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Abstract. A simplified electrodiffusion model for rectangular current pulses in ionic channels
of biological membranes is presented. Numerical simulations and a dynamical systems analysis
of traveling wave solutions in the model indicate that the durations and separations of current
pulses vary stochastically in time, as is observed experimentally. An electrodiffusion theory of the
mechanism for gating is advanced.
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1. Introduction. Ionic channels are the main pathway by which the cell
communicates—by exchanging substances and electric charge—with its environment.
Channels are responsible for signaling in the nervous system, for coordination of mus-
cle contraction (including the pumping action of the heart), and for ionic transport
in every cell and organ. A substantial fraction of all drugs employed by physicians
act directly or indirectly on ionic channels.

Ionic current pulses have been observed experimentally in a wide variety of
channels in the membranes of many types of cells (see [1] and references therein).
These current pulses are of rectangular wave shape with constant height and are dis-
tributed stochastically in time. In this investigation we demonstrate the existence of
stochastic-in-time rectangular current pulse traveling waves for a simplified electro-
diffusion model of the biological channel developed in analogy with the Gunn diode
in semiconductor physics.

We consider a flow of positive ions (cations) in a one-dimensional channel in an
electric field E(x, t) against a background of negatively charged atoms on the channel
protein (“doping” in the semiconductor context). The discrete distribution of charges
is described [2, 3, 4] by continuum particle densities p(x, t) for the mobile cations and
N for the negatively charged atoms of the protein. We will allow N to be a function
of current density and electric field, but not explicitly of x or t. The flow of cations is
modeled mathematically by the drift-diffusion (Poisson–Nernst–Planck) model, that
is, by a partial differential equation for conservation of the cations and Gauss’s law
for the electric field, plus a constitutive law specifying the current density j(x, t):

∂p

∂t
+

1

e

∂j

∂x
= 0,(1)
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∂

∂x
(εE) = e2(p−N),(2)

j = µpE − eD
∂p

∂x
,(3)

where e is the proton charge, ε is the dielectric coefficient (taken here to be constant),
µ is the mobility coefficient, and D is the diffusion coefficient. The usual electric field
has been multiplied by e (i.e., E has units of eV/cm in the cgs system). Typically, in
semiconductors both µ and D depend on E.

Periodic and single-pulse (homoclinic) traveling wave solutions [5] for charge den-
sity and electric field—and thus for current—are obtained for the Gunn diode when
the mobility µ(E) exhibits negative differential conductance, a region on the current-
voltage curve where the current decreases as the voltage is increased. (In fact, dy-
namical oscillatory behavior in the Gunn diode occurs for a wide class of models;
e.g., the two valley hydrodynamic model produces this behavior [6].) In the biological
channel setting, µ and D are believed to be very nearly constant for relevant values
of E. However, if the charge distribution N on the protein is allowed to depend on
current density and electric field—because the protein conformation changes—then
rectangular traveling wave current pulses exist in the drift-diffusion model. These
traveling waves in p and E preserve their shape and propagate with constant velocity
by balancing drift effects against diffusion.

We will follow Szmolyan’s analysis [5] closely through (6) and (7) below. The
drift-diffusion equations for traveling wave solutions are first put into scaled form and
integrated once. Then the existence of stochastic-in-time rectangular current pulses
for a model N = N(j, E) with noise will be demonstrated.

2. Drift-diffusion model for traveling waves. To find traveling wave solu-
tions, we set s = x− v0t and look for solutions p and E that depend only on s. The
traveling wave velocity v0 is a free parameter and turns out to be on the order of the
ion permeation velocity through the channel. The drift-diffusion equations (1)–(3)
become

−ev0
dp

ds
=

d

ds

(
−µpE + eD

dp

ds

)
,(4)

dE

ds
=

e2

ε
(p−N).(5)

Equation (4) can be immediately integrated to yield the following scaled equations:

α
dp

ds
= p

(
E − E

)
,(6)

dE

ds
=

e2

ε
(p−N) ≡ e

ε
ρ,(7)

where α = eD/µ and E = ev0/µ. The constant of integration in (6) is set to zero
by requiring that dp/ds and dE/ds → 0 as t → ±∞ and E(t → ±∞) = E, in
other words, by requiring that the solution (p,E) goes to a fixed point as t → ±∞.
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For traveling wave solutions the current density is simply proportional to the cation
density:

j = µ

(
pE − α

dp

ds

)
= ev0p.(8)

The charge density ρ = e(p − N) in Gauss’s law (7) will, in general, depend on
the current and the electric field. For the traveling wave solutions we will consider
ρ = ρ(p,E) due to (8).

