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Abstract Three experiments that quantify the amount of
selectivity exhibited by a biological ion channel are ex-
amined with Poisson-Nernst-Planck (PNP) theory.
Conductance ratios and the conductance mole fraction
experiments are examined by considering a simple model
ion channel for which an approximate solution to the
PNP equations with Donnan boundary conditions is
derived. A more general result is derived for the Gold-
man-Hodgkin-Katz permeability ratio. The results show
that (1) the conductance ratio measures the ratio of the
diffusion coefficients of the ions inside the channel, (2)
the mole fraction experiment measures the difference of
the excess chemical potentials of the ions inside the
channel, and (3) the permeability ratio measures both
diffusion coefficients and excess chemical potentials. The
results are used to divide selectivity into two compo-
nents: partitioning, an equilibrium measure of how well
the ions enter the channel, and diffusion, a nonequilib-
rium measure of how well the ions move through the
channel.

Keywords Poisson-Nernst-Planck Æ Selectivity Æ
Conductance ratio Æ Permeability ratio

Abbreviations GHK: Goldman-Hodgkin-Katz Æ MMF:
midpoint mole fraction Æ PNP: Poisson-Nernst-Planck

Introduction

Ion channels are hollow proteins that span biological
membranes and act as conduits, allowing ions to move
through otherwise impermeable membranes (Hille
2001). Most electrical activity in living systems is pro-
duced by this kind of charge movement. In many cir-
cumstances it is vital that only one type of ion moves
across the membrane (typically Na+, K+, Ca2+, or Cl–),
even when other ions have a larger concentration and
concentration gradient. In neurons, for example, po-
tassium channels ensure that sodium ions do not enter
the cell as potassium ions exit; vice versa, sodium
channels let sodium in while keeping potassium from
leaking out. Following a positive displacement in elec-
trical potential, these two channel types open and close
with different lag times to produce the transient electri-
cal signal (the action potential) that propagates along
the nerve fiber, carrying information from one end of the
cell to the other.

Ion selectivity is defined operationally in experiments
by several different protocols. However, one often finds
that the selectivity estimated by one protocol is not the
same as that estimated by another. In this paper we
examine three of these experimental protocols (described
below) for a model channel and show that, in fact, these
protocols should not give the same results. Our model is
analyzed with the Poisson-Nernst-Planck (PNP) theory
of ion transport (Nonner and Eisenberg 1998; Chen et al.
1997a, 1997b, 1999) and is consistent with the charge/
space competition model of selectivity introduced by
Nonner et al. (2000, 2001). In this hypothetical channel,
selectivity has contributions from various physical pa-
rameters, including the charge, diffusion coefficient, and
excess chemical potential of each ion species. We find
that the experimental protocols weight these contribu-
tions differently: (1) the conductance ratio measures
the ratio of the diffusion coefficients of the ions inside
the channel; (2) the mole fraction experiment mea-
sures the difference of the excess chemical potentials of
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the ions inside the channel; (3) the permeability ratio
defined by the Goldman-Hodgkin-Katz equation mea-
sures both diffusion coefficients and excess chemical
potentials. This diversity of results can be used to esti-
mate those physical parameters.

The selectivity experiments

The three selectivity experiments considered in this pa-
per are described here using NaCl and KCl as example
ion species.

Conductance ratios

Single channel current/voltage (I/V) relations are mea-
sured by placing the channel in a lipid bilayer sur-
rounded by two baths of known ionic composition and
applying a voltage across the system. If this experiment
is conducted with the same concentration of NaCl (for
example) in both baths, the conductance (dI/dV) mea-
sured at zero applied potential can be plotted as a
function of bath concentration. Experiments often show
that the conductance increases from zero at zero con-
centration and saturates with some maximal conduc-
tance as the concentration increases more and more
(Hille 2001). If gNa is this saturated conductance for
Na+ found in one experiment and if gK is the corre-
sponding saturated conductance for K+ found in an-
other experiment, then one simple measure of selectivity
is the ratio of these saturated conductances:

gNa

gK
ð1Þ

Mole fraction experiment

In the classical conductance mole fraction experiment,
the two baths are identical, containing a mixture of two
salts, and the conductance at zero applied potential is
measured as a function of the mole fraction of one salt.
If ions were to conduct like ions in a dilute electrolyte
solution, their contribution to the overall conductance
would be additive; that is, the total conductance as a
function of mole fraction would be linear between the
two limiting conductances. For example, the total con-
ductance would be gNa when [KCl]=0 and the total
conductance would be gK when [NaCl]=0. In many
channels the total conductance is a nonlinear function of
mole fraction; if the function has a minimum or maxi-
mum, the channel is said to exhibit an anomalous mole
fraction effect (AMFE).

The average of the limiting conductances gNa and gK
can help define a measure of selectivity: the mole frac-
tion of NaCl that produces the average of the limiting
conductances shows the ion that is preferred by the
channel. If this midpoint mole fraction (MMF) is below
1/2, then the channel prefers Na+ over K+ because a

smaller amount of Na+ has the same effect as a larger
amount of K+.

Permeability ratios and the GHK equation

Introduced by Hodgkin and Katz more than 50 years
ago (Hodgkin and Katz 1949), the permeability coeffi-
cient relates the reversal potential to the concentrations
of the ion species in the baths through the Goldman-
Hodgkin-Katz (GHK) equation (Goldman 1943;
Hodgkin and Katz 1949; Hille 2001). For the specific
case of NaCl and KCl in the baths, the GHK equation
is:

Vrev ¼
kT
ze

ln
PNacNaðRÞ þ PKcKðRÞ þ PClcClðLÞ
PNacNaðLÞ þ PKcKðLÞ þ PClcClðRÞ

� �
ð2Þ

where Vrev is the reversal potential (the applied poten-
tial at which no net current is measured), k is the
Boltzmann constant, T is the absolute temperature, e is
the elementary charge, and z is the valence of the
cations and the absolute value of the valence of the
anions. For ion species j, Pj is the permeability, cj (L) is
the bulk bath concentration on the left (or inside or cis)
side of the membrane, and cj (R) is the bulk bath con-
centration on the right (or outside or trans) side of the
membrane. The potential is measured as the potential
difference between the left side and right side. The anion
current is negligible in many cation-selective channels
and PCl is zero.

