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Vignette

APPLICATIONS OF PHYSICAL CHEMISTRY: A BIOLOGICAL EXAMPLE

Bob Eisenberg
Dept. of Molecular Biophysics and Physiology
Rush Medical Center
Chicago IL

Physical Chemistry Applied
to Biology

Biologists try to understand how complicated structures,
built by evolution, follow physical laws to produce their
natural functions. The model of electrolyie solutions we
studied in Section 26.5 provides much of the basis for this
understanding because much of life occurs in salt solution.

Here we consider proteins called ionic channels that are
embedded in the membranes constituting the “walls™ of
cells. Channel proteins form “holes in the wall” lined by
fixed charges that control many of the properties of chan-
nels. Proteins are such important components of most bio-
logical systems that understanding the physical laws gov-
erning their behavior is essential « understanding the
physical basis of life.

Channels are probably the simplest protein structures of
general biological importance. Channels are responsible
for signaling in the nervous system, for coordination of
muscle contraction, inciuding the pump we know as the
heart muscle. Channels are intimately involved in the
secretion of urine and hormones and most other transport
processes in cells; they are patural targets that viruses
attack and use to enter cells.

Channels conduct a definite amount of current, once
they are open, and this single channel current can be eas-
ily recorded by the patch clamp method introduced by
Sakmann and Neher (1995). When the solutions on either
side of the channel are kept at definite concentrations, and
the electrical potenuial between those two solutions is
maintained at a fixed value, the mean ion current carmried
through the open channel is remarkably constant and
reproducible. Once the channel is open, the instantaneous
current recorded shows substantial variance, but the mean
current does not drift at all, on the time scale relevant to
biology, tonger than say 10 ysec. The mean curent is the
same from opening to opening, from channel to channel,
from day to day, from animal to animal, and from labora-
tory to laboratory, within the error of measurement, with
a precision more commonly found in measurements of
physical than biological systems. It is not trivial 1o main-
tain the concentration of ions fixed, or the electrical
potential fixed near a channel, when a large current flows
through 1t. The biological celj must use elaborate
machines 1o supply matter and charge 10 control the envi-

ronment around channels, e.g., 1o maintain boundary con-
ditions of constant concentration. Indeed, in a sedentary
human being—who is reading this book, for example—a
substantial fraction of all metabolism is used (in the nerve
cells of the brain) to maintain these boundary conditions.
The “voltage clamp” or “patch clamp” wus designed to
mimic properties of the biological cells that sustain chan-
nels, while allowing precise experimental measurement of
current flow.

Channels carrying current must be studied as the non-
equilibrium systems they are, with tools described in Chap-
ters 27-31. Steady-state flux can cross boundanes of the
cell only if its boundary conditions are (spatially) nonuni-
form. This simple statement rules out those modets of chan-
nels and biochemical sysiems that assume spatially vniform
boundary conditions and so do not allow steady flux.

Channels can also be viewed as proteins that modify and
control the flow of current, [ike devices of our electronic
technology. Current is driven through channels by external
saurces; it is driven through transistors and other semicon-
ductor devices by power supplies (Lundstrom, 1992).

Channel currents are constant in the sense that the mean
current through a particular type of open channel, under a
particular set of conditions, does not vary with time (on the
biological time scale). The average amount of current that
flows through a channel varies according to the concentra-
tion, electrical potential, and type of permeating ion. as
well as the type of channel. Channels are characterized by
their curves that display the dependence of their current /
on electrical potential V, usually in the range of 150 mV.
Concentrations of ions in cells or in sea water, typically in
the range between 20 millimolar (mM} and 2 M, change by
about 300 mM when channel currents flow. Changes of
potential are typically of order RT/F or more.

The amplitude of the current through a channel depends
on the type of channei—and hence the protein—through
which the ions flow. In some channel proteins, just one
type of ion, typically potassium, sodium, or calcium. car-
ries the current. In other types of channels, any cation can
carry the current; in still others, any anion will do. The
selectivity of channels is of such great biological
importance that many proteins carry names that identify
their channels: Na-channels are proteins that conduct
mostly Na* ions; K-channels are protemns that conduct
mostly K’ ions. Channel proteins are called by those
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common names (to the confusion of students) even if they
are quite different in other respects, with quite different
structures and functions.

Selectivity is usually studied indirectly by measuring
current flow as a function of voltage, in various solutions.
The picoamperes of current associated with chemical
fluxes can be measured, e.g., as carried by radioactive trac-
ers, as they flow through one channel molecule using the
patch clamp techniques that have made channology a
molecular science.

