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Derivation of Poisson and Nernst-Planck equations in a bath and channel from a molecular mode
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Permeation of ions from one electrolytic solution to another, through a protein channel, is a biological
process of considerable importance. Permeation occurs on a time scale of micro- to milliseconds, far longer
than the femtosecond time scales of atomic motion. Direct simulations of atomic dynamics are not yet possible
for such long-time scales; thus, averaging is unavoidable. The question is what and how to average. In this
paper, we average a Langevin model of ionic motion in a bulk solution and protein channel. The main result
is a coupled system of averaged Poisson and Nernst-Planck equations~CPNP! involving conditional and
unconditional charge densities and conditional potentials. The resulting NP equations contain the averaged
force on a single ion, which is the sum of two components. The first component is the gradient of a conditional
electric potential that is the solution of Poisson’s equation with conditional and permanent charge densities and
boundary conditions of the applied voltage. The second component is the self-induced force on an ion due to
surface charges induced only by that ion at dielectric interfaces. The ion induces surface polarization charge
that exerts a significant force on the ion itself, not present in earlier PNP equations. The proposed CPNP system
is not complete, however, because the electric potential satisfies Poisson’s equation withconditional charge
densities, conditioned on the location of an ion, while the NP equations contain unconditional densities. The
conditional densities are closely related to the well-studied pair-correlation functions of equilibrium statistical
mechanics. We examine a specific closure relation, which on the one hand replaces the conditional charge
densities by the unconditional ones in the Poisson equation, and on the other hand replaces the self-induced
force in the NP equation by an effective self-induced force. This effective self-induced force is nearly zero in
the baths but is approximately equal to the self-induced force in and near the channel. The charge densities in
the NP equations are interpreted as time averages over long times of the motion of a quasiparticle that diffuses
with the same diffusion coefficient as that of a real ion, but is driven by the averaged force. In this way,
continuum equations with averaged charge densities and mean-fields can be used to describe permeation
through a protein channel.
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I. INTRODUCTION

The Poisson-Nernst-Planck~PNP! equations have bee
used for the description of macroscopic properties of elec
chemical systems, usually without current flow, and also
the description of currents in semiconductor devices@1,2#.
These equations have been also quite successfully appli
the description of ionic currents in protein channels of b
logical membranes@3–6#. The state variables in the PN
equations are the electrostatic potential and the charge
sities of the different ionic species. The PNP equations
usually derived from conservation laws of a continuum f
mulation @2#.

The application of the PNP equations inside narrow ch
nels that can contain only a small number of ions at a tim
or in channels where the ions are arranged in a single
raises interesting conceptual and mathematical problems
example, what is the meaning of concentration in suc
context? The PNP equations predict quite accurately
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current-voltage response of narrow channels over a w
range of salt concentrations in the bath. However, many p
nomena, usually associated with single filing of ions, a
missed by the PNP system@3#. The record of current vs time
of a single channel in patch clamp and bilayer experime
@7# ranges from noisy to very noisy, depending on the type
channel. Although this noise is not captured by the PNP s
tem at all, still the average net currents predicted by PNP
an open channel are quite accurately reproduced in sev
channels of known structure@6#.

The partial success and partial failure of the PNP sys
poses the question why? Which results of the PNP model
be accepted and which cannot? The purpose of this pap
to partially answer these questions by deriving the PNP eq
tions from a molecular model of ionic motion in both a ba
and a channel. As discussed below, the resulting~exact! PNP
equations differ from the standard ones used so far.

The point of departure for our derivation is the classic
view that ionic motion in solution is governed by electr
static forces and thermal fluctuations of the solvent@8#. The
fluctuations give rise to the diffusive motion of ions in th
bath as well as inside the channel. The prediction of mac
scopic properties of ionic solutions from the microscop
Brownian motion of their components raises interest
©2001 The American Physical Society16-1
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mathematical issues illustrated here with a primitive Lan
vin model of ionic motion. In this model the electrostat
forces acting on the diffusing ions consist of the Coulom
interactions between the ions, the permanent charges, su
charges on molecules immersed in the solution, induced
face charges on dielectric boundaries, and the effects o
external field. Our simple model of ionic motion assum
that the fluctuating force exerted on an ion by the solvent
be represented as friction and a zero-mean Gaussian sta
ary force ~noise! satisfying Einstein’s ~generalized!
fluctuation-dissipation principle, and that noises acting
different ions, are independent of each other.

Our derivation follows traditional methods of statistic
physics, where continuum equations for densities are der
from microscopic laws governing the motion of individu
particles~see Ref.@9# and the more recent Ref.@10#!. The
case at hand differs from the standard models in that
force term in the equations of motion is governed by a se
rate Poisson equation. The assumptions on the independ
of the noises in the Langevin equations and on the repre
tation of the solvent as a dielectric constant in Poisso
equation need further examination in concentrated solut
and in multiply occupied protein channels. For other theor
of multiply occupied narrow channels see Ref.@7# and refer-
ences therein, and the more recent paper@11#.

The results of this paper are the derivation of a coup
system of NP equations for the charge densities and Poi
equations for averaged electric potentials, from a Lange
model of ionic motion. The force in the NP equations h
two components, the gradient of an electric potential, an
self-induced force on an ion produced by surface char
induced by that ion at dielectric interfaces. The latter co
ponent in the NP equations seems to be new, although
existence of such a force has been considered in simula
@12#. The proposed PNP system, however, is not comp
~i.e., ‘‘closed’’!, since the electric potential depends oncon-
ditional charge densities, given the location of an ion, wh
the NP equations containunconditional densities. Closure re
lations, mainly applied to equilibrium Poisson Boltzma
systems, have been the subject of extensive study in the
erature@13,14,8,15#, and references therein. The propos
theories are based on various physical and excluded vol
assumptions, and sometimes lead to different results. Clo
relations for nonequilibrium systems, e.g., for systems ca
ing a steady current, are still not known. In this paper
consider a closure relation for the particular case of an e
trolytic solution in the presence of a dielectric interface.
this closure relation the conditional charge densities are
placed by the unconditional ones, and the self-induced fo
in the NP equation is replaced by an effective force.

Our derivation of PNP equations is essentially an aver
ing procedure of a finite but large discrete system. T
charge densities in the NP equations are interpreted as
averages over long times of the number of particles per
volume in the discrete system. This interpretation giv
meaning to densities even in narrow channels that can
tain at most one or two ions at a time. Although in the av
aging procedure all microscopic phenomena in a nar
channel may be lost—including finite size of the ions, bloc
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ing, single filing, noise and so on@7#—still the average net
flux is preserved. The average net flux is a measure of
biological function of most channels.

II. FORMULATION

We consider an electrostatically neutral binary soluti
confined in a finite volume, between electrodes and imp
etrable hard walls. The two electrodes are connected
feedback apparatus, external to our model, that maint
constant average voltage and concentrations at the e
trodes. The feedback mechanism achieves this by remo
and feeding back ions as current flows through the syst
Thus, on average, the number of ions in the solution is c
stant. In reality, the voltage, concentrations, flux, and
number of ions are not constant but rather fluctuate in tim
These fluctuations are caused by the random motion of
ions, the deterministic and random time delays of the fe
back mechanisms, the finite precision of the measuring
vices, and so on.