In the original derivations of the GHK equation,
each permeability has three components (Hodgkin and
Katz 1949; Hille 2001):

Pj ¼
Djbj

d
ð3Þ

where Dj is the diffusion coefficient of species j inside the
channel, bj is the water/channel partition coefficient for j,
and d is the length of the channel. The partition coeffi-
cient bj relates cj, the bath concentration of j, to Cj, the
concentration just inside the channel:

bj ¼
Cj

cj
ð4Þ

It is assumed that bj is the same on each side of the
channel and independent of the bath concentrations
(Hodgkin and Katz 1949; Hille 2001).

Permeability ratios in the literature are nearly always
measured under symmetric bi-ionic conditions (for ex-
ample, 150 mM of KCl on the left side and 150 mM of
NaCl on the right) and calculated from Eq. (2) with PCl

set to zero. If K+ is on the left and Na+ on the right,
then:

PNa
PK

¼ exp
ze
kT

Vrev
� �

ð5Þ

If PNa
PK

> 1, then Na+ is more permeable than K+.
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The GHK equation (2) is derived by a straightforward
integration of a Nernst-Planck equation for each species
[Eq. (9) below with lexj set to zero] if several assumptions
are made (Hodgkin and Katz 1949; Hille 2001):

1. Ions do not interact with each other as they cross the
channel.

2. Ions do not interact with the channel protein as they
cross the channel.

3. The electric field inside the channel is constant. Spe-
cifically, the electric field is assumed to be spatially
uniform and does not change when properties of the
channel protein are changed by mutation (for exam-
ple, the charge on the protein), when the partition
coefficient is changed, or when bath concentrations or
transmembrane potential are changed.

4. For each ion species the partition coefficient bj de-
fined in Eq. (4) is the same on both sides of the
channel and independent of the bath composition.

Each of these assumptions, however, is not physically
plausible:

1. Ions are charged particles. On very general principles,
they must strongly interact through Coulomb’s Law
(an inverse square law) when traveling through a
channel tens of angstroms in length.

2. Ignoring the interaction between the protein and the
ions implies that the channel has little effect on per-
meation. However, biological reasoning and muta-
tion studies suggest that the role of the channel is to
control ion movement. In general, the physical loca-
tion of the protein ensures that its charges interact
electrostatically with ions in the pore. Chemical in-
teractions are also quite likely because many atoms of
the channel wall collide with ions. Thus channels
interact with ions and the equations describing
permeation should include such interactions.

3. The electric field is created by the charges in the
system and the locations of the charges in the system
are changed by the electric field; these quantities are
strongly and nonlinearly coupled (Henisch 1984;
Selberherr 1984; Jacoboni and Lugli 1989). Both of
these quantities are manipulated in most experiments,
changing the properties of the channel, and so it
seems unwise to make an assumption about the
structure of the resulting electric field.

4. If the channel has differently charged groups on each
end, then the partition coefficient cannot be the same
on both sides [Chen et al. (1997a) give an example of
such a channel]. In any case, the partition coefficient
is never independent of the surrounding bath con-
centrations (see below).

Despite these arguments, the permeabilities defined
by the GHK equation are widely used to determine what
ions a channel prefers to pass through its pore. Perme-
abilities have proven to be durable, if heuristic, measures
of selectivity. This paper tries to clarify their physical
interpretation.

Materials and methods

The PNP equations

The PNP model we will use to analyze the experiments outlined
above has fit data of several channels (Kurnikova et al. 1996, 1999;
Chen et al. 1997a, 1997b, 1999; Nonner and Eisenberg 1998;
Cardenas et al. 2000; Im et al. 2000) and can be derived as an
approximate description of the Brownian motion of a charged
particle (Schuss et al. 2001).

The PNP theory describes the flux of the ions with Nernst-
Planck equations:

�Jj ¼
1

kT
DjðxÞAðxÞcjðxÞ

dlj

dx
ðxÞ ð6Þ

where A(x) is an area function equal to the area of the channel
inside the channel [Gillespie (1999) gives a detailed explanation],
Jj is the (constant) particle flux, Dj (x) is the local diffusion
coefficient, cj (x) is the local concentration, and lj (x) is the local
electrochemical potential of species j. The electrochemical poten-
tial consists of an ideal component lidj ðxÞ and an excess compo-
nent lexj ðxÞ:

ljðxÞ ¼ lidj ðxÞ þ lexj ðxÞ ð7Þ

with:

lidj ðxÞ ¼ zje/ðxÞ þ kT ln cjðxÞ
� �

ð8Þ

where /(x) is the local electrostatic potential. With these defini-
tions, Eq. (6) can be rewritten:

�Jj ¼ DjðxÞAðxÞ
dcj
dx

ðxÞ þ zje
kT

cjðxÞ
d/
dx

ðxÞ
�

þ 1

kT
cjðxÞ

dlexj
dx

ðxÞ
�

ð9Þ

The ideal chemical potential lidj ðxÞ is the free energy per mole
of a dilute solution of point particles that interact only through
the mean electric field. This ideal solution is the ionic analog of an
ideal dilute gaseous plasma. The excess chemical potential is
the difference in the chemical potentials of the real solution and
the ideal solution. It includes, for example, entropic effects of the
finite size of the ions, electrostatic effects of interacting charged
hard spheres (Nonner et al. 2000), and effects of the solvent
(Nonner et al. 2001). For each ion species j, lexj ðxÞ is a function of
the concentrations of all the particles near x; that is, it depends on
all the variables of the system. However, a theory to compute lexj
in the presence of flux does not currently exist; here, we assume
that each lexj is a given function of x.

To make the notation simpler, we will usually describe the
excess chemical potential lexj by the activity coefficient:

cj ¼ exp
lexj
kT

� �
ð10Þ

The activity coefficient cj measures the ion-specific properties of a
real solution which depend on the properties of all ions in the
solution. In particular, the activity coefficient of Na+ depends
significantly on the concentration of K+ in concentrated salt so-
lutions. In contrast to the activity coefficient, the concentration cj
measures the nonspecific properties of an ideal solution. The ac-
tivity of a solution:

cjcj ¼ exp
lj

kT

� �
ð11Þ

is the effective concentration of the solution and is a measure of the
free energy per mole of the ion j in the solution (Berry et al. 2000).

Lastly, the PNP theory uses the Poisson equation to compute
the electrostatic potential from the charges:
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� d

dx
�ðxÞ d/

dx
ðxÞ

� �
þ �ðxÞ 1

AðxÞ
dA
dx

ðxÞ d/
dx

ðxÞ
� �
¼ e

X
j

zjcjðxÞ þ eqðxÞ ð12Þ

where �(x) is the local dielectric coefficient and q(x) is the local fixed
charge due to the channel protein (q=0 in the baths).

