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Modified Donnan potentials for ion transport through biological ion channels
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In the classical study of ion transport through charged membranes, Donnan potentials are used to approxi-
mate the difference between the applied electrostatic potential and the potential at the liquid/membrane inter-
face. For very thin membranes~e.g., biological lipid bilayers!, this discontinuous approximation of the poten-
tial is not sufficient. Here we derive a modification to the classic Donnan potential for ion transport through a
biological ion channel embedded in a lipid bilayer. We also show how to derive the classic Donnan potential
without the usual assumptions and estimate the amount of space charge at the liquid/membrane interface.
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I. INTRODUCTION

In the classical study of liquid/membrane interface
membranes acquire selectivity because they are cha
@1–4#. Such charged membranes allow the movement
counter ions~with charge opposite that of the membran!
and impede the movement of co-ions of the same charg
the membrane. The Donnan potential is the electrical po
tial difference between the voltage applied to the system
that at the interface. This nonzero potential also changes
concentrations of ions near the membrane away from t
values in bulk solution. Classically, the Donnan potential a
the associated change in the ion concentrations are gene
used as boundary conditions for the drift-diffusion~Nernst-
Planck! equations that model the transport through the me
brane. In this paper we reexamine these boundary condit
with the goal of improving them for modeling ion transpo
through biological ion channels.

In general, there are two major kinds of ion transp
through membrane:~1! leaky transport through the entir
membrane and~2! channel transport through a specializ
structure embedded in an otherwise impermeable memb
~a single biological ionic channel in a bilayer membrane,
example!. The total current flow is much less through a cha
nel than through a membrane even if the specific cond
tance of both structures is the same since the channel ha
much less area available for current flow. Furthermore, m
branes that allow transport through their whole area usu
are quite thick in practical applications~say micrometer in
thickness! while impermeable lipid bilayers are typicall
only 2-nm thick. Such differences in length scales fundam
tally change the need for accurate boundary conditions.
all charge transport problems it is important to correctly d
termine the local electrostatic potential and carrier conc
trations since they are nonlinearly coupled. For very sh
membranes this is even more important because the le

*Email address: dirkg@chroma.med.miami.edu
†Email address: beisenbe@rush.edu
1063-651X/2001/63~6!/061902~8!/$20.00 63 0619
,
ed
f

as
n-
d

he
ir
d
lly

-
ns

t

ne
r
-
c-
so
-

ly

-
or
-
-

rt
th

scales involved amplify any mistakes in the potential and
concentrations; different potentials and concentrations at
edges of the channel give qualitatively different answ
both theoretically@5# and experimentally@6#.

These differences in total current and length of curr
path between the two cases require different analyses fo
refinement of the Donnan potentials we consider. In this
per we will mainly consider channel transport~case 2! with
some discussion of how to apply the results to membr
transport in general~case 1! at the end. Because of this, ou
analysis will focus on the area around and inside the ‘‘ch
nel’’ through the membrane; we call it a channel whether
not it is a biological ion channel.

A. Biological ion channels

Ion channels are cylindrical, hollow proteins that regula
the movement of ions~mainly Na1, K1, Ca21, and Cl2!
across nearly all biological membranes. Since these m
branes are otherwise impermeable to charged particles
only way ions can cross is through the pore that runs do
the long axis of a channel. This property has been explo
by evolution to produce many varied phenomena neces
for life: channels are responsible for the initiation and co
tinuation of the electrical signals in the nervous system;
the kidneys, lungs, and intestines, channels coordin
changes in ionic concentration gradients that result in
absorption or release of water; in muscle cells, a group
channels is responsible for the timely delivery of the Ca21

ions that initiate a contraction. Clinically, malfunctionin
channels cause cystic fibrosis, cholera, and many other
eases and have recently been implicated in schizophrenia
bipolar disorders. Furthermore, a large number of drugs~in-
cluding valium and phencyclidine! act directly or indirectly
on channels.

