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Ionic channels in biological membranes Ð electrostatic analysis of a
natural nanotube

BOB EISENBERG

Ionic channels are proteins with holes down their middle that control access to biological

cells and thus govern an enormous range of biological functions important in health and

disease. A substantial fraction of the drugs used in clinical medicine act directly or indirectly

on channels. Channels have a simple well-de® ned structure, and the fundamental mechanism

of ionic motion is known to be electrodiŒusion. The current through individual channel

molecules can easily be measured, and is in fact measured in hundreds if not thousands of

laboratories everyday. Thus, ionic channels are ideal objects for physical investigation: on

the one hand, they are well-de® ned structures following simple physics, on the other hand

they are of general biological importance.

A simple theory of ion permeation through a channel is presented, in which diŒusion

occurs according to Fick’ s law and drift according to Ohm ’s law, in the electric ® eld

determined by all the charges present. This theory accounts for permeation in the channels

studied to date in a wide range of solutions. Interestingly, the theory works because the

shape of the electric ® eld is a sensitive function of experimental conditions, e.g. ion

concentration. Rate constants for ¯ ux are sensitive functions of ionic concentration because

the ® xed charge of the channel protein is shielded by the ions in and near it. Such shielding

eŒects are not included in traditional theories of ionic channels, or other proteins, for that

matter.

1. Introduction

Ionic channels are hollow proteins with pores down their

middle, found in nearly all membranes of biological cells

[1,2]. Channel proteins perforate otherwise insulating

membranes and so act as holes in the walls of cells. The

movement of ions (chie¯ y, Na
+

, K
+

, Ca
+ +

and Cl
Ð

)

through these channels carries the electrical charge that

produces most of the electrical properties of cells and

tissues. Electrons rarely carry charge more than a few

angstroms in biological systems.

Ionic channels control access to the interior of cells. They

are gatekeepers that govern functions of considerable

biological and medical importance. Channels produce

electrical signals in the nervous system; they coordinate

muscle contraction, including the contraction that allows

heart muscle to act as a pump. Channels transport ions in

the kidneys and intestine. In nearly every cell of the body,

channels control transport of ions and a wide range of

other functions. It is not surprising then that a substantial

fraction of the drugs used in clinical medicine act directly or

indirectly on channels [3].

The physics of channels is nearly as simple as their

structure. When open, channels conduct signi® cant quan-

tities of ions through a hole some 0.7 nm in diameter and

1 ± 2 nm long. Channels function on the biological time

scale (> 10
Ð 4

s), which is very slow compared to the time

scale of interatomic collisions (10
Ð 15

s) or correlated

motions of water molecules ( ~ 10
Ð 11

s). Thus, the biophy-

sics of channels arises from only the slowest, most averaged

properties of a simple physical process, diŒusion, occurring

in one of the simplest geometries, a `hole in the wall’ that

forms a natural nanotube.

If there is any biological system of signi® cance that can

be understood as a physical system, it should be an open

channel. As physical scientists, we are indeed fortunate that

so simple a structure is so important biologically and

medically, and thus is worthy of our eŒorts. Too often, the

biological systems that have well-de® ned structures and so

are attractive for physical analysis are rather specialized
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and have limited general biological signi ® cance. Not so

with channels.

2. Gating

Channels open and close in a stochastic process called

gating and the statistics of this gating process Ð e.g. the

mean time or probability that a channel is open Ð are

controlled biologically to perform many important physio-

logical functions. Most of the experimental work on

channels is devoted to the discovery and description of

these gating processes, and it is hard to exaggerate their

biological and medical importance [3 ± 5]. Nonetheless,

gating is not a promising subject for physical analysis, at

least in my opinion, until the basic structures and

mechanisms involved have been discovered. They have

not been yet, and I personally do not have the courage to

investigate too thoroughly a mechanism we can only guess

at [6]. Finer scientists than I have often guessed wrongly in

similar circumstances in the past, and so most of my work

concerns the simpler, better de® ned, albeit less important

problem of the open channel itself, until the three-

dimensional structure of a channel (that has typical gating

properties) is available to give clues to the underlying

mechanism [7].

3. Biology of channels

Channels come in many distinct types because they are

designed and built by evolution, that is to say, by mutation

and selection. The diversity of life and the molecules that

do its work is one of biology’ s most striking characteristics.

Evolution proceeds by mutation of genes, which form the

blueprint of life, and the selection of those gene products

that create bene® cial adaptations. Bene® cial adaptations

increase the number of oŒspring of the owner of the gene

and so, over time, the bene® cial adaptation appears in a

larger and larger fraction of the population, until it

becomes `the wild type’ , the typical form. Mutation and

selection generate a chaotic process, which is stochastic as

well, because it is repeatedly reset, at random intervals, to

new initial conditions, by geophysical or cosmic cata-

strophes.

Because genes can only make proteins, and mutations of

genes are usually more or less independent events, one

mutation is usually much more probable than a set of

mutations. Thus, it is not surprising that evolution makes

its adaptations and modi® es its machines by making a

single new protein (whenever it can), rather than by making

a set of proteins.

Where a human engineer might build a new system to

create a new function, evolution often leaves the proteins of

an old system alone, and creates a new function by linking

a new protein to the old system, probably for the same

reason that old shared ® les are best left on computers. It

should be no surprise then that living systems contain a

staggering diversity of structures and proteins, each

resulting from the concatenation of a new protein to an

old structure [8,9]. Channel proteins are no exception.

Hundreds of types of channels have been discovered in the

18 years that channology has been a molecular science [10 ±

12]. Hundreds or thousands of types remain to be

discovered, I imagine.

Each type of channel has its own characteristics, but they

all function by the same physical principles. We will test the

working hypothesis that current ¯ ow through open

channels can be understood as the electrodiŒusion of ions

in a charged nanotube.

More speci® cally, we will analyse the ionic currents that

¯ ow through open channels under more or less natural

conditions, in solutions containing from 20 mM to 2 M of

all types of permeant ions, when voltages are in the range

6 150 mV. Figures 1 and 2 provide idealized sketches of a

channel in an experimental set-up and in a membrane.

Walls 1 and 2 are insulators described by zero-¯ ux

boundary conditions. End 0 and End 1 are electrodes

described by inhomogeneous Dirichlet boundary condi-

tions. The membrane (other than the channel protein itself)

is in fact made of lipid with substantial surface charge. This

charge is described by an inhomogeneous Neumann

condition, but no ions ¯ ow through the lipid membrane

away from the channel protein. The electric ® eld exists in

Figure 1. A sketch of a channel in a membrane in an

experimental apparatus. Note that the hole in the membrane

represents both the channel protein and the pore in the middle of

the channel protein, a double meaning that is found very widely

in the literature. The ionic solutions are typically composed of

Na
+

, K
+

, Ca
+ +

and Cl
Ð

, the main physiological ions in

concentrations of some 2 mM (for Ca
+ +

and K
+

on the outside

of cells) to say 150 mM (for Na
+

on the outside and K
+

on the

inside of cells). [1,4,13 ± 15] provide much better views of both

channels and the set-ups used to measure them. The mathema-

tical model is speci® ed precisely in [16 ± 19], more succinctly in

[20,21].
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the lipid membrane; the displacement current associated

with the existence of that ® eld is of great importance in the

conduction of electrical signals in nerve and muscle ® bres

[24], although it is only of technological importance for

measurements of single channels.

We will see how well a mean-® eld theory of electrodiŒu-

sion [18,25,26] can account for these currents using these

boundary conditions. In this theory, current is carried by

ions moving through a charged tube of ® xed structure that

does not change (in the mean, on the biological time scale)

with voltage, or as the concentration or type of ion is

changed.

What has been striking and surprising (to those of us

trained as biologists) is how much can be understood using

such a spare description of electrodiŒusion. Biological

systems of this generality and importance often require

descriptions nearly as diverse as the systems themselves, or

at least that often seems to be the case. Here, a single simple

description does quite well, provided the analysis of

electrodiŒusion is done self-consistently, by computing the

electric ® eld from all the charges present in the system. The

variation in shape of the electric ® eld seems to provide

much of the diversity that previously could only be

described, when the electric ® eld was assumed, instead of

being computed from all the charges present.

4. Theory of an open channel

The channel protein is described in this mean-® eld theory

as a distribution of ® xed charge. In the early versions of the

theory Ð that we still use to ® t experimental data quite well

[27 ± 30] Ð the channel protein and ¯ ow of current are

described by averaged one-dimensional equations.

Deriving these equations from their full three-dimen-

sional form (using mathematics alone, without additional

physical approximations [17,18,31,32]) required us to

understand a boundary condition that is scarcely de-

scribed in textbooks of electricity and magnetism, even

though it is the main source of the electric ® eld for nearly

any substance or molecule dissolved in water, that is to

say, in most things of interest to biologists and experi-

mental chemists.