To calculate the transport of ions, the PNP equations are solved
simultaneously (self-consistently); that is, all the Nernst-Planck
equations and the Poisson equation must be satisfied at the same
time. This even-handed treatment of the electric field and concen-
tration profiles is not present in the derivation of the GHK equa-
tion [Eq. (2)], where assumptions about the electric field were made
in order to simplify the equations so they could be integrated an-
alytically. As shown in Appendix A and noted by early workers in
the field (MacInnes 1939; Goldman 1943; Helfferich 1962), a simple
substitution into the Poisson equation shows that a constant field is
generally not consistent with the concentration profiles of the GHK
equation. More quantitative analysis shows that the inconsistency
has large effects on the predicted profiles of both concentrations
and electrostatic potential, as well as the predicted currents (Chen
et al. 1992).

Boundary conditions

Boundary conditions are needed that connect the concentration
and potential at the edge of the channel to those far away in the
baths, where they are measured and controlled by auxiliary sys-
tems. These systems do not maintain the concentrations and po-
tential at the edge of the channel.

When solving the PNP equations numerically, one must either
include enough of the bath in the analysis so that the concentra-
tions and electrostatic potential are approximately equal to their
bulk values (Kurnikova et al. 1996, 1999; Nonner and Eisenberg
1998; Cardenas et al. 2000; Hollerbach et al. 2001), or one must
derive an analytic approximation to their values just inside the
channel. In earlier numerical solutions of the PNP equations (Chen
et al. 1997a, 1997b, 1999) the boundary conditions were those used
to describe the contact between semiconductors and wires (Henisch
1984; Selberherr 1984; Jacoboni and Lugli 1989).

These ‘‘built-in’’ boundary conditions give the Donnan potential
of classical physiology (MacInnes 1939; Helfferich 1962). Because
the channel has a high fixed charge density, a potential difference
exists between the bulk bath and the end of the channel; this is the
Donnan potential (Gillespie and Eisenberg 2001). If the channel is
located in the interval (0,d), the approximation of the potential /(0)
and concentration cj (0) at the channel’s left edge are given by:

/ð0Þ ¼ V þ WL ð13Þ

cjð0Þ ¼
cbathj ðLÞ

cchanj
cjðLÞ exp � zje

kT
WL

� �
ð14Þ

where the classic Donnan potentialYL on the left side of the channel
is given by solving:

0 ¼
X
j

zj
cbathj ðLÞ

cchanj
cjðLÞY �zj

L þ qL ð15Þ

for:

YL ¼ exp
e
kT

WL

� �
ð16Þ

Here cbathj ðLÞ is the activity coefficient of species j in the left bath and
cchanj its activity coefficient just inside the channel. qL is the fixed
charge just inside the left side of the channel. At the right edge [with
an equation similar to Eq. (15)]:

/ðdÞ ¼ WR ð17Þ

cjðdÞ ¼
cbathj ðRÞ

cchanj
cjðRÞ exp � zje

kT
WR

� �
ð18Þ

where V is the applied voltage and we assume the potential at the
right electrode is 0.

Corrections to the Donnan boundary conditions that give more
accurate approximations to the potentials and concentrations at
the channel edges have recently been derived (Gillespie and
Eisenberg 2001). That paper also shows that the classic Donnan
boundary conditions [Eqs. (13, 14, 15, 16, 17, 18)] give the same
current/voltage relations as the modified Donnan potentials (with
the assumptions listed in the ‘‘Assumptions’’ section below). Thus,
when deriving current/voltage relations, classic Donnan potentials
can be used, but the modified Donnan potentials must be used if
accurate values of the potentials and concentrations at the edges of
the channel are required.

In this paper, our choice of boundary conditions is guided by
this distinction. Specifically, the conductance and mole fraction
experiments (see the ‘‘Conductance ratios’’ section, ‘‘Mole fraction
experiment’’ section, and Appendix A) involve finding current/
voltage relations and therefore we will use the classic Donnan
boundary conditions for those cases. The GHK permeability result
(see ‘‘Permeability ratios’’ section) and the analysis in the Discus-
sion, on the other hand, require accurate values of the potentials
and concentrations, necessitating the use of modified Donnan
boundary conditions.

Assumptions

In order to derive analytic results we make several assumptions.
For the GHK permeability result we assume:

1. Inside the channel, the diffusion coefficients Dj and the activity
coefficients cj are scaled by a multiplicative constant and they
have the same functional form:

DjðxÞ ¼ Dchan
j DðxÞ ð19Þ

and:

cjðxÞ ¼ cchanj cðxÞ ð20Þ

for all x inside the channel, where Dchan
j and cchanj are species-

dependent constants and D(x) and c(x) are species-independent
functions of x. Furthermore, cchanj can be different for each ex-

perimental protocol; that is, cchanj depends on the applied voltage
and the bath concentrations:

cchanj ¼ cchanj V ; c1ðLÞ; c2ðLÞ; :::; c1ðRÞ; c2ðRÞ; :::ð Þ ð21Þ

2. The area A is constant inside the channel.

3. The dielectric coefficient � is constant throughout the system.
The details of a continuous �(x) have only a small impact on the
solution of the PNP equations (Gillespie 1999; Gillespie and
Eisenberg 2001). The discontinuous case can be solved by using
an auxiliary Poisson equation (Schuss et al. 2001).

4. The relative resistance of the channel is so great compared to the
resistance of the bath that the current does not significantly
change the concentrations or electrostatic potential across the
baths. Gillespie (1999) shows that this assumption is satisfied if
the bulk concentrations are sufficiently large (J50 mM) and if
the diffusion coefficients in the baths are much larger than those
in the channel.

5. The anion current and concentration inside the channel are
negligible.

6. All cations have the same valence zc.
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When deriving the conductance and mole fraction results, we
also use the following assumptions:

1. The channel is assumed to have a spatially uniform fixed charge
density q<0 due to the permanent charges of the channel pro-
tein. This is the simplest charge structure that can be imposed
on the PNP system to produce a cation-selective channel (Chen
et al. 1997b, 1999; Nonner and Eisenberg 1998). More complex
charge structures are of considerable biological importance
(Chen 1997a), but need to be analyzed separately.

2. The diffusion coefficients Dj and the activity coefficients cj (ex-
cess chemical potentials lexj ) are piecewise constant, taking

values Dbath
j ðLÞ, cbathj ðLÞ, Dbath

j ðRÞ, cbathj ðRÞ in the left and right
baths and Dchan

j and cchanj inside the channel. Eq. (21) is assumed
to hold.

3. The potential at the edges of the channel are given by the
Donnan boundary conditions. Gillespie and Eisenberg (2001)
discuss the consequences of this assumption.