To produce such varied and complicated phenome
channels act in groups, opening and closing at the same
and letting only specific ion types through~for example, se-
lectively passing far more Na1 ions than K1 ions!. Despite
such complex final results, it is possible to remove a sin
©2001 The American Physical Society02-1
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channel from the biological system and study it as an i
lated physical system.~This is rarely possible to do with
other objects in biology and still have interesting results.! To
do this, an individual channel is placed in a phospholip
membrane that separates two baths of known ionic con
tration. A voltage is applied to the system by electrodes
the baths that are far away from the channel and the am
of current passed by the channel~in the form of ions! is
measured. It is this experimental setup that we consider h

B. Classical Donnan potentials

In classical membrane transport, the Donnan potentia
derived by using the drift-diffusion~Nernst-Planck! equation
@1,7–9#

Jj52D j S dcj

dx
1zjcj

e

kT

df

dx
1cj

1

kT

dm j
ex

dx D ~1!

to describe the flux densityJj for ion speciesj; f is the local
electrostatic potential,D j , cj , andzj are the diffusion coef-
ficient, local concentration, and valence of speciesj, respec-
tively, andk, T, ande are the Boltzmann constant, absolu
temperature, and elementary charge, respectively.m j

ex is the
excess chemical potential of speciesj, which we take to be a
step function that has one constant value in the liquid
another constant value in the membrane. The Nernst-Pla
equation can also be written as the derivative of the to
chemical potentialaj exp@(zje/kT)f#, where the activityaj
5g j cj with the activity coefficient defined asg j

5exp(mj
ex/kT). The Nernst-Planck equations for all speci

is coupled with the Poisson equation to describe the elec
field:

2
d

dx S e
df

dx D5e(
j

zjcj1eq~x!, ~2!

whereq is the charge inherent to the membrane~q50 in the
liquid!. The boundary conditions for this system are

cj~2`!5cj~L !, cj~`!5cj~R!, ~3!

f~2`!5VL, f~`!5VR, ~4!

V5VL2VR . ~5!

V is the voltage applied to the system andcj (L) andcj (R)
are the left and right bulk concentration of ion speciesj. For
these equations it is not difficult to prove that both the p
tentialf and the activitiesaj are continuous ifm j

ex andq(x)
have jump discontinuities.

Assuming that the membrane is represented by the in
val @xL ,xR#, the left and right Donnan potentials are

CL5f~xL!2VL, CR5f~xR!2VR . ~6!

To derive values for these quantities, two approximations
usually made@10,1,7#:

~1! Each species is in equilibrium with the liquid:Jj50.
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~2! Charge neutrality holds everywhere: 05S j zjcj (x)
1q(x) for all x.

Then the Nernst-Planck equations for each species ca
integrated to give

cj~xL!5cj~L !exp~Dm j
ex!exp~2zjCL!, ~7!

whereDm j
ex is the difference in the excess chemical pote

tials of speciesj in the liquid and within the membrane. Wit
the charge neutrality condition, the Donnan potential can
shown to be the solution to the polynomial

05(
j

zjcj~L !exp~Dm j
ex!YL

2zj1qL , ~8!

whereYL5exp(eCL/kT)] andqL5q(xL). Similar formulas
hold for the right side of the membrane. With these pote
tials, the concentrations just inside the membrane foll
from Eq. ~7!.

This approximation for the potentials at the edge of t
membrane works well for thick membranes, when t
change in the potential in the liquid to that in the membra
can be well approximated by a discontinuity. However, wh
the membrane is very thin, the part of the membrane wh
charge neutrality does not hold may be of significant s
relative to the width of the membrane, and one of the
sumptions for deriving the Donnan potential is violated. O
example of such a situation is the modeling of ion transp
through biological membranes~specifically through open ion
channels! where the membrane is only tens of A˚ ngstroms
wide @11#. In such a case, the charge-neutrality conditi
used above does not hold and thus the Donnan potential
not give a good approximation to the potentials at the ed
of the membrane.~This is easily verified with numerical so
lutions to the Poisson-Nernst-Planck system.!

In this paper we derive new formulas for the potentia
and concentrations at the interface of a liquid and a t
membrane. Furthermore, we employ neither of the two
sumptions normally used.