In this paper, we neglect these fluctuations and assu
that the number of both positive and negative ions in
solution is constant at all times. In particular, we assume
the feedback mechanism is instantaneous, that is, whe
ion reaches one electrode, it is immediately injected at
other electrode. Thus, the total flux of particles on the bou
ary of the system vanishes at all times. This approximat
reduces the resolution of our analysis but is a reason
representation of the typical experimental situation. Th
fluctuations are indeed negligible for an experimental sys
in which the electrodes are placed far away from the reg
of biological or chemical interest. Fluctuations are significa
in computer simulations, in which the total number of ions
relatively small, and thus must be taken into account@31#.

We consider a solution containingN positive andN nega-
tive ions. We denote the coordinates of a point byx
5(x,y,z). We number the ions in the solution at timet50
and denote the vectors of coordinates and velocity of thej th
positive ion at timet by x j

p(t) and ẋ j
p(t), respectively, and

those of thekth negative ion byxk
n(t) and ẋk

n(t). The coor-
dinate vector of all ions in the 6N-dimensional configuration
space is denotedx̃5(x 1

p , . . . ,x N
p ,x1

n , . . . ,xN
n ), while in

analogy, the vector of all velocities is denoted asẋ̃ or ṽ. For
future reference, the vector of coordinates of all 2N21 ions,
excluding thej th positive ion is denotedx̃ j

p .

A. Equations of motion

Ionic solutions nearly always contain many more wa
molecules than ions, even when they are nearly saturate
their solubility limit. For example, there are about 55 wa
molecules per ion in a 1 Msalt solution, and at the biologica
concentration of 100 mM, there are about 550 water m
ecules per ion. Thus, the collective motion of only the io
~without the water! is a lower-dimensional projection of th
joint motion of all water and salt molecules in the solutio
that can be approximated by a system of generalized Lan
6-2
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DERIVATION OF POISSON AND NERNST-PLANCK . . . PHYSICAL REVIEW E64 036116
vin equations@16#. These equations assume that the therm
motion of ions is due mainly to the thermal motion of th
surrounding water molecules. There is of course another c
tribution to the diffusive motion of each ion, from its inte
actions with the other ions, as in an ionic plasma. This eff
decreases as the solution becomes more dilute.

The generalized Langevin equations involve a fricti
memory kernel and correlated noise, satisfying a general
fluctuation-dissipation principle@16#. The motion of ions in
solution is strongly overdamped, and so the correlation t
of the noise is much shorter than the characteristic diffus
time scale considered in this paper. On a sufficiently coa
time scale, much longer than the relaxation time of the so
tion, memory effects can be neglected@17#. Thus, our point
of departure is the memoryless system of Langevin equat

ẍ j
p1g p~x j

p!ẋ j
p5

f j
p~ x̃!

mp
1A2g p~x j

p!kBT

mp
ẇ j

p ,

~ j 51,2, . . . ,N!,
~2.1!

ẍk
n1g n~xk

n!ẋ k
n 5

f k
n~ x̃!

mn
1A2gn~xk

n!kBT

mn
ẇk

n ,

~k51,2, . . . ,N!,

where a dot on a variable denotes differentiation with resp
to time, f j

p( x̃) and f k
n( x̃) denote the electrostatic forces ac

ing on the j th positive ion and on thekth negative ion, re-
spectively,g c(x) is the location dependent friction coeffi
cient per unit mass of the ionic species of typec (c5p,n),
and ẇj

c are, by assumption, independent standard Gaus
white noises. The parameterkB is Boltzmann’s constant,T is
the absolute temperature, andmc is the effective mass of an
ion of typec.

In addition we assume that positive and negative io
have radiiap and an , respectively, and that there are ha
wall potentials between ions, preventing oppositely char
ions from collapsing into each other.

The physical three-dimensional domain in which our s
tem is confined, calledV, is shown in Fig. 1. Its boundary
]V, consists of two parts. One is the electrodes, and
other one is impermeable walls. The 6N-dimensional con-
figuration space of the trajectories of all 2N particles in the
Langevin system~2.1! is confined to the domain

Ṽ53
j 51

2N

V j ,

where 3 denotes Cartesian product, andV j is the three-
dimensional physical domain of thej th particle, identical to
V. The boundary of the domainṼ is

]Ṽ5ø
j 51

2N

V13V23•••3V j 213]V j3V j 113•••V2N ,
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which consists of all points in the 6N-dimensional space
where at least one of the 2N components is on the boundar
of the corresponding regionV j .

The boundary behavior of the random trajectories of
Langevin equations~2.1! reflects the physical boundary con
ditions imposed on the system at the boundary]V. Every
trajectory that reaches an electrode is instantaneously
jected at the opposite one. Trajectories that reach o
boundaries of the domain are reflected@3,18#. The fluctua-
tions removed by this idealized electrode~voltage clamp!
boundary condition will be studied elsewhere.

B. The electrostatic forces

As stated in the introduction, we assume that the elec
lytic solution is afast bath, namely, that the relaxation tim
of the solvent water is very fast so that the dielectric coe
cient of the pure solvent is time independent. We also ass
that the potential in the bath can be represented as the s
tion of Poisson’s equation, and not of the time depend
Maxwell equations. The effects of displacement current a
possible radiation will be examined elsewhere. The elec
static force acting on an ion is then computed from the el
trostatic potentialf(x), a solution of Poisson’s equation

Df~x!52
1

«0
Ferperm~x!1e(

j
d~x2x j

p!

2e(
k

d~x2xk
n!G1“•P~x!, ~2.2!

whererperm(x) is the permanent charge density, andP(x) is
the polarization field, that describes the charge induced
the electric field in matter that otherwise would be char
neutral@19#. In an isotropic medium with linear response, t
polarization field is connected to the local field by

P~x!5xE~x!52x“f~x!, ~2.3!

FIG. 1. A typical experimental setup. The regionV consists of
two baths separated by an impermeable membrane, with a pos
channel embedded in it. The electrodes immersed in the two b
are connected to an external feedback mechanism~not shown in
figure! that maintains a constant voltage difference between
electrodes, and constant concentrations in the baths.
6-3
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wherex(x)5«(x)21 is the dielectric succeptibility of the
medium@19#. Combining Eq.~2.3! and Eq.~2.2!, we obtain
the familiar form of Poisson’s equation

“•«~x!“f~x!52
1

«0
Ferperm~x!1e(

j
d~x2x j

p!

2e(
k

d~x2xk
n!G .

In addition, the potentialf(x) satisfies boundary condition
on the electrodes and the standard continuity condition
the electric displacement vector across surfaces of disco
nuity of the dielectric coefficient@19#.

The electrostatic force on thej th positive ion at position
x j

p , denotedf j
p , is calculated from the potentialf(x) as

follows:

f j
p52e“S f~x!2

1

4p«0«~x j
p!

1

ux2x j
pu D U

x5x
j
p

. ~2.4!

The last term on the right-hand side of Eq.~2.4! removes the
singularity of the potentialf(x) at the location of the ion
~see Appendix A for details!.

This force, which in general depends on the coordin
vectorx̃ of all the charges in the system, can be decompo
into two components,

f j
p5f j

p~ x̃,P!1fD~x j
p!. ~2.5!

The first componentf j
p( x̃,P), includes the interaction force

of the j th positive ion with all other ions in the solution, th
permanent charge, the charges on the electrodes that m
tain a fixed applied voltage, and the surface charges indu
by these charges. The second componentfD(x j

p), is a self-
induced force produced by the surface charges induced a
dielectric interfaces by the ion atx j

p . If there are no dielec-
tric interfaces, this induced force is zero. Note that this fo
component is proportional to thesquareof the ion’s charge,
regardless of its sign. For example, it is equal for monova
anions and cations~see Appendix A for details!.

