
Permeation Through the Calcium Release Channel

Study of the I-V relations predicted by PNP in many
solutions might help in developing insight into its qualita-
tive behavior, and many such plots have been made (mostly
by our collaborator and friend Wolfgang Nonner, who has
generously shared them with us). But "the goal of comput-
ing is insight, not numbers," and that goal has not yet been
reached by extensive computation of PNP.
More promising is the analytical path. Barcilon et al.

(1997) and Charles Peskin (personal communication) have
used singular perturbation theory (cf. Kevorkian and Cole,
1996) to determine general qualitative properties of the PNP
equations. Peskin has made particular progress by exploit-
ing the large value of the permanent charge (in his Lecture
Notes on Neurobiology). Peskin et al., (unpublished studies)
are working on a related analysis of PNP itself, which
should yield insight into CRC behavior, because it can be
reasonably described by a uniform large P(x) = PO.

Clearly, much more work is needed to test and then (it is
hoped) exploit the PNP model of CRC. Measurements
should be made in a wide variety of monovalent ions, to see
if selectivity (of this type) is reasonably described. Modifi-
cations of the protein should be made (particularly of the
permanent charge), and the effects on I-V curves predicted
and measured. Most importantly, the theory and experi-
ments should be extended to include the divalent ions of
greatest functional interest in this channel.

APPENDIX: RATE CONSTANTS IN CHANNOLOGY

Rate models are used so widely in channology (Hille, 1975; Hille and
Schwartz, 1978; Eisenman and Horn, 1983; Lauger, 1991; Andersen and
Koeppe, 1992; Hille, 1992, are modem references) that we think it neces-
sary to show explicitly how they arise in a diffusion theory applied to open
channels.

Rate models of channels grew from the rate theory (sometimes called
"transition state theory") of chemical reactions developed in quantum
chemistry in the 1930s. Despite its popularity then, chemists realized that
rate theory must be derived (Laidler and King, 1983). It is not a funda-
mental physical law of either quantum or statistical mechanics, and its use
must be justified by derivation, simulation, and experimentation.

Rate theory was derived in two different traditions: those of equilibrium
statistical mechanics (Johnson et al., 1974; Hille, 1975; Pechukas, 1976;
Chandler, 1978; Hille and Schwartz, 1978; Eisenman and Horn, 1983;
Levine and Bernstein, 1987; Steinfeld et al., 1989; Liauger, 1991; Andersen
and Koeppe, 1992; Hille, 1992) and diffusion theory (evidently started by
Kramers, 1940; see the definitive review of Hanggi et al., 1990, citing
some 700 other references; also see the textbook presentations of Berry et
al., 1980, and Robinson and Holbrook, 1972, and the recent book by
Fleming and Hanggi, 1993, which contains a number of articles joining the
two traditions).

The tradition of statistical mechanics has difficulty accommodating
flux, because flux of all types vanishes at equilibrium, where statistical
mechanics is derived. Thus phenomena that occur only when macroscopic
flux flows (e.g., friction or frictional heating) are not natural components
of theories in statistical mechanics.

The tradition of diffusion theory has difficulty accommodating atomic
detail. Frictional phenomena are natural parts of diffusion theories, but the
equations of molecular dynamics used to describe molecular motion in
atomic detail do not include diffusion coefficients or explicit treatments of
friction.

Statistical mechanics and diffusion theory must both be extended if their
relationship is to be understood. Equilibrium ideas (like free energy and its

components, energy and entropy) and atomic resolution must be present in
the (extended) diffusion theories; and nonequilibrium ideas, like friction,
must be present in the (extended) equilibrium theories.