Imagine then that we have a complete set of measure-
ments of current through a potassium channel, in a wide
range of solutions and as a function of a wide range of
potentials. How do we interpret these results? How can we
analyze and then predict these [ and V curves in terms of
the structure and properties of the ionic channel itself? Can
we develop a theory to predict the properties of the hole in
the wall, from the structure of the protein that forms the
hole?

A mature theory of an open channel would start with
the three-dimensional structure of the channel protein,
combining that information with the concentrations of ions
and the electrical potential maintained experimentally in
the baths to predict the current through the channel, per-
haps with only the friction (i.e., diffusion) coefficients of
the permeant ions as parameters.

No such theory 1s available yet. The main impediments
are the problems involved in solving the three-dimensional
field and transport equations for given macroscopic bound-
ary conditions. Consequently, we resort to a common tac-
tic of science: We average away some of the three-
dimensional detail, hoping that a one-dimensional theory
will retain enough of the essential behavior to predict the
currents observed.

A typical channel protein might be 40 A long and per-
haps even 40 A in diameter. The protein is embedded in
a lipid bilayer some 30 A thick. The pore of the channel
protein 1s much smaller than the protein, often not more
than 7 A in diameter. The most important part of the pore
is the narrow portion (more or less a cylinder 10 A long
and 7 A in diameter), the “selectivity filter” that controls
current flow. The total electrical charge of the charged
and polar residues of the protein that line the walls of the
selectivity filter is of the order of 1 e. Because the sys-
tem is approximately (but not exactly, as discussed later)
electrically neutral, the number of mobile ions of oppo-
site charge in the pore (averaged over a time of
microseconds, for example) should be roughly 1 as well,
giving a concentration of some 5 m, much higher indeed
than biological electrolyte solutions surrounding the
channel.

When the density of electrical charge is very large,
like this, one might naively expect electrical interactions
with the mean field to dominate, and theoretical work on
the electrochemistry of highly charged surfaces supports

this view. Thus, we will try a simple mean field theory,
very much in the spirit of the Debye-Hiickel theory of
ionic solutions, or the Gouy—Chapman theory of inter-
faces, or the Poisson—-Boltzmann theory of proteins, c.f,
Section 26.5. But these theories must be generalized to
allow current flow. Mean field theories depend on
approximations that are hard to evaluate a priori and that
cannot be true for all conditions and all systems and so it
is necessary to check them with real data. The theory
begins with Poisson’s equation, Eq.26.61, which
describes how the average charge produces the average
electrical potential ¢(x) (units: volts), where x is the loca-
tion along the channel axis, or more precisely, along its
reaction coordinate. Here we assume that all quantities
are averaged over time for the duration of the briefest
current we can measure, namely a few gsec. We consider
only the dominant charges, namely the ions of species j
and charge z;F (units: coulombs mole™!) and the perma-
nent fixed structural charges of the protein P(x) (units:
coulombs cm™!) that line the wall of the channel. The
mobile species j are Na*, K*, Cl-, and/or Ca** in most
biological problems.

dl
pore€0 Z—x?:ei’uweizjcj(x).

e M

J

Here €, €0 is the product of the dielectric constant of the
channel’s pore and the permittivity of free space (units:
farads cm™! or cou volt™! cm™! or amp sec volt! cm™!).

~ We assume that the Poisson equation is true on all
scales—that is to say, the Poisson equation can be used on
any length or time scale provided we average the potential
(on the left hand side) and the charge (on the right hand
side) the same way. This assumption provides a good way
to start an analysis of a novel physical system, like an open
ionic channel. How reasonable the assumption is theoreti-
cally can be seen by considering the alternative: What
would happen if the average potential did not correspond
to potential of the average charge: What would sustain the
extra forces, where would the extra energy come from to
do that?