While the first component depends on the locations ofall
charges in the system, the second component depends
on the location of thej th positive ion, and is independent o
the location of all the other charges in the system, and
particular, of the applied voltage. The computation of t
self-induced force component is described in Appendix
The decomposition~2.5! of the total force into these two
components, is particularly important in the averaging p
cess described below.

The first component of the forcef j
p( x̃,P), is obtained

from the solution of Poisson’s equation~2.2!, with the charge
of the j th positive ion removed from the right-hand side. W
denote the resulting electric potential byf j

p(x,x̃ j
p), deter-

mined from
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“x•«~x!“xf j
p~x,x̃ j

p!52
1

«0
Ferperm~x!1e(

j 8Þ j

d~x2x j 8
p

!

2e(
k

d~x2xk
n!G , ~2.6!

with the same boundary and continuity conditions mention
above, for the potentialf(x). Here“x denotes the gradien
with respect to the variablex,

“x5S ]

]x
,

]

]y
,

]

]zD .

In terms of this potential, the first component of the for
f j

p( x̃,P), is given by

f j
p~ x̃,P!52e“x f j

p~x,x̃ j
p!ux5x

j
p. ~2.7!

The second component of the forcefD(x j
p), is given by

fD~x j
p!52e“xS fD~x,x j

p!2
1

4p«~x j
p!«0

e

ux2x j
pu D U

x5x
j
p

,

~2.8!

wherefD(x,y) satisfies Poisson’s equation

“x•«~x!“xfD~x,y!52
e

«0
d~x2y!, ~2.9!

with zero potential boundary conditions at the electrodes~see
Appendix A for derivation!.

III. DERIVATION OF THE PNP EQUATIONS

Equations~2.1!–~2.4! form a discrete high-dimensiona
system of coupled stochastic and partial differential eq
tions that describe the time evolution of this many parti
system. We derive a simplified, though approximate, desc
tion of this system in which ions are represented bycon-
tinuum charge densities. In this approximation the descr
tion of the system is reduced to averaged charge dens
and electric potentials governed by Nernst-Planck and P
son equations.

The outline of the computation is as follows. First, th
connection between the positive-ion concentration and
stationary probability density function~pdf! of a single ion,
is derived in Sec. III A. In Sec. III B, the Fokker-Planc
equation for the joint pdf of all ions in the system is form
lated. The probability density of a single positive ion is o
tained by integration of the joint pdf over the phase space
all ions, excluding a single positive ion. This procedure
sults in a Fokker-Planck type equation~FPE! for the pdf of
the phase-space coordinates of a single ion. The resu
equation, however, is not a standard FPE because it con
an average force term that depends on the probability den
of all other ions. Since this probability density depends
the unknown solution of the full FPE for all ions, the forc
term in the FPE equation is in general unknown. In Sec. II
6-4
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DERIVATION OF POISSON AND NERNST-PLANCK . . . PHYSICAL REVIEW E64 036116
we consider the large friction limit of this FPE, resulting in
reduced Smoluchowski equation for only the pdf of the
cation of the ion, with a still unknown force function. Ac
cording to the results of Sec. III A, this Smoluchowski equ
tion turns into a Nernst-Planck equation for the averag
charge density.

The average force appearing in these equations, w
depends on the probability density of all other ions, is eva
ated in Sec. III E. We separate the average force into
components. One is the self-induced force that an ion ex
on itself arising from the charge induced by the ion at bou
aries between regions of different dielectric coefficient.
might be called a dielectric boundary force. The other co
ponent is an average force due to the interaction of the
with all other charges in the system, e.g., the perman
charge on the protein, the ions in the bath, and the charge
the electrodes that maintain the voltage clamp boundary c
dition. The second term can be written as the gradient o
averaged potential, described by an averaged Poisson e
tion. The averaged Poisson equation, however, containscon-
ditional charge densities, rather than the unconditio
charge densities present in the Nernst-Planck equation
described. This key result is a direct consequence of the
eraging procedure, and is not an assumption. Thus, the
sulting system, denoted CPNP, is not closed, i.e., it is inco
plete. In Sec. III F, we examine one specific closure relat
and its consequences. This closure relation replaces the
ditional charge densities by the unconditional ones, negl
ing the finite size of ions. This approximation leads to
~closed! PNP-type system of equations, but with an ad
tional effective induced force term in the NP equations.

A. Charge density and probability density

We usecp(x) to describe the time-averaged steady-st
charge density of the positive species at locationx, and
pj

p(x), j 51, . . . ,N, to define the stationary probability den
sity function ~PDF! of the location of thej th positive ion.

These two quantities are related as follows. By definiti
for a small volumeDx around the pointx, the product
cp(x)Dx denotes the time-averaged number of ions in t
volume. We introducex(x,Dx) as the indicator function o
the volumeDx,

x~x,Dx!5H 1 if xPDx,

0 otherwise.

We abbreviatex j5x(x j
p(t),Dx). By definition,

cp~x!Dx5(
j

E$x j%5(
j

Pr$x@xj
p~ t !,Dx#51%,

whereE$•% denotes the expected value operator.
In the steady state, for small volumesDx

Pr$x@x j
p~ t !,Dx#51%5pj

p~x!Dx1O@~Dx!2#.

Moreover, for a stationary system in steady state with
single species of positive ions, from symmetry consid
ations, the probability of finding thej th positive ion at loca-
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tion x is the same as that of finding any other positive i
there. Thus, the probability densitypj

p(x) is independent of
the indexj, and we denote it simply byp(x). Hence, in the
limit uDxu→0,

cp~x!5Np~x!. ~3.1!

Thus, the densitycp(x) is N times the stationary pdf of the
j th positive ion. Similarly, the charge density of negati
ionscn(x) is N times the stationary marginal, i.e., integrat
pdf of thekth negative ion. These densities are independ
of the indicesj andk, respectively. The densitycp(x) is the
physical density of positive ions and it integrates to the to
number of positive ions in the solution.

In mixed solutions, for example, Na1, Ca21, and Cl2, the
analog of Eq.~3.1! holds for each species separately. Th
will lead to different Nernst-Planck equations for each sp
cies and other complexities in the analysis, as discussed
on.

B. The multidimensional Fokker-Planck equation

Equation~3.1! shows the connection between the statio
ary PDF of a single positive ionp(x) and the macroscopic
charge densitycp(x). Therefore, we can now derive an equ
tion for p(x), which by relation~3.1!, readily turns into an
equation forcp(x). We start from an equation for the station
ary joint probability density ofall ions, and integrate it ove
the phase-space coordinates of all ions, excluding a sin
positive ion, to obtain an equation for the marginal, i.e.,
tegrated, density of this ion.