Anything that dissolves in water is likely to be an ion, or

a polar molecule, as the chemists call molecules with large

local but no net charge. A polar molecule has ® xed charge

that interacts with the ® xed charge on the atoms of the

water molecules. Note that polar molecules are perma-

nently polarized, their charge is not induced polarization

charge in the sense introduced by Faraday, rather they are

like the electrets described in some textbooks of electricity

and magnetism [33]. Water is the archetype of the polar

molecule. Each of its atoms carries substantial ® xed charge,

but these partial charges sum to zero net charge, making

the water molecule neutral, overall.

The wetted surface of a protein usually has a large

surface charge, determined by quantum mechanics/chem-

istry of the protein molecule. This surface charge is

independent of ionic concentration and local electric ® eld

(for a wide range of ® eld strengths). It does not change

unless covalent bonds change; that is to say, the charge

does not change unless a chemical reaction occurs. Of

course, covalent bonds do change in proteins, both as

metabolism occurs and when pH changes. It is in fact the

change in the electric charge on proteins that make

biological systems so exquisitely sensitive to pH. (A change

of a few tenths of a pH unit in bodily ¯ uids is lethal.)

Some of the surface charge of a protein is also induced

by the electric ® eld, and is traditionally described by a

dielectric constant, a single number, even though the

induced charge is nearly always strongly time dependent,

and is often nonlinearly dependent on the electrical ® eld.

Induced charge on the surface of most proteins is

probably much smaller than ® xed charge; it certainly is

much smaller than the ® xed charge lining the walls of

channels. Induced charge is included (for the sake of

completeness) in our original papers [17,31] and resulting

computer programs, but so far it does not seem to play an

important role.

Interfacial surface charge on dissolved matter produces

the electric ® eld according to the boundary condition

­ u G
®

2

­ n
2

­ u G
®

1

­ n
5 2

r 0 G
®

FixedCharge

e 0
2

Figure 2. A sketch of a channel protein. A typical ion might be

1.5AÊ in diameter and the rest of the picture is more or less to

scale, with the diameter of most channels being some 2 to 9AÊ at

their narrowest. [1,4,13 ± 15] provide much better views of

channels. [7,22,23] present structures of channels determined

by X-ray crystallography.
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r 2 G
®

2, u G
®

2 r 1 G
®

1, u G
®

²0

Induced charge

(1)

or equivalently, when induced charge is strictly propor-

tional to the local electric ® eld,

²Wall G
® ­ u G

®

­ n
2 ²P ore G

® ­ u G
®

­ n
5 2

r 0 G
®

²0
. (2)

Here, u ( G
®

) is the electric potential on the channel wall,

which has a dielectric `constant’ in the range ²W all( G
®

) $
[10,30] compared to the dielectric coe� cient ²P ore $
[20,80] of the pore. The induced charge r 2( G

®
2, u ( G

®
)) is

on the channel wall G
®

(and depends on the local electric

® eld, of course); the induced charge r 1( G
®

1, u ( G
®

)) is located

with-in the pore, just next to the wall, at G
®

1; e 0 is the

permittivity of free space.

Interfacial surface charge r 2( G
®

) is the main source of the

electric ® eld in most biological and many chemical systems.

This fact is not widely known, unfortunately, and not

properly emphasized in textbooks of electricity and magnet-

ism, in my opinion, and has led to signi® cant confusion

among biologists, chemists and biochemists (in particular).

Biochemists and channologists usually (if not invariably)

describe the surface of a protein as a potential pro® le

(`potential of mean force’ ) and, forgetting that the potential

of mean force is a variable output of the system, they treat

the potential of mean force as a ® xed input or source to the

sytem that does not change with experimental conditions, as

if it arose from an unchang ing Dirichlet boundary condition.

Biochemists and channologists usually (if not invariably)

assume that the potential of mean force [or a rate constant

derived from that potential, see equation (14)] does not vary

when the concentration of ions surrounding the protein are

varied (as they often are in experiments) [34 ± 36].

In fact, in contrast to traditional assumptions, the

electric ® eld arises (mainly) from a boundary condition

[i.e. equation (1) or (2)] which becomes an unchanging

Neumann condition when induced charge is negligible. If a

Neumann boundary condition is imposed on a problem,

the potential on the boundary will change form (as well as

value) when almost any change is made in the problem.

Indeed, so will the potential pro® le change everywhere else.

This sensitivity of systems to their boundary conditions

is well known to those who have actually solved (i.e. made

graphs of the solutions to) diŒerential equations, as it is to

experimental scientists who actually measure their proper-

ties, but study of boundary conditions is much less

glamorous than the study of general properties of

diŒerential operators, so their signi® cance is sometimes

neglected in treatments of theoretical physics and mathe-

matics.

Boundary conditions are usually important, often domi-

nant determinants of the properties of physical systems

because they describe the ¯ ow of matter, energy and charge

into the system. The biochemical case is no exception: using

the incorrect unchanging Dirichlet condition is equivalent to

ignoring the shielding (often called screening) of ® xed charge

by mobile charge. That is to say, using an unchanging

potential of mean force (or rate constant) to describe the

surface of a protein ignores the eŒect of the mobile charge

(carried by ions dissolved in water) on the surface potential in

the solution next to the protein.

For that reason, the traditional treatment of the surface

of a protein (as an unchanging potential of mean force) is

not compatible with the generally accepted treatment of

ionic solutions, e.g. the Debye ± HuÈ ckel, Gouy ± Chapman,

Poisson ± Boltzmann or mean-spherical-approximation

(MSA) theories, which are in large measure an analysis of

shielding and its consequences [37 ± 45]. Since these theories

are needed to describe the properties of ionic solutions

greater than a few micro or even nanomolar concentration,

treatments of proteins that neglect shielding are unlikely to

be successful in the millimolar salt solutions in which

proteins are normally found. Indeed, most proteins cannot

exist (in anything like normal form) in distilled water or in

solutions with trace amounts of ions, suggesting that

shielding plays a dominant role in the physical processes

that govern the structure (i.e. folding) of proteins. It seems

unfortunate that many computations (and theories) of

protein folding do not include explicit ions at all. Many

simulations are done with no de® nite concentration of ions,

even though the structure of the great majority of proteins,

and most of their functions (including folding) are sensitive

functions of ionic concentration.

In chemical kinetics [46], biochemistry [47] or enzyme

kinetics [48], rate constants are rarely if ever allowed to be a

function of concentration [34,35]. It came as a shock to

realize that the usual treatment of rate constants in

chemistry and biochemistry is inconsistent with the physics

underlying Debye ± HuÈ ckel, Gouy ± Chapman, Poisson ±

Boltzmann and MSA treatments and thus with the

properties of the ionic solutions found in most living

systems.

Unfortunately, once the potential of mean force at the

surface of a protein is assumed to be independent of ionic

concentration in the surrounding solution, little of use can

follow, because the variation of surface potential dominates

most of the equilibrium and nonequilibrium behaviour of

any substance dissolved in water. Nearly all equilibrium

properties of proteins and of ions near the surface of

proteins (e.g. the free energy per mole, i.e. the activity) are

strongly aŒected by the concentration of other ions, that is

to say by ionic strength, as has been apparent to chemists

working with proteins in the laboratory, for at least a

century.
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Of course, rate constants can sometimes be independent

of concentration of reactants, in special circumstances, for

example, when the total ionic strength is held constant,

while the substrate concentration itself is not varied enough

to shield the ® xed charge of the other reacting species or

protein. Nonetheless, these are special circumstances not

likely to be present in most experimental or biological

systems, and they are certainly not present in open

channels.

Nonequilibrium properties are at least as sensitive to

shielding and the choice of boundary conditions as

equilibrium properties. This is not surprising: ¯ ux is often

a sensitive, nearly exponential function of potential [see

equation (15)] and so rate constants (that are generally used

to describe that ¯ ux) must also depend on concentration

exponentially.

5. PNP theory

The ¯ ux in channels arises from gradients in the electrical

potential and concentration of ions inside the channels’

pore. The potential and concentration are described by two

® eld equations whose main source are the boundary

conditions (1) or (2). One ® eld equation is the Poisson

equation that describes how the average charge produces

the average potential [see equation (3)]; the other is a

transport equation Ð in fact the Nernst ± Planck equation

[see equation (7)] Ð that describes how the average

potential produces ¯ ux. We call these the PNP equations

to emphasize the importance of the Poisson equation and

the relation to semiconductor physics, where the same

equations are called the drift-diŒusion equations. The

equations are coupled because ¯ ux moves charge, and

thereby changes the concentration and potential pro® le,

forcing us always to deal simultaneously with both the

Poisson and the drift-diŒusion (i.e. Nernst ± Planck) equa-

tions and solve them together.

The PNP equations were written and analysed in three

dimensions and the one-dimensional approximation was

derived, by mathematics alone, using Taylor expansions

singular perturbation theory [17,18], or spatial averaging

[32]. Although the one-dimensional version of the model

seems su� cient to deal with the experimental data from a

wide range of channels under many conditions [20,27 ±

30,49] Ð probably because channels are so narrow and

highly charged [50 ± 53] Ð a three-dimensional theory

would be more convincing, given the visual orientation of

human nervous systems, and the tridimensionality of

protein structures. A three-dimensional version of the

theory is computing right now (Hollerbach et al. personal

communication) and we hope it will be e� cient enough to

be useful in dealing with the mass of real experimental data.