The diffusion theory of channels started historically with the Nernst-
Planck equations, the diffusion equations describing the concentration of
charged particles, each of which following the random trajectory neces-
sarily produced by friction (Goldman, 1943; Hodgkin and Katz, 1949; Hall
et al., 1973; Levitt, 1982, 1984, 1985, 1986, 1987). Kim Cooper, then a
graduate student of the biophysicist Eric Jakobsson and physical chemist
Peter Wolynes, was (as far as we know) the first to use Langevin equations
to describe the random trajectory of ions in a channel (Cooper et al., 1985,
1988a,b). We (and others) followed his lead. Eisenberg et al. (1995)
provided a stochastic derivation of the Nernst-Planck equations, showing
how those equations describe the probability density function for the
location of an ion moving in a random trajectory. The stochastic derivation
rationalized the analysis and demonstrated the generality of the simulations
of Barcilon et al. (1993).

The stochastic derivation provides a pleasingly intuitive result. The flux
of trajectories (and ions) is the sum of two unidirectional fluxes, each the
product of a "source" concentration, "diffusion velocity" (Djld) and the
appropriate conditional probability:

J= d[kfCj(L) - kbCj(R)]
(2)

Unidirectional Efflux Unidirectional InMfiux

Cj (L) Prob{RIL} - Cj(R)(-)Prob{LIR}
Source Diffusion Conditional

Concentration Velocity Probability

Note that the total flux cannot itself be described (in any natural way) by
a (single unconditional) probability, nor can the mean first passage time or
contents of an ion in a channel. All of these quantities must be replaced by
the appropriate (pairs of) conditional quantities because a number of the
unconditional quantities are inflnite in perfectly finite and well-posed
situations, as found by Barcilon et al. (1993) and Eisenberg et al. (1995).

When the unconditional quantities are replaced by the appropriate
conditional quantities, the flux through the channel can be described in a
simple manner, e.g., as a unimolecular chemical reaction (Robinson and
Holbrook, 1972):

kf
L< '0R;

kb
(3)

where kf = Prob{RIL}; and kb - 2 Prob{LIR}

In words: each flux can be described as a (unidirectional) chemical reaction
without approximation, for any potential barrier (¢(x) with rate constants kf
and kb (units: s-), determined by the conditional probabilities and diffusion
velocities shown in Eq. 2, when concentration boundary conditions are in
force that describe mathematically the constant-concentration/constant-
potential conditions of a voltage-clamp experiment.

The conditional probabilities of Eqs. 2 and 3 require precise definition,
including two boundary conditions that doubly condition the underlying
trajectories, which must be described by the full (not reduced) Langevin
equation, to allow the double conditioning. It was the assignment of these
trajectories and boundary conditions that allowed Eisenberg et al. (1995) to
specify and solve this problem, using the techniques of Schuss (1980) and
Naeh et al. (1990).

The conditional probabilities of Eqs. 2 and 3 can be determined entirely
numerically, by computing a random walk, or by simulating a full or
reduced Langevin equation. All three numerical calculations are shown by
Barcilon et al. (1993) (e.g., Figs. 4 and 5) (see also Cooper et al., 1985;
Chiu and Jakobsson, 1989; Eisenberg et al., 1995). The conditional prob-
abilities might also be determined from the simulations in atomic detail of
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molecular dynamics (McCammon and Harvey, 1987; Brooks et al., 1988;
Haile, 1992) or by using the Onsager-Machlup action formulation of
Newton's laws, in the presence of thermal agitation (Onsager and Machlup,
1953; see modem application: Elber, 1996). The simulations fortunately
require much less time than the derivation (Eisenberg et al., 1995) of their
boundary conditions, which took many of us years of work (Cooper et al.,
1985, 1988a,b; Chiu and Jakobsson, 1989; Barcilon et al., 1993).

Equations 2 and 3 are derived by using stochastic identities that merely
assume the existence of conditional probabilities of location and so are true
for a wide range of stochastic trajectories. Thus the derivation establishes
the chemical reaction as a model of the open channel, and the meaning of
the Nernst-Planck equations mathematically, without physical argument
beyond that used in deriving the model of the open channel in the first
place.