The joint transition probability density of all ions is de-
fined as

p~ x̃,ṽ,t u j̃,h̃,s!5Pr$x̃~ t !5 x̃,ṽ~ t !5ṽ u x̃~s!5 j̃,ṽ~s!5h̃%,
~3.2!

wherej̃ andh̃ are the phase-space coordinates of all ions
some initial times. The stationary PDF of all ions is define
as the long-time limit of the transition PDF~3.2!,

p~ x̃,ṽ !5 lim
t→`

p~ x̃,ṽ,t u j̃,h̃,s!, ~3.3!

and is independent of the initial valuesj̃, h̃ at times.
The motion of all ions is governed by the Langevin sy

tem ~2.1!, so the stationary PDF~3.3! satisfies the multidi-
mensional stationary Fokker-Planck equation@20#

05(
j

L j
p p1(

k
L k

n p, ~3.4!

whereL j
p andL k

n are the Fokker-Planck operators acting
the phase-space coordinates of thej th positive andkth nega-
tive ion, respectively. They are given by
6-5
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L j
c p52v j

c
•“x

j
c p1“v j

c•S gc~xj
c!v j

c2
f j

c

mcD p

1Dv j
c
gc~xj

c!kBT

mc
p, ~c5p,n!,

where the operators“x and Dx denote the gradient and th
Laplacian with respect to the variablex, respectively. Equa-

tion ~3.4! is defined in the 12N dimensional regionx̃PṼ and

ṽPR6N.
The FPE~3.4! can be written as a conservation law

052~¹ ṽ ,¹ x̃!•~Jṽ ,Jx̃!,
~3.5!

52 (
j 51..N,
c5p,n

~¹v j
c•Jv j

c1¹x
j
c•Jx

j
c!,

where Jṽ 5(Jv j
p,Jvk

n), and Jx̃ 5(Jx
j
p,Jx

k
n), ( j 51, . . . ,N, k

51, . . . ,N), are 2N -dimensional flux density vectors whos
components are the three-dimensional flux densities

Jv j
c52S gc~xj

c!v j
c2

f j
c~ x̃,ṽ !

mc D p~ x̃,ṽ !

2¹v j
c
gc~xj

c!kBT

mc
p~ x̃,ṽ !, ~3.6!

Jx
j
c 5v j

c p~ x̃,ṽ !.

These three-dimensional components of the flux density v
tor represent the probability flux densities of the individu
ions @21#.

The boundary conditions for the FPE~3.4! are determined
from the boundary behavior imposed on the trajectories
the Langevin equations~2.1! and can be expressed in term
of the three-dimensional components of the flux vectoJ
5(Jx̃ ,Jṽ). Specifically, on the insulating~reflecting! part of
the boundary, where particle trajectories are reflected,
following condition holds:

Jx
j
c~ x̃,ṽ !•nux

j
cP]V,v j

c
•n5v52Jx

j
c~ x̃,ṽ !•nux

j
cP]V,v j

c
•n52v ,

~3.7!

wheren denotes the unit normal to the boundary.
On the electrode boundaries, where particles are recy

and the electric potential is controlled, the boundary con
tion specifies that the influx at one electrode equals the ef
on the other, for each component of the probability flux de
sity. Therefore, the total flux on the boundary vanishes
each one of the 2N components of the flux vectorJx̃ ,

E
]V

Jx
j
c•n dS50, ~3.8!

wheredS is a surface element on the boundary.
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Last, but not least, the hard wall potentials at a fin
distance from the center of each ion also transform into
flecting boundary conditions for the fluxes of other ions, th
preventing the collapse of positive and negative ions o
each other.

C. The probability density of a single ion

We now consider the probability density of thej th posi-
tive ion. This is themarginal ~integrated! density of the joint
probability density of all ions,

p~x j
p ,v j

p!5E E
Ṽ j

p
3R6N23

p~ x̃,ṽ !dx̃ j
p dṽ j

p , ~3.9!

whereṼ j
p is the configuration space of all ions inV, except

the j th positive ion andR6N23 is the space of velocities of al
ions except thej th positive ion. That is, the right-hand sid
contains an integration over the 12N26 positions and ve-
locities of all particles, excluding thej th positive ion.

To obtain an equation forp(x j
p ,v j

p), we integrate equa-
tion ~3.5! with respect to the phase-space coordinates of
ions except those of thej th positive ion

052E E
Ṽ j

p
3R6N23

“•J~ x̃,ṽ !dx̃ j
p dṽ j

p . ~3.10!

We separate the integrand“•J( x̃,ṽ) into the component of
the j th positive ion, and to the remaining 2N21 other com-
ponents. For these 2N21 components, we apply the dive
gence theorem in the 12N26 dimensional phase space of th
integration. First, we consider the velocity flux compone
Jv j

c. For these components, the integration is over all poss

velocities. These terms vanish after the application of
divergence theorem because the velocity flux decreases
ponentially fast for large absolute velocities, simplifying E
~3.10! to

052E E
Ṽ j

p
3R6N23

~“v j
p•Jv j

p1“x
j
p•Jx

j
p!dx̃ j

p dṽ j
p

2(
iÞ j

E E
]V i

p
3R6N23

Jx
i
p~ x̃,ṽ !•n~x i

p!dSx
i
p dṽ i

p

2(
k
E E

]Vk
n
3R6N23

Jx
k
n~ x̃,ṽ !•n~xk

n!dSx
k
n dṽk

n ,

~3.11!

whereJv j
p andJx

j
p are given by Eq.~3.6! anddSx

k
n denotes

integration over the surface of the boundary. By definitio
the last two terms in Eq.~3.11! are the total probability flux
on the boundary]V of all ions besides thej th positive ion.
Due to the specified boundary conditions~3.7! for the
Fokker-Planck equation, the total probability flux of each i
on the boundary is zero, Eq.~3.8!, so the last two terms in
Eq. ~3.11! vanish.

Consider the remaining first term on the right-hand side
Eq. ~3.11!. Inserting Eq.~3.6! into Eq. ~3.11! gives
6-6
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05E E
Ṽ j

p
3R6N23

“v j
p•S g p~x j

p!v j
p2

f j
p~ x̃!

mp

1
g p~x j

p!kBT

mp
“v j

pD p~ x̃,ṽ ! dx̃ j
p dṽ j

p

1E E
Ṽ j

p
3R6N23

“x
j
p•v j

p p~ x̃,ṽ ! dx̃ j
p dṽ j

p .

Note that since integration is over the phase-space coo
nates of all ions excluding thej th positive ion, the differen-
tiation operators“x

j
p and“v j

p, as well as all other terms tha

depend only onx j
p or v j

p , can be taken out of the integratio
Using definition~3.9!, we obtain

05“v j
p•g p~x j

p!v j
pp~x j

p ,v j
p!

2“v j
p•E E

Ṽ j
p
3R6N23

f j
p~ x̃!

mp
p~ x̃,ṽ ! dx̃ j

pdṽ j
p

1
g p~xj

c!kBT

mp
Dv j

p p~x j
p ,v j

p!2v j
p
•“x

j
p p~x j

p ,v j
p!.

~3.12!

The only term for which the marginal PDF of thej th positive
ion p(x j

p ,v j
p) could not be recovered from the integration,

the mixed termf j
p( x̃)p( x̃,ṽ). To recover the PDFp(x j

p ,v j
p)

from this term as well, we denote byp( x̃ j
p ,ṽ j

p u x j
p ,v j

p) the
conditional PDF of all ions excluding thej th positive ion,
given the phase-space coordinates of thej th positive ion. We
write

p~ x̃,ṽ !5p~ x̃ j
p ,ṽ j

p u x j
p ,v j

p! p~x j
p ,v j

p!,

and set

f̄ p~xj
p ,v j

p!5E
Ṽ j

p
3R6N23

E f j
p~ x̃!p~ x̃ j

p ,ṽ j
p u x j

p ,v j
p!dx̃ j

p dṽ j
p .

~3.13!