4. The anions have valence –1.

Results

An approximate analytic solution to the PNP equations
is derived in Appendix A, with Eq. (99) giving an
equation for the flux of species j. Equations (13, 14, 15,
16, 17, 18) allow the results to be rewritten as:

Jj ¼ zc
A
d

Dchan
j

cchanj

e
kT

V � ln
YR
YL

� �� �

�
cbathj ðRÞcjðRÞ � cbathj ðLÞcjðLÞ exp zce

kT V

 �

Y zc
R � Y zc

L exp zce
kT V

 � ð22Þ

where zc is the valence of all cations, and the left and
right side Donnan potentials YL and YR, respectively,
define YL and YR by:

YL ¼ exp
e
kT

WL

� �
ð23Þ

YR ¼ exp
e
kT

WR

� �
ð24Þ

A further simplification can be made if the bath con-
centrations are small compared to the fixed charge
concentration |q|:

cbathj ðLÞ
cchanj

cjðLÞ � qj j ð25Þ

and:

cbathj ðRÞ
cchanj

cjðRÞ � qj j ð26Þ

In that case, in Appendix B we show that:

Y zc
L 	 zc

qj j
X
zj¼zc

cbathj ðLÞ
cchanj

cjðLÞ ð27Þ

and similarly:

Y zc
R 	 zc

qj j
X
zj¼zc

cbathj ðRÞ
cchanj

cjðRÞ ð28Þ

With this simplification, Eq. (22) becomes an explicit
equation for the flux:

Jj ¼ A
d qj jDchan

j
e
kT V � ln

P
zj¼zc

kjðRÞcjðRÞP
zj¼zc

kjðLÞcjðLÞ

 !" #

� kjðRÞcjðRÞ�kjðLÞcjðLÞ exp zce
kT Vð ÞP

zj¼zc
kjðRÞcjðRÞ�

P
zj¼zc

kjðLÞcjðLÞ
� �

exp zce
kT Vð Þ

ð29Þ

where:

kjðLÞ ¼
cbathj ðLÞ

cchanj
ð30Þ

¼ exp
1

kT
lexj ðL bath
� �

� lexj ðchannelÞ
� �

ð31Þ

and:

kjðRÞ ¼
cbathj ðRÞ

cchanj
ð32Þ

¼ exp
1

kT
lexj ðR bath
� �

� lexj ðchannelÞ
� �

ð33Þ

Conductance ratios

Conductance ratio experiments are usually done with
the same salt on both sides of the channel. In that case,
Eq. (29) simplifies to:

I ¼ zc
e2

kT
A
d

qj jDchan
j V ð34Þ

where, because the anion current is negligible, the total
current I is:

I ¼ ezcJj ð35Þ

Thus in this experiment the uniform fixed charge
channel (see ‘‘Assumptions’’ section) has a linear cur-
rent/voltage relation with conductance:

gj ¼
dI
dV

¼ zc
e2

kT
A
d

qj jDchan
j ð36Þ

(Obviously this result is not true in general; the con-
ductance is independent of the bath concentrations only
in special cases. For example, this approximation is
useful if the bath concentrations are high enough to
make gj a ‘‘saturated’’ conductance. Furthermore, con-
ditions (25) and (26) must hold; that is, the bath con-
centrations must be much less than the fixed charge
density of the channel. In the data fitting of channels
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(Chen et al. 1997b, 1999; Nonner and Eisenberg 1998), q
is 4–30 M and therefore the latter condition is generally
not a constraint.)

Applying Eq. (36) to two separate experiments (one
with cation species 1 on both sides of the channel and
the other with cation species 2 on both sides) shows that
the ratio of the conductances is an estimate of the ratio
of the diffusion coefficients inside the channel:

g2
g1

¼ Dchan
2

Dchan
1

ð37Þ

Mole fraction experiment

In a mole fraction experiment, if cation species 1 has
mole fraction r, then:

c1ðLÞ ¼ c1ðRÞ ¼ rc ð38Þ

and:

c2ðLÞ ¼ c2ðRÞ ¼ 1� rð Þc ð39Þ

where c is the total bath concentration. Because the ionic
strength is maintained under the experimental condi-
tions, it is plausible to assume that the activity coeffi-
cients of the two cations are approximately constant for
all mole fractions; that is, for all mole fractions r, the
activity coefficient of species 1 (species 2) is equal to its
activity coefficient at mole fraction r=1 (r=0), when
species 1 (species 2) is the only cation. Calculations
using the mean spherical approximation (Simonin 1996;
Barthel et al. 1998; Durand-Vidal et al. 2000) support
this approximation and therefore we use it.

Equation (29) then gives:

dJ1
dV

¼ e
kT

A
d
Dchan
1 qj j k1r

k1r þ k2 1� rð Þ ð40Þ

dJ2
dV

¼ e
kT

A
d
Dchan
2 qj j k2 1� rð Þ

k1r þ k2 1� rð Þ ð41Þ

where:

kj ¼
cbathj

cchanj
ð42Þ

Even if cbathj is independent of the mole fraction, by
Eq. (21) each kj is a function of themole fraction r; that is:

kj ¼ kjðrÞ ð43Þ

Then the total conductance measured in the experiment
is:

gðrÞ ¼ zc
e2

kT
A
d

qj jD
chan
1 rk1ðrÞ þ Dchan

2 ð1� rÞk2ðrÞ
rk1ðrÞ þ ð1� rÞk2ðrÞ

ð44Þ

Since the mole fraction is between 0 and 1, there are
two limiting conductances, when the solutions contain
only one type of cation. These are:

g1 ¼ gðr ¼ 1Þ ¼ zc
e2

kT
A
d

qj jDchan
1 ð45Þ

when the solution contains only cation species 1, and:

g2 ¼ gðr ¼ 0Þ ¼ zc
e2

kT
A
d

qj jDchan
2 ð46Þ

when the solution contains only cation species 2. Equa-
tion (44) then becomes:

gðrÞ ¼ g1rk1ðrÞ þ g2ð1� rÞk2ðrÞ
rk1ðrÞ þ ð1� rÞk2ðrÞ

ð47Þ

The midpoint mole fraction (MMF) (denoted rMMF)
defined by:

gðrMMFÞ ¼
1

2
g1 þ g2ð Þ ð48Þ

can be determined by solving the implicit equation:

rMMF ¼ k2 rMMFð Þ
k1 rMMFð Þ þ k2 rMMFð Þ ð49Þ

If both kj are independent of the mole fraction (Nonner
and Eisenberg 1998; Chen et al. 1999), then Eq. (49) is
explicit. In any case, Eq. (49) together with Eq. (42)
shows that the MMF is determined by the activity coef-
ficients of the ions inside the channel.