II. THEORY

We consider a more general model than Eqs.~1! and ~2!
which we write in nondimensional units:

2«2F d

dx S e~x!
df

dx
~x! D1

dA/dx

A~x!
e~x!

df

dx
~x!G

5(
j

zjcj~x!1q~x! ~9!

2
Jj

D j~x!A~x!
5

dcj

dx
~x!1zjcj~x!

df

dx
~x!1zjcj~x!

du j

dx
~x!,

~10!

where

«25
escalekT

Cscalee
2d2 . ~11!
2-2
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MODIFIED DONNAN POTENTIALS FOR ION . . . PHYSICAL REVIEW E63 061902
First introduced in@12#, A is an area function~although not
necessarily a cross-sectional area! designed to model the
bath/channel interface because the entire membrane
longer conducts ions.~We are only considering a small cha
nel attached to a large electrolyte bath.! As explained in@11#,
A(x) is the area of the equipotential surface in the full thre
dimensional problem and is assumed to be equal to the cr
sectional area inside the channel. An explicit formula
A(x) is not known, but our results do not require such
formula. If A(x) is taken to be constant, the usual Poisso
Nernst-Planck equations are obtained with the exception
Jj is a flux instead of a flux density. The expressions invo
ing A(x) used here are derived in@11#. The excess chemica
potentialsm j

ex are rewritten asm j
ex5zju j . Equations~9! and

~10! are nondimensional where the electrostatic potential
been scaled withkT/e, the excess chemical potentials wi
kT, the concentrations/diffusion coefficients/dielectric w
the largest concentrations/diffusion coefficients/dielectric
the system (Cscale/Dscale/escale), and the length of the system
d ~which includes the membrane and enough of the liquid
reach bulk concentrations! has been scaled to 1. For simpli
ity we assume that the dielectric coefficient is continuo
everywhere.

For the rest of the paper we will show the work on the l
side of the channel and merely state the results for the r
side; the proofs are similar. To denote the liquid we use
subscript 0 and to denote the channel we use the subscr

To approximate the piecewise constant excess chem
potentials, we first consider them as continuous functi
that change rapidly at the interface. Later we take the li
that the derivative becomes infinite. In this way delta fun
tions are avoided. Put mathematically, our assumption ab
the excess chemical potentials is@13,14#:

u j ,0~x!5
m j ,0

ex

zj ,0
1U j ,0S xL2x

« D , ~12!

u j ,1~x!5
m j ,1

ex

zj ,1
1U j ,1S xL2x

« D , ~13!

where the membrane runs fromxL to xR, 0 denotes the bath
1 denotes the channel.

m j ,i
ex5const ~ i 50,1!, ~14!

and

lim
z→`

Q j ,i~z!50 ~ i 50,1!. ~15!

When we take the limit of the derivative becoming infini
~which is after all the analysis is complete!

Q j ,i~0!'Q j ,i~`!50. ~16!

We are interested in the valuesf(xL) andcj (xL). To find
approximate values we analyze the system of equations
singular perturbation~SP! theory @13,14,11#. SP is a well-
proven approximation technique used for problems that h
a small parameter and involves breaking up the solution
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parts where the function is rapidly changing~the so-called
boundary layers! and parts where the function behav
‘‘nicely’’ ~the so-called outer solutions!. Since we are inter-
ested in the areas near the edge of the membrane where
the concentrations and the potential are changing rapidly,
will focus mainly on the boundary layers there.

We start by stating the assumptions we use throughou

~1! The diffusion coefficient for each ion species in th
liquid and the membrane are different but constant in e
region.

~2! We require that the concentrations and potential in
baths are constant except in the immediate vicinity of
channel. This is the condition that~usually! excludes the
leaky membrane@case~1!# since in that case the concentr
tions generally change linearly in the baths. In the case
channels, this condition is usually true because the baths
coupled only through a small hole that cannot sustain m
flow. Furthermore, the diffusion coefficients of all ions a
significantly smaller inside the channel than in bulk soluti
because of the higher friction produced by geometrical c
straints and special chemical and physical conditions ins
the narrow channel~for example, waters are oriented an
ions diffuse in predominantly one direction!. This condition
ensures that concentrations do not vary much across the
trolyte solutions surrounding a membrane containing just
channel; this is mathematically proven in@11# and can easily
be verified with numerical solutions of the equations.