We know from experimental observations that there is a “rest” value E of the
electric field at which the current is constant—either “on” at a value j+ ≡ ev0p+ or
“off” at a value j− ≡ ev0p− � j+, where the subscripts + and − denote, respectively,
the on and off state values. The rest values of the electric field for the on and off
states must be the same because of charge conservation: by Gauss’s law,

∫ x+

x−
ρ dx =

ε

e
(E+ − E−) = 0(9)

only if E+ = E−; E− �= 0 since even in the off state there is a nonzero “built in”
potential difference across the cell membrane and thus a nonzero electric field. Here
x+ and x− are locations where the current is, respectively, on or off. The integral of
the charge density from the off to the on state must vanish for the traveling wave,
since otherwise an enormous electric field would develop and cause a spark discharge
across the cell membrane, destroying the cell, in contradiction to what is observed in
nature. Similar remarks apply when integrating from the on to the off state.

The drift-diffusion traveling wave equations mirror this rest-state property since
for E = E equation (6) implies p and hence j is constant, and (7) is satisfied if
ρ(p±, E) = 0.

Further, to produce symmetrical rectangular current pulses as solutions to (6)
and (7), the charge density in Gauss’s law must be an even function of E − E. This
symmetry property is manifest in Figure 1 (p is a reference ion density defined through
(10)) and follows from the invariance of the drift-diffusion traveling wave equations (6)
and (7) under the transformation p → p, dp/ds → −dp/ds, E − E → −(E − E), and
dE/ds → dE/ds. The reader may check that for a pulse in ion density, the electric
field must consist of two equal and opposite spikes because of (6). This symmetry
then implies that ρ must be an even function of E − E.

A simple, physically based model with these properties which produces rectangu-
lar current pulses is

ρ(p,E) = −ce(p− p)

∣∣∣∣EE − 1

∣∣∣∣ ,(10)

where c � 1 is a positive constant and p > 0 is a reference ion density at which
the slope of E reverses sign. Note that our model has ρ(p,E) = 0 for all p—which
produces a line of fixed points for the drift-diffusion traveling wave equations—and
is a stronger condition than the constraint above that ρ(p±, E) = 0. See [7] for the
characterization of a line of fixed points in terms of the vanishing of ρ(p,E) for all p.

The charge density (10) can be derived from a Boltzmann factor. The energy
per unit time required to create a current perturbation δj in an electric field E is
dU/dt = − ∫

δj ·E d3x (see, e.g., [8, Chapter 27]). We will modify the expression for
U to take into account that no work is done in the channel when E = E and that the
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Fig. 1. Traveling wave solution consisting of a rectangular current pulse p/p ∝ j (solid line)
and electric field E/E (dotted line) vs. (x− v0t)E/α.

current perturbation δj = ev0(p − p) is with respect to ev0p. Then the energy per
unit time to turn on a current pulse by creating δj is

Uon = −v0(p− p)(E − E)ACδxδt,(11)

where AC is the cross-sectional area of the channel and δx and δt are length and time
scales over which the current perturbation turns on or off. Note that a factor of e has
been incorporated into our definition of the electric field. To turn off a current pulse
by destroying δj, the energy per unit time is

Uoff = −Uon = v0(p− p)(E − E)ACδxδt.(12)

Since E − E > 0 when the current pulse is turned on (see Figure 1) and < 0 when
the current pulse is turned off, we can write U as

U = −v0(p− p)|E − E|ACδxδt.(13)

Thus, in our model only the magnitude of displacements of E from E matters.
We assume that near thermal equilibrium p ≈ p and that N is governed by a

Boltzmann factor

N ≈ p exp {−U/(kT0)} ,(14)

where kT0 is the ambient temperature in energy units. Near thermal equilibrium, the
charge density in the channel is

ρ ≈ ep− ep exp{v0(p− p)|E − E|ACδxδt/(kT0)}

≈ −ce(p− p)

∣∣∣∣EE − 1

∣∣∣∣ .(15)
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Note that the electric field term in ρ has the required even symmetry in E−E. With
the parameter values chosen below in section 4 to model a K+ channel, δx turns out to
be on the order of 0.2 Å and δt on the order of 10 nanoseconds—which are physically
plausible values over which the current perturbation might turn on or off.