The narrowest region of a channel is where most short

range chemically speci® c interactions are likely to occur. In

this `selectivity ® lter’ [4], the channel is surely one

dimensional, even if the electric ® eld is not, and so one-

dimensional ion transport is likely to occur. Permeation

through a channel may be better represented as a one-

dimensional chemical reaction [49] than traditional enzyme

catalysis, because reactants in enzymes actually diŒuse and

react in a phase space of very high dimension, through an

enormously complex energy landscape [54,55]. The meta-

phor I once proposed (`Channels as enzymes’ [56]), may be

more than the amusing tautology/oxymoron it seemed to

be.

The one-dimensional theory we use to describe an open

channel represents the structure of the channel’ s pore as a

cylinder of variable cross-sectional area A(x)(cm
2
) along tht

reaction path x (cm) with dielectric coe� cient e (x) and a

density of charge q (x)(coul.cm
Ð 1

). eNA is the charge in 1

mole of elementary charges e, i.e. the charge in a Faraday.

The charge q (x) consists of

(1) the charge eN A k zkCk(x) of the ions (that can

diŒuse) in the channel, of species k of charge zk , and

mean concentration Ck(x); typically k = Na
+

, K
+

,

Ca
+ +

, or Cl
Ð

and

(2) the permanent charge of the protein P(x) (mol.cm
Ð 1

),

which is a permanent part of the atoms of the channel

protein (i.e. independent of the strength of the electric

® eld at x) and does not depend on the concentration

of ions, etc and so is often called the ® xed charge.

P (x) is really quite large ( ~ 0.1 ± 1e per atom) for

many of the atoms of a protein and wall of a channel.

I imagine that the permanent charge lining the

channel has an important structural role, allowing

the channel’ s pore to form and to be stably ® lled with

water, just as the permanent charge of a solute allows

it to dissolve in water. For this reason, we should

adopt the language of my friend and collaborator

Wolfgang Nonner [21] and call P(x) the structural

charge of the channel;

(3) the dielectric charge (i.e. the induced charge which is

strictly proportional to the local electric ® eld) is not

included in q (x) because it is described by e (x). It is

generally very small compared to the structural

charge.

Next we make the usual mean-® eld assumptions that the

average charge q (x) produces an average potential } (x)

according to Poisson’ s equation and that the mean electric

® eld 2 Ñ u captures the properties of the ¯ uctuating electric

® eld which are important on the slow time scale of biology.

These assumptions are hardly novel; indeed, it requires

some extraordinary circumstances for them not to be true,

in slow highly averaged systems. If the potential energy of

mean electrical force, averaged for a ms, did not come from

the mean electric charge, which source could it come from?

Ionic channels in biological membranes 451



Thus

²o ²(x)
d2u

dx2 1
d²(x)

dx
1 ²(x)

d

dx
[loge A (x ) ]

d u

dx
5 2 q (x )

(3)

where the average charge is given without including the

small dielectric (i.e. induced) charge by the equation

q (x) º eN A P (x) 1
k

zkCk(x) . (4)

The boundary conditions for the potential in the real

world are set by the experimental conditions: experiments,

since the time of Hodgkin and Huxley [51] are best done

under `votage clamp’ conditions so that complex uncon-

trolled eŒects of votage are avoided. Special apparatus is

used to control the potentials in the baths surrounding the

channel, i.e. the potential on the left is known and

maintained at Vappl and that on the right is held at zero

u (L ) 5 u ( 2 ¥ ) 5 Vapplied

u (R ) 5 u ( 1 ¥ ) 5 0.
(5)

These boundary conditions are maintained by charge

supplied to the system at its boundaries (i.e. by electrodes

placed in the bath and/or inside a cell or pipette). The

amount of charge necessary to maintain the potentials

depends on the properties of the system, e.g. of the channels,

and the experiment (i.e. whether solutions or transmem-

brane potential Vapplied are changed) and it is the need for

this charge, more than anything else that makes a channel in

a membrane an open system and guarantees the importance

of boundary conditions in determining channel behaviour.

Channels are di� cult to study if the transmembrane

potential / (0) Ð / (d) = Vap plied varies spontaneously in a

complicated uncontrolled way. Sorting the properties of

individual (types of) channels out of the mass of ionic

currents ¯ owing through all types of channels and through

the interior of cells Ð while large capacitive currents ¯ ow

through lipid membranes Ð is hardly ever possible (see [57]

and [58] for notable exceptions). Precisely for this reason,

Hodgkin et al. [59], following Cole (as described in [60] and

[61], developed a feedback ampli® er to supply just the

current needed to control the potential to the desired value,

allowing ionic channels to be studied at ® xed potential.

Supplying this charge, in the resulting voltage-clamped

system is not easy; many biological channels are designed

precisely to supply charge to change the potential, often by

changing their ensemble properties in a complicated non-

linear, time dependent way, and so designing a high quality

voltage [62] or patch clamp ampli® er is an interesting

challenge [63].

Of course, the natural activity of membranes and

channels does not occur when the voltage clamp apparatus

is used. Nonetheless, natural voltage changes can easily be

reconstructed by solving the Hodgkin ± Huxley equations

[64], which show how the current through a (voltage-

clamped) membrane produces the uncontrolled transmem-

brane potentials of a normally functioning cell. Weiss [24] is

an admirable description of the classical biophysics and

physiology which arose from the work of Hodgkin et al.

more than anyone else. All modern systems for studying the

current through one channel protein ± e.g. the `patch clamp’

of reference [15] (see also [63,65] Ð use the voltage clamp.

The concentrations of ions must also be controlled if the

properties of channels are to be easily understood, implying

the boundary conditions

Ck(L) 5 Ck( 2 ¥ ) , Ck(R ) 5 Ck ( 1 ¥ ) (6)

Special apparatus is not available to maintain this

boundary condition, but the large volume of the baths

surrounding channels, and the relatively small amounts of

charge transferred through a single channel (in many cases)

often guarantees that ionic ¯ ux does not signi ® cantly

change ionic concentration. Such is not always the case,

indeed such may never be the case for Ca
+ +

channels

functioning in their normal mode, because the concentra-

tion of calcium inside cells is so small. Certainly, the

absence of noticeable concentration changes must always

be veri® ed experimentally for any channel. Nonetheless,

checks are easily done and usually satis ® ed.

The boundary conditions (5) and (6) (at x = 6 ` of the

three-dimensional problem), do not map obviously and

easily into boundary conditions at the ends of the channel

x = 0, x = d. We have used a particular well-precedented

equilibrium mapping called the built-in potential in

semiconductor physics or the Donnan potential in parts

of biology [17,18,31,32]. Other treatments of the ends of the

channel are under active investigation at the present time

by Hollerbach, Chen, Nonner and Eisenberg.

6. Channels as nonequilibrium devices

It is obvious, but nonetheless often forgotten, that a

channel in a membrane, a hole in the wall, or a simulation

or set of equations describing a channel or hole, describes

an open system, a system that does not in itself satisfy

conservation of charge, mass or energy, because charge,

mass or energy must be supplied by the experimental

apparatus to maintain the boundary conditions of constant

concentrations and constant transmembrane potential.

What is also not always realized is that, in the steady

state Ð which is the case of interest here Ð the boundary

conditions that describe a nonequilibrium and/or open

system must be spatially nonuniform: if they were uniform,

no charge, mass or energy could be supplied across the

boundaries and the system would not be open.

An open system like a channel is a device Ð like a

resistor Ð that is unlikely to be very interesting in an
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equilibrium state. Devices are mostly studied by engineers;

it would hardly occur to them to study an ampli® er,

transistor, or switch `at equilibrium’ . Indeed, it is di� cult to

even mouth those words without smiling because it is so

obvious that almost any useful property of a device or

transistor involves spatial nonuniformity and thus ¯ ow.

Channels are devices, almost never at equilibrium. A

channel is nearly an electrochemical wire. It is an electro-

chemical resistor, a Gaussian tube, a pillbox in an ionic

solution, that only has interest when it conducts current.

Like life itself, and most machines of our technology, and

semiconductor devices, in particular, channels are dead at

equilibrium. In that state, at equilibrium, channels show

little sign of their importance or function, particularly after

cremation, when they ® nally reach thermodynamic equili-

brium, ashes to ashes, dust to dust.

Thinking about a channel, or an open system, as a device

has profound consequences; energetics and thermody-

namics are not emphasized (however, see [66]), input

output relations (i.e. boundary conditions) are. The

emphasis on boundary conditions refocuses thoughts and

sometimes dramatically simpli® es the analysis, by showing

what should be stressed and what can be approximated.

Theories and simulations that preclude ¯ ux, or that

guarantee equilibrium because they use spatially uniform

boundary conditions, are not useful descriptions of devices.

No one studies resistors or transistors with their leads

soldered together, at least not for very long, for the same

reason that no one studies cadavers or their ashes if

anything more lively is available.