In Eq. ~3.13!, the integration over the velocity vectorṽ j
p can

be carried out since the forcef j
p depends only on the loca

tions of the ions, and not on their velocities. This simplifi
the last equation to

f̄ p~xj
p ,v j

p!5E
Ṽ j

p
f j

p~ x̃!p~ x̃ j
p u x j

p ,v j
p!dx̃ j

p , ~3.14!

wherep( x̃ j
p u x j

p ,v j
p) denotes the conditional density of th

locations of all other ions, excluding thej th positive ion,
given the location and velocity of thej th positive ion.

With these definitions, and suppressing the indexj, Eq.
~3.12! becomes
03611
i-

052v•“x p~x,v !1“v•S g p~x!v2
f̄ p~x,v !

mp D p~x,v !

1Dv
g p~x!kBT

mp
p~x,v !. ~3.15!

Equation~3.15! is a Fokker-Planck equation for the probab
ity density of a single positive ion. It contains an avera
force f̄ p(x,v) whose calculation, according to Eq.~3.14!,
depends on the conditional probability density of all ion
given the phase-space coordinates of thej th positive ion.
However, this conditional density depends on the solution
the full Fokker-Planck equation~3.4!. Therefore all of these
quantities are coupled, and the Fokker-Planck equation
the stationary probability density of a single ion cannot
solved independently of the full Fokker-Planck equation
all other ions. Obviously, Eq.~3.15! is not very useful as
long as its force term is not known. Note that although t
forcing function f̄ p(x,v) is not known, Eq.~3.15! is exact.

D. The overdamped limit

We consider the Smoluchowski limit of large friction, be
cause the motion of a single ion is strongly overdamped. T
first approximation assumes that~in this limit! the condi-
tional probability density of the locations of all ions, exclu
ing the j th positive ion, given its phase-space coordinat
depends only on the position of the ion and not on its vel
ity,

p~ x̃ j
p u x j

p ,v j
p!5p~ x̃ j

p u x j
p!. ~3.16!

This approximation makes the forcef̄ p in Eq. ~3.14! depen-
dent only on the location of the ion, and not on its veloci

f̄ p~x!5E f j
p~ x̃!p~ x̃ j

p u x j
p5x!dx̃ j

p , ~3.17!

where p( x̃ j
p u x j

p5x) is the stationary marginal~integrated!
conditional density of the locations of all ions, excluding t
j th positive ion, given it is located atx.

With this approximation, the stationary PDF of the phas
space coordinates of a single positive ion,p(x,v), satisfies
the FPE~3.15! with a forcing function that depends only o
the location of the ion. In this case — in the limit of larg
friction — the marginal PDF of the ions’s locationp(x) sat-
isfies the Smoluchowski equation@18#

052“•J~x!52“•S f̄ p~x!

mpg p~x!
p~x!2

kBT

mpg p~x!
“p~x!D ,

~3.18!

while the full PDFp(x,v) has the form
6-7
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p~x,v !5S 2pkBT

mp D 23/2

expS 2
mpv2

2kBTD F p~x!1
mp

kBT
J~x!•v

1OS 1

G2D G ,

whereJ is the flux defined by the Smoluchowski equati
~3.18! andG is a measure of the friction.

Relation~3.1! converts Eq.~3.18! for the PDF of a single
particle into a Nernst-Planck equation for the macrosco
positive charge densitycp(x), depending on the yet undete
mined average forcef̄ p,

052“•S f̄ p~x!

mpg p~x!
cp~x!2

kBT

mpg p~x!
“cp~x!D .

~3.19!

Equation~3.19! depends on the approximation~3.16!–~3.17!
but is otherwise exact. Obviously, a similar equation ho
for the negative charge densitycn(x), albeit with a different
force f̄ n(x), and the respective friction and mass coefficie
gn(x) andmn.

E. The averaged force

The Nernst-Planck equation~3.19! for the stationary
charge density of the positive ions contains a yet unde
mined average forcef̄ p(x), given by Eq.~3.17!. This force
can be simplified considerably by noting that the force te
f j

p( x̃) can be represented as a sum of two termsfD(x j
p) and

f j
p( x̃,P), according to Eq.~2.5!. The latter term can be de

composed, even further, as follows:

f j
p~ x̃!5fD~xj

p!1f j
p~ x̃,P!5fD~xj

p!2e“xS fperm~x!

1(
iÞ j

fD~x,x i
p!2(

k
fD~x,xk

n! D U
x5x

j
p

, ~3.20!

where fD(x j
p) is the self-induced force of the ion, given b

Eq. ~2.8!, fperm(x) is the potential atx created by the per
manent charge and the applied voltage, andfD(x,y) is the
potential atx created by a positive ion located aty, with no
applied voltage. The potentialfD(x,y) satisfies Poisson’s
equation~2.9!.

We now insert decomposition~3.20! of f j
p , into Eq.

~3.17!. The first two terms in Eq.~3.20! depend only on the
location of the j th positive ion and are thus constant wi
respect to the integration variables. Furthermore, each on
the remaining terms in the two sums is a function of onlyone
of the integration variables. Thus, integration with respec
the other variables can be performed. This integration
duces the conditional PDFp( x̃ j

p u x j
p5x) to the marginal

~integrated! conditional PDFp(xi
c u x j

p5x) of the variable
not integrated so far,
03611
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p~x i
c u x j

p5x!5E p~ x̃ j
p u x j

p5x! )
xkÞxj

p, xi
c

dxk .

Performing these integrations in Eq.~3.17! yields

f̄ p~x!5fD~x!2e“y fperm~y!uy5x

2e“y H(
iÞ j

E
V

fD~y,x i
p!p~x i

p u x j
p5x!dx i

pJ
y5x

1e“y H(
k
E

V
fD~y,xk

n!p~xk
n u x j

p5x!dxk
nJ U

y5x

,

~3.21!

where“y denotes the gradient with respect toy. In the steady
state, all positive ions of the same species are indistingu
able and thereforeinterchangeable, so the conditional PDF’s
of the different positive ions, given the position of thej th
positive ion, are all equal. The same property holds,
course, for the negative ions as well. Thus, we conclude
all terms in the first sum in Eq.~3.21! are equal to each othe
and so are the terms in the second sum.

We denote bycp(y u x) and cn(y u x) the positive and
negative conditional charge densities aty, given that a posi-
tive ion is located atx. Arguments similar to those in Sec
III A show that

cp~y u x!5~N21!p~x i
p5y u x j

p5x!,
~3.22!

cn~y u x!5Np~x k
n5y u x j

p5x!.

In terms of these quantities, the total force can be written

f̄ p~x!5fD~x!2e“xfperm~x!2e“z H E
V

fD~z,y!@cp~y ux!

2cn~y ux!#dy J U
z5x

. ~3.23!

We define a potentialf̄p(zu x) by

f̄p~zu x!5fperm~z!1E
V

fD~z,y!@cp~y ux!2cn~y ux!#dy.

Since fD(y,x) satisfies Eq.~2.9!, it follows that f̄p(zu x)
satisfies the Poisson equation

“y •@«~y!“y f̄p~y u x!#52
e

«0
@rperm~y!1cp~y u x!