Mobile ions in the channel (that contribute so impor-
tantly to the charge on the right hand side of Eq. 1) move
and carry current and so we need an equation to describe
how their mean flux J; (units: concentration x cm-2sec’!)
varies with potential and concentration. The simplest
relation between mean flux and potental and concentra-
tion (units: cm™3) is the diffusion equation (see
Egs. 20.15 and 20.16 and Table 28.1), which is written
here in its form as the Nernst-Planck equation, using the
Einstein relation (see Eq. 30.92) between mobility and
diffusion coefficient D; (units: cm? sec!). The
Nemst-Planck equation is simply the diffusion equation,
Eq. 20.7, for charged particles:
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The electrochemical potential g{(x) of ion species j is
discussed in Chapter 26, uix) = z;F ¢(x) + RT In Cj(x).
The current / (amp) through a channel of radius r is simply
I=7mr?-Z;2;% J;, see Section 29.6. Note that in this sim-
ple first treatment ions behave ideally, with no excess
chemical potential, and thus have the same activity coeffi-
cient and standard chemical potential in the bulk solu-
tion and in the channel (see Chapters 25 and 26, e.g.,
Egs. 26.7-26.12). It is extraordinary that a theory with
such an unlikely assumption fits so many data.

Simplified boundary conditions specify both (1) the
concentrations of each species C;(L) and C{R) in the solu-
tions outside the channel and also (2) the potential differ-
ence Vg (inside — outside) maintained by the voltage
clamp apparatus. The original publications (Eisenberg,
1996) describe the more realistic (and complex) boundary
conditions that are needed to fit experimental data.

The Nernst—Planck equations can be integrated only
once analytically, using integrating factors, to give an
explicit expression for the concentrations C{x) as func-
tions of the boundary conditions and the entire potential
profile across a channel ®(x) = ®(x)%/RT of length d:

d
Cj(L)-e:j[‘la/”lwd_d’(X)]_I 6210({)d§
Cj(l): = x
J- sV gL
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Q
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+
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This expression is less helpful than it seems because the
potential profile ®(x) is not known. The profile of poten-
tial can only be determined by solving the Poisson equa-
tion (1). But the Poisson equation contains the concentra-
tion of mobile charges C{x), and that concentration is not
small. The concentration of counter ions (ions with charge
opposite to that of the nearby fixed charge of the channel
protein) is always of the same order as the fixed charge,
because the combined system of channel wall and channel
pore is fairly close 10 electrically neutral. Thus, the Pois-
son equation cannot be solved until the Nemst—Planck
equation is solved. In other words, Egs. 1 and 2 or Eqgs. 1
and 3 must be solved simultaneously; the Poisson and
Nermnst-Planck equations form a coupled system.

The system of Poisson and Nernst-Planck equations is
called the PNP equations in channology or the drift-
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diffusion equations in solid state physics (where they are
universally used to describe current flow in semiconductor
devices such as transistors). Note that neither the channel’s
pore, nor the channel plus surrounding baths, nor for that
matter, a transistor, is electrically neutral. The number of
positive charges does not precisely equal the number of
negative charges in any region. The potential profile in the
channel’s pore ®(x) could not vary (i.e., ¢ would be spa-
tually uniform) and even the transmembrane potential
Vapptiea could not exist if the system were strictly electri-
cally neutral. Nonetheless, electrical neutrality 1s approxi-
mately satisfied and the total fixed charge lining the chan-
nel wall and the total mobile charge within the channel are
within say 20% of each other.

Another integrated form of the Nemst-Planck equa-
tions 1s helpful, particularly in making links to work on
chemical reactions, because it can either be derived from
the Nemst—Planck equations or from the stochastic theory
of chemical reactions (Eisenberg et al., 1995). In fact, the
integrated expression for flux J; can be written as a form of
the law of mass action, allowing a ngorous derivation of
the forward and backwards rate constants for flux over any
shape potenual barrier ¢(x). The integrated flux equation
1S

Unidirectional Influx
C;(R)
I rd .
J'o exp[zj¢(§)] dl

4)

Unidirectional Efflux

7 C; (Lyexp(z;Vypn) _

J rd
[Cewtz;ona

j=

The flux is best written as the sum of two unidirectional
fluxes: As we shall see, ecach component of flux has a much
simpler physical meaning and dependence on experimen-
tal variables than the sum.

It 15 important to note that the flux depends on the inte-
gral of the potential profile in the integrated Nernst-Planck
Eq. 4, and the potential depends (speaking roughly) on the
second integral of the fixed charge distribution, according
to the Poisson Eq. 1. The fixed charge profile contains
most of the information concerning the structure of the
protein. The current through the channel has a highly inte-
grated (and thus smoothed) dependence on fixed charge
and so is expected to be rather independent of the details
of charge distribution, at least if the charge distribution has
one sign and never gets too close to zero.