Unfortunately, most of the simulations of molecular

dynamics of channels (reviewed in [67,68]), and most

studies of their electrostatics (e.g. [69 ± 71]), assume

equilibrium and spatially uniform boundary conditions.

All simulations of the molecular dynamics of proteins and

most simulations of the molecular dynamics of ionic

solutions make the same assumptions as far as I am aware,

(for example, 68, 72 ± 89]). Clearly, there is a vast literature

of which I am unaware and I apologize to those authors

(e.g. [90]) whose papers are an exception to my sweeping

statement.

Whatever their exciting view of atomic detail, simula-

tions and theories constrained to equilibrium cannot

predict ¯ ow, nor the properties of devices that depend on

¯ ow. Interestingly, these simulations of channels

([67,86,91,92], many further references in [68]) also do not

include ions, so it is not clear how they manage to predict

ionic current, e.g. [86]. Calculations of current ¯ ow in

simulations of equilibrium systems, that do not include ions

must, of course, give the conductance of distilled water as a

result, if they are correct and converged. That conductance

is many orders of magnitude less than the conductance of

open channels, which the cited papers claim to predict

(within a factor of 2 or so).

Simulations of this type can only provide an autopsy of a

dead channel, even if they are done correctly including ions;

they cannot predict channel function, or even glimpse its

structure when it is functioning as a live wire, conducting

current. Indeed, many channels and proteins cannot exist in

anything like their normal state in solutions without ions

(many proteins denature in distilled water into a mass

rather like boiled egg white).

The eŒects of ions on proteins have been a well-known

experimental fact, crucial to the care and handling of

proteins in the laboratory, for some 150 years. Sceptics

might therefore question the relevance of simulations of

proteins conducted in distilled water, without ions, or the

signi® cance of simulations of protein folding done under

these conditions. Indeed, one must question whether they,

like similar calculations of channels, are converged or

correct. If the protein they seek to describe cannot exist in

distilled water, how can a calculation of that protein in

distilled water give a valid result other than that found

experimentally? How can the result be anything except a

denatured protein? Or in the less extreme case, where the

structure and function of the protein depends sensitively on

ionic strength, how can a correct and converged simulation

of the protein give a valid result when done in an inde® nite

concentration of ions?

Given these questions, those involved in the allocation

of scienti ® c resources might question the enormous

resources that are used to simulate proteins in solutions

without ions.

7. Mathematical model

We turn from these general issues now to one description of

¯ ux through a channel.

The ¯ ow (i.e. the ¯ ux Jk of ion k) through the channel is

described in our mean ® eld theory by the diŒusion

equation, the Nernst ± Planck equation (see [38,43]; we

derive this equation below)

Jk 5 2 D k(x)A (x)
dCk(x)

dx
1

Ck (x)

R T

d

dx
[zkF u (x) 1 ¹

0
k (x) ]

I 5
k

Ik 5
k

zkFJ k.

(7)

The ¯ ux Jk of ions is driven by the (gradient of)

concentration and electrical potential, which together form

the electrochemical potential l k = RTlogeCk(x)+ zkF / (x).

D k(x) is the diŒusion coe� cient of ion k in the channel’ s

pore.

Speci® c chemical interactions, which cannot be easily

described by the electrical or concentration terms of the

electrochemical potential, can be described by an excess

chemical potential, the standard chemical potential ¹0
k(x) .
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This chemical term is not needed, and is in fact

quantitatively insigni ® cant in most (but not all) of the

situations we have studied to date, much to our surprise:

there are no shortage of reasons that water and ions in a

channel should have a diŒerent standard state from water

and ions in bulk solution, and I, like most workers in our

® eld, have always assumed this would be the case. (Just

consider the enormous changes in local environment that

occur when an ion dehydrates and resolvates as it enters a

channel.) Nonetheless, this term ¹0
k (x) only seems impor-

tant when mixtures of some ions are studied in some types

of channels [20,21,93], probably because the ® xed charge

dominates the energetics of most channels [94]: even a few

charges in the lining of the channel’ s pore product an

enormous density of ® xed charge. One charge in a cylinder

6 AÊ diameter and 10 AÊ long is a concentration of

6 ´ 10
21

cm
Ð 3 » 10 M. Interestingly, theories like Pois-

son ± Boltzmann are known to `become exact for large

electric ® elds, independent of the density of hard spheres’

[53, p.315] ìndependent of interactions of molecules in the

¯ uid phase’ [50, p. 972]. And some voltage dependent

channels are thought to have as many as six charges in half

that length or volume, giving ~ 100 M ® xed charge,

implying a concentration of mobile charge in the channel

of about the same size. As pointed out to me by Wolfgang

Nonner, such concentrations approach those of solid

electrolytes: NaCl in the selectivity ® lter of such a channel

may be more like table salt than sea water, or even the

water in Mono Lake (an unforgettable sight, a saturated

lake, surrounded by salt columns and mounds of obsidian,

in Owens Valley CA, near LeeVining).

High densities of ® xed charge also help buŒer the

concentration of mobile charge (of opposite sign) in the

channel’ s pore. The important part of the channel is not

exposed to the wide changes in concentration that are used

in most experiments; the channel’ s contents are buŒered by

its ® xed charge. Concentration independent errors in the

theory can then be absorbed into its eŒective parameters (to

some extent).

Excess chemical potentials can be analysed (remember-

ing that the excess chemical potential is likely to be a strong

function of concentration and other variables) within the

traditions of modern electrochemistry, e.g. with the mean

spherical approximation of statistical mechanics [95]. Blum,

Nonner and Eisenberg are trying to build a theory of the

selectivity of open channels that way.

8. Transport laws

The diŒusion equation used here [equation (3)] seemed to

us at ® rst to be a crude macroscopic approximation. It

turned out not to be so. Rather, equation (3) describes the

stochastic trajectories of discrete diŒusing particles without

much approximation.

Eisenberg et al. [19] derive the Nernst ± Planck equation

for the ¯ ux of discrete particles moving over a potential

barrier / (x) of any size or shape assuming that the particles

diŒuse according to the Langevin equation, i.e. according

to the usual laws of Brownian motion. In fact, their

derivation can easily be generalized, using the methods of

Schuss [96,97], to any kind of trajectory for which

conditional probabilities can be de® ned. Reference [19]

shows that the ¯ ux can be written (here for the special case

where Dk is independent of x: the general case is given in

the original paper)

J k 5 Ck(L )
D k

d
P rob{R |L}

Unidirect ional efflux

2 Ck (R )
D k

d
Prob{L |R}

Unidirect ional influx

.

Source Diffusion Conditional

concentration velocity probability (8)

The conditional probability Prob{R|L} describes the

probability that a trajectory starting on the Left reaches an

absorbing boundary on the Right, when a re¯ ecting

boundary is placed at the left, just behind the source of

the trajectories (i.e. just to the left of the source).

It is traditional in chemical kinetics, e.g. [37,98], to write

equation (8) as a rate equation, i.e.

J k 5 d . kf Ck(L )

Unidirect ional efflux

2 d . kbCk(R )

Unidirectiona l influx

(9)

or chemical reaction

kf

L R (10)

kb

using `the law’ of mass action. In these equations, d is the

channel length, and the rate constants k f and kb are de® ned

as

kf 5 k{R |L} 5
D k

d2 P rob{R |L};

kb 5 k{L |R} 5
D k

d2 P rob L |R{ }.

(11)

In fact, reference [19] can be viewed as a stochastic

derivation of the law of mass action (9), that shows that

t̀he law’ is valid provided bath concentrations and

transmembrane potential are maintained ® xed, and / (x)

does not vary as the concentrations Ck(L) or Ck(R) or

transmembrane potential are varied. Surprisingly, if the law

is valid at all, the derivation shows it is valid for any shape

of the potential barrier. In this way, reference [19] shows (to

the considerable surprise of at least one of the authors) that

the metaphor of channel permeation as a chemical reaction

[56] can be exact Ð indeed it is exact when the transmem-

brane potential and bath concentrations are kept ® xed in a

voltage clamp experiment.

®¬
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The conditional probabilities of equation (4) seem vague

but in fact are precisely de® ned and discussed in the

original publication [19]: most of the paper is devoted to

their derivation and determination. The de® nition of the

conditional probabilities must include two boundary

conditions to (doubly) condition the underlying trajec-

tories, specifying both where/how the trajectories start and

where/how they end. For example, if the trajectories are

those of Brownian motion, they must be described by the

full, not reduced Langevin equation, to allow the double

conditioning: no matter how large the friction, the Einstein/
Smoluchowski approximation of the Langevin equation

cannot be used because it, being a ® rst order diŒerential

equation, can accept only one boundary condition. It was

the use of the full Langevin equation, employing two

boundary conditions that allowed [19] the problem to be

speci® ed after many years of frustration [99]. It was the

techniques and skills of Schuss [96,97] that provided the

solution to the problem.

The conditional probabilities of equations (8) ± (10) (and

thus the rate constants that describe ion permeation) can be

evaluated in diŒerent ways, depending on the degree of

approximation of interest. If one wishes to calculate the

trajectories in full atomic detail, using the techniques of

molecular dynamics, the conditional probabilities can be

directly evaluated from the Onsager ± Machlup action

formulation of Newton’s laws, in the presence of thermal

agitation ([100]; see Elber’ s modern application [101]).