Next we break the analysis into two intervals: (0,x1
5xL) for the liquid and (x1 ,x2) for the membrane wherex2
is located somewhere within the membrane. We cons
each section separately and use the indexi to indicate the
segment being considered;i 50 is the liquid andi 51 is the
channel. In each segment we assume each solution ha
following form:

f 0~x!5 f 0,out~x!1F0S xL2x

« D ~ f 5f,cj ;F5F,Cj !,

~17!

f 1~x!5 f 1,out~x!1F1S x-xL

« D ~ f 5f,cj ;F5F ,Cj !,

~18!

where the capital letters are for boundary layers~which we
expect at the membrane edge because of the chang
charge fromq050 in the liquid toq15qL in the membrane!.
Because« is small ~it is related to the Debye length!, the
arguments ofFi become large very quickly and therefore a
good for modeling rapidly changing functions. The bounda
layer functions are assumed to go to zero rapidly@see~27!#
so they only describe a thin layer. Substituting these i
Eqs.~9! and ~10! and multiplying out all the sums, for both
i 50,1 we define the outer solutions to satisfy the origin
equations butnot the boundary conditions:

«2F d

dx S e
df i ,out

dx D1
dA/dx

A
e

df i ,out

dx G5(
j

zjcj ,i ,out1qi

~19!
2-3
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2
Jj

D j ,iA
5

dcj ,i ,out

dx
1zjcj ,i ,out

df i ,out

dx
. ~20!

~Note that the excess chemical potential terms for the o
solutions drop out because they are assumed to be con
inside the channel except at edges of the channel; thus
will be included in the boundary layer equations.! The
boundary layers satisfy the remaining terms of this multip
cation:

2F d

dz
S ê i

dF i

dz
D 1 ê i

dÂ/dz

Â

dF i

dz
G5(

j
zjCj ,i , ~21!

05
dCj ,i

dz
1zjCj ,i

df̂ i

dz
1zjCj ,i S dF i

dz
1

dQ j ,i

dz D
1zj ĉj ,i S dF i

dz
1

dQ j ,i

dz D , ~22!

wherez5(21)i 11(x2xL) /« and

f̂ i~z!5 f i„xL1~21! i 11«z… ~ f 5e,f,cj !. ~23!

For these functions,d f̂ i /dz5O(«) where we use the Big-O
order notation@14#.

Next, all of the functions are expanded in powers of«:

f out~x!5 f ~0!~x!1« f ~1!~x!1¯ ~ f 5f i ,cj ,i !, ~24!

F~z!5F ~0!~z !1«F ~1!~z !1¯ ~F5F i ,Cj ,i !,
~25!

Jj5Jj
~0!1« j

~1!1¯ . ~26!

These functions will be solved to satisfy

lim
z→`

F ~k!~z !5 lim
z→`

~dF~k!/dz!~z!50 ~F5F i ,Cj ,i ;k>0!

~27!

as described before Eq.~19!. The outer solutions and bound
ary layers together will need to satisfy the following boun
ary conditions on the intervals (0,xL) and (xL ,x2):

f0
~0!~xL!1F0

~0!~0!5f~xL![bf, ~28a!

f0
~k!~xL!1F0

~k!~0!50 ~k>1!, ~28b!

cj ,0
~0!~xL!1Cj ,0

~0!~0!5 lim
x↘xL

cj ,0~x![b j ,0,

~28c!

cj ,0
~k!~xL!1Cj ,0

~k!~0!50 ~k>1!, ~28d!

f1
~0!~xL!1F1

~0!~0!5f~xL![bf, ~28e!

f1
~k!~xL!1F1

~k!~0!50 ~k>1!, ~28f!
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cj ,1
~0!~xL!1Cj ,1

~0!~0!5 lim
x↘xL

cj ,1~x![b j ,1

~28g!

cj ,1
~k!~xL!5Cj ,1

~k!~0!50 ~k>1!. ~28h!

