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Abstract.  Numerical simulations are presented of stochastic-in-time current pulses for an electrodiffusion model
of the biological channel, with a fixed applied voltage across the channel. The electrodiffusion model consists of
the advection-diffusion equation coupled either 10 Gauss’ law or Poisson’s equation, depending on the choice of
boundary conditions. plus a model for the protein charge density in the channel.
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1. Introduction

Biological celis exchange chemicals and electric
charge with their environments through ionic channels.
Signaling in the nervous system, coordination of mus-
cle contraction including the pumping action of the
heart. and ionic transport in every cell and organ are
carried out through ionic channels.

lonic current pulses have been observed experimen-
tally in a wide variety of channels in the membranes
of many types of cells (see Hille (1992) and refer-
ences therein). These current pulses are of rectangular
wave shape with constant heights and are distributed
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stochastically in time. In this investigation we simu-
late stochastic-in-time rectangular current pulses for
an electrodiffusion model of the biological channel.

We will consider the flow of K* ions (in water)
through a channel of diameter 7 A and length 10 A.
K™* channels play a central role in electrical signaling
in the nervous system.

Our electrodiffusion model is based on the drift-
diffusion partial differential equations plus a model
(Gardner. Jerome and Eisenberg 2000) for the pro-
tein charge density in the channel. The electrodiffusion
equations have traveling rectangular wave solutions
(Gardner, Jerome and Eisenberg 2000), which serve
here as an inflow boundary condition for rectangular
wave solutions for the full partial differential equations
(PDEs). We will present simulations of a 10 A long bi-
ological channel with a fixed applied voltage across
the channel for two different sets of boundary condi-
tions. The traveling wave rectangular current pulses are
no longer solutions for the finite length voltage biased
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channel, but the rectangular wave nature of input pulses
1s preserved by the full PDEs.

The finite channel simulations are important be-
cause the traveling wave pulses have a length equal
to vo At p 2 3000 channel lengths. where vy is the trav-
eling wave velocity and Atp is the average duration of
a cuwrrent pulse. This is consisient with experimental
measurements of current pulses if the jonic velocities
are on the order of the ionic permeation velocity v,
since the channel is on for a long time Arp compared
to an ionic transit time 10 A/v,,.

It is remarkable that an electrodiffusion model can
produce not only rectangular current pulses, but the
wide variety of current behavior observed experimen-
tally in channels of biological membranes. Itis difficult
to get rectangular waves with flat tops from differential
equations. The addition of noise to the drift-diffusion
equations can excite current pulses with different dura-
tions and separations but equal heights, in accord with
experimental measurements of channel currents. Our
model serves as an example where nature may make
use of ubiquitous thermal noise to accomplish a biolog-
rcal task—in this case turning the channel on and off.

2. Electrodiffusion Model

We consider a flow of positive ions (cations) in a one-
dimensional channel in an electric field E(x. 1) against
a background of negatively charged atoms on the chan-
nel protein. The discrete distribution of charges is de-
scribed by continuum particle densities p(x, 1) for the
mobile cations and N for the negatively charged atoms
of the protein. We will allow N to be a function of
current density and electrie field, but not explicitly of
v or 1. The flow of cations is modeled mathematically
by the drift-diffusion modecl, that is, by a partial dif-
ferential equation for conservation of the cations and
Gauss™ law for the electric field, plus a constitutive law
specifying the current density j(x, r):
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where ¢ is the proton charge. € is the dielectric coeffi-
cient (taken here 1o be constant), o < 1 1s a noise term,
/s the mobility coefficient. and D is the diffusion

coefficient. The usual electric field has been multiplied
by e (i.e., £ has units of eV/em in the cgs system).
Alternatively, Poisson’s equation for the electrostatic
potential cnergy ¢ may be used instead of Gauss’ law:
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The choice of boundary conditions determines whether
we use Gauss™ law (£ is specitied at inflow) or Pois-
son’s equation (¢ is specified at inflow and outflow).
The random noise term o represents small charge
density fluctuations on the right-hand side of Gauss’
law. We set g equal to 46, 0, or —G, where 6 &« 113
a positive constant. The nonzero values of ¢ are ran-
domly distributed with uniform probability in time with
zero mean. 1.e., with equal probability of being posi-
tive or negative. Generating noise £G with zero mean
guarantees charge conservation. This model for noise
generation mimics thermal fluctuations of charge den-
sity (where & corresponds to the average of the absolute
value of the thermal fluctuations). since it is the exis-
tence of small thermal fluctuations of charge density
that is important, and not their quantitative magnitude.
We model the total charge distribution by
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where ¢ « | is a positive constant. j is a reference ion
density, £ is areference electric field. and vy = uE_/('.
This charge model is derived near thermal equilib-
rium from a Boltzmann factor in Gardner, Jerome and
Eisenberg (2000).