If one wishes to describe the friction in more detail, for

example, as a linear process but with complex time/
frequency dependence, one can use a Langevin equation

with memory kernels for the friction [102 ± 104]. If one

wishes to describe the normalized friction b (x) as a time

independent process, described by a function only of

position, or even by just one number independent of

position, the conditional probabilities become the solutions

of partial diŒerential equations [19] as in

P rob R |L{ } º
¥

0 vp(1, v |L)dv
¥

0 vp(0, v |L)dv
(12)

where v is the velocity of the particle and the conditional

probability satis ® es the full forward Fokker ± Planck

equation [97,105]

2 v
­ p(x , v |L )

­ x
1 b (x)²

­ 2p(x , v |L )

­ x2 1

­

­ x
b (x)v 1

­ (x)

­ x
p(x, v |L ) 5 0

(13)

with absorbing boundary condition p(1,v|L) = 0 for v< 0,

i.e. the boundary is absorbing for just those trajectories

leaving the system . (If a reduced Langevin equation was

used, as we, and perhaps others, tried to do for some time,

hoping to avoid the mathematical complexity of the full

equation, the boundry had to be absorbing for both

arriving and leaving trajectories, which makes it somewhat

di� cult to put a source there, at the boundary, as is

actually present in the experimental situation. Describing

the experimental situation requires the full Langevin

equation.) e is the normalized temperature in the custom-

ary, if unfortunate notation [97] of this ® eld of mathe-

matics, and is not small.

Analytical approximations are particularly neat when

friction is large and simple in behaviour, described by a

single diŒusion coe� cient, a single number D k for each

species k of ion, using normalized units F (x) = F / (x)/RT;

V = FVap pl/RT

kf 5 k R |L{ } 5
D k

d2 Prob{R |L} 5
D k

d2
.

exp(zkV )

1
d

d

0 exp zk ( f )d f

kb 5 k{L |R} 5
D k

d2 Prob{L |R}

5
D k

d2
. exp(zkV )

1
1
d

d

0 exp zk ( f )d f

(14)

and the current through the channel is

J k 5 D k

Ck (L)exp(zkVappl )
d

0 exp zk ( f )d f

Unidirectiona l efflux

2 D k

Ck(R )
d

0 exp zk ( f )d f

Unidirect ional influx

. (15)

These expressions can be easily generalized if Dk depends

on location [21].

In treating this problem, one must be quite careful in

taking the limit of high friction. As is usually the case in

problems involving several small parameters [106 ± 108], the

limits can be taken in diŒerent ways, and the limiting

process gives diŒerent answers when they are taken in

diŒerent ways (i.e. the limiting process is `nonuniform’ ).

Uniqueness is achieved by taking the mathematical limit

that preserves the main features of the underlying physical

system and experiment.

When taking the limit of high friction in these problems,

it is essential to keep the ¯ ux ® xed at a value like that

observed experimentally. It is essential that the ¯ ux not be

forced to zero. Otherwise, one is studying an equilibrium or

nearly equilibrium system which is dead to the world we

want to investigate. The driving force (i.e. the concentra-

tion and/or electrical potential gradient from one end of the

channel to the other) must not be kept ® xed in the limiting

process. If the driving force were kept constant, then

allowing the friction to get large forces the ¯ ux to approach

zero, and such analysis must yield the equilibrium result,

which cannot be expected to very useful.

A limit process with ® xed driving force also forces a

strictly symmetrical (in fact Maxwellian) distribution of

velocities of ions. Analysis subsequent to that limit process

can only predict zero ¯ ux, if it is done in a mathematically

consistent (i.e. correct) manner. One should not be
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surprised then if analyses or simulations that start with the

reduced Langevin equation (i.e. that assume the Einstein/
Smoluchowski form of the Langevin equation, without the

second derivative term, which means that the distribution

of velocities is strictly Maxwellian), or that explicitly

assume a strictly Maxwellian distribution of velocites, or

that force a strictly Maxwellian distribution of velocites (by

readjusting the distribution of velocities, as is commonly

done in molecular dynamics simulations of proteins

[75,109] and channels [67,68] every 10 ± 100 fs or so have

di� culties and produce paradoxes (Chapter 7 of [110]; pp.

425 ± 430 and pp. 1 ± 75 of [111], amongst others; Chapter 8

of [72]; pp. 83 ± 92 of [79]; Chapters 6,7 and 10 of [112];

Chapters 9 and 10 of [81]).

On the other hand, if the ¯ ux is held constant while the

friction goes to in® nity, the distribution of velocities turns

out to assymmetrical, as it must to accommodate the ¯ ux

self-consistently, but the distribution is only trivially

changed. It is a displaced Maxwellian [19] as has long been

known in semiconductor physics [113]. The displacement is

(in suitably normalized units) just the ¯ ux itself.

As simple as this displacement is, it must be included in

any theory or calculation, or simulation of molecular or

Langevin dynamics of a spatially nonuniform system, a

nonequilibrium system with ¯ ux across its boundaries. If,

for example, a molecular dynamics simulation is done in

which ¯ ux is sought, but the distribution of velocities is

forced to be Maxwellian, the problem is illposed and no

mathematical solution exists, and so no solution can be

found by approximate methods. Simulations cannot con-

verge if they are in fact performed this way, because the

converged solution does not exist.

The simulations of nonequilibrium transport of charge

carriers performed in computational electronics [113 ± 118]

have been notably successful in analysis of experiments and

prediction (i.e. design) of new results (i.e. design of new

devices: see the DAMOCLES web page for a landscaped

gateway to this wonderful literature [119]).

Simulations of nonequilibrium transport of charge

carriers in ionic solutions seem to have been less successful

(loc. cit). Simulations of nonequilibrium transport of

charge carriers in proteins or channels seem not to have

been carried out, at least as far as I know. Perhaps the

diŒerence in success between simulations of ionic solutions

and semiconductors has more to do with the strikingly

diŒerent methods of simulation (of the nonuniform

boundary conditions, of the nonMaxwellian distribution

of velocities) than it has to do with the diŒerences in the

mechanism of charge transport in ionic solutions and

semiconductors.

Of course, the simulations of semiconductor physics also

treat the electrostatic ® eld quite diŒerently from the way it

is treated in physical chemistry. The simulations of

semiconductor physics use the Gummel iteration

[114,120 ± 123] to ensure self-consistent treatment of the

Poisson equation (with spatially nonuniform boundary

conditions) and transport laws. It is a surprising fact that

the Gummel iteration seems never to have been used in

simulations or analysis of charge movement in ionic

solutions or proteins, and that fact may have something

to do with di� culties in this ® eld as well. Perhaps,

simulations of protein molecular dynamics, including

folding, will be easier, will be possible with longer time

steps and less numerical di� culties, and also will be more

realistic, if the electric ® eld is computed and included as it is

in semiconductor calculations, using the Gummel iteration

to ensure that Poisson’ s equation and far ® eld boundary

conditions are always satis® ed.

Simulations of the properties of electrolyte solutions

possibly will be more successful if they use the Gummel

iteration. This is not the place to discuss this issue in detail;

su� ce it to say that the electric ® elds found transiently in

ionic solutions are very much larger than kT/e and so will

have profound nonlinear eŒects that do not average to

zero. These eŒects are not easily incorporated into theories

of ionic solutions that use linearized versions of the

Poisson ± Boltzmann equation, no matter how sophisti-

cated the rest of the theory is. These large electric ® elds are

likely to produce at least some of the excluded volume

eŒects known to occur in ionic solutions, they are also

likely to aŒect diŒerent ionic species of the same charge

(say in a solution that contains K
+

, Na
+

and Cl
Ð

) in

similar ways producing correlated ionic movements that

would appear macroscopically as ¯ ux coupling. These

electric ® elds would be di� cult to include correctly in

simulations using Ewald sums and/or periodic boundary

conditions. It will be interesting to see how the traditional

problems of electrochemistry, that have received exhaustive

attention for nearly 100 years, will respond to analysis and

simulation using the Gummel iteration.

Schuss, Nadler and Eisenberg (and others as well, no

doubt) are currently trying to do a self-consistent treatment

of brownian motion, i.e. to solve Langevin and Poisson

equations simultaneously, and thus to understand how

trajectories combine and interact to provide the atomic

basis of the shielding phenomena of mean ® eld theories.

9. Unidirectional ¯ uxes

In the analysis of channels, it is important to separate the

¯ ux into two components, unidirectional in¯ ux and

unidirectional e‚ ux. The total ¯ ux cannot itself be

described (in any natural way) by a (single unconditional)

probability, nor can the mean ® rst passage time or contents

or an ion in a channel, because a number of the

unconditional quantities are in® nite in perfectly ® nite and

well-posed situations, as found by [16], and explained by

[19]. The ¯ ux, contents and mean ® rst passage times must
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all be replaced by the appropriate (pairs of) conditional

quantities if these in® nities are to be avoided.