In the general case we can conclude, then, that the chemical reaction and
Nernst-Planck equations are not a (perhaps vaguely derived) continuum
approximation, but rather are an exact representation and description, even
in atomic detail, if they use the conditional probability density functions of
the location of discrete particles, as defined above and in the cited refer-
ences. (See above. The meaning of the average potential profile p(x) of the
Nernst-Planck equations is more subtle, if not problematic, and is discussed
at length in Eisenberg (1996).)

In a special case, when friction is large (as in channels on the biological
time scale) and well behaved (characterized by a single number Dj for each
ionic speciesj), the statistics of the conditional trajectories (e.g., mean flux,
first passage times, and channel contents of left and right trajectories) can
be determined analytically (Eisenberg et al., 1995), using mathematical
techniques developed by Schuss. In that special case, the conditional
probability and rate constant can be written as

DjD exp(zjV)
D Prob{RIL} d=d2 Ild f exp[z;9o(x)/kT]dx (

The normalized transmembrane potential V is defined as V eVappi/kT.
If the potential profile4>(x) is dominated by a large barrier, and satisfies

certain other criteria, expressions for rate constants reduce to exponential
expressions (Section viii of Barcilon et al., 1993; and eq. 8.4 and 8.5 of
Eisenberg et al., 1995) reminiscent of rate expressions of reaction rate
theory used widely in channology (Hille, 1975; Hille and Schwartz, 1978;
Eisenman and Horn, 1983; Lauger, 1991; Hille, 1992). However, the
prefactor of (the exponential expression derived from) diffusion theory is
physically very different because it depends explicitly on friction, as noted
by many biophysicists (see Cooper et al., 1985, 1988a,b; Chiu and Jakobs-
son, 1989; Lauger, 1991; Roux and Karplus, 1991; Andersen and Koeppe,
1992; Barcilon et al., 1993; Crouzy et al., 1994; Eisenberg et al., 1995) and
even more physical chemists (Hanggi et al., 1990). For example,

high 0Djkf-barrie d i DjF"(Xmas)I exp[zjV - zj Dma(mxx )] (5)

PREFACTOR

There is no controversy in the chemical literature about this expression
or its prefactor. Exactly this expression is widely used there to describe the
flux over high barriers. (The large barrier result is derived in the equilib-
rium tradition in Robinson and Holbrook (1972); Johnson et al., (1974);
Pechukas (1976); Berry et al. (1980); Levine and Bernstein (1987); Stein-
feld et al. (1989). The prefactor in those expressions is not simply kTIh; it
includes a ratio of (factors of the grand) partition functions as well, and is
in agreement with much experimental data. Fleming et al. (1986) and
Schroeder and Troe (1993) both present and cite the large experimental
literature.

The large barrier result is derived in the diffusion tradition by Kramers
(1940), Gardiner (1985), Hynes (1985, 1986), Berne et al. (1988), Hanggi
et al. (1990), and Fleming and Hanggi (1993). Many derivations (in both
the equilibrium and diffusion traditions) are given by Hanggi et al. (1990),
as are a detailed discussion of the prefactor and numerous (-700) refer-
ences to the historical and modern literature. Fleming and Hainggi (1993)

describe the current state of knowledge: they include articles describing
experimental measurement of the prefactor, a succinct reconciliation of
equilibrium and rate constant traditions using variational theory, and a
powerful description of the limitations of any one-dimensional theory,
along with other useful articles.

It is important to note that many modern books and reviews on transport
(McQuarrie, 1976; Friedman, 1985; Ma, 1985; Chandler, 1987; Mason and
McDaniel, 1988; Smith and Jensen, 1989; Spohn, 1991; Balian, 1992;
Mahan, 1993; Bird, 1994; Cercignani et al., 1994; Garrod, 1995) hardly
mention barrier or rate models at all, preferring to deal with the general
situation, in which barriers can have any shape or size, which some
channologists prefer (Hall et al., 1973; Schuss, 1980; Levitt, 1982, 1984,
1985, 1986, 1987; Cooper et al., 1985, 1988a,b; Chiu and Jakobsson, 1989;
Barcilon et al., 1993; Eisenberg et al., 1995; Bek and Jakobsson, 1994).)