We will also add a random noise term σ, representing small charge density fluc-
tuations, to the right-hand side of Gauss’s law. We set σ equal to +σ, 0, or −σ,
where σ � 1 is a positive constant. The nonzero values of σ are randomly distributed
with uniform probability in time with zero mean, i.e., with equal probability of being
positive or negative. Generating noise ±σ with zero mean guarantees charge conser-
vation.

We control the frequency of noise by generating a random number r using the
C library function random( ) at each timestep and comparing r with a fixed number
R ∈ [0, 1] which sets the specified frequency. If r ≥ R, then we set σ = ±σ, where the
sign is chosen randomly. If r < R, we set σ = 0. Thus if R = 0.999, noise is added
on the average once every thousand timesteps.

The magnitude σ should be chosen small enough so as not to visibly affect the
height of the current pulses over the course of the simulation (see section 3 below),
since these heights are constant to very high accuracy in the experimental data. As
long as this condition holds, plots of the computed solutions do not differ visibly with
the magnitude of σ. This model for noise generation mimics thermal fluctuations
of charge density (where σ corresponds to the average of the absolute value of the
thermal fluctuations), since it is the existence of small thermal fluctuations of charge
density that is important, and not their quantitative magnitude.

The drift-diffusion equations can now be written as

dp

dτ
= p

(
E − E

)
,(16)

dE

dτ
= −c(p− p)

∣∣∣∣EE − 1

∣∣∣∣ + σ(τ),(17)

where τ = s/α and c = αe2c/ε.
The traveling wave equations (16) and (17) without noise are integrable:

E = E0 ± c(p− p0 − p ln(p/p0))/E,(18)

where the initial conditions are p(τ = 0) = p0 and E(τ = 0) = E0. Equation (18)
may be used to plot phase space orbits.

3. Simulation of rectangular current pulses. Without noise, the differential
equation system (16) and (17) has a line of fixed points at E = E (see Figure 2). The
orbit is heteroclinic since there are two fixed points per orbit. A small amount of
noise σ—presumably due to thermal fluctuations of charge density—in Gauss’s law is
sufficient to perturb the solution off the fixed points. Since the orbit slows down in the
vicinity of the equilibria, the solution will spend most of the time near the maximum
or minimum values of p, producing rectangular current pulses. By varying the initial
conditions p0 and E0, a nested set of heteroclinic orbits is mapped out in phase space.
The noise term σ can knock a trajectory from one orbit to another nearby orbit. We
take σ small enough so that the maximum value of p over an orbit remains constant
to six significant figures even over 100,000 orbits.
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Fig. 2. Heteroclinic orbits in phase space (p/p,E/E) for different initial conditions p0, E0.
The line of fixed points is also shown.
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Fig. 3. Solution p/p vs. (x− v0t)E/α with random noise added every timestep.

In Figures 3 and 4 we display the solution with noise added every timestep for

p(τ) and total charge density ρ, with p0 = 0.01p, E0 = 1.01E, c = E
2
/p, and

σ = ±10−9E
2
. Recall that the current density j(τ) ∝ p(τ) and that the integral of

the charge density as the current pulse turns on or off vanishes (preserving charge
neutrality). Also note that the physical charge density will be multiplied by c � 1,
ensuring that the charge density is small in magnitude compared with p.