Interestingly, for more than 50 years physiologists have

directly measured these components of ¯ ux using radio-

active tracers, thus correctly separating the net ¯ ux across a

channel into its (trans) components, although as far as I

know, the importance of the cis components of unidirec-

tional ¯ ux was not recognized in that literature until

recently ([124], see citations in that paper). The cis

components in fact contribute a great deal to the variance

of the open channel current in many conditions, because so

many more trajectories enter, leave and reenter channels

than cross them, under most conditions.

The trajectories of each type of unidirectional ¯ ux can be

described by other statistics besides conditional probabil-

ities. The time an ion takes to go from L to R is the

(conditional) ® rst passage time T{R|L}; the number of

{R|L} trajectories within the channel is the conditional

contents of the channel C{R |L}, the unidirectional ¯ ux

J{R |L} is the ¯ ux carried by the {R |L} trajectories, and, not

surprisingly, `¯ ux equals contents over ® rst passage time’

J {R |L} 5
C{R |L}
T {R |L}; J {L |R} 5

C{L |R}
T {L |R}. (16)

Note, however, that total ¯ ux does not equal the total

contents over ® rst passage time.

The total ¯ ux J of ions is not simply related to the total

contents, because the mean ® rst passage time of all the

trajectories is not well de® ned [16,19] in situations like this

in which there are two ways an ion can exit the channel. If

even one particle starting on the left cleaves on the left, then

that particle takes in® nite time to reach the right (because it

never gets there), making the mean time (of all the particles)

to reach the right in® nite!

The mean ® rst-passage time is the sum of the ® rst-

passage times of each particle divided by the number of

particles. If one of those times is in® nite, the sum is in® nite.

In this circumstance, the `mean value operator’ is a highly

biased estimator Ð in ® nitely biased, in fact Ð of a ® rst

passage time of a trajectory that does in fact get to the

right. Those trans trajectories (i.e. the ones that do in fact

get to the right) are the ones we unconsciously select when

we say `mean ® rst-passage time’ (having in mind the exit

time or transit time) in a channel, but in fact the

mathematics requires that we consider all trajectories,

giving the in® nite result for the unconditional mean ® rst-

passage time. When we do explicitly condition the

trajectories (according to our previously unconscious and

thus implicit thoughts,) we get the explicit and sensible,

intuitive and ® nite result cited in equation (16), but we pay

the price of having to evaluate the conditioning explicitly,

cf. equation (12), et seq.

The idea that `Flux = Contents over ® rst-passage time’ is

widely, if loosely held, among physicists and engineers

interested in ¯ ow (e.g. [125 ± 128]). Evidently, in problems

involving two absorbing boundaries, the ¯ ux must be

separated into components if it is to satisfy this equality.

10. Rate models and transition-state theory

The analysis of ¯ ux over barriers can be extended to derive

the exponential expressions of `Eyring’ rate theory, i.e. the

transition-state theory widely used to describe how rate

constants depend on the height of potential barriers

[16,19,96,102 ± 105,129 ± 137]. If the (normalized) potential

pro® le U (x) = F / (x)/RT is dominated by a large barrier

U m ax(x0)= F / m ax(x0)/RT, and satis® es certain other criter-

ia Ð e.g. if the barrier is asymptotically symmetrical and

isolated from the boundary and other maxima Ð expres-

sions for rate constants reduce to exponential expressions

[16]. The standard expression of the Kramers’ formulation

of rate theory [97,105,134] as found in hundreds of papers

[133,134], is recovered:

kf
high

barri er

D j

d 2pÖ
z j

¢ ¢
(xm ax ) |

1 /2

P refactor

exp z j V 2 z j max (xmax ) .]

(17)

There is no controversy in the chemical literature about this

expression or its prefactor. Exactly this expression is used

in the extensive literature (more than 700 papers) that

describe the ¯ ux over high barriers, whether the papers

report simulations, theory or experiment, whether the

papers are written in the Kramers’ or Eyring tradition.

Indeed, Schuss, Pollak and co-workers [137 ± 139] have

shown in an elegant way how these traditions can be united

rigorously: the subject of one-dimensional diŒusion over a

barrier can be considered closed (when friction is large and

simple), more or less completely reduced to known

mathematics, now that the transmission factor has been

evaluated by purely mathematical means [139 ± 142] and the

issue of recrossings has been solved [143,144].

The numerical value of the prefactor of equation (17) can

be estimated easily if the potential pro® le U (x) is a

symmetrical parabolic barrier spanning the whole length

d of the channel, with maximum size / m ax(xm ax), much

larger than the applied (i.e. transmembrane) potential

V = FVap pl/RT . Then, for example,

kf
Par abolic

High bar rier

2D j

d2 pÖ
|
zkF u m ax (xm ax ) b

R T
|

1 /2

Prefactor

exp 2 z j F
u m ax (xm ax )

R T
.

(18)

Approximations (17) and (18) can be used when systems

satisfy the conditions under which they were derived, e.g.

when barriers are known to be large, isolated and

®

®
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asymptotically symmetrical; when the size of barriers is

independent of experimental conditions. Otherwise, they

should not be used, as seems obvious to physicists but

seems not be so obvious to biologists, biochemists and

(sadly) biophysicists. If a theory assuming high barriers of

known ® xed size is used to describe a system with low

barriers, or with barriers of variable size, it is unlikely to ® t

the data. If such a theory is forced to ® t the data, as will

happen in some cases given the unhappy reality of some

human behaviours, only worse will happen. Either the

parameters will be forced to vary in an arbitrary way,

without obvious meaning, or data showing mis® ts will be

suppressed, or not measured at all, or even manipulated. In

any case, the search for understanding will be delayed or

blocked by the misuse of mathematics.

Approximate exponential expressions like (18) were

originally derived and used [133,135] before computers

were available to evaluate de® nite integrals. Now, that they

are, now that Gaussian (e.g. Gauss ± Hermite, e.g. p. 217 of

[145]) quadrature methods are well known that require only

a handful of evaluations of the integrand, it is hardly more

di� cult to evaluate the exact expression than the approx-

imate.

Further thought shows that the exact expression is less

useful than it seems, however, because it is likely to be used

experimentally with the (sometimes tacit) assumption that

barriers are of a de® nite size that does not change during the

experiments of interest. In most experimental situations,

however, shielding is involved in determining the barrier

height, and experimental conditions change the shielding;

/ (x) and / m ax are likely to change as experimental

conditions are changed, e.g. as solutions or transmembrane

potentials are changed, or drugs are applied.

Few papers using transition-state theory, or rate-

constant models for that matter, allow for this eŒect,

which can have large consequences because ¯ ux is usually

an exponential function of / (x). As far as I am aware, no

paper using barrier models of channels has ever calculated

the height of the barrier and allowed that height to vary

with ionic concentration, although in the vast literature of

channels, something may easily have escaped my attention.

11. Rate theory in channo logy

Much of the previous discussion is made moot in the

particular case of channels, because unfortunately, the

version of rate theory used in channology [146 ± 148] does

not use the expressions (14), (17) or (18) found in the

physical literature (e.g. [131,133]). Rather, the traditional

prefactor used in barrier theories of channels is

Traditional prefactor 5 (R T /hN A ) . (19)

Using the traditional prefactor produces qualitative

confusion because the resulting physical meaning of the

rate expression for ¯ ux is inappropriate. The traditional

prefactor does not include a parameter to describe

frictional interactions.

It is silly to describe ¯ ux in a pore of a protein, or an

ionic solution, with an equation that does not include

friction. Solutions and proteins are `condensed phases’

because they contain little empty space. Ions cannot move

in such system without hitting other molecules every few

femtoseconds, as was apparent some time ago [149 ± 151].

Friction is involved in every atomic and macroscopic ¯ ux

[152], on the femtosecond time scale of atomic motion

[37,153], as well as on the micro- to milliseconds

biological time scale. The smaller the system the more

important is friction [154,155], and the atomic interactions

that produce the friction. Proteins and channels are very

small.

Without a parameter for friction, traditional rate theory

cannot predict the dependence of ¯ ux on friction found in

nearly every experiment measuring current ¯ ow in con-

densed phases, at least the dependence cannot be predicted

in any natural way [156].

The quantitative problems produced by using the

traditional prefactor are even more serious than the

qualitative ones. Using the traditional prefactor produces

numerical nonsense because the resulting errors in the

prediction of the ¯ ux are a factor of about 2 ´ 10
4

(see

appendix of [27]; see also [99,157]).

The word `nonsense’ in the previous paragraph may

seem harsh, but the numerical error in the prefactor is so

large, and has had such consequences on the history of

channology, that it seems necessary. Traditional rate

models found in hundreds of papers in the channel

literature Ð following [146,148], see [47] for references Ð

cannot predict currents more than 0.1 pA if they use the

correct prefactor. Most currents recorded from open

channels are larger than 1 pA, usually much larger (say

100 pA). Thus, the model customarily used to describe

open channels for some 20 years is not able to predict

currents within a factor of 100 or 1000 of those actually

measured, if that model is used in the form universally

accepted by physical scientists.