At first glance, the typical system of the chemical literature seems quite
different from a channel. In most chemical experiments involving flux over
high barriers, concentrations change as the flux flows, in contrast to most
channel experiments in which concentrations (and potentials) are kept
constant (as flux flows) by the active intervention of experimental equip-
ment (i.e., by stirring or perfusion and by the voltage/patch-clamp ampli-
fier). However, in one special case-when barriers are high enough-these
different experimental conditions produce similar fluxes (Barcilon et al.,
1993; Eisenberg et al., 1995): high enough barriers are rate-limiting in both
cases, even though experimental conditions are different, as are the bound-
ary conditions that describe them mathematically. When barriers are high
enough, the chemical and channel systems are nearly the same, probably
because in that special case the system is nearly at equilibrium and
experimental and boundary conditions do not matter very much.

The numerical value of the prefactor of Eq. 5 can be estimated easily if
the potential profile ¢)(x) is a symmetrical parabolic barrier spanning the
whole length d of the channel, with maximum size 4,max(xm,"), much larger
than the applied (i.e., transmembrane) potential V. Then, for example,

PARABOLIC

high barrier

d2\1 ICzjesmp(xm.)/k7 exp[-zje(pmax(xax)/kT]
PREFACTOR

(6)

where we use the dimensional potential (p(x) = (D(x)kT/e and xm, = dM2.
The diffusion (i.e., Kramers) prefactor depends on the diffusion coefficient
and channel length, which do not appear in the hopping prefactor kT/h at
all. The diffusion prefactor varies inversely with the (square root of the)
temperature, whereas the hopping prefactor depends linearly on tempera-
ture. The Kramers prefactor depends on the type of permeating particle; the
hopping prefactor is independent of the type of particle(!). These different
properties have made it easy for chemists to determine the prefactor that
actually describes the properties of solutions and condensed phases (Flem-
ing et al., 1986; Schroeder and Troe, 1993).
Now if the barrier is, say, 4kTIe high and 1 nm long and the diffusion

coefficient is some 1.3 X 10-6 cm2/s-as we find for K+ in the "filter" of
the CRC channel, which is not dissimilar to the values others find for other
channels (Dani and Levitt, 1981; Chen et al., 1995b, 1997; Tang et al.,
1997)-the numerical value of the (diffusion expression for the) prefactor
(for K+) is -2.8 X 108s- . The numerical value of the usual prefactor in
the hopping theory is kT/h, which is -2.2x 104 times larger, -6.3 x 10'2
s- at biological temperatures. As one might expect, ions hopping over
barriers experience much less friction than ions diffusing over them, and
the amount of friction will depend on the identity of the ion.

The effect of friction (i.e., the ratio of the two expressions for the
prefactor, one general, the other for K+) is numerically equivalent to a
change in the potential barrier of ln(2.2 X 104) lOkTIe. For example, a
barrier of height l3kTIe, analyzed with the kT/h prefactor, produces the
same rate constant as a barrier of height3kTle, analyzed with the Kramers
prefactor. Or, in a more ominous example, a barrier of lOkT/e-which is
more than large enough to be described by the high barrier approximation
in Eq. 5 or 6-becomes 0 kT/e, which cannot be described by a high
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barrier approximation, because it is no barrier at all. Indeed, almost all
barrier models of open channels use kT/h as a prefactor and postulate
barriers in the range of 3kT/e to l2kTle; for example, the barrier heights
used to model CRC are 5.5kTIe (table 1 in Tinker et al., 1992, p. 498).
Barrier models with such barriers cannot come close to fitting the open-
channel current found in most channels (Conley, 1996a,b, 1997) if the
correct prefactor is used.