In this way the leading-order terms on each segment take
values of the unapproximated functions at the pointxL while
the lower-order terms contribute nothing to the series atxL .
We make a distinction between the limit withx,xL

@ limx↗xL
cj ,0(x)# and the limit withx,xL @ limx↘xL

cj ,1(x)#

because if the excess chemical potential is discontinuous
is the concentration~although the activity is continuous! and
so we must consider the limits in each interval separatel

The goal of the paper is to find approximations forbf and
b j ,1 , the values of potential and concentration, respective
just inside the channel.

A. Outer solutions

Substituting Eqs.~24! and~26! into Eqs.~19! and~20! at
leading orders gives

05(
j

zjcj ,i
~0!1qi , ~29!

2
Jj

~0!

D j ,iA
5

dcj ,i
~0!

dx
1zjcj ,1

~0!
df i

~0!

dx
. ~30!

Since we are only interested in the transition regions~that is,
the boundary layers! we do not explore the solutions to thes
equations. The following results depend only on the cha
neutrality result~29! of the leading-order terms of the con
centrations. Note that Eq.~29! is not a physical assumptio
like in the usual Donnan potential derivation, but a ma
ematical construction.~The outer solutions and boundar
layers are only mathematical functions; they do not phy
cally exist, but, as the solution of the transport equatio
their sumdoes.!

The assumption about the bath concentrations sta
above can now be put mathematically:

cj ,0
~0!~xL!'cj ,0

~0!~0!5cj~L !, ~31!

cj ,1
~0!~xR!'cj ,1

~0!~1!5cj~R!, ~32!

f0
~0!~xL!'f0

~0!~0!5VL, ~33!

f1
~0!~xR!'f1

~0!~1!5VR . ~34!

B. Boundary layers

As with the outer solutions, we get a hierarchy of equ
tions for the boundary layers after substituting Eq.~25! into
Eqs.~21! and ~22!, multiplying the series, and equating lik
powers of«. At leading order the equations are

2e~xL!
d2F i

~0!

dz2 5(
j

zjCj ,i
~0!, ~35!
2-4
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05
dCj ,i

~0!

dz
1zjCj ,i

~0!S dF i
~0!

dz
1

dU j ,i

dz D
1zjcj ,i

~0!~xL!S dF i
~0!

dz
1

dU j ,i

dz D ~36!

This last equation is a linear, first-order ordinary different
equation forCj ,i

(0) that is solved by

Cj ,i
~0!5cj ,i

~0!~xL!$exp@2zj~F i
~0!1U j ,i !#21% ~37!

where the constant of integration was found using Eq.~27!.
Evaluating this atz50 gives

b j ,i5cj ,i
~0!~xL!exp@2zj~bf2f i

~0!~xL!!# ~38!

where we have used Eqs.~28! and ~16!.

III. RESULTS

Theorem 1. The outer solutions just inside the membra
interfacef1

(0)(xL) and cj ,1
(0)(xL) are the usual Donnan poten

tial and concentrations:

f1
~0!~xL!5VL1 ln~Y!, ~39!

cj ,1
~0!~xL!5cj~L !&exp~m j ,0

ex2m j ,1
ex !Y2zj , ~40!

where Y satisfies

05(
j

zjcj~L !exp~m j ,0
ex2m j ,1

ex !Y2zj1qL . ~41!

Note thatEqs. ~40! and ~41! are the same asEqs. ~7! and
~8!.

Proof. Let

Aj ,i5cj ,i
~0!~xL!exp~m j ,i

ex!. ~42!

Since the activities are continuous, we have

b j ,0 exp~m j ,0
ex !5b j ,1 exp~m j ,1

ex ![a j . ~43!

Using Eq.~38! we get

Aj ,0
zk Ak,0

2zj5a j
zkak

2zj5Aj ,1
zk Ak,1

2zj ~44!

and thus

S Aj ,0

Aj ,1
D 1/zk

5S Ak,0

Ak,1
D 1/zj

~45!

for any j andk. Dividing Eq. ~38! for the left and right sides
of xL , we get

ak

a j
5

Ak,0

Aj ,0
exp@~2zk1zj !$bf2f0

~0!~xL!%# ~46!