Figure 1 shows a mole fraction experiment
[Eq. (47)] computed assuming the kj are independent
of the mole fraction. In that case, our model channel
does not exhibit an anomalous mole fraction effect; it
does not have an extremum. However, the conduc-
tance versus mole fraction curve is nonlinear when-
ever:

k1 ¼
cbath1

cchan1

6¼ k2 ¼
cbath2

cchan2

ð50Þ

or, equivalently:

lex1 ðbathÞ � lex1 ðchannelÞ 6¼ lex2 ðbathÞ � lex2 ðchannelÞ
ð51Þ

Permeability ratios

We now turn to the most commonly used selectivity
experiment, the measurement of the reversal potential to
estimate the permeability of the channel to ions. This
situation can be studied without the analytic approxi-
mation to the PNP equations derived in Appendix A. In
particular, the analysis of this section does not require a
channel with uniform fixed charge (see ‘‘Assumptions’’
section).

We start by writing the Nernst-Planck equation
[Eq. (9)] in integral form (with no approximations) by
integrating over the channel which lies in (0,d ):
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�Jj

Z d

0

cjðsÞ
DjðsÞAðsÞ

exp
zje
kT

/ðsÞ
� �

ds

¼cjðdÞcjðdÞexp
zje
kT

/ðdÞ
� �

�cjð0Þcjð0Þexp
zje
kT

/ð0Þ
� �

ð52Þ

As discussed in the ‘‘Boundary conditions’’ section,
we use the results of Gillespie and Eisenberg (2001) to
evaluate the right-hand side of Eq. (52). Specifically,
Eq. (70) of that paper shows that:

cjð0Þcjð0Þ exp
zje
kT

/ð0Þ
� �

	 cbathj ðLÞcjðLÞ exp
zje
kT

V
� �

ð53Þ

cjðdÞcjðdÞ exp
zje
kT

/ðdÞ
� �

	 cbathj ðRÞcjðRÞ ð54Þ

and so Eq. (52) becomes:

�Jj
R d
0

cjðsÞ
DjðsÞAðsÞexp

zje
kT /ðsÞ

 �

ds

¼ cbathj ðRÞcjðRÞ�cbathj ðLÞcjðLÞexp zje
kT V

 �

ð55Þ

Therefore, for a channel with the GHK assumptions
listed previously, we have:

�Jj
cchanj

Dchan
j

Z d

0

cðsÞ
AðsÞDðsÞexp

zce
kT

/ðsÞ
� �

ds

¼ cbathj ðRÞcjðRÞ� cbathj ðLÞcjðLÞexp
zce
kT

V
� �

ð56Þ

for cation species j. If there are two cation species 1 and
2 and the anion current is negligible, then at the reversal
potential Vrev:

J2¼�J1 ð57Þ

and:

�1¼ J2
J1

¼Dchan
2 =Dchan

1

cchan2 =cchan1

cbath2 ðRÞc2ðRÞ� cbath2 ðLÞc2ðLÞexp zce
kT Vrev

 �

cbath1 ðRÞc1ðRÞ� cbath1 ðLÞc1ðLÞexp zce
kT Vrev

 �

ð58Þ

Under the bi-ionic conditions of the permeability
experiment, with only species 1 in the left bath (c2(L)=0)
and only species 2 in the right (c1(R)=0), by Eq. (5) we
have:

P2
P1

¼ Dchan
2

Dchan
1

k2
k1

ð59Þ

where, for bath concentration c, we define:

kj ¼
cbathj ðcÞ
cchanj

ð60Þ

This derivation of the GHK equation is mathemati-
cally similar to the one by Hille (2001), but includes
more physics.

Determining model parameters

The results of the previous sections can be used to esti-
mate the physical and chemical properties of ions
in channels, given certain assumptions. Specifically,
for each ion species j, the diffusion coefficient Dchan

j
and the activity coefficient cchanj can be determined from
experimental measurements (assuming our model of the
channel). Bath values of these parameters are known
(Robinson and Stokes 1965; Conway 1969; Zematis
et al. 1986) or can be calculated from separate theories
(Simonin 1996; Barthel et al. 1998; Durand-Vidal et al.
2000).

In order to find the ion parameters, one must know
the dimensions and fixed charge profile of the channel.
For many channels the dimensions such as the radius
and length of the channel (or the selectivity filter) are
approximately known from experiments. The tertiary
structure of the channel shows which amino acid side
chains face the conduction pathway, when the structure
is known. Genetic manipulations gives this information
in other cases. The identity of the amino acid residues
allows good estimates of the permanent charge q (per-
haps depending on protonation state). When we assume
uniformly spread fixed charge, q is given by the sum of
the charges of the amino acid residues divided by the
volume of the pore determined from the estimates of A
and d.

It is important to note that if the channel contains
both positively and negatively charged amino acid resi-
dues (voltage-gated sodium channels, for example), this
approach should not be used; the spatial distribution of
permanent charge in the channel has profound effects on

Fig. 1. Graph of Eq. (47) with g1=1, g2=3, and k1/k2=4. While
this channel does not exhibit an anomalous mole fraction effect (it
does not have an extremum), it is nonlinear. The curve has a
midpoint mole fraction of rMMF=1/(1+k1/k2)=0.2

460



the qualitative and quantitative properties of the chan-
nel, including its current/voltage relations. This result is
well known from the analogous analysis of semicon-
ductors (Henisch 1984; Selberherr 1984; Jacoboni and
Lugli 1989).

If the charge, length, and area of the channel (q, d,
and A) are known, diffusion and chemical parameters
can be determined from the conductance and mole
fraction experiments. Equation (36) can be used to
estimate the diffusion coefficient of species j from its
saturated conductance gj:

Dchan
j ¼ kT

e2
d
A

gj
zj qj j ð61Þ

Determining the channel activity coefficients (that is,
excess chemical potentials or free energies) first requires
assuming that these activity coefficients inside the
channel are the same for all experiments; that is, we must
assume that Eq. (21) is not true. In that case, the mea-
surement of the midpoint mole fraction rMMF allows an
estimate of the relative channel activity coefficients
through Eq. (49):

cchan2

cchan1

¼ cbath2

cbath1

1

rMMF
� 1

� �
ð62Þ

By using Eq. (62), the absolute channel activity coeffi-
cients of all the experimental ions can be determined if
one knows the absolute activity coefficient of one ion.
Nonner and Eisenberg (1998) do this by assuming the
activity coefficient of protons is 1.