It is evidently quite important to settle on the correct value of the
prefactor for channel permeation before a high barrier approximation is
used. The channel length d is unlikely to be short enough; the diffusion
coefficient Dj to be large enough, or the same for different ions; or the
potential barrier JIPmaxl to be large enough to allow kT/h to approximate the
diffusive prefactor:

2Di Iepaxa/T
d2 AR8/zecmxcTm>)lT

Of course, even if the numerical values were not too different, the
meaning of the prefactors would be very different, because their temper-
ature dependence is so different, and one depends on friction and the height
of the potential barrier, the identity of the permeating ion, and the length of
the channel, whereas the other looks more like a "constant of nature,"
independent as it is of the properties of the channel and ion.

Careful reading of the classical theories of barrier crossing in channol-
ogy (Hille, 1975, 1992; Hille and Schwartz, 1978) shows us how to
reconcile the two treatments. Those theories have defined a barrier height
by its free energy (temperature times entropy plus electrical energy), not its
(electrical) energy. In that case, the two treatments and prefactors can be
reconciled if the frictional prefactor of diffusion theory is equated to the
"activation entropy" of rate theory.

Unfortunately, the "activation entropy" is not likely to be small or have
a small effect, or be the same under all conditions of biological and
experimental interest, because the trajectories of the ion (that determine the
entropy) are quite different qualitatively and quantitatively in the bath and
in the channel. The motion is three-dimensional in the bath but (nearly)
one-dimensional in the channel; and the diffusion coefficient of ions in the
bath is generally much higher than in the channel's pore (Dani and Levitt,
1981).

The activation entropy of traditional barrier theories is more vaguely
defined than the prefactor of diffusion theory, until the dependence of
activation entropy on temperature, friction, and channel length is deter-
mined. This dependence is not derived or displayed in traditional theories
of barrier crossing or in most barrier models, either, and so data measured
with different permeating ions (and thus, most likely, unequal diffusion
coefficients), at different temperatures, or in systems with unequal channel
lengths, cannot be compared by using the "activation entropy" or "activa-
tion free energy" (Hille, 1975, 1992; Hille and Schwartz, 1978) formula-
tion. Measurements of the value and functional dependence of the prefactor
(on temperature, diffusion constant, etc.) are available in the chemical
literature (e.g., Fleming et al., 1986; Hanggi et al., 1990; Fleming and
Hanggi, 1993; Schroeder and Troe, 1993). They are incompatible with the
expression kT/h, and in fact are close to the Kramers expression (Eq. 5) or
its generalizations, under a wide range of conditions in many systems.

"Barrier heights" determined experimentally in channology (using rate
theory with the kT/h prefactor) represent the free energy barrier to ion
translocation. Free energies are, of course, a perfectly adequate represen-
tation of barrier heights (if barriers in open channels are in fact high), as
long as the free energy is not confused with the potential energy: free
energy includes entropy, and the entropy term changes current by a factor
of -2 X 104, as we have seen. Thus a verbal model or mathematical theory
(or simulation of molecular dynamics) must compute the entropy as well as
the energy if it is to be compared with experimental estimates of barrier
heights.

If a theory calculates just the barrier of potential energy-using Cou-
lomb's law or Poisson's equation or a verbal version of either, to describe
binding at a charged site, for example-it must not ignore the difference
between potential energy and free energy, it must not ignore the entropy
component of free energy, and it must not use kT/h as the prefactor, or large

errors (-2.2 x 104) will occur in predictions of the current or estimates of
barrier height (-10 kTle). In particular, molecular models of binding sites,
whether verbal or quantitative, must explicitly estimate both the energy and
entropy terms if serious quantitative errors are to be avoided, as we have
seen.

If a barrier model ignores the dependence of the entropy term on the
type of permeating ion, or if it ignores the dependence on the diffusion
coefficient, temperature, barrier height, and channel length, serious quali-
tative errors are likely to occur as well. In particular, traditional barrier
models are likely to give qualitatively misleading results (because they use
kTIh as a prefactor) if they are used to compare experiments involving
different ions (with different diffusion coefficients and thus different
prefactors and activation entropies), experiments with mutated or modified
channels (which have modified potential barriers and thus modified pre-
factors and activation entropies), or experiments with different concentra-
tions of ions (which are likely to have different potential barriers (Eisen-
berg, 1996) and thus different prefactors and activation entropies).
We have seen that the general expressions, Eqs. 2-4, determine the flux

and (and its rate constant) exactly, for small as well as large barriers,
without concern about prefactors. The general expressions have unambig-
uous meaning, and their functional dependence is widely accepted in the
chemical literature. They are simple to compute, using generally available
software that takes virtually no time to execute. Presumably for these
reasons, a number of chemists do not use the high barrier theories at all
(citations above). Perhaps channologists should follow this practice, at
least when studying open channels.