5
Ak,1

Aj ,1
exp@~2zk1zj !$bf2f1

~0!~xL!%#.

~47!
06190
l

Thus

exp@f1
~0!~xL!2f0

~0!~xL!#5S Aj ,0

Aj ,1

Ak,1

Ak,0
D 1/~2zk1zj !

. ~48!

Equation~45! gives

S Aj ,0

Aj ,1
D 1/zj

5S A1,0

A1,1
D 1/z1

[Y ~49!

for all j. Solving forAj ,1 we get

Aj ,15aj ,0Y
2zj . ~50!

Putting this back in terms of concentrations, we get

cj ,1
~0!~xL!5cj ,0

~0!~xL!exp~m j ,0
ex2m j ,1

ex !Y2zj . ~51!

Next we sum Eq.~51! over j and apply the electroneutralit
of outer solutions~29!

05(
j

zjcj ,1
~0!~xL!1qL ~52!

5(
j

zjcj ,0
~0!~xL!exp~m j ,0

ex2m j ,1
ex !Y2zj1qL .

~53!

Therefore theY needed to findcj ,1
(0)(xL) is the solution to this

polynomial. Then Eq.~53! is the same as Eq.~7! with Y
5YL after using approximation~31!. Lastly, by substituting
Eq. ~45! into Eq. ~48! and using Eq.~33! we have

f1
~0!~xL!5f~0!~xL!1 ln~Y!'VL1 ln~Y! ~54!

and the last result follows. j
This result is not surprising; this part of the singular pe

turbation expansion is a more mathematical way to do
derivation of the Donnan potential. Note, however, that
did not use the assumptions normally used to derive the D
nan potential.

Next we concentrate on the corrections to the Donn
potential and concentrations that are new results. By Eq.~38!
and Theorem 1 we already have

b j ,15cj~L !exp~m j ,0
ex2m j ,1

ex !exp@2zj~bf2VL!# ~55!

so the only thing missing is a formula forbf that is given in
the next result.

Theorem 2. bf is given by the implicit formulation

qL~bf2VL!1(
j

cj~L !@12exp~m j ,0
ex2m j ,1

ex !#

3exp@2zj~bf2VL!#

5qLCL1(
j

cj~L !@12exp~m j ,0
ex2m j ,1

ex !exp~2zjCL!#,

~56!
2-5
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where CL5f0
(0)(xL)2VL' ln(Y) is the usual, but nondi-

mensionalized, Donnan potential on the left side of the m
brane. When there is no difference in the excess chem
potentials between the liquid and the membrane for all s
cies~that is, m j ,05m j ,1 for all j !, then this formula is explicit:

bf2VL5CL1CL8 , ~57!

where

CL85
1

qL
(

j
cj~L !@12exp~2zjCL!# ~58!

is the correction to the usual Donnan potentialCL . In this
case,

b j ,05b j ,15cj~L !exp@2zj~CL1CL8 !#. ~59!

Proof. Multiplying Eq. ~35! by dF i
(0)/dz, substituting in

Eq. ~37!, integrating from 0 tò , and using Eq.~27! gives

e~xL!

2 S dF i
~0!

dz
~0! D 2

5(
j

zjcj ,i
~0!~xL!E

0

` dF i
~0!

dz
exp@2zj~F i

~0!1U j ,i !#

3dz2qiF i
~0!~0!. ~60!

It is at this stage that we need the fact that the excess ch
cal potentials we are approximating are step functions
that case the excess chemical potentials of all species ch
much more rapidly than the electrostatic potential and
may approximate the integrals above by

E
0

` dF i
~0!

dz
exp@2zj~F i

~0!1U j ,i !#dz

'exp@2zjU j ,i~`!#E
0

` dF i
~0!

dz
exp~2zjF i

~0!!dz

5
1

zj
@exp$2zjF i

~0!~0!%21#. ~61!

