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Electrodiffusion Model Simulation of Rectangular Current Pulses
in a Voltage-Biased Biological Channel
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Numerical methods are presented for simulating stochastic-in-time current pulses for an
electrodiffusion model of the biological channel, with a fixed applied voltage across the
channel. The electrodiffusion model consists of the parabolic advection–diffusion equation
coupled either to Gauss’ law or Poisson’s equation, depending on the choice of boundary
conditions. The TRBDF2 method is employed for the advection–diffusion equation. The
rectangular wave shape of previously simulated traveling wave current pulses is preserved by
the full set of partial differential equations for electrodiffusion.

r 2002 Elsevier Science Ltd. All rights reserved.
Introduction

Biological cells exchange chemicals and electric
charge with their environments through ionic
channelsFhollow cylindrical protein molecules-
Fin the cell membrane walls. Signaling in the
nervous system, coordination of muscle contrac-
tion including the pumping action of the heart,
and ionic transport in every cell and organ are
carried out through ionic channels.
Rectangular wave ionic current pulses have

been observed experimentally in a wide variety
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of channels in the membranes of many types of
cells (see Hille, 1992 and references therein). The
current pulses have uniform heights and are
distributed stochastically in time. Using an
electrodiffusion model developed in Gardner
et al. (2000), we will simulate stochastic-in-time
rectangular current pulses in a finite length
channel.
We will model the flow of Kþ ions (in water)

through a channel of diameter 7 (A and length
10 (A:Kþ channels play a central role in electrical
signaling in the nervous system. A typical nerve
cell has hundreds of thousands of Kþ channels.
Our electrodiffusion model is based on the

drift-diffusion or Poisson–Nernst–Planck partial
differential equations plus a model for the
protein charge density in the channel. The
electrodiffusion equations have traveling rectan-
gular wave solutions (Gardner et al., 2000),
which serve here as an inflow boundary condi-
tion for rectangular wave solutions for the full
partial differential equations (PDEs). We will
r 2002 Elsevier Science Ltd. All rights reserved.
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discuss numerical methods for the electrodiffu-
sion model PDEs and present simulations of a
10 (A long biological channel with a fixed applied
voltage across the channel for two different sets
of boundary conditions. The traveling wave
rectangular current pulses are no longer solu-
tions for the finite length voltage biased channel,
but the rectangular wave nature of input pulses
is preserved by the full PDEs.
The finite channel simulations are important

because the traveling wave pulses have a length
equal to v0DtP\3000 channel lengths, where v0
is the traveling wave velocity and DtP is the
average duration of a current pulse. This is
consistent with experimental measurements of
current pulses if the ionic velocities are on the
order of the ionic permeation velocity vp; since
the channel is on for a long time DtP compared
to an ionic transit time 10 (A/vp:
The electrodiffusion model can produce not

only rectangular current pulses with flat tops,
but the wide variety of current behavior ob-
served experimentally in channels of biological
membranes. The addition of noise to the drift-
diffusion equations excites current pulses with
different durations and separations but equal
heights, in accord with experimental measure-
ments of channel currents.
The principal contribution of this paper is the

extension of pulse solutions to the finite channel,
where boundary conditions, corresponding to
physical barriers, typically induce the breakup or
modification of traveling waves. Because of this,
the full parabolic problem must be simulated,
which is considerably more complex than the
system of ordinary differential equations which
models the traveling pulses in an infinite channel.
In order to illustrate this, we recall the linear

model of traveling wave solutions of the classical
wave equation. On the infinite physical ‘‘string’’,
the solution may be written as the superposition
of functions f ðx þ ctÞ and gðx � ctÞ; and
D’Alembert’s formula explicitly computes f
and g in terms of the initial configuration and
the initial velocity of the string. If a finite string
of length c is fastened at the ends, then the odd,
2c periodic extension of the initial data gives the
same analytical model as the infinite string, but
the waves must be interpreted differently. At the
endpoint barriers, the waves are reflected and
inverted. This precise correlation is only possible
because of the linearity of the wave equation.
For nonlinear models, the situation is more

complicated. A celebrated example is the Korte-
weg–de Vries equation, which models shallow
water waves. Solitons are traveling wave solu-
tions for the infinite channel, but, in general, do
not solve the initial-boundary problem. The
authors of this paper are unaware of any
correlation such as that between finite and
infinite string wave motion. This makes the
results of the present paper unique in the
literature of nonlinear wave models, defined by
parabolic differential equations, or dispersive
perturbations, such as the Korteweg–de Vries
equation.