Each unidirectional flux is carried by ions from a source
concentration on the cis side (say on the left side of the
channel) to the rrans side (here the right side). when the
trans side 1s held to zero concentration (even in the pres-
ence of flux) by experimental apparatus or by the metabo-
lism of a biological cell. The rrans side is then made into
an absorbing boundary. by the apparatus or cell, if we use
the words of stochastic processes and probability theory.
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Each unidirectional flux can be written neatly, without fur-
ther approximation, as the product of a “source” concen-
tration; “diffusion velocity,” (D/d), sometimes called “the
permeability” in the channology literature; and the appro-
priate conditional probability,

J; =d(k,;C,;(L)~k,C; (R)]

Unidirectional Efflux Unddirectional Influx

= C (L) |- |Prob{RIL)-C, (R) —+ Prob{R|L}.

N
Diffusion  Conditional
Probabiliry

Source
Concentration Velocity

(5)

The same systemn can be written (for any shape of potential
profile) as a chemical reaction linking ions on the Left and
on the Right side of the channel, without making any fur-
ther approximations.

ks

R

L «
ke

ky =k{R|L}=(D,/d?) Prob{R|L}

kbEk{LlR}:(Dj/(ﬂ)Pmb{L!R} (6)

Prob{R | L} is conditional probability that an ion starting a
trajectory on the Left side of the channel (with right-going
velocity) eventually appears on the Right, when a reflect-
ing boundary condition is imposed at the left boundary and
an absorbing boundary condition is imposed on the right
boundary. This probability is essentially the same as the
coefficient specifying the transmission probability that
appears in Eq. 31.21.

The trajectories can be described by other statistics
besides conditional probabilities. The time an ion takes to
go from L to R is a statistic called T{RlL}, the (condi-
tional) first passage time; the number of {R lL} trajectories
within the channel is the conditional contents of the chan-
nel [{R I L}], the unidirectional flux J{R [L} is the flux car-
ried by the {R ] L} trajectories, and not surprisingly,

_ [([RIL]]
T(R|L)

J{R|L} ™

Equations for unconditional probabilities, passage times,
or total fluxes are awkward to write, at best, because they
often contain infinite quantities (that are difficult to com-
pute) even in systems that are entirely finite. For example,
no simple relation exists between the (total) contents of the
channel, the net flux, and the mean first passage time of all
ions. Simple relations exist between these variables only if
the trajectories are first separated (i.e., “conditioned”) into
the subsets {R ‘L} or (LIR}.

The conditional probabilities, and other statistics of
equations, can be determined numerically (Barcilon et al,,
1993; Elber et al., 1993) at various resolutions. For exam-

ple, they can be determined by computing a random walk,
or by simulating a full or reduced Langevin equation (see
Section 29.3) or from simulations of molecular and atomic
dynamics.

When friction is large (as in channels on the biological
time scale) and simple (characterized by a single number
D; for each ionic species j), the statistics can be determined
analytically. The probabilistic analysis reduces then to
studying the Langevin equation of Section 29.3 and the
conditional probabilities satisfy a Fokker—Planck partial
differential equation. In that case, the rate constant
k {RIL} and conditional probability Prob{R IL} (of the
integrated Nemst—Planck equation and chemical reaction)
can be written exactly for any shape of potential barrier
@(x) (Barcilon et al., 1993),

D ponirIL
A{R]L}:;—z— rob{ R|L}

D; exp{z; F V! RT)

FERE N B
dJ'O explz,;@(xYRT] dx

In this way, permeation can be described exacily both as a
chemical reaction and as stochastic transport over a poten-
tial barrier of any shape. Permeation through a channel can
be described as a reaction along a coordinate more pre-
cisely, less metaphorically, than chemical changes can be in
many more traditional situations.

The PNP Equations

The PNP equations are deceptively simple both in their
physics and in their form. Physically, they are mean—field
equations like those of other mean field theories and they
depend on the same assumptions. But the PNP equations
differ from many mean field theories because they explic-
itly and self-consistently allow flux. This is very different
from theories that are confined to equilibrium, where no
flux flows.

Systems at equilibrium have much simpler behavior
than nonequilibrium systems; in particular, systems at
equilibrium do not have the behaviors characteristic of
(what engineers call) devices, the motors of our technol-
ogy that we use every day to help us with our lives. For
example, an automobile engine without gasoline is not a
motor; it cannot move. A transistor at equilibrium (without
current flowing into its terminals) is not a device; it cannot
switch, amplify, or perform logic functions. In fact, one
could measure and understand every physical property of 2
transistor at equilibrium and still be unaware that away
from equilibrium it can be a switch, amplifier, memory ele-
ment, or indeed a part of an integrated circuit that remem-
bers a number or name.