This expression is exact if there is no difference in the exc
chemical potentials in the liquid and the membrane; that is
the activity coefficients for permeating ions are the same
the bulk solution and the channel. Setting the@(dF0

(0)/
dz)(0)#2 equal to@(dF1

(0)/dz)(0)#2 becausef must have a
continuous first derivative gives

(
j

cj~L !exp~m j ,0
ex2m j ,1

ex !exp@2zj~bf2VL!#

2(
j

cj~L !exp~m j ,0
ex2m j ,1

ex !Y2zj2qL@bf2VL2 ln~Y!#

5(
j

cj~L !exp@2zj~bf2VL!#2(
j

cj~L !. ~62!
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The result follows sinceCL5 ln(Y) by Theorem 1. j
Lastly, we describe the amount of space charge tha

contained in the boundary layers; that is, how far the ar
just inside and just outside of the channel are away fr
charge neutrality.

Theorem 3. The amount of space charge in the bath is

2sgn~qL!«A~xL!A2e~xL!

3F(
j

cj~L !$exp@2zj~bf2VL!#21%G1/2

.

~63!

Overall the system is charge neutral so that the space cha
just inside the channel is equal in size and opposite in sign
that in the bath.

Proof. The amount of charge contained in both bounda
layers is given by

E
0

x2
A~x!(

j
$zjcj~x!1q~x!%dx

'E
0

xL
A~x!(

j
zj$cj ,0

~0!~x!1Cj ,0
~0!~z !%dx

1E
xL

x2
A~x!(

j
@zj$cj ,1

~0!~x!1Cj ,1
~0!~z !%1qL#dx.

~64!

The first integral on the right-hand side is the charge c
tained in the boundary layer in the bath just outside the ch
nel and the second is the charge just inside the chan
Since the outer solutions are charge neutral by Eq.~29!, this
leaves

E
0

x2
A~x!(

j
$zjcj~x!1q~x!%dx

'E
0

xL
A~x!(

j
zjCj ,0

~0!~z !dx

1E
xL

x2
A~x!(

j
$zjcj ,1

~0!~z !%dx ~65!

'«A~xL!S E
0

`

(
j

zjCj ,0
~0!~z !dz

1E
0

`

(
j

zjCj ,1
~0!~z !dz D , ~66!

where we have used the approximation that the bound
layers change more rapidly than the area functionA, an as-
sumption that we have already made in order to derive
~35!. A(xL) is then the area of the left side of the channel.
the Poisson equation for the boundary layers~35!,
2-6
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E
0

`

(
j

zjCj ,i
~0!dz52e~xL!E

0

` d2F i
~0!

dz2 dz5e~xL!
dF i

~0!

dz
~0!.

~67!

SincedF/dx is continuous and by the two different defin
tions of z for the bath and the channel given after Eq.~22!,
we have (dF0

(0)/dz)(0)52(dF1
(0)/dz)(0). Therefore,

sincee is assumed to be continuous, the total charge in b
layers is 0~that is, overall the system is charge neutral! and
in order to find the amount of charge separated it suffice
find (dF0

(0)/dz)(0). In Eqs. ~60! and ~61! we found
@(dF0

(0)/dz)(0)#2 and so only the sign remains to be dete
mined. Because we are considering the uncompens
charge in the bath, it must be the counter ions going into
channel. Thus the sign must be opposite to that of the fi
charge inside the channelqL . j

IV. DISCUSSION

We have derived a formula for the electrostatic poten
at the edge of a channel~that is, at the interface between th
channel and the surrounding ionic solutions! based on the
Poisson-Nernst-Planck model of charge transport. In fu
dimensional units this potentialbf is given by

q~bf2V!1
kT

e (
j

cj , liqF12expS Dm j
ex

kT D G
3expF2

zje

kT
~bf2V!G

5qC1
kT

e (
j

cj , liqF12expS Dm j
ex

kT DexpS 2
zje

kT
C D G ,

~68!

where C is the usual Donnan potential on the side of t
membrane being studied,

Dm j5m j , liq2m j ,mem ~69!

is the difference in excess chemical potential of speciej
between the bulk liquid and within the membrane,cj , liq is the
bulk liquid concentration of speciesj, andq and V are, re-
spectively, the membrane charge concentration and the
age applied on the side of the membrane being studied.
concentrationsb j ,mem just inside the membrane are given b

b j ,mem5cj , liq expS Dm j
ex

kT DexpH 2
zje

kT
~bf2V!J . ~70!