For the K channel, the dielectric constant € & 20,
the mobility coefficient £ & 6 x 107 cm?/(V s). and
the diffusion coefficient D ~ 1.5 x 107® cm?/s.

Only the current / ~ 1-10 picoamperes and the av-
erage duration of a current pulse Azp ~ 0.1-10 milli-
seconds are directly measurable experimentally. A
physically natural magnitude for p would be a unit
charge e spread uniformly throughout the channel vol-
ume (2.6 x 107! cm“B). We choose 5 to be one half this
value so that the average number of ions in the channel
when the channel is on is roughly 3.25. The number of
ions in the channel is consistent with the energetics of
packing the ions single-tile in the channel.

Experimentally the external voltage V' is applied
over a Jength ~10/.. where /. = 10 A is the chan-
nel length, We have assumed that the potential drop



is very close to linear in x outside of the channel and
have therefore scaled V' — V /10 at v = [,.. We also as-
sume that there are equal concentrations of ions inside
and outside the cell membrane. so that no current flows
when V = 0. We then set £ = —¢V /(101,).

These values for p and £ yield an average pulse
duration on the order of (.1-10 or more milliseconds
depending on the frequency of the noise term o, and
a current of 2 picoamperes at V' = 10 millivolts. Our
computed pulse durations and currents match roughly
the mean of the experimental values, which vary de-
pending on the K* channel type. The traveling wave
velocity vy = 0.6 cm/s at V' = 10 millivolts is the same
order of magnitude as the ion permeation velocity v,
through the channel. For these parameters, the constant
¢=34x 107" « lin Eq. (5).

A typical traveling wave pulse in p, which is propor-
tional to j for the traveling wave, and the associated
clectric field E are shown in Fig. 1, with py=0.01p.
Eg=1.01E.¢=E?/p,andG = +107"E2. The charge
density for this pulse is shown in Fig. 2. £ has been set
10 10* eV/em.

The durations and separations of the current pulses
vary over a wide range (see Fig. 3 and Gardner, Jerome
and Eisenberg (2000)), as is observed experimentally.
This wide variety of current pulse durations and separa-
tions is obtained by making the noise term more or less
frequent.

Physical values predicted in the model like vy ~ v,
Atrp ~0.1-10 milliseconds, etc.. are of the right or-
der of magnitude for biological channels. A conforma-
tional change in the protein and the concomitant small
charge fluctuations (¢ ~ 107%) produce gating. rather
than a mechanical “flap” or “slider™. A small dipolar
charge wave (a positive spike followed by a negative

and E
o
oo -
w

¢

Figure 1. Traveling wave curtent pulse j/max{j} = p/max{p}
and electric field £ /max{ £} (dotted) vs. time (x —vo7 )/ v in millisec.
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Figure 2. Traveling wave charge density p — N in units of 107
¢/channel vs. time (x — vy?)/vo 10 millisec.
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Figure 3. Traveling wave current j/max{j} vs. time (x — vpt)/vg
in millisec with random noise added every thousandth timestep on

average.

spike) turns on the current in the channel. and a similar
reversed charge wave (a negative spike followed by a
positive spike) turns off the current (see Fig. 2).

3.  Numerical Methods for Electrodiffusion

The drift-diffusion Egs. (1)—(3) with our charge model
(5) take the form
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coupled to either Gauss” law (if £ is specified at inflow)
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or to Poisson’s equation (if ¢ is specified at inflow and
outfiow)
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where the current density j is given in Eq. (3). The
noise term  is only important at the inflow boundary.
Equation (6) is a parabolic PDE. Poisson’s equation (8)
is elliptic. while Gauss ' law (7) is a first-order ordinary
differential cquation.