Electrodiffusion Model

We model the flow of positive ions (cations) in
a one-dimensional channel in an electric field
Eðx; tÞ against a background of negatively
charged atoms on the channel protein. The
discrete distribution of charges can be described
(Eisenberg et al., 1995; Nonner et al., 1998;
Nonner & Eisenberg, 1998) by continuum
particle densities pðx; tÞ for the mobile cations
and N for the negatively charged atoms of the
protein. N is believed to be a function of current
density and electric field, but not explicitly of x

or t: The flow of cations is modeled mathema-
tically by the drift-diffusion model: a partial
differential equation for conservation of the
cations and Gauss’ law for the electric field,
plus a constitutive law specifying the current
density jðx; tÞ:
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where e is the proton charge, e is the dielectric
coefficient (taken here to be constant), s51 is a
noise term, m is the mobility coefficient, and D is
the diffusion coefficient. The usual electric field



Fig. 1. Traveling wave current pulse j=maxfjg ¼
p=maxfpg and electric field E=maxfEg (dotted) vs. time
ðx � v0tÞ=v0 in milliseconds.
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has been multiplied by e (i.e. E has units of
eV cm�1 in the cgs system). Alternatively,
Poisson’s equation for the electrostatic potential
energy f may be used instead of Gauss’ law:

@2

@x2
ðefÞ ¼ e2ðN � pÞ � s; E ¼ �

@f
@x

: ð4Þ

The choice of boundary conditions determines
whether we use Gauss’ law (E is specified at
inflow) or Poisson’s equation (f is specified at
inflow and outflow). Well-posedness of the
system of eqns (1) and (4) for the deterministic
case is addressed in Jerome (1987).
The random noise term s represents small

charge density fluctuations on the right-hand
side of Gauss’ law. We set s equal to þ %s; 0, or
� %s; where %s51 is a positive constant. The non-
zero values of s are randomly distributed with
uniform probability in time with zero mean, i.e.
with equal probability of being positive or
negative. Generating noise 7 %s with zero mean
guarantees charge conservation. This model for
noise generation mimics thermal fluctuations of
charge density (where %s corresponds to the
average of the absolute value of the thermal
fluctuations), since it is the existence of small
thermal fluctuations of charge density that is
important, and not their quantitative magnitude.
We model the total charge distribution by

rð j;E Þ ¼ eðp � Nð j;E ÞÞ ¼

�
c

v0
ð j � %j Þ

E

%E
� 1

����
����; %j ¼ ev0 %p; ð5Þ

where c51 is a positive constant, %p is a reference
ion density, %E is a reference electric field, and
v0 ¼ m %E=e: This charge model is derived near
thermal equilibrium from a Boltzmann factor in
Gardner et al. (2000).
For the Kþ channel, the dielectric constant

eE20; the mobility coefficient mE6�
10�5 cm2 V�1 s�1; and the diffusion coefficient
DE1:5� 10�6 cm2 s�1: Note that the Einstein
relation holds: eD=m ¼ kT0; and that in our units
e2 ¼ 1:80955� 10�6 eV cm:
Experimentally, only the current IB1210 pA

and the average duration of a current pulse
DtPB0:1210 ms are directly measurable. A
physically natural magnitude for %p would be a
unit charge e spread uniformly throughout the
channel volume (2:6� 1021 cm�3). We set %p to be
one-half this value so that the average number of
ions in the channel when the channel is on is
roughly 3.25. The number of ions in the channel
is consistent with the energetics of packing the
ions single file in the channel.
Experimentally, the external voltage V is

applied over a length B10lc; where lc ¼ 10 (A
is the channel length. We have assumed that the
potential drop is very close to linear in x

outside of the channel and have therefore scaled
V-V=10 at x ¼ lc: We also assume that
there are equal concentrations of ions inside
and outside the cell membrane, so that no
current flows when V ¼ 0: We then set %E ¼
�e V=ð10lcÞ:
These values for %p and %E yield an average

pulse duration on the order of 0.1–10 or more
milliseconds depending on the frequency of
the noise term s; and a current of 2 pA at
V ¼ 10mV. Our computed pulse durations and
currents match roughly the mean of the experi-
mental values, which vary depending on the Kþ

channel type. The traveling wave velocity v0 ¼
0:6 cm s�1 at V ¼ 10mV, is the same order of
magnitude as the ion permeation velocity vp

through the channel. For these parameters, the
constant c ¼ 3:4� 10�5

51 in eqn (5).
A typical traveling wave pulse in p; which

is proportional to j for the traveling wave,
and the associated electric field E are shown in
Fig. 1, with p0 ¼ 0:01 %p; E0 ¼ 1:01 %E; %c ¼ %E