The traditional prefactor probably was originally used to

describe enzymes and channels because of a misunder-

standing of the role of entropy more than a misunder-

standing of the role of friction (compare [37,129,135] with

[146 ± 148]): using the traditional prefactor is equivalent to

ignoring the entropy change accompanying ion movement

from a three-dimensional bath to a (nearly) one-dimen-

sional channel (see pp. 1147 ± 1157 of [37]). In any case,

whatever the historical cause of the misunderstanding, once

the incorrect functional form, with incorrect physical

meaning and wildly incorrect numerical value is used for

the prefactor, the real issues in ion permeation, the

physical, chemical and biological basis of channel function,
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are hidden and cannot even be addressed. Little worthwhile

can follow such qualitative and quantitative errors.

12. Rate constants and barrier heights depend on concen-

tration

Another more subtle di� culty arises when permeation, or

other processes involving ions or charged species, is

described by an equation (e.g. equation (9) or a chemical

reaction, e.g. equation (10) involving rate constants.] Rate

constants are historically de® ned as independent of

concentration. The entire concentration dependence of ¯ ux

is supposed to be described explicitly by the concentration

variables in equation (9); in a way, that is what the law of

mass action means. We have already seen the tension

between this idea, and the ideas of shielding embedded in

the Gouy ± Chapman/Debye ± HuÈ ckel/Poisson ± Boltzmann

treatments of potential barriers. Those treatments imply

that concentration changes potential barriers and thus rate

constants.

Potential barriers have profound eŒects on rate con-

stants. The rate of a reaction clearly must depend on the

height of the potential barrier over which reactants move,

indeed, we have seen that it depends exponentially. Thus,

any variable that changes the barrier height must change

the rate constant. In particular, if the potential barrier

arises from the structural charge of a protein (as it does, at

least in large measure, in channels, proteins and enzymes,

as well as a wide range of other chemical reactions),

anything that shields the structural charge of the protein

will modify the potential barrier and thus the ¯ ux.

Changing the concentration of reactant, or of other

charged species, will certainly change the shielding of ® xed

charge. Indeed, in the visual view of ionic solutions,

captured in the Debye ± HuÈ ckel, Gouy ± Chapman and

Poisson Boltzmann theories [37,38,40 ± 44,158 ± 162],

shielding phenomena are dominant determinants of nearly

all the properties of ionic solutions, and changes in

concentration of mobile ions is the usual way shielding is

changed.

Thus, one must inevitably conclude that changing the

concentration of reactants or other charged species will

change the potential barrier across which those reactants

move. The rate constant must then change. In other

words, the rate constant must be a function of concentra-

tion. The consequences of this statement are large because

the rate constant has never been allowed to vary with

concentration in the rate models of channology or

biochemistry I know of; indeed, it is not usually allowed

to vary with concentration in rate models in physical

chemistry.

Unfortunately, approximations do not permit easy

escape from this trap: the dependence of potential height

on the concentration of reactant and ionic species is more

likely to be exponential than weak (although of course in

certain cases it can be made to be weak by using special

solutions which buŒer ionic strength, for example). The

dependence of ¯ ux and rate constant on barrier height is in

fact usually exponential. We conclude then that even when

barriers are high, barrier models must recompute the

barrier height in each experimental condition of interest,

because the barrier height is likely to change as experi-

mental conditions are changed. Indeed, changing experi-

mental conditions is likely to have an exponential eŒect on

rate constants.

This issue is stressed here not because I enjoy being

awkward or critical, but because it is a key to under-

standing channels, at least in my opinion, and it may be a

key to understanding other proteins and biological systems

as well. The success of the PNP equations in ® tting large

amounts of data measured over wide ranges of ionic

strength and transmembrane potentials occurs precisely

because the potential pro® les in that theory vary widely as

concentration and transmembrane potentials are varied in

typical experiments.

We must conclude then that traditional rate models of

ion movement through channels suŒer from several

problems: they use the wrong formulas for ¯ ux; they

assume barriers independent of concentration; they assume

high barriers where none need exist. It is no wonder, then,

that barrier models are unable to ® t experimental data

taken under a wide range of conditions.

13. Rate theory in biophysical chemistry

It seems likely that similar errors occur in many areas of

biophysical chemistry and molecular biology besides

channology: transition states are analysed with the

incorrect prefactor in leading texts, (e.g. see p. 188 of

[47]), and friction is never mentioned, even in qualitative

discussions (see pp. 131 ± 132 of [1], pp. 38 ± 39 of [163]), as

far as I can tell. Since the eŒects of ion concentration on

barrier height are also absent from these discussions, it

seems likely that some revision in traditional enzyme

kinetics will be necessary if the widely held goal of

molecular and structural biology Ð of linking enzyme

structure and function Ð is to be reached.

We try to avoid these di� culties by using the combina-

tion of equations (3) and (15) to describe the current

through open channels. In this way, we combine a

description of the trajectories of diŒusing particles with a

self-consistent calculation of the mean electric ® eld. We call

these the Poisson ± Nernst ± Planck or PNP equations to

emphasize the importance of the electric ® eld, although

they have been known in physics as the drift diŒusion

equations for some time.

The PNP equations are deceptively simple both in their

physics and in their form. Physically, they are mean ® eld
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equations like those of other mean ® eld theories and they

depend on the same assumptions. But the PNP equations

diŒer from many mean ® eld theories because they explicitly

and self-consistently allow ¯ ux. This is very diŒerent from

Debye ± HuÈ ckel (etc.) theories which are con® ned to

equilibrium, where no ¯ ux ¯ ows.

The PNP equations describe the rich behaviour of

semiconductor devices, such as switches, ampli® ers and

memory elements, for example, even though they look like

ordinary diŒerential equations with much simpler beha-

viour. The parameters of the PNP equations do not have to

be adjusted to describe a transistor behaving as each of

these devices. Only the boundary conditions, not the

diŒerential equation or its parameters, need to be changed

to convert the device from the linear ampli® er to a

logarithmic ampli® er or even a nonlinear switch.

The PNP equations are deceptively simple in this way,

giving a rich repertoire of well-determined behaviour from

a simple pair of equations. They are deceptive in other ways

as well, because they cannot be integrated by the normal

numerical recipes widely available in packaged programs.

Those integration schemes do not work on these equations,

even approximately, for fundamental reasons that are well

understood mathematically [121]. Other methods work

well, however.

14. Solving the PNP equations: the Gummel iteration

Integration of the PNP equations is easy if a particular

method called the Gummel iteration, or its equivalent, is

used. The Gummel iteration was discovered some decades

ago by the semiconductor community (and was discovered

in my lab independently by Duan Chen, some years later)

and is a general method for producing a self-consistent

solution of coupled equations closely related to the self-

consistent ® eld methods used in quantum mechanics to

compute orbitals.

The Gummel iteration starts with an initial guess of the

potential pro® le, often just a linear function of position

connecting the boundary values of potential. That initial

guess of the potential pro® le is substituted into the right-

hand side of an integrated version of the Nernst ± Planck

equation (7). This substitution determines the congruent

initial guess of the concentration pro® le C j (x; initial guess)

and that guess is substituted in the right-hand side of

Poisson’s equation (3), which is then trivially solved. The

resulting estimate of potential / (x; ® rst iterate) identically

satis® es the boundary conditions, as do all other estimates

of the potential pro® le. The potential pro® le / (x; ® rst

iterate) is substituted into the integrated Nernst ± Planck

equation (7) and so determines a ® rst-iterate of concentra-

tion pro® les C j (x; ® rst iterate). These two iterates are

consistent with each other and the boundary conditions.

The two ® rst-iterates / (x; ® rst iterate) and C j (x; ® rst

iterate) are then substituted into the right-hand side of

Poisson’s equation (3), which is again solved, now to

determine the second-iterate / (x; second iterate), a better

approximation to the potential pro® le. The second-iterate

of potential determines a second-iterate of concentration

by equation (7); together, the two second-iterates deter-

mine the third-iterate of potential, and so on for 10

iterations, (which is more than enough for good conver-

gence in almost all cases), that take only millisceonds on a

typical personal computer. Once the iteration has con-

verged, both the concentration and potential pro® le are

known (for that set of concentrations and transmembrane

potential, and other parameters) and so the ¯ ux and

current can be determined from the output equations (15).

In this way, the PNP equations can be easily solved to

predict the current voltage relations observed in experi-

ments.

15. Comparison with experiments

The PNP equations form a map between the structure of

the channel protein, represented crudely by the function

P(x) and the current voltage curves measured experimen-

tally. DiŒerent types of channels have diŒerent pores

made with linings of diŒerent charge. A useful and

productive working hypothesis assumes that the only

diŒerence between diŒerent types of open channels is their

diŒerent distributions of ® xed charge P i (x), where the

subscript i identi® es the type of channel protein, e.g. a

voltage activated Na
+

channel, a stretch activated channel

and so on [3,5,10 ± 12]. Of course, the working hypothesis

cannot always be true: speci® c chemical interactions, not

captured in this simple mean ® eld theory, will no doubt be

important in ways we do not yet understand. Nonetheless,

as we write these words, the current voltage relations of

some seven types of channels in a wide range of solutions

can be predicted by simple distributions of ® xed charge

P i (x) [27 ± 30,164]. Speci® c chemical interactions appear

only when we consider solutions containing ions of

diŒerent types [21,164] and even then remarkably little

chemical information is needed: several types of ions seem

to have an excess chemical potential which can be

characterized by a single number, independent of con-

centration and potential.