In the case whenDm j
ex50 for all speciesj we have derived

a simple correction to the usual Donnan potentialC:

bf2V5C1C8, ~71!

where

C85
kT

e (
j

cj , liq

q F12expS 2
zje

kT
C D G . ~72!
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The amount of space charge in the bath has magnitude

AS 2kTe(
j

cj , liqFexpH 2
zje

kT
~bf2V!J 21G D 1/2

~73!

and has the sign opposite of that ofq. Inside the channel, the
space charge has the same magnitude, but has the sig
same as that ofq. ~A and e are the cross-sectional area a
dielectric coefficient, respectively, at the liquid/membra
interface.! The results of this analysis for a case of three i
species are shown in Fig. 1.

These modifications to the Donnan potential are va
when the channel is long enough to have the inner part of
channel charge-neutral; that is, the mobile and perman
charge are equal in that region. If there is no such part of
channel, then there are no distinct boundary layers on
edge of the channel and outer solution in the middle and
mathematical assumptions about the structures of the s
tions ~17!, ~18!, and ~27! are no longer true. For biologica
ion channels, this generally means a channel of length 2
or more. For shorter channels, however, the edge poten
given here should still be better than classical Donnan po
tials that have been used in the past@15#.

A surprising result of our analysis is its confirmation
the validity of the usual simple treatment of the Donn
potential. When our assumptions are satisfied, the u
treatment gives the correct current/voltage relation e
though its internal images of the potential and concentra
profiles at the membrane edges have serious errors. Th
because the classical Donnan potential is the extrapolatio
the potential profile across the channel from the char
neutral center to the channel edge; that is, it ignores
boundary layers. The inclusion in the calculations of t

FIG. 1. Plot of the potential~in millivolt ! at the liquid/
membrane interface as function of bath concentrationc ~in molar!
with q1521.0 M, z252, c2(L)50.1 M, c2(R)50.1 M, Dm2

537 mV, D2,bath5331029 cm2/sec, D2,ch51.5310211 cm2/sec,
z351, c3(L)5c, c3(R)50.1 M, Dm3580 mV, D3,bath52
31029 cm2/sec, D3,ch52310212 cm2/sec, z1521, c1(L)5c
10.2 M, c2(R)50.3 M, Dm150 mV, D2,bath51029 cm2/sec,
D2,ch510211 cm2/sec. The channel was given a radius of 3.5 Å a
A was given a constant value of the channel’s cross-sectional a
The diffusion coefficients are those used in the numerical solutio
but are not necessary for the theoretical treatment.
2-7
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boundary layers does not change the potential or conce
tion profiles in the middle of the channel, but only at t
edges~assuming the channel has a change-neutral regio
the middle!. Since the current in this one-dimensional mod
must be constant, the current calculated in the middle of
channel~away from the boundary layers! is the same regard
less of whether the boundary layers are included or n
When dealing with ultrashort channels~,20 Å! this analysis
is no longer true; using the usual Donnan potentials and
newly derived potentials would give different current/volta
relations because the center of the channel is never ch
neutral. In this case while the newly derived potentials
not exactly correct since the underlying mathematical
sumptions are not true, their use must give more accu
results than the application of the usual Donnan potent
since for such channels the new boundary conditions
recover the potential and concentration profiles better. Fo
types of membranes, the modifications become impor
when one is interested in the actual shapes of the pote
and concentrations across the length of the channel.
ys
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Last, in the case of leaky membranes~case 1!, the results
of this study are still valid when one of the following tw
conditions is satisfied.

~1! The experiment is set up so that the bath concen
tions are known and do not vary significantly with distan
from the channel. Experimental precautions are usually ta
to ensure this situation for K1, Na1, and Cl2 channels. Such
a simplification is not possible for Ca21 channels becaus
they normally operate with negligible Ca21 concentration
~,1 mM @3#! on one side.

~2! The bath concentrations near the membrane
known. In that case these concentrations should be put
the equations for the modifications of the Donnan potent
and concentrations~68! and ~70!.
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