2
= %p;

and %s ¼ 710�9 %E
2
: The charge density for this
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pulse is shown in Fig. 2. %E has been set to
104 eV cm�1:
The on and off times of the current pulses

vary over a wide range (see Gardner et al., 2000),
as is observed experimentally. By making the
noise term more or less frequent, a wide variety
of on and off times can be obtained.
Our model predicts physical values (v0Bvp;

DtPB0:1210 ms; etc.) which are of the
right order of magnitude for biological channels.
Gating in the model is produced by a
conformational change in the protein and
the concomitant small charge fluctuations
(cB10�5), rather than by a mechanical ‘‘flap’’
or ‘‘slider’’. The channel current is turned on by
a small dipolar charge wave (a positive spike
followed by a negative spike), while a similar
reversed charge wave (a negative spike followed
by a positive spike) turns off the current (see
Fig. 2).

Numerical Methods for Electrodiffusion

The drift-diffusion equations (1)–(3) with our
charge model (5) take the form
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Fig. 2. Traveling wave charge density p � N in units of
10�5 e channel�1 vs. time ðx � v0tÞ=v0 in milliseconds.
or to Poisson’s equation (if f is specified at
inflow and outflow)
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where the current density j is given in eqn (3).
The noise term s is only important at the inflow
boundary. Equation (6) is a parabolic PDE.
Poisson’s equation (8) is elliptic, while Gauss’
law (7) is a first-order ordinary differential
equation.
Variables p and E are defined at gridpoints

0; 1; y; N; while f is defined at midpoints of
grid cells �1=2; 1=2; 3=2; y; N þ 1=2:
Given pn and En at timelevel n; a timestep

consists of two parts. (i) First, we solve the
transport equation (6) for pnþ1 with E ¼ En:
(ii) Then we solve either Gauss’ law (7) or
Poisson’s equation (8) for Enþ1 using En and
pnþ1 on the right-hand side.
For the ion density p; we impose a ‘‘pulse’’

inflow boundary condition pð0; tÞ from the
traveling wave solution with noise at the left
boundary of the channel and a through-
flow boundary condition pNþ1 ¼ pN at the right
outflow boundary, where N þ 1 is a ghost point
(we also set ENþ1 ¼ EN). Gating is controlled by
charge movement at the inflow boundary as in
Fig. 2. We also either specify Eð0; tÞ from
the traveling wave solution and use Gauss’ law,
or we specify two boundary conditions, Eð0; tÞ
from the traveling wave solution (which sets
f1=2) and the voltage bias fNþ1=2 ¼ fðlc; tÞ ¼
e V=10; plus the zero of potential energy f�1=2 ¼
fð0; tÞ ¼ 0 and use Poisson’s equation. The
traveling wave inflow boundary condition for
the parabolic PDE (6) is similar in spirit
to a characteristic boundary condition for
hyperbolic PDEs.
We use the TRBDF2 method for the

drift-diffusion transport equation. For Poisson’s
equation we use a tridiagonal direct solve,
while for Gauss’ law we integrate forward from
x ¼ 0 to lc using TRBDF2 now as a spatial
integrator.
The TRBDF2 method consists of two partial

steps. Here we describe the method for du=dt ¼
f ðuÞ ¼ Au; where the spatial derivatives are
already discretized in Au using second-order



Fig. 3. TRBDF2 time levels.
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accurate central differences:

@pi

@t
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piþ1 � 2pi þ pi�1

Dx2
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2Dx
;