2cn~y u x!#, ~3.24!

with the applied voltage conditions on the electrodes. Ob
ously, the average forcef̄ n(x) appearing in the NP equatio
for the negative charge densities can be written as the su
the self-force and the gradient of an analogous electric
tential f̄n(y u x).
6-8
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To conclude, the averaging procedure described in S
III A–III D shows that the macroscopic charge densiti
cp(x) and cn(x) satisfy the following Nernst-Planck equa
tions

05“x•F 1

mpg p~x!
cp~x!@e“yf̄

p~y u x!uy5x2fD~x!#

1
kBT

mpg p~x!
“xcp~x!G ,

05“x•F 1

mngn~x!
cn~x!@2e“yf̄

n~y u x!uy5x2fD~x!#

1
kBT

mngn~x!
“xcn~x!G , ~3.25!

with averaged mean-field potentials that satisfy Pois
equations withconditionalcharge densities, and with the a
ditional self-force termfD(x). The charge densities in th
Poisson equation are different from the unconditional cha
densities in the NP equations. We denote the resulting sys
~3.24!–~3.25! as the CPNP system. This system differs fro
the standard PNP system, because~i! it containsconditional
potentials satisfying Poisson equations with conditio
charge densities, and~ii ! it contains the self-induced force.

Note that there are different conditional Poisson equati
for the positive and negative species. For a mixed solut
we would have a separate NP equation and a separate
ditional Poisson equation for each ionic species.

Finally, we note that calculations with conditional char
densities play a central role in statistical mechanics of liqu
@14,8#. Our paper shows that conditional densities arise
evitably in a stochastic analysis of averaged macrosco
charge densities.

F. Conditional and unconditional charge densities

To solve Eqs.~3.25! for the unconditional densitiescp(x)
andcn(x) it is necessary to solve Poisson’s equation~3.24!
for f̄p and a similar equation forf̄n. However, these equa
tions contain the conditional charge densitiescp(y u x) and
cn(y u x) so that the CPNP system~3.24!–~3.25! is not
closed. These conditional charge densities at locationy,
given a positive~or negative! ion at locationx, are in general
differentfrom the unconditional charge densities at the sa
locationcp(y) andcn(y). Therefore, to close the CPNP sy
tem, it is necessary to either derive an additional set of eq
tions for the conditional charge densities, or to determ
closure relationsbetween the conditional and uncondition
charge densities.

At this point, we note that according to Eq.~3.22!, the
conditional charge densities are related to the well-stud
pair-correlation functions@8#, which are the conditional pdf
p(y u x), of a positive or negative ion aty, given a positive or
negative ion atx. There are several theories for computi
the pair-correlation functions under various assumptions@8#.
The outcome of each of these theories is a different,
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often rather complicated,closure relationbetween the con-
ditional and the unconditional charge densities. Applying
ther one of these existing theories to the CPNP system yi
a closed system of Poisson and Nernst-Planck equations
can be solved simultaneously, at least in principle. In t
way, our paper can relate to the substantial literature of
tistical mechanics of ionic solutions and to their recent a
plications to channels@22,23#.

The pair-correlation functions, or equivalently, the con
tional charge densities present in the Poisson equations,
tain within themexcluded volumeeffects. The simplest and
most crude approximation, however, is to neglect these
fects and replace the conditional charge densities in
~3.24! by the unconditional charge densities. This appro
mation leads to the standard Poisson equation

“x•«~x!“x f̄~x!52
e

«0
@rperm~x!1cp~x!2cn~x!#.

~3.26!

Equations~3.25!–~3.26!, with f̄c(y u x) replaced byf̄(y),
are the standard Poisson-Nernst-Planck model@3#, but with
an additional self-induced force termfD(x).

More refined theories attempt to compensate for the e
in the evaluation of the net force introduced in the abo
approximation. We consider this compensation in a typi
bath-channel-membrane setup. First, we consider the
force on an ion located atx in the bulk solution far away
~many Debye lengths@8#! from the membrane and channe
We assume that this region of the solution is approximat
in equilibrium, and thus approximate the conditional cha
densitiesc(y u x) by the simple Debye-Hu¨ckel theory@8#.

This leads to an isotropic displacement of the ionic atm
sphere, i.e., the charge cloud around the ion. According
the well-known sum rule, the total charge of the cloud equ
the opposite charge of the fixed ion atx @14#. Since this
displacement of the charge of the ionic atmosphere is iso
pic, the direct Coulomb force on the ion, due to this cloud
zero. The charge displacement of the ionic atmosphere, h
ever, acts on the ion not only through the direct Coulom
force, but also through the surface charges induced at die
tric interfaces by the charge displacement. Since the sph
cally symmetric cloud centered at the ion has an equal
opposite charge as that of the ion, the spherically symme
cloud induces equal and opposite surface charges at th
away dielectric interfaces. Therefore, the effect of the d
placement cloud, or equivalently, of thereaction fieldcom-
puted from the conditional charge densities, is acancellation
of the self-induced force on the ion, due to the charge
duced by the ion at dielectric boundaries. That is, the d
placement cloudscreensthe self-induced force of the ion
@see Fig. 2~a!#.

The replacement of the conditional charge densities w
unconditional densities in Poisson’s equation~3.24! changes
the distribution of positive and negative charges around
ion located atx. While the conditional densities form a clou
around the ion, as described above, the unconditional de
ties do not. Thus, in a bath with an ion atx and unconditional
densities around it, the surface charge induced by the io
6-9
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dielectric boundaries is not compensated by a surface ch
induced by a displacement cloud. This means that there
differencein the net force acting on the ion between a ba
with conditional densities, and a bath with uncondition
densities. Specifically, in a bath with conditional densiti
the self-induced force due to the induced surface charge
screened and decays exponentially fast with distance f
dielectric boundaries. In contrast, in a bath with an ion ax
and unconditional densities, the induced force is not scree
and is therefore long range, decaying as the inverse squa
the distance to the dielectric boundary.

Thus, for ions located far away from dielectric interface
the ~long-range! self-induced forcefD(x) in Eq. ~3.25! has to
be eliminatedto compensate for the replacement of the co
ditional charge densities with the unconditional ones. Rela
phenomena involving screening in ionic solutions, is seen
both modified Poisson Boltzmann theories and simulati
@24,25#.

As the ion approaches the dielectric interface, the isotr
of the displacement cloud is broken, so that the direct C
lombic force of the cloud on the ion no longer vanishes, a
the induced surface charges of the screening cloud do
cancel the induced surface charges of the ion@see Fig. 2~b!#.
These complexities also affect ions approaching the mout
the pore, where the flux may not be considered negligible
the ionic cloud may not be considered spherically symme
@26#.

The situation inside the channel is opposite to the sit
tion in a bulk solution. Inside the channel there is usua
only one mobile ion. Therefore, we expect that there will
almost no screening of the self-induced force on this ion
the conditional charge densities in the bath@27#. In replacing
conditional charge densities by the unconditional ones,
self-force must be retained inside the channel.

To conclude, the replacement of conditional charge d
sities by unconditional ones has an effect on the net fo
acting on the ion. This effect can be compensated by rep
ing the self-induced forcefD(x) by an effective induced
force f D

e f f(x), so that the net force in the NP equations for t
positive and negative ions~of valence one! is given by

f̄ p~x!52e“f̄~x!1f D
e f f,p~x!,

f̄ n~x!51e“f̄~x!1f D
e f f,n~x!.

Note that if the positive and negative ions have the sa
diameter and valence, then the effective forces are equa

FIG. 2. ~a! The displacement cloud around an ion located ma
Debye lengths from a membrane, and~b! around an ion located nea
a membrane.
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Outside the channel, there is perfect screening of the s
induced force by the conditional densities, so their repla
ment with unconditional ones makes the effective induc
force zero. Inside the channel there is almost no screenin
the effective induced force approximately equals the s
induced force. In the intermediate region, between the m
brane and the bulk solution~several Debye lengths awa
from the membrane!, the situation is more complicated an
has to be calculated from a more detailed theory.