The PNP equations describe the rich behavior of semi-
conductor devices, such as switches, amplifiers, and menm-




ory elements, for example, even though they look like (lin-
ear) differential equations that yield only much more ordi-
nary behavior. The equations are not linear, however, and
in fact describe much richer behavior. Only the potentials
at the terminals of a transistor need to be changed to con-
vert the device from a linear amplifier to a logarithmic
amplifier or even a nonlinear switch. The theory has the
same properties as the physical system. Only the boundary
values have 10 be adjusted to give this richness of behavior.
Neither the differential equation nor its parameters have to
be changed in any way.

The PNP equations are deceptive in this way, giving a
rich repertoire of well-determined behavior from a simple
pair of equations. They are deceptive in other ways as well,
because they cannot be integrated by the normal numerical
recipes widely available in packaged programs. Those
integration schemes do not work on these equations, even
approximately, for fundamental reasons that are well
understood mathematically.

Solving the PNP Equations:
The Gummel lteration

Integration of the PNP equations is difficult if recipes for
standard systems of equations are used, but integration is
easy if a particular method called the Gummel iteration, or
its equivalent, is used. The Gummel iteration was discov-
ered some decades ago by the semiconductor community
and is a general method for producing a self-consistent
solution of coupled equations closely related to the self-
consistent field methods used in quantum chemistry to
compute molecular orbitals, which we have discussed pre-
viously, in Part 1.

The Gummel iteration starts with an initial guess of the
potenual profile, often as just a linear function of position
connecting the boundary values of potential. That initial
profile is substituted into the right-hand side of the inte-
grated concentration Eq. 3. This substitution determines
the congruent initial guess of the concentration profile
Cj(x; initial guess). That guess is substituted into the right
hand side of Poisson’s equation (1), which is then trivially
solved. The resulting estimate of potential ¢ (x; first iter-
ate) identically satisfies the boundary conditions, as do all
other estimates of the potential profile. The potential pro-
file @ (x; first iterate) is substituted into the integrated NP
Eq. 3 and so determines a first-iterate of concentration pro-
files C; (x; first iterate). These two iterates are consistent
with each other and the boundary conditions. The two first-
iterates @ (x; first iterate) and C; (x; first iterate) are then
substituted into the right hand side of Poisson’s Eq. 1,
which is again solved. now to determine the second-iterate
@ (x; second iterate). an updated, hopefully better approx-
imation to the potential profile. The second-iterate of
potential determines a second-iterate of concentration by
Eqg. 3. together. the two seccond-iterates determine the
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third-iterate of potential, and so on for ten iterations
(which is more than enough for good convergence in
almost all cases), that take only milliseconds on a typical
personal computer.

The PNP equations form a map between the structure of
the channel protein, represented crudely by the function
P(x) and the I-V curves measured experimentally. Differ-
ent types of channels have different pores made with lin-
ings of different charge. A useful and productive working
hypothesis assumes that the only difference between dif-
ferent types of open channels is their different distributions
of fixed charge Pi(x), where the subscript k identifies the
type of channel protein, e.g., a voltage activated Na-—
channel, a stretch—activated channel and so on. Of course,
this working hypothesis cannot always be true: specific
chemical interactions, not captured in this simple mean
field theory, will no doubt be important in ways we do not
yet undersiand. Nonetheless, as we write these words, the
I-V relations of some seven types of channels in a wide
range of solutions can be predicted by simple distributions
of fixed charge P;(x). In one particular kind of channel
(from cardiac muscle), a fixed charge P niac(x) = Pp inde-
pendent of position, with Pg equal to ~1e, predicts the cur-
rents measured in pure solutions, and most mixtures, of all
the monovalent cations (i.e, Li*, Na*, K*, Rb*, Cs*) from
20 mM to 2 M, and potentials of £150 mV, assuming each
ion has a different diffusion coefficient. The value of the
diffusion coefficients are estimated by fitting theoretical
predictions to the experimental data. Typically, the diffu-
sion coefficients are some ten times smaller than in free
solution.