The solutions are computed from (16) and (17) (and have converged under timestep
refinement) using a fourth-order Runge–Kutta method with a fixed timestep ∆t =
0.01 chosen to guarantee that the local truncation error is always less than 10−9. (A
fixed timestep is necessary in order to control the frequency of noise. In addition, the
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Fig. 4. Charge density (p−N)/(cp) ∼ 106(p−N)/p vs. (x− v0t)E/α.
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Fig. 5. Solution p/p vs. (x− v0t)E/α with random noise added every thousandth timestep on
average.

simulations ensure that the point E = E is not jumped over.) The horizontal axis
x− v0t in the figures may be interpreted at fixed t as space running to the right or at
fixed x as time running to the left.

The durations and separations of the current pulses vary over a wide range (see
Figures 5 and 6), as is observed experimentally. This wide variety of current pulse
durations and separations is obtained by making the noise term in (17) more or less
frequent. These simulations represent specific realizations of solutions to (16) and (17).
By changing the seed of the random number generator for the noise term σ, we obtain
other realizations. A histogram of the number of pulses versus pulse duration for a
time period of 250 seconds (using the parameter values below in section 4) is presented
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Fig. 6. Solution p/p vs. (x− v0t)E/α with random noise added every ten thousandth timestep
on average.
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Fig. 7. Histogram of number of pulses vs. pulse duration in milliseconds for random noise
every timestep.

in Figure 7 for a total of approximately 100,000 pulses with noise added every timestep.
The exponential decay (above a threshold) of the number of pulses with increasing
pulse duration agrees qualitatively with experimental data.

Statistics for simulations with noise ranging from every timestep (with ∆t = 0.01)
to every hundredth timestep are very similar. At a frequency of adding noise every
thousandth timestep there is a qualitative change in the statistics toward much longer
average pulse durations and much more variation in the pulse durations and separa-
tions (see Table 1). The table presents the three qualitatively different regimes of
current pulse behavior that we observed in our numerical simulations. The computed
solution with noise added every timestep is close to periodic, since with noise every
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Table 1
Average pulse duration ∆tP in milliseconds and number of pulses for a sample of 250 seconds

with different average frequencies of adding noise.

Average frequency ∆tP Number of pulses
1 0.4 105000
1/1000 1.3 63000
1/10000 8.8 14000
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Fig. 8. Solution p/p vs. (x−v0t)E/α without noise, illustrating that the solution without noise
gets stuck at a fixed point.

timestep the solution cannot get stuck for long at the heteroclinic points. With less
frequent noise, the solution may get stuck at a fixed point for a very long time. The
elongation of pulse duration with more widely dispersed noise demonstrates conver-
gence to the deterministic case (σ = 0) in Figure 8. Note that for the “baseline”
solution with noise every timestep the length of an orbit is about 6000 ∆t. We thus
expect a phase transition in the behavior of solutions as the frequency of noise falls
below once per baseline orbit. It is possible that the two phases may correspond
to the two qualitatively distinct forms of gating (“activation” and “inactivation”)
experimentally observed in most ionic channels [1].

4. Connection to physical parameter values. We consider here the flow of
K+ ions through a channel of diameter 7 Å and length 10 Å. K+ channels play a
central role in electrical signaling in the nervous system. A typical nerve cell has
hundreds of thousands of K+ channels. For the K+ channel, the dielectric constant
ε is on the order of 20, the mobility coefficient µ ≈ 6 × 10−5 cm2/(V s), and the
diffusion coefficient D ≈ 1.5 × 10−6 cm2/s. Note that the Einstein relation holds:
eD/µ = kT0 = α, and that in our units e2 = 1.80955 × 10−6 eV cm.

Only the current I ∼ 1–10 picoamperes and the average duration of a current pulse
∆tP ∼ 1–10 milliseconds are directly measurable experimentally. The relationships
between the microscopic parameters p, E, v0, and c and the macroscopic parameters
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I and ∆tP in our model are as follows:

I = (6.5p)µEAC , ∆tP =
10αe

µE
2 , v0 = µE/e, c =

εE
2

αe2p
.(19)

The magic numbers 6.5 and 10 in the formulas for I and ∆tP , respectively, come
from the simulation results in Figures 3, 5, and 6: pmax ≈ 6.5p for all cases and
∆τP ≈ 10/E for the baseline case of noise every timestep.