IV. QUASI-IONS AND SIMULATION OF PERMEATION

A different approach to the study of the permeation p
cess through the channel uses Langevin simulations ins
of closure relations. In Sec. III C we have shown that t
stationary probability density functionp(x,v), for the phase-
space coordinates of a single positive ion is governed by
FPE type equation~3.15!. This FPE corresponds to th
Langevin equation

ẍ1g p~x!ẋ5
f̄ p~x!

mp
1A2gp~x!kBT

mp
ẇ, ~4.1!

with the additional approximation~3.16!–~3.17! so that the
force f̄ p(x) depends only onx. Note that this Langevin equa
tion does not define the trajectories of a real positive ion,
rather defines trajectories of aquasi-ion, that is driven by the

averaged forcef̄ p(x), and not by the real fluctuating forc
that drives a real ion. Yet, according to our analysis,
average flux computed from the trajectories of this quasip
ticle, equals the averaged flux of real ions. Note also that
boundary behavior of the trajectories of this quasi-ion is
same as those of the real ions — reflection at hard walls
immediate recycling at the opposite electrode of ions rea
ing a given electrode. The idea of a quasi-ion~called a per-
mion! has been mentioned before in the permeation litera
@28#.

The permeation properties of a channel can thus be s
ied by simulating trajectories of quasi-ions, according to E
~4.1!, once the forcef̄ p(x) has been evaluated. One possib
procedure for approximating the forcef̄ p is to fix the quasi-
ion at various locationsx, and for every such location, com
pute the average force exerted on it, either by some theor
by a simulation in which the force is approximated by
ensemble average. In the latter method, for every sys
within the ensemble, the quasi-ion is kept fixed at its loc
tion, and the other ions are allowed to relax to a rand
realization of their stationary distribution. This procedure
only an approximation of the force, because keeping
quasi-ion fixed is not strictly consistent with the flux of th
quasi-ion. However, the mean velocity of the quasi-ion as
ciated with this flux is small compared to its thermal velo
ity, so this procedure is a reasonable first step@18#. Once the
force is known, a simulation of Eq.~4.1! can be carried out.

Now consider the case of a channel that can contain m
than one ion at a time. In this case, it might be necessar
simultaneously simulate two or more ionic trajectories a
time. In analogy to the case of a single simulated quasi-

y
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a simulation of the motion of two ions leads to forces of t
form f̄ (x1,x2) which depend on the locations of the tw
simulated quasi-ions, and on the conditional charge densi
but conditioned now on the locations ofboth ions. In order to
proceed in this direction, a theory must be derived or a sim
lation carried out to compute these forces.

There are, however, quite a few issues to be resolved
fore a practical simulation of a quasi-ion can be carried o
The first issue involves approximating the full phase-sp
coordinates (x,v) with only the spatial coordinatex. This
approximation enables a simpler and faster simulation of
quasi-ion but is problematic because in simulating only
location of the ion and not its velocity, there is no way
distinguish between incoming and outgoing trajectories
the electrodes@18#. Thus, the recycling mechanism of ions
the electrodes has to be revised in this limit. Another issu
the size of the domain. In our formalism, the domainV in
which the solution was confined is assumed large enoug
that density fluctuations are neglected and the instantan
recycling mechanism at the electrodes is assumed. Howe
running a simulation in such a large domain may prove to
too slow. Thus, ideally one would like to simulate a quasi-i
in a much smaller domain surrounding the protein chan
However, in this domain, the density fluctuations in the ori
nal formulation of the problem may not necessarily be n
ligible, and thus automatic reinjection of quasi-ions at t
electrodes needs to be reconsidered. These issues requir
ther investigation not covered in this paper.

V. DISCUSSION

In this paper, an averaging procedure of a Langevin mo
for the coupled motion of many interacting ions in an ele
trolyte solution is described, that results in an approxim
description of the solution with averaged charge densi
and mean electric fields. The result of the averaging pro
dure is a CPNP system~3.24!–~3.25! containing a set of
conditional Nernst-Planck and conditional Poisson eq
tions. The average charge density of each ionic species in
solution is described by a separate Nernst-Planck equa
coupled to a separate Poisson equation for its conditio
electrostatic potential. The force in each NP equation is
sum of two terms; one is the self-induced force on an ion
that species, and the other is the gradient of the corresp
ing conditional electrostatic potential. This potential is d
scribed by a Poisson equation that~1! depends on thecondi-
tional charge densities of all the ionic species, condition
on the location of an ion of that species,~2! depends on the
permanent charge, and~3! depends on the applied voltag
boundary conditions. In a bi-ionic solution, the CPNP syst
consists of a total of four equations: two NP equations for
charge densities of the positive and negative ions, and
Poisson equations for the conditional potentials, each co
sponding to one of the NP equations.

In equilibrium, the conditional charge densities appear
in the Poisson equations are closely related to the p
correlation functions in the theory of fluids@8#. The condi-
tional densities aredifferent from the ~unconditional! densi-
ties in the NP equations, and their difference is a measur
03611
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interionic repulsion and attraction forces, and in particu
excluded volume effects. This difference renders the res
ing CPNP system incomplete. As in the theory of fluids
closure relationbetween the conditional and uncondition
charge densities and between the conditional and unco
tional potentials is needed to complete the system. Wit
closure relation, all the equations in the CPNP system
coupled to each other. One of the simplest closure relation
the mean spherical approximation~MSA! closure which ex-
presses the excluded volume of ions of finite size. MSA-ty
closure relations are quite successful in describing prope
of free solutions~with no dielectric interfaces and no narro
channels! @8#. These closure relations have recently been
plied to ionic permeation in protein channels@22,23,29#.

In this paper, we examine a specific closure relation, t
replaces the conditional charge densities in the Poisson e
tions by the unconditional ones, and also replaces the s
induced force in the NP equations by an effective induc
force f D

e f f . The exact form of the effective induced force
the access region needs to be resolved by a higher resol
theory; but far away from channel and membrane, the eff
tive induced force is approximately zero, as we have d
cussed, and near dielectric interfaces—in particular ins
the channel—there is hardly any screening so the effec
induced force approximately equals the self-induced for
We note that the proposed closure relation is not based on
Boltzmann distribution, and therefore may be also applied
nonequilibrium systems.

The replacement of conditional densities by unconditio
ones leads to the PNP system, with the additional effec
induced force termf D

e f f . This replacement represents th
finite-sized ions as point charges. Thus, excluded volu
effects arelost in this description, and all the related ph
nomena of channels, such as single filing and flux saturat
cannot be recovered by the PNP system.

A different approach to include the finite sizes of the io
into an averaged PNP description introduces Lennard-Jo
force terms between the individual ions in the Langevin s
tem ~2.1!. Then, in the averaging procedure, an addition
averaged conditional Lennard-Jones force term appear
the resulting Nernst-Planck equations of the CPNP syst
The specific closure relation that replaces conditional de
ties by unconditional ones, must also evaluate this avera
Lennard-Jones force, thus leading to a PNP description w
excluded volume effects. Note, however, that when sh
range Lennard-Jones forces are present, in particular insi
multiply occupied channel, the assumption of independ
noise terms in the Langevin equations of different io
should be re-examined. Last but not least, other closure
lations, not necessarily leading to a PNP description of
system, are also possible, and should be examined.