It seems worthwhile to list the difficulties (documented in this Appendix
and the Results) facing traditional barrier models of open channels, so that
scientists can be aware of what they are assuming when they use them:

1. Barrier models of channels are based on a view of the trajectories of
ionic motion in condensed phases which has been shown to be false, both
experimentally and theoretically. Ions do not hop as they move in such
systems; rather, they follow diffusive, nearly fractal paths.

2. Barrier models of channels assume potential barriers that are inde-
pendent of the concentration of ions in the baths and of transmembrane
potential. That is to say, they ignore the effects of the charged contents of
the channel (and other mobile charges) on the potential barrier. These
effects are large; indeed, these effects are what allow PNP to fit data under
so many conditions from so many channels. Thus ignoring these effects is
likely to lead to qualitative errors in understanding (Eisenberg, 1996). It is
important to add that the existence of these effects (and their approximate
size) does not depend on details or assumptions of the PNP model.

3. Barrier models of channels assume a prefactor that is independent of
the type of ion, particularly of its diffusion coefficient. In fact, traditional
barrier models of channels use a prefactor that is different from that
derived, simulated, or measured experimentally in condensed phases. The
traditional prefactor has no dependence on the type of permeating ion, its
friction, or on channel length, and it has the wrong dependence on tem-
perature. These dependencies are not just theoretical constructs; they have
been measured by chemists in much experimental work on barrier crossing
in condensed phases.

Thus it seems unwise to use barrier models (with the traditional pref-
actor) as they have often been used, namely, to compare the permeation of
different ions, unless one has evidence that different ions experience the
same friction and have other identical properties, as discussed previously.

4. Traditional barrier models use the wrong numerical value for the
prefactor. For CRCs the traditional prefactor is numerically too large by a
large factor, 2.2 x 104 for K+.

5. Barrier models predict much less current than flows in most open
channels, if they use the correct prefactor and the barrier is higher than
-3kTle. The conductance of the traditional model of CRC, predicted using
the correct prefactor, using a parabolic barrier 3kTle high, and using the
parameters of the CRC channel reported here, is some 2 psiemens, in 100
mM KCl, much less than the hundreds of picosiemens we find. Evidently
barriers are low in most open channels. If this is so, traditional barrier
theory makes no sense.

6. Barrier models describe the effects of mutations in channel proteins
only vaguely because they do not include Poisson's equation (or, equiva-
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lently, Coulomb's law applied to all charges) to show how a mutation in a
protein, which often changes the fixed charge lining the wall of the
protein's pore, changes the potential profile, barrier height, or rate constant
for flux.

Given these difficulties, it is not surprising that barrier models of
channels are unable to fit the currents measured in a number of types of
channels (if measurements are made over a wide range of potentials and in
a wide range of solutions) and that they are of quite limited use in
understanding the general phenomena of selectivity or the specific effects
of mutations in channel proteins.

CONCLUSION

It seems to us that the time has come to abandon barrier
models of the CRC channel and perhaps of other open
channels as well. It seems reasonable to us to see how well
PNP can serve as a replacement, by checking its predictions
over a wide range potentials, in a wide range of ions and
mixtures of ions.
On theoretical grounds, it seems unlikely to us that PNP

in its present form will be adequate to this task. Nonethe-
less, an adequate replacement is likely to preserve PNP's
main features, namely, the description of the channel as a
distribution of permanent charge, and the calculation of the
potential and concentration profiles, and flux, as the self-
consistent solution of Poisson and transport equations.
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