The figures show a few /-V relations from three types
of channels with quite different charactenstics. Fig. 1
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Figure 1 PNP fit to current voltage relations of
1.S-channel for [KCl]y = 0.545, [KCl]¢ = 0.563 M.
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shows that the LS channel (Chen et al., 1997) is highly
rectifying—incidentally, the NBAC channel rectifies in the
other direction (Chen et al., 1995). Fig. 2 shows that the
CRC channel is nearly linear (Chen et al., 1997) and Fig. 3
demonstrates that a porin channel (Tang et al., 1997; Tang
et al., 1997) has still different behavior. The data from the
porin channels are of particular interest because the loca-
tions of the atoms of that protein are known by x-ray crys-
tallography (Cowan et al., 1992; Jeanteur et al., 1994;
Schirmer et al., 1995).

Nonequilibrium Effects

Nonequilibrium effects in channels are profound. These
arise in at least two different ways. First, the flow of cur-
rent and the flux of ions is accompanied by a significant
change in electrochemical potential, a change in both the
profiles of electrical potential and concentration. This is
the voltage drop or change in concentration gradient given
by either Ohm's or Fick’s law in simple uncoupled systems
(Section 29.6 and Sections 20.2, 29.2).

The other effect of moving away from equilibrium
states is more subtle but at least as important. A nonequi-
librium system can éxist for a very wide range of bound-
ary conditions but equilibrium systems can exist (ie.,
make sense, and satisfy the equations that define them-
selves) only under very special circumstances, e.g., when
boundary conditions are spatially uniform so no flux flows
in the system. For example, a channel and its mathemati-
cal model are nonequilibrium systerns that can function
(biologically) and exist (mathematically) no matter what
the concentrations and what the electrical potentials in the
baths, or in the boundary conditions used to describe the
baths. But an equilibrium theory of a channel (e.g,
Poisson—Boltzmann models, or most simulations of the
molecular dynamics of a channel) can only describe situa-
tions in which no flux of any species flows anywhere. If
the concentrations and electrical potentials present in the
baths (and boundary conditions) do in fact produce flux,
(say) because they are not spatially uniform, an equilib-
rium model or simulation cannot be computed, if it 1s pro-
grammed correctly, because the equations in fact have no
solution in that case. If an equilibrium simulation or com-
putation gives a result, that result must have zero flux
everywhere, because that is what equilibrium means. If an
equilibrium simulation or computation seems to give a
result when bath and boundary conditions are non-
uniform, the simulation must not have converged to a solu-
tion to the equations defining the system, because no solu-
tion to the equations exists, and thus no numerical
procedure can find one, in that case.

It is possible, of course, that an equilibrium model may
be a decent approximation to a nonequilibrium model, or
that it may give important physical insight into the proper-
ties of the nonequilibrium system. But this must be shown
to be so, it cannot be assumed, and indeed is unlikely to be
the case very often in systems like channels that function
nearly always away from equilibrium, with potential and
concentration gradients larger than RT/%.

These abstract words have consequences for nearly all
channels, because most channels carry flux under all con-
ditons. Only a perfectly selective channel can be placed in
solutions and at electrical potentials in which there is no
flux of any species. Only a perfectly selective channel has
gradients of potential and concentration across it that sat-
isfy the Nernst equation of electrochemistry (Section 26.2),
the Nernst equation is an algebraic equation defining a
potential, not to be confused with the Nemnst—Planck



differential that describes diffusion) for the permeable ion.
Most channels are not so selective and allow biologically
and experimentally significant flux of several types of ions
at all potentials and concentration gradients. Even when the
potential and concentration gradients are arranged so that
one ion is at equilibrium (i.e., the potential and concentra-
tion gradients across the channel satisfy the Nemnst equation
for that one ion), and so the flux of that ion is zero, other
1ons are away from equilibnum, and do not satisfy their
own Nemst equation and do carry flux that cannot be
ignored. Thus, most channels cannot be analyzed under any
experimenual conditions by an equilibrium theory. They
cannot be simulated by a molecular dynamics calculation
that has spaually uniform boundary conditions.

Implications

Open channels provide a link among the communities of
scientists who study electrochemical systems, who study
enzymes and who study transistors. It will be interesting to
see 1f the physical insights of the semiconductor
community—used to study charge transport in macro-
scopic systems with complex structure and (spatally
nonuniform) boundary conditions, far from equilibrium, in
atomic dewail, on femtosecond time scales (Hess et al.,
1991; Hess, 1991)—can be applied to the study of the
atomic and molecular dynamics of electrolyte solutions,
proteins, and channels.
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