Discussion

Summary

We have examined three selectivity experiments (see
above) in terms of the PNP electrodiffusion model. The
GHK permeability ratio was examined for a fairly
general class of channels (see ‘‘Assumptions’’ section
above). The conductance ratio and conductance mole
fraction experiments were treated with a simple model
channel with a constant fixed charge density in the
channel. For that model, we derived an approximate
analytical solution to the PNP equations with Donnan
boundary conditions (see ‘‘Boundary conditions’’ sec-
tion).

The PNP model we consider [Eqs. (9) and (12)] con-
tains two ion parameters: the diffusion coefficient and
the excess chemical potential. Both take into account the
size of the ions, but measure different physical proper-
ties; the diffusion coefficient measures the resistance a
moving ion encounters, while the excess chemical po-
tential measures the effects of the ions’ packing and the
electrostatic effects of such packing (Nonner et al. 2000),
as well as the solvation energy (Nonner et al. 2001).

In the case of the model channel, the conductance
ratio and mole fraction experiments each directly mea-

sure one of these two properties. Specifically, if gj is the
saturated conductance of cation j, then, for two cations,
the ratio of these conductances is the ratio of the diffu-
sion coefficients:

g2
g1

¼ Dchan
2

Dchan
1

ð63Þ

Furthermore, in the mole fraction experiment the mid-
point mole fraction rMMF (where the total conductance
is half way between the limiting conductances) is deter-
mined by the ratio of the activity coefficients of the ions
inside the channel:

rMMF ¼ 1

1þ k1=k2
ð64Þ

where:

kj ¼
cbathj

cchanj
ð65Þ

and the activity coefficient is linked to the excess chem-
ical potential by Eq. (10). Lastly, the GHK permeability
ratio is a combination of the diffusion and activity co-
efficients inside the channel:

P2
P1

¼ Dchan
2

Dchan
1

k2
k1

ð66Þ

Note that by Eq. (21) it is possible that the kj are
functions of the concentration and in that case Eq. (64)
is an implicit equation and the permeability ratio in
Eq. (66) is concentration dependent. Even when the cchanj
are not functions of the mole fraction, the permeability
ratio given by Eq. (66) is concentration dependent be-
cause the bath activity coefficients will vary with bath
concentrations. For LiCl and KCl solutions this effect
alone can give a permeability ratio at 2 M that is 60%
larger than that at 100 mM (Robinson and Stokes 1965;
Conway 1969; Zematis et al. 1986).

Although we invert these equations to give ion
parameters (see ‘‘Determining model parameters’’
section), it must be understood that the equations depend
on many assumptions designed to make this model an-
alytically simple – and the inversion requires even more
assumptions. For example, the inversion requires the
unrealistic assumption that the excess chemical poten-
tials are the same under all experimental conditions.

To do the inversion correctly, one needs a correct
general theory and then a procedure based on that the-
ory to measure the parameters of the channel. Solving
this kind of ‘‘inverse’’ or ‘‘reverse engineering’’ problem
sometimes yields formulas, as in this paper. Generally,
however, parameters must be determined by the best fit
between theory and experiment (Chen et al. 1997a,
1997b, 1999). Theories of how to calculate the excess
chemical potentials of an electrolyte solution confined in
complex geometries are only now being developed
(Rosenfeld 1993; Rosenfeld et al. 1997) and do not yet
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include flux. In this paper we use our simplified channel
to try to make theoretical inroads into the physics and
chemistry of selectivity.

Thermodynamics of selectivity

A closer examination of the derivation of the conduc-
tance ratio result [Eq. (36)] shows that each individual
cation species conductance is proportional to its own
diffusion coefficient when it is the only cation species in
both baths:

gj ¼ zj
e2

kT
A
d

qj jDchan
j ð67Þ

This is true with either symmetric or asymmetric bath
concentrations.

It is interesting to note that the conductance does not
depend on the activity coefficient of the cation. The reason
is that the inside of the channel is (nearly) charge neutral
[see Eq. (96)] [Gillespie and Eisenberg (2001) give a de-
tailed discussion]. Because the channel protein is nega-
tively charged with charge density q, it attracts sufficient
cations to neutralize (that is, screen) its own charge.
Since charge neutrality is the end result, the specifics of
the cations’ packing and their dehydration energy
(which are measured by the activity coefficient) are un-
important. In this case, the only difference between ca-
tions in two experiments is the resistance they experience
as they move through the channel. That is measured by
the diffusion coefficient alone.

When there are several types of cations to screen the
fixed charge of the channel protein, then, for each ion
species, the difference between its electrochemical po-
tentials in the baths and inside the channel determines
how well the ion partitions into the channel (Nonner
et al. 2000, 2001). In general, the more negative the
electrochemical potential of an ion is (either in the bath
or in the channel), the more energy it takes to remove
it and any difference in the electrochemical potential
between two compartments is a driving force on the
ion.

As discussed in ‘‘The PNP equations’’ section, the
local electrochemical potential of ion species j has two
components, ideal (id) and excess (ex) (Nonner et al.
2000):

lj xð Þ ¼ lidj xð Þ þ lexj xð Þ ð68Þ

where:

lidj xð Þ ¼ zje/ xð Þ þ kT ln cj xð Þ
� �

ð69Þ

Here /(x) is the electrostatic potential and cj(x) is the
concentration of species j at position x. With these
definitions the electrochemical potential difference be-
tween two points x1 and x2 can be split into two parts:

Dlj x1; x2ð Þ ¼ Dlidj x1; x2ð Þ þ Dlexj x1; x2ð Þ ð70Þ

where:

Dlidj x1; x2ð Þ ¼ lexj x1ð Þ � lidj x2ð Þ ð71Þ

¼ zje / x1ð Þ � / x2ð Þ½ � þ kT ln
cj x1ð Þ
cj x2ð Þ

� �
ð72Þ

and:

Dlexj x1; x2ð Þ ¼ lidj x1ð Þ � lexj x2ð Þ ¼ kT ln
cj x1ð Þ
cj x2ð Þ

 !
ð73Þ

Now suppose that we take x1 to be in the left bath
and x2=0 (the left edge of the channel) to give:

Dlj L; 0ð Þ ¼ zje V � / 0ð Þ½ � þ kT ln
cj Lð Þ
cj 0ð Þ

� �
þ kT ln kj Lð Þ

� �
ð74Þ

By Eq. (70) of Gillespie and Eisenberg (2001), we have:

zje V � / 0ð Þ½ � þ kT ln
cj Lð Þ
cj 0ð Þ

� �
	 kT ln

cchan
j

0ð Þ
cbath
j

Lð Þ

 !