The simulations presented above thus represent a range of physical values for I,
∆tP , v0, p, N , E, and c. A physically natural magnitude for p would be a unit charge
e spread uniformly throughout the channel volume (2.6 × 1021 cm−3). We choose p
to be one-half this value so that the average number of ions in the channel when the
channel is on is roughly 3.25. We then choose E = 3200 eV/cm in order to make I
equal to 1 picoampere. These values for p and E yield an average pulse duration of
0.4–8.8 milliseconds (see Table 1). The traveling wave velocity v0 = 0.2 cm/s is the
same order of magnitude as the ion permeation velocity vp through the channel. As
expected, c = 3.5 × 10−6 � 1.

5. Conclusion. It is remarkable that an electrodiffusion model can produce not
only rectangular current pulses, but the wide variety of current behavior observed
experimentally in channels of biological membranes. It is difficult to get rectangular
waves with flat tops from ordinary differential equations. The addition of noise to
the drift-diffusion equations can excite a series of heteroclinic orbits with different
current pulse durations and separations but equal heights, in accord with experimental
measurements of channel currents. Our model serves as an example where nature
may make use of ubiquitous thermal noise to accomplish a biological task—in this
case turning the channel on and off.

Physical values predicted in the model, like v0 ∼ vp, ∆tP ∼ 1–10 milliseconds,
E (implies |V |max ∼ 100 millivolts), etc., are of the right order of magnitude for
biological channels. A conformational change in the protein and the concomitant
small charge fluctuations (c ∼ 10−6) produce gating, rather than a mechanical “flap”
or “slider.” A small dipolar charge wave (a positive spike followed by a negative spike)
turns on the current in the channel, and a similar reversed charge wave (a negative
spike followed by a positive spike) turns off the current. The relationship of this
charge wave to gating current [1] remains to be investigated in the context of a finite
channel with realistic boundary conditions.

Our model depends on concentration through the reference ion density p. How-
ever, p is not necessarily coupled to ion densities in the external baths, etc., although
it could be. Thus our model can treat both K and Na channels, which are roughly
concentration independent, and Ca channels, which are very sensitive to ionic con-
centrations.

A dynamical systems analysis of the traveling wave solutions is currently in
progress. Here we briefly mention three relevant mathematical papers. In [9], Krupa
analyzes a robust heteroclinic cycle as an orbit in phase space successively connecting
equilibrium points or more general invariant sets (we have a whole line of equilibrium
points in our model). The existence of such robust cycles is analyzed in terms of
spontaneous symmetry breaking or forced symmetry breaking (possibly induced by
stochastic perturbations, as in our model). Stone and Holmes [10] are interested in the
creation of structurally stable orbits through random perturbations of an underlying
deterministic system. Under such perturbations, they estimate the passage time in
heteroclinic orbits from one saddle point to another. Finally, Fiedler, Liebscher, and
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Alexander [7] investigate the behavior of solutions to a general system of ordinary
differential equations with lines of equilibria under various symmetry assumptions.
Techniques from these papers may be applicable to a dynamical systems analysis of
our current pulse solutions.

We are currently simulating finite channel effects in the full drift-diffusion model.
We have recently reproduced the rectangular current pulses in a 10 Å long voltage
biased channel using the full drift-diffusion model. The finite channel simulations are
important because the traveling wave pulses have a length equal to v0∆tP

>∼ 1000
channel lengths. This is consistent with experimental measurements of current pulses
if the ionic velocities are on the order of vp, since the channel is on for a long time
∆tP compared to an ionic transit time 10 Å/vp. Simulating the full drift-diffusion
model will allow us to formulate physically relevant boundary conditions for the finite
channel. Simulations using the charge model (10) expressed in terms of the current j

ρ(j, E) = − c

v0
(j − j)

∣∣∣∣EE − 1

∣∣∣∣ ,(20)

where j = ev0p produce a nonlinear (sublinear) current-voltage curve, as is observed
experimentally (see p. 328 of Hille [1]) and lend credence to the charge model (10).
We are also applying our charge model and the current pulse solutions presented here
to reproducing “random telegraph noise” current pulses in semiconductor field effect
transistors.
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