The data from the porin channels are of particular interest

because the locations of the atoms of that protein are known

by X-ray crystallography [22,23,165] and amazingly even

our ® rst analysis using PNP recovers the correct value of

charge when a mutation is made in the protein [30].

One particular kind of channel (from cardiac muscle) has

been the object of extensive experimentation. This channel

also appears to be strikingly simple: a ® xed charge

Pca rdia c(x) = P0 independent of position, with P0 equal to

~ le, predicts the currents measured in solutions of all the
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monovalent cations (i.e. Li
+

, Na
+

, K
+

, Rb
+

, Cs
+

) from

20 mM to 2 M of one type of ion, and potentials in the

range 6 150 mV, assuming each ion has a diŒerent

diŒusion coe� cient [93]. The value of the diŒusion

coe� cients are estimated by ® tting theoretical predictions

to the experimental data. Typically, the diŒusion coe� -

cients are some 10 ´ less than in free solution.

This result surprised us considerably, because it shows

that the same permanent charge and structural parameters

(e.g. diameter and length) can ® t an enormous range of

data, implying that the channel is much the same whether

an ion with a diameter of around 1.4AÊ (Li
+

) or 3.9AÊ (Cs
+

)

® lls the channel’ s pore. Of course, what the data really say

is that any diŒerence in channel permeation that depends

on the type or diameter of the ion can be described as a

diŒusion coe� cient, but the naõ È ve interpretation of the

result is striking and cannot be ignored: channels may be

much more rigid (as measured by the average value of their

properties that determine ¯ ux on the biological time scale)

than any of us have expected.

16. Selectivity: properties in mixtures of ions

The experiments just described were performed in pure

solutions of the diŒerent types of ions, e.g. 20 mM NaCl on

one side of the channel with 200 mM Na
+

on the other, or

50 mM CsCl on one side and 500 mM CsCl on the other. A

more common (but complex) way to study the ability of the

channel to select between ions is to make mixtures of ions

and apply them to both sides of the channel, e.g. 20 mM

NaCl and 20 mM CsCl on one side, and 200 mM NaCl and

200 mM CsCl on the other. The ability of channels to select

between ions is one of their most important and

characteristic properties so experiments of this type have

received much attention, with probably hundreds of papers

being written in the last few years on the diŒerent selectivity

of diŒerent channels under varying conditions.

The properties of channels in such mixtures can be quite

complex, as can the properties of mixed solutions in the

bulk [44,166], and this is not the place to discuss them in

detail. Su� ce it to say that the crucial experimental

property called the anomalous mole fraction eŒect (which

is called the mixed alkali eŒect in synthetic crystalline

channels [167] can be easily be explained by the PNP model

if a bit of localized chemical binding is introduced [20].

Interestingly, the properties of L-type calcium channels,

which have been the subject of a considerable literature,

can be explained even without chemical binding, provided

the dependence of ® xed charge on the pH near the charged

group is included in the theory [21]. In one case, where a

large data set is available, all the current voltage curves

from all mixtures of Li
+

, Na
+

, K
+

, Rb
+

and Cs
+

can be

explained simply by including a small excess energy for Li
+

and Na
+

which arises from dehydration/resolvation as the

ion enters the channel [93]. These excess chemical potentials

are independent of concentration or potential.

17. Generalizations

The striking success of such a simple model as PNP

perplexed us for many years, until we considered its bases,

physical, chemical, mathematical and biological.

Physically, the model succeeds because the shape of the

potential pro® le is so variable, re¯ ecting the diŒerent

shielding of ® xed charge in diŒerent conditions [26].

Chemically, the insensitvity of the properties of the channel

to details of the atomic structure of the channel (at least in

the channels and properties studied up to now) arises

probably because of a mathematical property of the PNP

equations. These equations show that the potential pro® le

is described (roughly speaking) by two integrations of the

® xed charge pro® le. The current through the channel

depends in turn on the integral of the potential pro® le,

meaning that the ® xed charge pro® le is integrated three

times before it determines the variable that is experimen-

tally measured. This is not a proof by any means that the

experimental current is an insensitive function of ® xed

charge, but it is a plausible physical argument showing that

some or many details of the charge pro® le are not revealed

in the experimental parameters we measure. (If the ® xed

charge pro® le has regions of opposite sign, depletion layers

are likely to occur that can dominate the conductance of

the channel, because their high resistance is in series with

the resistance of the rest of the channel [20]. In this case,

and perhaps others, details of the charge pro ® le can make a

big diŒerence.)

Biologically, such a simple model works because the

® xed charge density of channels is very large (1 ® xed charge

lining the wall of a selectivity ® lter 7AÊ in diameter and 10AÊ

long must be neutralized on the average by a concentration

of mobile charge in the pore of around 5 M!) implying that

interactions of permeating ions with the mean ® eld are

much greater than with each other [50,53].

18. Prospects

The prospects for future development seem promising.

Working with channels, we clearly must push the PNP

theory harder and further, seeking its limits as it is used to

interpret richer and richer selectivity data, e.g. including

divalent ions. Working with molecular biologists Ð the

incredibly successful molecular anatomists of our age Ð we

must use a three-dimensional version of PNP to confront

the reality of protein structure. Working with physical

chemists, we must incorporate modern ideas of equilibrium

and nonequilibrium selectivity (e.g. of the MSA theory)

into the equations. Working with physicists, we must

incorporate the Gummel iteration of computational elec-
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tronics (used in simulations on femtosecond and picometer

scales) into simulations of proteins and ionic solutions on

similar scales. Working with physiologists, we must try to

explain proteins that can transport an ion against a

gradient of its own electrochemical potential, using the

gradient of another ion as an energy source. Perhaps our

guess [25,168] that such mediated transporters use

branched channels, much as bipolar transistors do, will

become a productive hypothesis.

Finally, working with our imagination, we must seek a

physically speci® c and anatomically justi® ed model of

gating [6], so the entire range of properties of ionic channels

can become the workground of physicists and physical

chemists. Perhaps our guess [25,168] that voltage/chemical

sensitive channels used branched channels to amplify their

sensitivity, much as ® eld eŒect transistors do, will become a

productive hypothesis.

19. Conclusion

It seems worthwhile, as well as necessary, to compute,

rather than assume the electric ® eld when studying

channels, and probably proteins and ionic solutions as

well, taking care to satisfy Poisson’ s equation and spatially

nonuniform boundary conditions. Once the shape of the

electric ® eld is studied in biology, bio- and electro-

chemistry in this way, perhaps its role will prove as

important as in semiconductors. Certainly, examining the

role of the electric ® eld will keep us busy for sometime, and

hopefully will help us understand and control biological

systems of immense medical and thus personal signi ® cance

to us all.
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Appendix: Guide to the literature

This paper is likely to be read by many who are not familiar

with the literature of channels and so I include a brief guide

to the literature, following the most welcome suggestion of

one of the reviewers.

The properties of channels are described in a number of

recent books, e.g. [5,10 ± 12, 147] and [147] is the standard

introductory treatment. Most papers on ionic channels are

published in Biophysical Journa l, the Journa l of Physiology

(London), the Journa l of General Physiology, and some in

Neuron, and most workers in the ® eld attend the annual

meeting of the USA Biophysical Society (www.biophysic-

s.org/biophys), where several thousand papers and/or

posters are presented on channels every year.

When reading these papers on channels, it is important

to determine if the measurements being made are of single

channel molecules or of ensembles of channels. In the

former case, properties of the open channel are easily

estimated from the height of the single (i.e. open) channel

currents, and the properties of gatings can be estimated

from the statistics of the time the channel spends in its open

and closed states. When ensembles are measured, it is often

di� cult to distinguish gating and open channel properties.
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Indeed, it is often di� cult to be sure how many types of

channels contribute to the observed currents.

Interpreting the meaning of papers on channels requires

an understanding of the standard paradigms of the ® eld.

Fortunately, [147] provides a well written, readily under-

stood summary of these paradigms. Reference [1] and its

more recent extract [13] provide wonderful introductions to

molecular biology. References [14,15] provide very well

done descriptions of experimental techniques, often in

enough detail that the original literature need not be

consulted.

Unfortunately, the interpretations of mechanism found

in many of these references depend on a misuse of Eyring

rate theory, in my opinion, as I have discussed and

documented above and elsewhere (e.g. [25,26,99,157 ,

169,170 ]). Thus, conclusions concerning mechanism found

in these references must be viewed as conjectures, to be re-

examined with models of ion permeation based on

generally accepted principles of ion movement in con-

densed phases. I do not know how many of these

mechanisms will survive such re-examination and am eager

to ® nd out.

B. Eisenberg466