ð9Þ

where i labels gridpoints 1; 2; y; N: The
TRBDF2 method was introduced in Bank et al.
(1985) for nonlinear parabolic PDEs. Here the
transport equation (6) is linear in p; so we just
give the linear method. Further discussion of the
TRBDF2 method for nonlinear diffusion can be
found in Fair et al. (1991) and Johnson &
Gardner (1993) (see Fig. 3).
To integrate du=dt ¼ Au from t ¼ tn to tnþ1 ¼

tn þ Dtn; we first apply the trapezoidal rule (TR)
to advance the solution from tn to tnþg ¼ tn þ
gDtn (go1):

unþg � g
Dtn

2
Aunþg ¼ un þ g

Dtn

2
Aun ð10Þ

and then use the second-order backward differ-
entiation formula (BDF2) to advance the solu-
tion from tnþg to tnþ1:

unþ1 �
1� g
2� g

DtnAunþ1

¼
1

gð2� gÞ
unþg �

ð1� gÞ2

gð2� gÞ
un:

ð11Þ

This composite one-step method is second-order
accurate and L-stable.ww
The timestep size Dt is adjusted dynamically

within a window ½Dtmin; Dtmax� by monitoring
a divided-difference estimate of the local
wwA time integration method for du=dt ¼ au (Refago0)
is A-stable if jjunþ1jjojjunjj: The method is L-stable if it is A-
stable and limDt-Njjunþ1jj=jjunjj ¼ 0: TR is A-stable, but not
L-stable. Backward Euler (first- and second-order) and
TRBDF2 are L-stable. Methods which are A-stable but not
L-stable are subject to spurious local oscillations (‘‘ring-
ing’’), which are eliminated in L-stable methods.
truncation error (LTE):

LTEnþ1 ¼ kDt3nuð3Þ ð12Þ
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where

k ¼
�3g2 þ 4g� 2

12ð2� gÞ
: ð14Þ

The three values of f employed in eqn (13) have
already been calculated in the most recent
TRBDF2 timestep.
We use the canonical value g ¼ 2�

ffiffiffi
2

p
E0:59

which minimizes the local truncation error
(Bank et al., 1985). The TRBDF2 method
has the following advantages: it is a (composite)
one-step method, so it is easy to start and
restart; it is second-order accurate and
L-stable; there are no spurious solutions
from BDF2 because it is combined with
TR; and Dt is adjusted dynamically by
monitoring a divided-difference estimate of
the LTE.

Simulation of Current Pulses in a Finite Channel

We present two sets of simulations
which depend on the choice of boundary
conditions. Specifying E at inflow (Gauss’
law case) from the traveling wave solution yields
numerical solutions which are very close to
the traveling wave solutions. Specifying f ¼ 0
at inflow and f ¼ e V=10 at outflow (the Poisson
equation case) yields numerical solutions
which have rectangular current pulses but
greatly diminished electric fields in the channel,
so the traveling wave picture is no longer
applicable.
Of particular significance is the fact that in

both the Gauss’ law and Poisson equation cases,
the outflow ion density and the current are
rectangular waves with exactly the same on and
off durations as the inflow pulse. Thus the wide
variety of stochastic-in-time rectangular current
pulses are reproduced in the finite channel by
solving the electrodiffusion model PDEs. Only



Fig. 6. Outflow current in picoamperes for V ¼�10mV,
Gauss’ law case.

C. L. GARDNER ET AL.296
very special charge models like eqn (5) can
preserve the shape of the input rectangular
pulses in ion density.
Figures 4–13 show the inflow and outflow

values of the scaled ion density p; current I ;
electric field E; and charge density p � N for
both the Gauss’ law and Poisson equation cases
with the applied voltage V ¼ �10mV. In all
figures, time is in milliseconds and ion density is
measured in units of maxfpg ¼ 3:25 ions per
channel volume. The current pulse duration for
these simulations with noise every time step is
about 0.5msFhowever, by decreasing the fre-
quency of the noise term, pulse durations of
10ms or more are easily obtained (see Gardner
et al., 2000).
Fig. 4. Ion density at the inflow pulse boundary
condition vs. outflow for V ¼ �10mV, Gauss’ law case.
The two curves are almost coincident.

Fig. 5. Closeup of ion density at the inflow pulse
boundary condition (dotted) vs. outflow for V ¼ �10mV,
Gauss’ law case.