In the derivation presented in this paper, the CPNP sys
~3.24!–~3.25! can be considered as the result of ensem
averaging over many independent realizations of the stoc
tic system ~2.1!–~2.2!. Obviously, for a rigid channel, in
which the permanent charge does not move at all, the
manent charge densityrperm(x), the dielectric constant«(x),
and the boundary conditions remain unchanged in the a
aging process. If, however, the permanent charge fluctu
6-11
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around a fixed position, then the dynamics of the perman
charge need to be described and coupled to the full Lang
system~2.1!. The averaging procedure will result in acondi-
tional permanent charge distribution appearing in the con
tional Poisson equations.

In this way, the geometric and electrostatic properties o
channel carry over to the averaged system. However,
fluctuating state of the system with the~random! locations
and velocitiesx̃(t) andṽ(t) of all the ions is replaced in the
averaged system by the nonfluctuating averaged charge
sitiescp(x) andcn(x). Thus, potential fluctuations are lost
the PNP system. In steady state, these charge densities c
viewed as averages over many snapshots~samples! of a
single system, taken at different times, sufficiently far ap
for all correlations to vanish. In this view, the charge den
ties appearing in the NP equations are time averages of
crete ionic concentrations, over times much larger than
relaxation time of the system. This view defines a continu
description of the discrete contents of an ionic channel. T
continuum description results from averaging over tim
much longer than the passage time of a single ion throug
channel, so that all unidirectional fluxes meld into a sin
averaged net flux and lose their individual identity.

Finally, note that ion specific excess chemical potent
included in the Langevin model arepreservedby the averag-
ing process, and appear in the effective NP equations. S
excess chemical potentials might arise from a more deta
atomic model, describing ‘‘chemical’’ interactions of an io
~in the bulk phase! with its hydration shell, and of an ion~in
the channel! with its solvation shell~of atoms of the protein
as well as channel water!.

Note added in proof. Rosalind Allen, Jean-Pierre Hanse
and Simone Melchionna have recently treated a similar pr
lem by variational methods in a paper submitted to Phys
Chemistry Chemical Physics.
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APPENDIX A: THE SELF-INDUCED FORCE FROM
DIELECTRIC BOUNDARIES

Consider the three-dimensional spaceR3 decomposed into
an arbitrary number of dielectric regions of arbitrary shap
V i . We assume that in each regionV i , the dielectric coef-
ficient is constant, with respective value« i , and jumps
abruptly only at the boundaries]V i separating regions o
different dielectric coefficients. Consider a point charge
strengthq located atr0PV1, a region with dielectric coeffi-
cient «1. In this section we consider only the self-induc
force on this point charge, due to the presence of dielec
boundaries, so we assume no other fixed or mobile cha
are present in the system. As explained in the text, the in
action forces of this point charge with the other charges~and
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their induced surface charges! is treated separately@see Eq.
~2.5!#. The presence of the charge atr0 induces surface
charges at all the boundaries]V i , separating regions of dif-
ferent dielectric media. These surface charges, in turn, e
a force on this charge, which we denote byF ind(r0). The
following lemma states the connection between this fo
and the electric potential,F(r), in the entire space.

Lemma. LetF(r) denote the electric potential atr, cre-
ated by a point charge atr0, and let F ind(r0) denote the
resulting net force on that point charge, the dielectric boun
ary force. Then

F ind~r0!52q “ r S F~r!2
q

4p«0«1ur2r0u D U
r5r0

.

In other words, the dielectric boundary force acting on t
charge can be computed by subtracting from the total elec
potential the singular Coulombic term produced by t
charge, and then computing the gradient at the charge’s
cation.

Proof. The potentialF(r) satisfies Poisson’s equation

“•«~r!“F~r!52
q

«0
d~r2r0!, ~A1!

with the standard jump conditions of the normal field at
electric interfaces

@«~r!“F~r!•n#u]V i
50, ~A2!

wheren is a unit vector in the outer normal direction to
surface element on]V i , and the square brackets denote t
difference in the variable enclosed within them, between
value outside the regionV i and inside it. Note thatF(r) also
vanishes asuru→`.

The presence of the point charge atr0 induces surface
charges,s ind , at the dielectric boundaries]V i , given by

s indu]V i
5@“F•n#u]V i

. ~A3!

These induced surface charges create a force on the p
charge. To compute this dielectric boundary force, it is n
essary to compute the electric potential formed by the s
face charges, denoted byF ind(r). Then, the force on the ion
is simply the gradient of this potential, computed at the io
location,

F ind~r0!52q“F ind~r!ur5r0
. ~A4!

We now consider the equation that the potentialF ind(r) sat-
isfies. Since the polarization of the different regionsV i has
already been taken into account in the computation of
induced surface charges via Eqs.~A1!–~A3!, the potential
F ind(r) satisfies Laplace’s equationwithout a dielectric co-
efficient, i.e., with«(r)51 throughout whole space

DF ind~r!50. ~A5!

In addition, as withF(r), the potentialF ind(r) also vanishes
asuru→`. No point charge is present atr0 in Eq. ~A5!, since
6-12
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the potentialF ind is produced only by the surface charg
induced on the dielectric interfaces.

While there are no dielectric boundaries for the poten
F ind(r) @«(r)51 everywhere#, there are surface charge
given by ~A3!, located at these boundaries. This amounts
the following jump conditions,

@“F ind•n#u]V i
5s indu]V i

. ~A6!

The key point in the proof of the lemma is the observat
that the potentialF(r) created by the point charge atr0, that
satisfies Eqs.~A1!–~A2!, equivalently satisfies Poisson’s
equation with a constant dielectric coefficient,«(r)5«1,
throughout space,

DF~r!52
q

«1«0
d~r2r0!, ~A7!

but with jump conditions across~now nonexistent! dielectric
boundaries that depend on the induced surface charges f
there,

@“F•n#u]V i
5s indu]V i

. ~A8!

This equivalent representation ofF(r) follows from the
textbook pillbox treatment of Gauss’ law at dielectric boun
aries@19#. Note also that these jump conditions are exac
the same as those thatF ind satisfies.

To prove the lemma, we subtract the two potentialsF ind
and F. Both potentials satisfy the same jump condition
Eqs.~A6! and~A8!. Then, according to Eqs.~A5! and~A7!,
their difference satisfies the following Poisson equat
throughout space
e-

o-

o-

rg

-
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D@F ind~r!2F~r!#51
q

«0«1
d~r2r0!

without any jump conditions at the boundaries]V i . The
solution to this equation, with a plus sign in the right-ha
side, is of course the free space potential created by a p
charge of strength2q/«1 at r0,

F ind~r!2F~r!52
1

4p«0«1

q

ur2r0u
. ~A9!

Combining Eq.~A9! with Eq. ~A4! concludes the proof of
the lemma.

Note that the potentialF(r) is proportional to the charge
q at r0. Thus according to Eq.~A3! and Eqs.~A5!–~A6! both
the induced surface charges and the potentialF ind are also
proportional toq. This renders the self-induced dielectr
boundary force, given by Eq.~A4!, proportional toq2. Thus,
the force vector has thesamedirection and magnitude re
gardless of the sign of the charge atr0.

Note also that for the same problem in a finite domainV,
with homogeneous boundary conditions on]V ~grounded
metal electrodes at the boundary!, the lemma does not hold
This is because the solution of Eq.~A9! in a finite domain
with zero boundary conditions, is not exactly the Coulom
term, but rather contains boundary effects as well. Howe
in terms of the force on the ion, these effects decay as
square distance from the outer boundary@30#, so for many
practical purposes, for an ion located far away from the ou
boundaries of the domain, the lemma is still valid.
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