms if serious quantitative errors are to be avoided, as we have
seen.

If a barrier model ignores the dependence of the entropy term on the
type of permeating ion, or if it ignores the dependence on the diffusion
coefficient, temperature, barrier height, and channel length, serious quali-
tative errors are likely to occur as well. In particular, traditional barrier
models are likely to give qualitatively misleading results (because they use
kTIh as a prefactor) if they are used to compare experiments involving
different ions (with different diffusion coefficients and thus different
prefactors and activation entropies), experiments with mutated or modified
channels (which have modified potential barriers and thus modified pre-
factors and activation entropies), or experiments with different concentra-
tions of ions (which are likely to have different potential barriers (Eisen-
berg, 1996) and thus different prefactors and activation entropies).
We have seen that the general expressions, Eqs. 2-4, determine the flux

and (and its rate constant) exactly, for small as well as large barriers,
without concern about prefactors. The general expressions have unambig-
uous meaning, and their functional dependence is widely accepted in the
chemical literature. They are simple to compute, using generally available
software that takes virtually no time to execute. Presumably for these
reasons, a number of chemists do not use the high barrier theories at all
(citations above). Perhaps channologists should follow this practice, at
least when studying open channels.

It seems worthwhile to list the difficulties (documented in this Appendix
and the Results) facing traditional barrier models of open channels, so that
scientists can be aware of what they are assuming when they use them:

1. Barrier models of channels are based on a view of the trajectories of
ionic motion in condensed phases which has been shown to be false, both
experimentally and theoretically. Ions do not hop as they move in such
systems; rather, they follow diffusive, nearly fractal paths.

2. Barrier models of channels assume potential barriers that are inde-
pendent of the concentration of ions in the baths and of transmembrane
potential. That is to say, they ignore the effects of the charged contents of
the channel (and other mobile charges) on the potential barrier. These
effects are large; indeed, these effects are what allow PNP to fit data under
so many conditions from so many channels. Thus ignoring these effects is
likely to lead to qualitative errors in understanding (Eisenberg, 1996). It is
important to add that the existence of these effects (and their approximate
size) does not depend on details or assumptions of the PNP model.

3. Barrier models of channels assume a prefactor that is independent of
the type of ion, particularly of its diffusion coefficient. In fact, traditional
barrier models of channels use a prefactor that is different from that
derived, simulated, or measured experimentally in condensed phases. The
traditional prefactor has no dependence on the type of permeating ion, its
friction, or on channel length, and it has the wrong dependence on tem-
perature. These dependencies are not just theoretical constructs; they have
been measured by chemists in much experimental work on barrier crossing
in condensed phases.

Thus it seems unwise to use barrier models (with the traditional pref-
actor) as they have often been used, namely, to compare the permeation of
different ions, unless one has evidence that different ions experience the
same friction and have other identical properties, as discussed previously.

4. Traditional barrier models use the wrong numerical value for the
prefactor. For CRCs the traditional prefactor is numerically too large by a
large factor, 2.2 x 104 for K+.

5. Barrier models predict much less current than flows in most open
channels, if they use the correct prefactor and the barrier is higher than
-3kTle. The conductance of the traditional model of CRC, predicted using
the correct prefactor, using a parabolic barrier 3kTle high, and using the
parameters of the CRC channel reported here, is some 2 psiemens, in 100
mM KCl, much less than the hundreds of picosiemens we find. Evidently
barriers are low in most open channels. If this is so, traditional barrier
theory makes no sense.

6. Barrier models describe the effects of mutations in channel proteins
only vaguely because they do not include Poisson's equation (or, equiva-
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lently, Coulomb's law applied to all charges) to show how a mutation in a
protein, which often changes the fixed charge lining the wall of the
protein's pore, changes the potential profile, barrier height, or rate constant
for flux.

Given these difficulties, it is not surprising that barrier models of
channels are unable to fit the currents measured in a number of types of
channels (if measurements are made over a wide range of potentials and in
a wide range of solutions) and that they are of quite limited use in
understanding the general phenomena of selectivity or the specific effects
of mutations in channel proteins.

CONCLUSION

It seems to us that the time has come to abandon barrier
models of the CRC channel and perhaps of other open
channels as well. It seems reasonable to us to see how well
PNP can serve as a replacement, by checking its predictions
over a wide range potentials, in a wide range of ions and
mixtures of ions.
On theoretical grounds, it seems unlikely to us that PNP

in its present form will be adequate to this task. Nonethe-
less, an adequate replacement is likely to preserve PNP's
main features, namely, the description of the channel as a
distribution of permanent charge, and the calculation of the
potential and concentration profiles, and flux, as the self-
consistent solution of Poisson and transport equations.
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