¼ �kT ln kj Lð Þ
� �

ð75Þ

where cchanj 0ð Þ is the activity coefficient just inside the left
side of the channel. Therefore:

Dlj L; 0ð Þ 	 0 ð76Þ

that is, the (left) bath and the channel are close to
equilibrium. A similar results holds for the right bath if
we take x1 in the right bath and x2=d (the right edge of
the channel):

Dlj R; dð Þ 	 0 ð77Þ

This near-equilibrium situation then allows us to
determine the free energy of partitioning for each ion
species from the left and right baths into the channel:

sj Lð Þ ¼ ln
cj 0ð Þ
cj Lð Þ

� �
	 zje

kT
V � / 0ð Þ½ � þ ln kj Lð Þ

� �
ð78Þ

sj Rð Þ ¼ ln
cj dð Þ
cj Rð Þ

� �
	 � zje

kT
/ dð Þ þ ln kj Rð Þ

� �
ð79Þ

Each sj is then in energy units of kT. If sj(L)>0, then
species j partitions into the channel from the left bath
and similarly for the right bath.

Therefore, one quantitative measure of selectivity of
species 1 and 2 is:

K1;2 ¼ exp
1

2
s1 Lð Þ þ s1 Rð Þ � s2 Lð Þ þ s2 Rð Þ½ �f g

� �
ð80Þ

	 exp
e
kT

z1 � z2
2

V � / 0ð Þ � / dð Þ½ �
� � k1 Lð Þk1 Rð Þ

k2 Lð Þk2 Rð Þ

� �1=2

ð81Þ
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In the case that z1 6¼ z2, the terms V–/(0) and /(d)
may be calculated from Eq. (68) of Gillespie and
Eisenberg (2001) or can be approximated more coarsely
as Donnan potentials (Nonner et al. 2000, 2001). If
L1,2>1, then one can infer that species 1 partitions more
easily into the channel compared to species 2.

In the specific case considered in this paper, we have
z1=z2 and:

cchanj 0ð Þ
cchanj dð Þ

¼ 1 ð82Þ

For the mole fraction (mf) experiment:

cbathj Lð Þ ¼ cbathj Rð Þ � cbathj ð83Þ

and therefore:

Kmf
1;2 ¼

k1
k2

ð84Þ

For the bi-ionic reversal potential experiment, on the
other hand:

cbath2 Lð Þ ¼ cbath1 Rð Þ ¼ 1 ð85Þ

and so:

KGHK
1;2 ¼ cchan2

cchan1

k1
k2

� �1=2

¼ k1
k2

cbath2 Rð Þ
cbath1 Lð Þ

� �1=2

ð86Þ

The partitioning selectivity in the mole fraction ex-
periment [Eq. (84)] is different from the partitioning se-
lectivity in the reversal potential experiment [Eq. (86)]
because the measurements are made under different
conditions. Under bi-ionic conditions, species 1 can only
partition in from the left bath and species 2 only from the
right bath, while in the mole fraction experiment, both
species partition from both baths. However, the term:

cbath2

cbath1

� �1=2

ð87Þ

is usually close to 1 if the two baths are at the same
concentration; for the rather extreme case of 2 M KCl
and 2 M LiCl, it less than 1.3 (Robinson and Stokes
1965; Conway 1969; Zematis et al. 1986). Therefore, the
partitioning selectivities are approximately the same in
the mole fraction and reversal potential experiments
[with the value given by Eq. (84)] if the channel activity
coefficients between the two experiments are not too
different [Eq. (21)].

This difference in the partitioning selectivity L1,2 be-
tween the two experiments is one example of the vari-
ability of the partitioning selectivity; the partitioning
selectivity L1,2 is not a constant for the two species 1 and
2. L1,2 not only contains the bath activity coefficients of
both ions that vary with bath concentration, but it also
contains the channel activity coefficients. The channel
activity coefficients cchanj have several components with
different physical and chemical origins. First, there are

terms that measure the excluded volume (entropic) in-
teractions arising because two ions cannot occupy the
same space. Intuitively one might think that the smaller
ion would always be favored because it is seemingly
easier to pack into an already crowded volume. How-
ever, density functional theory studies of uncharged
systems have shown that in various confined geometries
larger spheres can be selected solely on the basis of ex-
cluded volume (Goulding et al. 2000, 2001). cchanj also
depends on electrostatic effects that can be different even
for ions of the same valence (Nonner et al. 2000) and
solvation effects that measure the difficulty of removing
an ion from the bath (Nonner et al. 2001). Each of these
components can change for each ion species, depending
on the exact experimental conditions.

Although the partitioning selectivity L1,2 is not a
constant for the two cation species, we can use it to divide
selectivity into equilibrium and nonequilibrium compo-
nents. Specifically, because each side of the channel is in
near equilibrium with the bath on that side of the channel
[Eqs. (76) and (77)], the partitioning selectivity L1,2 as
defined in Eq. (80) is an (approximately) equilibrium
quantity. However, as the conductance ratio and per-
meability results suggest, there is a nonequilibrium
component to selectivity as well, namely the ratio of the
diffusion coefficients of the cations inside the channel.
We will call this the diffusion selectivity (it is possible, of
course, that that the formula for the diffusion selectivity
is more complex in channels for which our assumptions
do not hold). Both of the equilibrium and nonequilibri-
um components are necessary to determine the function
of the channel; the partitioning selectivity measures the
energetic differences that determine the contents of the
channel, while the diffusion selectivity measures the rel-
ative resistance encountered by the ions moving through
the confined geometry of the channel.

An interesting consequence of separating selectivity
into equilibrium (partitioning) and nonequilibrium
(diffusion) components is the possibility that these two
components can have opposite, perhaps balancing, ef-
fects. For example, ion species 1 might partition more
easily into the channel (compared to ion species 2), but
might have a lower diffusion coefficient in the channel.
In that case:

K1;2 > 1 partitioning favors 1ð Þ ð88Þ

while:

Dchan
2

Dchan
1

> 1 diffusion favors 2ð Þ ð89Þ

An example of such a case is the ryanodine receptor with
Li+ and K+ as species 1 and 2, respectively (Chen et al.
1999).