Fig. 7. Pulse boundary condition E and E at outflow in
kV cm�1 for V ¼ �10mV, Gauss’ law case. Also plotted
are E one quarter, one-half, and three quarters along the
channel. The five curves are virtually coincident.
GAUSS’ LAW CASE

The rectangular wave shape of the ion density
p is preserved as the ions propagate down the
channel (see Fig. 4). The time delay between the
inflow and outflow of the ion pulse is shown in
Fig. 5 (recall that the pulse length is on the order
of 3000 channel lengths). Explicitly computing
the current density j in Fig. 6 illustrates that the
combination mpE � eD@p=@x does produce a
rectangular wave. In Figs 7 and 8, we compare
the inflow electric field and charge density with
the outflow values. The electric field E has
preserved its traveling wave shape. However, the
charge density p � N is modified dramatically
along the channel: at inflow it consists of two
dipolar waves, while at outflow it has become a
rectangular wave.



Fig. 8. Pulse boundary condition p � N (dotted) vs.
outflow p � N in units of 10�5 e channel�1 for V ¼ �10mV,
Gauss’ law case.

Fig. 9. Ion density at the inflow pulse boundary
condition vs. outflow for V ¼ �10mV, Poisson’s equation
case. The two curves are coincident to within a line width.

Fig. 10. Outflow current in picoamperes for V ¼�10mV,
Poisson’s equation case.

Fig. 11. E at inflow (dotted) and outflow in kVcm�1 for
V ¼ �10mV, Poisson’s equation case.

Fig. 12. E at outflow in kVcm�1 for V ¼ �10mV,
Poisson’s equation case. Also plotted are E one quarter,
one half, and three quarters along the channel. The four
curves are virtually coincident.
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POISSON EQUATION CASE

The ion density p maintains its rectangular
wave shape as the ions propagate down
the channel (see Fig. 9). There is almost no
time delay between the inflow and outflow of
the ion pulse due to the Poisson equation
boundary conditions. Computing the current
density j in Fig. 10 produces a rectangular wave.
With V fixed at inflow and outflow, the inflow
electric field is dramatically damped and re-
versed in the channel (Figs 11 and 12). The
charge density (Fig. 13), unlike in the Gauss’ law
case, does preserve something of its original
dipolar shape, even though its amplitude is
greatly diminished.
Conclusion

The flat maximum value of the current in the
on state vs. voltage is almost exactly linear in



Fig. 13. Outflow p � N in units of 10�5 e/channel for
V ¼ �10mV, Poisson’s equation case.

Fig. 14. Current in picoamperes vs. voltage in milli-
volts. Both the Gauss’ law and Poisson’s equation cases
yield a linear I–V curve.
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both the Gauss’ law and Poisson’s equation
cases (see Fig. 14). The magnitude of the current
may be understood from the fact that

j ¼ mpE � eD
@p

@x
EmpmaxEE� mpmax

eV

10lc
ð15Þ

for the flat tops of the ion density p: (V40
implies Io0). This expression produces a linear
Ohm’s law. Experimental data on channels
however indicate that Ohm’s law for the
biological channel is often nonlinear, e.g. sub-
linearFsee Hille (1992, p. 328, Fig. 6). The
sublinearity in the experimental IV curve must
come from effects neglected in our model (for
example, a non-uniform spatial distribution of
fixed charge or a significant series resistance
arising in the bath or at the interface between the
bath and channel (Eisenberg, 1998).
In our finite channel model, noise in the pulse

boundary condition gives the experimentally
observed variation in current pulse durations
and separations. A conformation change in
protein and the resultant small charge fluctua-
tions produce gatingFin other words, charge
movement at the inflow boundary turns the
channel on and off.
The present model deals with a gating model

of a single prototypical channel. Much activity in
current research is directed toward the descrip-
tion of cell function (cf. Boyett et al., 2001).
Boyett et al. (2001) attempts to identify in a cell
the control mechanism for the pacemaker
activity of the sinoatrial node by intracellular
calcium. A mathematical model, which is really
an analog linear circuit with fitted parameters, is
used to replicate the experimental evidence. Our
model differs in that it accounts for the nonlinear

change of the electric field as charge flows, which
is accounted for by the nonlinear Poisson
equation in our model.
Future work will include computing the non-

linear gating charge vs. applied voltage for the
finite channel. To obtain results that match
experiment, a more complicated noise model will
be necessary.
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