/ariables p and E are defined at gridpoints O 1, .. .,
N. while ¢ 1s defined at midpoints of grid cells
=1/2.1/2.3/2. ... .N +1/2.

Given p” and E" at timelevel 1, a timestep consists
of two parts. (1) First we solve the transport equation (6)
for p"*! with £ = E". (ii) Then we solve either Gauss’
Jaw (7) or Poisson’s equation (8) for £/ ' using £” and
p"*! on the right-hand side.

For the ion density p, we impose a “pulse” inflow
boundary condition p(0, ) from the traveling wave so-
lution with noise at the left boundary of the channel
and a through-flow boundary condition pyyi = pn
at the right outflow boundary, where N + 1 is a ghost
point (we also set Exyy = En). Gating is controlled
by charge movement at the inflow boundary as in
Fig. 2. We also either specify E(0.7) from the trav-
eling wave solution and use Gauss’ law, or we specify
two boundary conditions. E(0,t) from the traveling
wave solution (which sets ¢, ,2) and the voltage bias
Onri2 = U 1) = eV /10, plus the zero of potential
encray ¢ 1n = ¢(0.¢1) = 0 and usc Poisson’s equa-
tion. The traveling wave inflow boundary condition for
the parabolic PDE (6) 1s similar in spirit to a character-
istic boundary condition for hyperbolic PDEs.

We use the TRBDF?2 (trapezotidal rule/second-order
backward difference formula) method (Bank er al.
1985) for the drift-diffusion transport equation. For
Poisson’s equation we use a tridiagonal direct solve.
while for Gauss™ law we integrate forward from x = 0
tox = /. using TRBDF2 now as a spatial integrator.

4. Simulation of Current Pulses
in a Finite Channel

We present two sets of simulations which depend on
the choice of boundary conditions. Specifying £ at
inflow (Gauss™ law case) from the traveling wave so-
lution yields numerical solutions which are very close
to the traveling wave solutions. Specifying ¢ = 0 at

inflow and ¢ = ¢V /10 at outflow (Poisson equation
case) yields numerical solutions which have rectangu-
lar current pulses but greatly diminished electric fields
in the channel, so the traveling wave picture is no longer
applicable.

Of particular significance is the fact that in both the
Gauss” law and Poisson equation cases. the outflow ion
density and the current are rectangular waves witl ex-
actly the same on and off durations as the inflow pulse.
Thus the wide variety of stochastic-in-time rectangular
current pulses are reproduced in the finite channel by
solving the electrodiffusion model PDEs. Only very
special charge models like Eq. (5) can preserve the
shape of the input rectangular pulses in ion density.

Figure 4 shows the computed outflow current I for
both the Gauss™ law and Poisson equation cases with
the applied voltage V = —10 millivolts (time is in mil-
liseconds). The current pulse duration for these simula-
tions with noise every timestep is about (1.5 millisec—
however, by decreasing the frequency of the noise term,
pulse durations of 10 millisec or more are easilty ob-
tained (see Gardner, Jerome and Eisenberg (2000)).

The flat maximum value of the current in the on
state vs. voltage is almost exactly linear in both the
Gauss’ law and Poisson’s equation cases (see Fig. 5).
The magnitude of the current may be understood from
the fact that
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for the flat tops of the ion density p. (V' > 0 implies
1 < 0.) This expression produces a linear Ohm’s law.
Experimental data on channels however indicate that
Ohm’s law for the biological channel is often nonlinear,
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Figure 4. Outflow current in picoamperes for ' = — 10 millivolts.

Gauss™ law and Poisson’s equation cases. vs. time in millisec.
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Figure 5. Computed current in picoamperes vs. voltage in
mitlivolts.

e.g. sublincar—see Fig. 6 on p. 328 of Hille (1992).
The sublinearity in the experimental IV curve must
come from effects neglected in our model (for example.,
a nonuniform spatial distribution of fixed charge or a
significant series resistance arising in the bath or at
the interface between the bath and channel (Eisenberg
1998)).
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To summarize: In our finite channel model. noise in
the pulse boundary condition gives the experimentally
observed variation in current pulse durations and sepa-
rations. A conformational change in the protein and the
resultant small charge fluctuations produce gating—in
other words, charge movement at the inflow boundary
turns the channel on and off.
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