For our model channel, both the conductance and
mole fraction experiments give clear measures of the
diffusion and partitioning selectivities, respectively, if the
activity coefficients inside the channel are assumed
constant:
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g2
g1

¼ Dchan
2

Dchan
1

> 1 ð90Þ

rMMF ¼ 1

1þ K1;2
<
1

2
ð91Þ

The GHK permeability ratio, however, gives a com-
posite and thus ambiguous measure of the diffusion and
partitioning selectivities:

P2
P1

¼ Dchan
2

Dchan
1

k2
k1

	 Dchan
2

Dchan
1

1

K1;2
ð92Þ

and it may be less than or greater than 1. This ambiguity
shows that the GHK permeability ratio is not an ideal
indicator of which ion is preferred by the channel. The
GHK permeability ratio does, however, measure the
relative size of the partitioning and diffusion selectivities.

Conclusion

The work in this paper is a first extrapolation of the
selectivity theory introduced by Nonner et al. (2000,
2001). There the authors considered only an equilibrium
situation, but calculated the excess chemical potentials
from the concentrations of all the ions to show how both
charge interactions and the space available to the ions
affect selectivity. Here, we showed that even the simplest
implementation of the charge/space competition idea in
a flux model offers new ways to measure selectivity of a
channel using classical experimental protocols. Consid-
eration of the detailed properties of charge/space com-
petition is likely to lead to other methods of measuring
the physical properties of open ionic channels and more
insight into the physics and chemistry of selectivity.
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Appendix

Appendix A: Approximate solution to the PNP
equations

Here we derive the approximate analytic solution to the
PNP equations using all the assumptions mentioned
previously (see above). We start by rewriting the PNP
equations (12) and (9) for the inside of the channel with
these assumptions:

��
d2/
dx2

¼
X
j

zjcj þ q ð93Þ

�Jj ¼ DjA
dcj
dx

þ zje
kT

cj
d/
dx

� �
ð94Þ

with the channel located on the interval (0,d).

For boundary conditions we will use the classic
Donnan boundary conditions of Eqs. (13, 14, 15, 16, 17,
18). In general we do not require all of the specific details
of these boundary conditions, but only the fact that due
to Eq. (15) the channel is charge neutral at the edges;
that is:

0 ¼
X
j

zjcj 0ð Þ þ q 0ð Þ ¼
X
j

zjcj dð Þ þ q dð Þ ð95Þ

In this analysis we could use any boundary conditions
which satisfy this condition. However, for channels the
Donnan boundary conditions are the only boundary
conditions we are aware of that give charge neutrality at
the edges.

We will show that when we use boundary conditions
for the concentrations that include charge neutrality and
when the anion concentration is negligible, the
exact solution of the PNP equations follows by
requiring charge neutrality everywhere inside the
channel; that is:

0 ¼
X
j

zjcj þ q ð96Þ

or, equivalently by the Poisson equation (93):

d2/
dx2

¼ 0 ð97Þ

throughout the channel. We show this by deriving a
general condition that must be satisfied whenever con-
dition (97) is assumed.

For the moment we do not assume that q is constant,
but some function of x. By Eq. (97), / is linear and
necessarily:

/ xð Þ ¼ / dð Þ � / 0ð Þ½ � x
d
þ / 0ð Þ ð98Þ

Integrating the Nernst-Planck equation (94) gives:

Jj ¼ �zj
A
d
Djw

cjðdÞ � cjð0Þ expð�zjwÞ
1� expð�zjwÞ

ð99Þ

where:

w ¼ e
kT

/ðdÞ � /ð0Þ½ � ð100Þ

Substituting Eq. (99) into the Nernst-Planck equa-
tion (94) gives:

zj
w
d
cjðdÞ � cjð0Þ expð�zjwÞ

1� expð�zjwÞ
¼ dcj

dx
þ zjcj

w
d

ð101Þ

whose solution is:

cjðxÞ

¼ cjðdÞ� cjð0Þexpð�zjwÞ
1� expð�zjwÞ

� cjðdÞ�cjð0Þ
1� expð�zjwÞ

exp �zjw
x
d

� �
ð102Þ
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Equation (102) is a solution for the concentrations if
it satisfies the Poisson equation (93). Therefore, substi-
tuting Eq. (102) into Eq. (96) shows that:

0¼ qðxÞþ
X
j

zj
cjðdÞ� cjð0Þexpð�zjwÞ

1� expð�zjwÞ

�

þ cjð0Þ� cjðdÞ
1� expð�zjwÞ

exp �zjw
x
d

� ��
ð103Þ

Therefore any time one assumes that / is linear, the
measure of how good is this approximation is how close
the right-hand side of Eq. (103) is to zero for all x (in an
absolute sense if all concentrations are measured in
molar). If the right-hand side is not small for some re-
gion of x, then there is a region of space charge. In that
case, the original assumption of charge neutrality is vi-
olated and, by the Poisson equation (93), the potential /
is no longer linear. This, in turn, will invalidate the
predicted concentration profiles and current.

In the case that we consider where q is constant inside
the channel, the co-ions have negligible concentration
inside the channel, and all the counter-ions are of the
same valence, then Eq. (103) is zero because we assumed
that the channel was charge neutral at the edges.
Therefore, up to these approximations, Eqs. (98) and
(102) are an exact solution to the PNP equations.

Appendix B: Low concentration approximation
of Donnan potentials

If the cations all have valence zc and the anions have
valence –1, we will show that:

exp
zce
kT

WL

� �
	 zc

qj j
X
zj¼zc

cbathj Lð Þ
cchanj

cj Lð Þ ð104Þ

To start, by Eq. (15) the Donnan potential YL must
satisfy:

0 ¼ NY zcþ1 � qY zc � zcP ð105Þ

where:

P ¼
X
zj¼zc

cbathj Lð Þ
cchanj

cj Lð Þ ð106Þ

N ¼
X
zj¼�1

cbathj Lð Þ
cchanj

cj Lð Þ ð107Þ

Y ¼ exp
e
kT

wL

� �
ð108Þ

(we show the work on the left side of the channel.
Similar formulas are valid for the right side of the
channel by substituting R for L). For cation channels,
q<0, and so we have:

0 ¼ aeY zcþ1 þ Y zc � zce ð109Þ

where we have dropped the L subscript:

a ¼ N
P

ð110Þ

and:

e ¼ P
qj j � 1 ð111Þ

Rewriting Eq. (109) as:

Y zc ¼ zce � aeY zcþ1 ð112Þ

we find that the right-hand side is of order e and so
Y zc ¼ OðeÞ (Kevorkian and Cole 1996). In that case:

aeY zcþ1 ¼ O e2þ1=zc
� �

ð113Þ

and therefore:

Y zc ¼ zce þ O e2þ1=zc
� �

ð114Þ

which is equivalent to Eq. (104).
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